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A b s t r a c t  Heal th  care  databases  m a y  compri se  
h u n d r e d s  o f  p r e d i c t i v e  v a r i a b l e s ,  t h o u s a n d s  of 
cases ,  a n d  c o m p l e x  o u t c o m e s .  Art i f ic ia l  neural  
networks m a y  provide a n  alternative to  establ ished 
predict ive  a lgor i thms  for  analyz ing  massive heal th  
c a r e  d a t a b a s e s ,  p o t e n t i a l l y  o v e r c o m i n g  o b s t a c l e s  
ar is ing  from the  n u m b e r  of cases ,  miss ing  data ,  
v a r i a b l e  s e l e c t i o n ,  m u l t i c o l l i n e a r i t y ,  s p e c i f i c a t i o n  
o f  i m p o r t a n t  i n t e r a c t i o n s ,  a n d  s e n s i t i v i t y  t o  
erroneous  values.  On a n  actual  database derived 
f rom p a t i e n t s  h o s p i t a l i z e d  wi th  p n e u m o n i a ,  we 
compared the  cross-val idated predict ions  of l inear  
d iscr iminant  analys is  (LDA)  t o  a  new,  supervised 
adaptive resonance theory network called ARTMAP. 
Unbiased proport ionate  reduct ion  in e r r o r  us ing  
A R T M A P  w a s  50% g r e a t e r  than  L D A .  Under  
c o n d i t i o n s  o f  s i m u l a t e d  n o i s e  a n d  i n c r e a s i n g -  
proportion learning,  A R T M A P  demonstrated further 
advantages o v e r  LDA.  The  promising performance 
of A R T M A P  warrants  further  evaluation on  larger 
health care databases.  

I. INTRODUCTION 

A major national effort is underway to determine patterns 
of medical practice that most effectively result in favorable 
health outcomes [l], [2]. Databases arising from medical 
effectiveness research may contain tens of thousands of cases 
and hundreds of variables intended to predict outcome status. 
Established statistical prediction algorithms may be 
suboptimal for such tasks because of obstacles arising from 
massive number of cases, missing data, variable selection, 
multicollinearity, specification of important interactions, and 
sensitivity to erroneous values. Artificial neural networks 
may offer an alternative method that overcomes some of the 
aforementioned analytic problems. 

To address these inadequacies, we developed a new self- 
organizing supervised neural network that incorporates fuzzy 
set logic into adaptive resonance theory mapping (ARTMAP) 
to simultaneously predict outcome and define category 

patterns within outcomes. In voting fuzzy ARTMAP. 
multiple subnetworks resulting from random permutations of 
a learning set are created until a stable “voting” consensus 
(predictive score) is achieved. 

The purpose of this study was to determine whether such a 
self-organizing neural network could accurately predict the 
length of stay of patients admitted to a community hospital 
with a diagnosis of pneumonia. Comparison was made to the 
performance of linear discriminant analysis, the most suitable 
of the established predictive methodologies. 

IL METHODS 

A .  Clinical Database 

1)  Predictive Measures: The database was generated by 
one of us (AJH) through abstraction of 239 charts carrying a 
principal diagnosis of pneumonia on patients hospitalized 
between 1988 and 1990 at the Medical College of Wisconsin 
(MCW) affiliated hospitals. Stepwise linear regression, 
performed on about 200 clinically tenable measurements, 
resulted in 16 factors documented within the first 2 days of 
admission on the 214 patients whose charts had no missing 
data. The Reno and Boston researchers were blinded to the 
relative importance of the 16 variables. Risk factors included 
continuous as well as binary measurements (displayed as part 
of Fig. 5). 

2) Outcome Measure: The outcome measure chosen for 
this preliminary study was length of stay (LOS), because it is 
related to both the severity of illness and the process of care, 
and is a major determinant of the cost of medical care. We 
broke the LOS into 3 intervals, based on inspection of its 
distribution (Fig. 1). The distribution is skewed rightward, 
with a mean LOS of 6.9 days and a median LOS of 5 days. 
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Fig. Distribution of the length of stay for 214 patients 
hospitalized with pneumonia. Arrows indicate empiric cut-points 
for trichotomous classification of the length of stay. 

1. 

Short LOS reflected either relatively healthy patients who 
responded briskly to therapy, or those who were very ill and 
died despite treatment. Long LOS reflected relatively sick 
patients, often requiring intensive care, who usually survived 
after prolonged hospitalization. There were only 10 deaths, 
distributed across all 3 LOS categories. 

B .  Accuracy, Cross-Validation, and Simulations 

1 )  Accuracy: In order to apply algorithmic prediction in 
a clinical setting, cut-points or thresholds must be used to 
categorized the predicted outcomes. An ideal predictive 
algorithm would create probabilities clustered near 0 and 1 for 
each predicted outcome, so that the accuracy (as judged by the 
fraction of true positives and negatives) would be insensitive 
to the choice of a particular cut-point. For both fuzzy 
ARTMAP and linear discriminant analysis (LDA), we used 
the predicted outcome with the greatest probability. In the 
case of LDA, the predictive formula was adjusted for the prior 
probabilities of each length of stay category. In order to 
adjust accuracy for chance correctness of classification, we 
made use of the proportionate reduction in error (PRE) 
statistic [3], 

PRE = (total correct - expected correct by chance) 
(total number of cases - expected correct by chance) 

The PRE is zero, therefore, when the diagonal sum in a 
confusion matrix is equal to that expected by chance alone, 
and 1 when classification is perfect. 

2 )  Cross-Validation: In the analysis of large datasets, 
validity is threatened more by bias than variance. If a dataset 
in trained then tested on the same cases (i.e., resubstituted), 

the predictive accuracy is favorably biased [4]. We obtained 
nearly unbiased estimates for our dataset by the appropriate 
use of the k-fold cross-validation technique. In k-fold cross- 
validation, the data set is randomly divided into k partitions of 
approximately equal size; the cases not found in each partition 
are used to train the classifier, and the partitioned cases are 
used as a testing set. This is performed on all k partitions 
and the overall predicted class assignments are tallied, from 
which average accuracy is computed. We varied k from 2 to 
100, and found no substantial loss of accuracy with k=10. 
This is supported by empirical evidence that the partition 
fraction can approximate the prevalence of each class without 
significant loss of accuracy [41. 

3)  Simulations: In the first simulation, we assessed the 
robustness of the techniques to uncorrelated noise by adding 
16 uniform random noise variables to the dataset of 16 
existing pneumonia variables, for a total of 32 predictive 
variables. In the second simulation, we created a larger but 
correlated data set by replicating each patient record 3 times, 
distorting the continuous variables by a random positive or 
negative amount (within one standard deviation). On 10 
random permutations of this new 642-recod database, we then 
performed an increasing-proportion comparison of the cross- 
validated predictive abilities of fuzzy ARTMAP and LDA, 
using a progressively larger portion of a randomly permuted 
data set for training, and the remainder for testing. 

C .  Linear Discriminant Analysis (LDA) 

Most of the published studies on predicting outcome from 
severity-of-illness and treatment utilized linear regression, 
analysis of variance, LDA, or logistic regression. Each of 
these models makes distributional assumptions. For 
instance, dichotomous outcomes like mortality are better 
modeled by logistic regression if the predictor variables are 
binary or not normally distributed, whereas LDA performs 
better if normality holds [5], [6]. Continuous measurements 
(e.g.. LOS) can be broken into intervals for analysis of 
variance or discriminant analysis, or predicted directly with 
linear regression. Because LOS was broken into 3 levels. we 
employed LDA. Analysis was performed using SYSTAT 
version 5 on an Apple Macintosh platform. 

D. Fuzzy ARTMAP 

Adaptive resonance theory (ART) neural networks use 
feedback and competition (analogous to interneuronal and 
recurrent neural circuits) to self-organize stable recognition 
codes in real time in response to arbitrary sequences of input 
patterns. Within the ART architecture, the process of 
adaptive pattern recognition is a special case of the more. 
general cognitive process of hypothesis discovery, testing, 
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search, classification, and learning. This property opens up 
the possibility of applying ART systems to the more general 
problem of adaptively processing large abstract information 
sources and databases. The development stems from the 
formulation of synaptic learning as compartmental 
interactions characterized by differential equations. 
Fortunately, competitive models can be formulated as 
Liapunov functions, so the system is asymptotically stable. 
Since a parallel architecture described by differential equations 
can be modeled on a von Neumann computer, we can 
experiment with neural networks on a multipurpose computer 
and reserve parallel hardware development for specific 
applications. 

The original ART paradigm of Carpenter and Grossberg 
[7], called ARTl , clustered only binary variables. 
Subsequently, Carpenter and Grossberg developed ART2 [81 
and ART3 [9] for analog variables wherein the similarity of 
new input vectors to existing category vectors was determined 
Euclidean dot-products. This scheme required the addition of 
substantial circuitry to automatically scale input vectors. 
Recently, these Boston University Center for Adaptive 
Systems researchers proposed an alternative way to represent 
nonbinary variables using fuzzy set membership theory [lo]. 
Minimal modification of the ARTl was required, as 
nonbinary variables could be normalized to the 0-1 range, and 
a fuzzy subsethood membership function [ 111 substituted for 
the ARTl matching formula (which reduces to ARTl if the 
vectors contain only binary elements). The key difference is 
that the choice and vigilance equations use the logical “ A N D  
function in ARTl but the “MIN” in fuzzy ART. For 
example, if a newly input vector (l,l,O,l) is being tested for 
degree of match to an existing pattern vector (l,O,l,l), the 
AND operator results in the vector (l,O,O,l). The MIN 
operator selects the minimum of the 2 values for each 
variable in the vector, which would result in the same vector 
as the AND function when only binary data is used. For the 
case of analog data, consider the vector (1, .8, .2, .7) being 
tested for goodness-of-category match with the existing 
pattern (l,O,l,l); the MIN operator produces the vector (1, 0, 
.2, .7). Both the choice function, Tj (j is the index for the F2 
nodes), and the vigilance, p, use the L1 norm (absolute sum) 
of this resultant vector. For either ARTl or fuzzy ART, Tj 
is maximal when the intersection of a newly input F1 vector 
with an F2 category vector is identical to the F2 vector norm. 
To deal with ties, the parameter a exerts a normalizing effect 
using bottom-up weights (wi,), so that T, will be maximal 
for the F2 category with the greatest absolute norm. 

To enable ART to learn from experience, or map from 
input to outcome data vectors, a supervised architecture called 
adaptive resonance theory mapping, or ARTMAP, was 
proposed by the Boston researchers, first incorporating binary 
vectors [12], and later generalized to analog vectors using 
fuzzy ART [13]. As shown in Fig. 2, ARTMAP utilizes 2 
ART modules, one to cluster input variables (ART3 and one 
to cluster outcome variables (ARTb), with linkage by a map 
field of nodes (Fab). While ARTb operates like a typical ART 
module, clustering multiple patterns of outcome if necessary 
before presentation to Fab, ART, function is modified to 

predictively optimize the formation of its F2 category 
patterns (which have mutually exclusive assignments, or 
expectations, for outcome classification). This is 
accomplished during training by elevating pa on a vector-by- 
vector basis until the best F2 choice (Tj maximum) for that 
vector is assigned to the outcome class expected by ARTb. 
Upon successful assignment, the winning F2 category pattern 
is modified. or updated, to reflect the impact of the new 
vector. If the vector is allowed to have maximal impact, the 
learning is called “fast”. Slow learning simply takes a 
weighted average of the new vector (b) with the pre-existing 
category vector (1-b). Training and prediction can occur in 
real time, since ARTMAF’ makes an outcome prediction upon 
presentation of each new input vector; only if it learns the 
correctness of the prediction does it change the F2 coding, 
which will affect the subsequent input vector’s prediction, and 
so on. If the data records are presented in a relatively unbiased 

ARTb - 

D 

c -  . -  
ART a 

Fig. 2. ARTMAP Architecture (Supervised Learning). 
TRAINING: Measurement vectors (a) are preprocessed into (a,ac) 

by 0-1 normalization and creation of a complement for each 
variable. Likewise, (b) are preprocessed into (b.bc). (a.ac) is 
distributed by F1 to all existing F2 category nodes. which feed 
back learned category weights to F1. The outcome class 
assignment of the best F2 category match meeting the current 
vigilance (pa) setting is sent to Fab; if the prediction is confirmed, 
the F2 category is modified as it leams (a,ac). If the prediction by 
ART, is disconfirmed. MAP FIELD activation induces the match 
tracking process, raising pa just above the F1 to Fo match ratio 
lxJl(a,ac)l. This triggers another ART, search for the next best F2 
category match, and so on, which leads ultimately to match with 
an existing ART, category pattem that correctly predicts (b), or, if 
none exist, IO the assignment of pattern (a) to a previously 
uncommitted ART, F2 node. In voting ARTMAP. permutations of 
(a,ac) are simultaneously processed in multiple ARTa strata, which 
send predictions into ARTab, where the consensus is judged. 

TESTING; Each new (a.ac) input to the trained ARTa finds its 
best F2 match; the outcome class assigned to that F2 category 
node is the prediction. In voting ARTMAP, the consensus of 
multiple ARTa strata is used as the final prediction. 
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fashion, as would be the case in the real temporal sequence of 
hospital admissions (which we simulate by random 
permutation), then most of the learning occurs in a single 
pass through the data, i.e., an ARTMAP program could be 
used on-line as a real-time “self-taught” expert system. 
However, a modest increase in accuracy (several percent) is 
achieved by allowing the input vectors to cycle through 
several times, until there are no “re-learning” effects on the 
early-formed €2 categories due to late case presentation. In 
our experience, only a few cycles, or epochs, of training occur 
until all input training vectors are learned 100% correctly. 
This is in contrast to the backpropagation model, which 
typically must cycle through a data set thousands of times 
before converging. 

In consultation with the Boston Center, the Reno group 
fully implemented voting fuzzy ARTMAP using C language 
during the summer of 1991. The Reno ARTMAP was 
compiled and run on DOS, Apple Macintosh, and UNIX 
platforms, including the Cray YMPI2 platform at the 
University of Nevada National Supercomputing Center for 
Energy and the Environment. 

III. RESULTS 

A. Accuracy 

Under resubstitution, LDA correctly categorized LOS in 
67% of cases when trained and tested on the same data set, 
whereas fuzzy ARTMAP learned to completely discriminate 
100% of cases (Table I). Under 10-fold cross-validation, LDA 
correctly predicted the LOS category in 52% (PRE 0.20). a 
single ARTMAP network correctly predicted in 56% of cases 
(PRE 0.26), and a consensus of 30 voting fuzzy ARTMAP 
networks correctly predicted in 59% of cases (PRE of 0.30) 
(Table I). 

TABLE I 
PREDICTIVE ACCURACY OF MODELS 

MEIHOD Resubstitution IO-fold Cross-Validation 
Accuracy Accuracy PREb 

Linear Discriminant 0 .67  0 .52  0.20 
Single ARTMAP 1 .oo 0.53  0.22 
30-vote ARTMAP 1 .oo 0.59 0 .30  

aResubstitution refers to testing after training on all cases. 
~ P R E  is the proponionate reduction in error (see text for explanation). 

B .  Simulations 

With the addition of 16 predictive variables consisting of 
uncorrelated uniform random noise, the PRE of voting 
ARTMAP actually improved from 0.257 to 0.265 (a 3% 
increase), whereas the PRE of LDA decreased from 0.203 to 
0.164 (19% decrease) on the same data set. 

Under the increasing-proportion simulation (Fig. 3). 
training on only the first 42 cases resulted in about 55% 
accuracy (PRE 0.33) on the remaining 600 cases for both 

ARTMAP and LDA. However, as an increasing portion of 
the database was used to train (with the remainder used as the 
independent testing set), the predictive accuracy increased only 
marginally for LDA to about 62% (the covariance matrix 
changes minimally), but ARTMAP accuracy increased rapidly 
to an asymptote at about 90% (PRE 85%) with about 300 
records or fewer used for testing. Training with 442 and 
testing on 200 cases increased the PRE for LDA almost two- 
fold, but more than tripled the PRE for ARTMAP. These 
findings demonstrate the superior capacity of ARTMAF’ over 
LDA to learn from data regionally clustered in data space (i.e., 
to recognize similar patterns under noisy or systematically 
biased conditions). 

1.0 1.0 

0.9 

0.8 

0.7 0.7 

8 0.6 0.6 
U 

0.5 0.5 

f Meanil SE 3 0.3 

a 0.2 
a 

0.2 FAH = FUy-bgic ARTMAP 

E 

o. t LDA = Linear Disaiminant Analysis 4 0.1 
CasesUsedinTraining: 42 142 242 342 442 
CasesUsedinTesting: 600 500 400 300 200 

Figure 3. Increasing-Proportion Prediction by the Models. The 
original 214 cases were replicated twice. and the continuous variables 
were randomly vaned by up to 1 standard deviation. FAM and LDA were 
trained and tested on an increasing proportion of the new 642-case 
dataset. The process was repeated 10 times to establish mean 
accuracies and standard errors. 

C .  Pattern Identification 

One reason to prefer ARTMAP or other locally clustering 
algorithms over global activation models (such as 
backpropagation) for the analysis of health care data is to be 
able to “explain” the partitioning of input feature-space. As 
an example, during resubstitution trial with a single network, 
ARTMAP created a total of 44 long-term memory patterns 
for the 214 MCW pneumonia patients, representing a 5-fold 
reduction in data categories. The sequence of formation and 
distribution of patients’ records by F2 memory pattern is 
shown in Figure 4. Figure 4 demonstrates that populous, 
more “generalized“ memory patterns tend to be recruited early 
in the neural network training process, consistent with real- 
time learning capability. The reason for this is that early 
memory patterns are those most subject to change by 
subsequently presented cases; later patterns emerge to classify 
the more atypical case clusters. 

Fig. 5 displays the structure of the 9 memory patterns 
from Figure 4 that each clustered at least 10 patients. Among 
the analog features, there is a trend towards longer 
hospitalization with increasing age, lower hemoglobin (Le., 
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worsening anemia), and greater time spent in an intensive care 
unit. Among binary features, short stays demonstrate 
consistent absence of some risk factors (open rectangles) and 
inconsistent mixture of others (shaded rectangles). 
Intermediate stays also cluster the absence of many risk 
factors, as well as non-white racial background, those without 
insurance, and arrival by ambulance (filled rectangles). Long 
stays include categories clustering the blind, those not able to 
control their urine, not able to walk, and with consistently 
abnormal laboratory results. 

ARTMAP’s clustering within outcomes is clinically 
tenable. For instance, increasing age, worsening anemia, and 
the presence of risk factors associated with concurrent diseases 
would reasonably explain, in part, why such patients would 
require more prolonged hospital treatment. It is conceivable 
that displays similar to Fig. 5 could enable ARTMAP to 
“explain itself‘, alleviating the concern of many physicians 
and hospital administrators about the use of “black box” 
predictive algorithms. 
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Figure 5.  ARTMAP Internal Coding of Categories within Length of Stay Predictions. Explanation of predictive variables: AGE, age in years; HGB, 
hemoglobin, gm/dl; ICU DAYS, days spent in an intensive care unit: NON-WHITE, race other than white; NO INSURANCE, no private or public 
source of health insurance; RE-ADMIT PAST YR. admitted at least once to hospital for any problem within the preceding year. USES HOME 0 2 ,  
used continuous home oxygen prior to admission; BLIND, legally blind; INCONTINENT, incontinent of urine; ARRIVED 911. amved by 
ambulance; INTER-HOSP TRANSFER, transferred from another hospital; TRANSF to ICU, transferred into an ICU during hospital stay; HI ADMIT 
RESP RATE, admission respiratory rate > 24; HI ALK PHOSPIIATASE, elevated serum alkaline phosphatase; HI CREATININE, serum creatinine > 2; 
+ 1ST BLOOD CULTURE, growth on blood culture from admission; NOT UP AD LIB DAY 2, not able to walk spontaneously by second hospital day. 
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IV. CONCLUSIONS REFERENCES 

The fuzzy ARTMAP consensus of 30 parallel voting 
networks outperformed the linear discriminant function in 
predicting length of stay in 214 patients hospitalized for 
pneumonia (Table I). On this data set, PRE by voting 
ARTMAP was 50% greater than by LDA (0.30 vs. 0.20). 
Each ARTMAP layer reached steady state after only 5 to 10 
cycles through the dataset. 

While the addition of uncorrelated noise variables degraded 
the predictive function of LDA. it actually improved the 
accuracy of ARTMAP. It is possible that the ARTMAP 
system learned to recognize and ignore noise, but this 
behavior needs to be replicated and further characterized. 

Each voting fuzzy ARTMAP network generated outcome- 
specific multivariate memory categories distinguished by 
simultaneous ranges within variables (Fig. 5). Memory 
categories capturing many @opulous) and few (sparse) input 
vectors may both be clinically important. Populous patterns 
reflect consistent associations among input variables (in our 
setting, these are severity-of-illness groupings), and thereby 
contribute to good generalization on future input patterns not 
previously encountered. In addition, these populous patterns 
facilitate an “explanation” by the network of those 
interactions accounting for the predictions. On the other 
hand, sparse patterns reflect multivariate outliers, resulting 
from either statistical variation, systematic error, aberrant care 
(e.g., by hospitals or individual practitioners), or emerging 
trends (e.g., unrecognized adverse events or new disease 
entities). In the ARTMAP algorithm, these sparse, outlying 
memory patterns are not degraded by continued training, 
reflecting the local nature of the learning paradigm. In our 
study, inspection of the internal memory patterns revealed 
that ARTMAP clustered clinically meaningful interactions 
among the severity-of-illness variables. We are presently 
exploring the partitioning of variable space by the multiple 
voting networks in order to improve the “self-explanatory” 
ability of the system. 

Further work should involve larger datasets and missing 
data. Consideration should also be given to improving 
predictive performance by tandem or hybrid networks of 
competitive. locally clustering models like ARTMAP with 
global activation models like backpropagation. 
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