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Abstract

The visual cortex has a laminar organization whose circuits form functional columns in cortical maps. How this laminar architecture
supports visual percepts is not well understood. A neural model proposes how the laminar circuits of V1 and V2 generate perceptual
groupings that maintain sensitivity to the contrasts and spatial organization of scenic cues. The model can decisively choose which groupings
cohere and survive, even while balanced excitatory and inhibitory interactions preserve contrast-sensitive measures of local boundary
likelihood or strength. In the model, excitatory inputs from lateral geniculate nucleus (LGN) activate layers 4 and 6 of V1. Layer 6 activates
an on-center off-surround network of inputs to layer 4. Together these layer 4 inputs preserve analog sensitivity to LGN input contrasts. Layer
4 cells excite pyramidal cells in layer 2/3, which activate monosynaptic long-range horizontal excitatory connections between layer 2/3
pyramidal cells, and short-range disynaptic inhibitory connections mediated by smooth stellate cells. These interactions support inward
perceptual grouping between two or more boundary inducers, but not outward grouping from a single inducer. These boundary signals feed
back to layer 4 via the layer 6-to-4 on-center off-surround network. Thisfolded feedbackjoins cells in different layers into functional columns
while selecting winning groupings. Layer 6 in V1 also sends top-down signals to LGN using an on-center off-surround network, which
suppresses LGN cells that do not receive feedback, while selecting, enhancing, and synchronizing activity of those that do. The model is used
to simulate psychophysical and neurophysiological data about perceptual grouping, including various Gestalt grouping laws.q 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction: cortical substrates of perceptual
grouping

The laminar organization of the visual cortex supports
interactions among local circuits that form functional
columns, which are themselves organized in cortical maps
(Hubel & Wiesel, 1977). Yet, how the structures of layer
and column interact to generate visual percepts remains
obscure. This article develops a neural model of how
the interacting structures of laminae, columns, and maps
cooperate to generate perceptual groupings. Preliminary
reports of some of the present results have appeared in
Grossberg, Mingolla and Ross (1997).

While perceptual groupings have long been studied as
psychophysical phenomena, a full understanding of their

causes depends on modeling the underlying neural mechan-
isms by which the brain organizes local image features into
coherent groupings of scenic features. Crucial to the process
of perceptual organization are the cortical circuits that
convert retinogeniculate measures of local image contrast
into representations of oriented boundaries in a context-
sensitive way. Emergent boundary groupings efficiently
represent object borders and surface contours in response
to texture, shading and depth cues (Beck, Prazdny & Rosen-
feld, 1983; Grossberg, 1994; Julesz, 1971; Polat & Sagi,
1994; Ramachandran & Nelson, 1976). The cortical model
developed herein shows how the context-sensitivity of such
perceived boundary groupings can be explained by the
context-sensitivity of neuronal responses, notably their
“non-classical” receptive field properties, which can, in
turn, be traced to specific aspects of the organization of
local circuits.

While the cortical circuits we analyze are involved in
many aspects of perceptual grouping, including textural
segmentation, “good continuation,” and figure/ground
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separation, illusory contours offer a particularly useful
testbed for study. Illusory contours are instances of percep-
tual grouping because they are cases where disconnected
local contrasts in a scene are linked together to form unbro-
ken perceptual units. They are usually but not always
perceptually sharp, typically support visible light/dark
differences in abutting regions, and are often associated
with perceived surface depth differences. (See Lesher,
1995 for a review.) While such striking perceptual effects
may be absent in more prosaic forms of grouping, an impor-
tant common mechanism unites the analysis of many
perceptual phenomena in which percepts of continuous,
elongated, and thin structures (i.e. contours) emerge from
discrete scenic elements. To address such phenomena, Beck
et al. (1983) refer to “linking”, Field, Hayes and Hess (1993)
invoke an “association field”, and our work analyzes
“cooperative bipole cells” (Gove, Grossberg & Mingolla,
1995; Grossberg, 1987; Grossberg & Mingolla, 1985).

To function effectively in perceptual contour formation or
completion, a linking mechanism is required to possess a
key computational characteristic: it must be activated when-
ever the receptive field of the mechanism is simultaneously
stimulated on two sides by “bottom-up” input based on
retinally registered contrasts, butnot be activated whenever
input, no matter how strong, is only registered on one side
(see Fig. 1). We call this tendency “the bipole property.”
This property patently requires some form of non-linear
computation, as the bipole must “decide” whether it is
being stimulated by a sufficient number of units of activity
on each side of its receptive field (e.g. five and five) to
respond, or whether it is being stimulated only on one
side (e.g. ten units) with no stimulation at all on the other,
in which case it should not respond. Another way of stating
the bipole property is to say that a bipole unit mustinter-
polate a response supporting a perceptual contour if its
receptive field center is located between two appropriately
spaced inducing elements, but notextrapolatea perceptual
contour away from a single isolated inducer.

The journey from a functional understanding of the bipole
property to our present understanding of its instantiation in a

detailed local-circuit model of V1 and V2 cell interactions
has had to answer two difficult computational questions:
first, how can the “inward” logic of necessary and sufficient
arrangements of inducers for perceptual interpolation be
reconciled with the “outward” axonal connectivity patterns
of long-range horizontal connections of visual cortex
(McGuire, Gilbert, Rivlin & Wiesel, 1991)? While a sketch
of possible circuits for accomplishing this feat has already
been provided (Grossberg et al., 1997), this article is the first
to provide the equations of a model that addresses this issue.

The second key computational question addressed in this
article concerns the reconciliation of: (a) the bipole prop-
erty; (b) neural feedback circuits; and (c) the need for neural
codes to assume a functional continuum of values (e.g.
neural firing rates). Before even stating the question,
however, some preliminary points must be clarified. To
begin, the word “feedback” is used in several different
senses in various scientific and technical communities.
Before explaining the significance of feedback in our
model, we must clarify that in using the term we refer to
any “closed loop” of connectivity between neural units.
Thus, “horizontal connectivity” whereby neuron A in a
particular lamina of V1 synapses on neuron B of the same
lamina, and where neuron B also synapses on neuron A, is
the simplest possible example of nerve feedback. Such feed-
back is often referred to as “recurrent.” Our model includes
this form of feedback, as well as other forms. Some physiol-
ogists appear to reserve the word feedback to refer only to
projections from a “later” cortical area to an earlier one (e.g.
V2 to V1, or V1 to LGN). We prefer to describe the entire
loop of such inter-area circuits, including both the
“forward” and “backward” connections, as a feedback
circuit, and the work presently reported includes such feed-
back. Finally, closed feedback loops can also be found
within cortical areas, but involving cells of two or more
laminae of a single area; we will discuss such feedback,
and its relation to the other forms, at length.

The next point for clarification concerns the need for a
near-continuum of possible output values in a neural code;
we refer to this property asanalog sensitivity. The percepts
of many perceptual phenomena, including illusory contours,
have been shown to be resolvable to rather fine gradations,
using a variety of scaling techniques. (For a review, see
Lesher, 1995.) That is, it is meaningful to speak of weak,
or strong, illusory contours, or to reliably rank-order several
illusory contour exemplars on dimensions such as clarity or
brightness. Similarly, neural units in cortical areas have
been shown to vary in response strength as a function of
variables similar to those shown to affect perceptual
response strength in humans (von der Heydt, Peterhans &
Baumgartner, 1984). We assume that a causal connection
exists between response rates of neural units in early cortical
areas and perceptual response, and assert that any complete
model of perceptual grouping, including illusory contour
formation, must address how thestrength of illusory
contours can be represented along some analog dimension
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Fig. 1. A grouping cell can fire: (a) if it receives enough oriented, almost
collinear input from both branches of its receptive field; but not (b) if it
receives input from only one branch.



of neural response. As will be seen, our model equations
employ a lumped representation of neural potential, with a
continuum of possible real-valued output signals, bounded
above and below by saturation constants. These output
signals may be viewed as proportional to firing rate in the
output of more articulated equations for neural activity.

The second key computational question of our work can
now be stated:how can a neural feedback circuit both
embody the bipole property and have analog sensitivity in
its output values?The case for using positive feedback to
select the correct context-sensitive perceptual grouping is
intuitively compelling (Grossberg & Mingolla, 1985), and
we will describe the particular relevance of feedback to
illusory contour formation later in this article. Moreover,
positive feedback is not intrinsically incompatible with
analog sensitivity in neural models. Since the work of
Grossberg (1973), we have known that a suitable choice
of feedback signal function (the transformation whereby
the potential of one cell forms the signal that is transmitted
as input to another cell), combined with a balance of exci-
tatory and inhibitory connections, can guarantee analog
sensitivity. It is the bipole property that, until recently,
had thwarted modeling attempts at realizing robust
analog-sensitive perceptual completion in feedback circuits.
Without analog sensitivity, groupings formed at an early
processing stage could easily lead to incorrect percepts
and recognition events at higher processing stages.

The bipole property was first predicted based upon a
psychophysical analysis (Cohen & Grossberg, 1984; Gross-
berg, 1984; Grossberg & Mingolla, 1985) at around the
same time that it was reported in electrophysiological
recordings from area V2 (von der Heydt et al., 1984).
Until the simulations of Grossberg et al. (1997), however,
no neural model had displayed analog sensitive behavior in
a feedback circuit embodying the bipole property. Predeces-
sors to the present model, including those of Gove et al.
(1995) and Grossberg and Mingolla (1985), had displayed
“all-or-none” contour completion. That is, if the model
completed a contour at all between inducers, it would
complete a contour of a certain strength, regardless of
whether there were several strongly aligned inducers, or
only the minimum set of inducers necessary to trigger
completion.

For an intuitive understanding of the limitations of the
predecessor model, consider that the bipole property was
instantiated by certain simple non-linear transformations
intended to create the type of “statistical and gate” required
for perceptual interpolation without extrapolation (Gross-
berg & Mingolla, 1985). The model bipole cell was consid-
ered to have a two-lobed receptive field in the shape of a
figure-eight. Recent research combining optical imaging of
tree shrew cortex with biocytin injections has strikingly
confirmed the hypothesis that cells which form long-range
connections in cortex contact cells of similar orientational
preference and that the receptive field centers of the
contacted cells are aligned in the cortical map along

directions that correspond to the orientational preference
of the cell forming the axonal connection (Bosking et al.,
1997; Schmidt, Goebel, Lowel & Singer, 1997). In the 1985
model, input signals arriving at each half of the figure-eight
were separately subjected to saturating transformations. The
transformations would map ever-increasing input values to
the same “plateau” value, after an initial rising regime. The
bipole cell would fire only if the sum of such transformed
values from both sides of the figure-eight exceeded the
maximum value attainable by inputs to just one side.
While this step guaranteed interpolation without extrapola-
tion, it also damaged the bipole’s ability to reflect the
strength of its input in the value of its output. (Recall that
a bipole is “supposed” to fire if, say, inputs valued at 3 on a
scale of 0–10 arrive on both sides, but not if an input valued
at 8 is on one side, with an input of 0 on the other.) The
combination of such bipole computations with feedback,
however, guaranteed that the model system as a whole
would converge to one of two possible values in a possible
locus for an illusory contour. Either there would be comple-
tion (i.e. cells reaching a uniform positive output value) or
not (i.e. cells at resting potential).

Intuitively, what was missing from the earlier model
bipole computation was some procedure for assessing
whether a certain alignment of inducing input elements
was sufficient for completion of a contourgiven the context
of surrounding inputs.Put another way, the completion
signal needs to be scaled relative to the input signals, and
the mechanism for determininghow stronga completed
contour signal should be needs to be buffered from the
effects of the non-linear mechanism for decidingwhether
to complete a contour. Grossberg et al. (1997) sketched
intuitively how to accomplish this feat, but that brief report
contained no computational details of the key model
mechanisms. The present article describes the laminar
circuits of cortical areas V1 and V2 that compute analog
groupings, the model equations that realize this property,
simulations of psychophysical and neurophysiological
grouping data, the dependence of model behavior on
parameter choices, and additional model explanations of
relevant data.

2. Methods

This section states the assumptions and linking hypo-
theses of the model and describe its core computational
principles intuitively, for the sake of clarity. After present-
ing model equations and parameters, data simulations are
described. Neurophysiological data that directly test the
model architecture are described in the present section,
while consideration of additional data that the model helps
to explain is deferred Section 5.

Five computational properties comprise the core of the
model. The description of these properties refers to the
macrocircuit of the entire model shown in Fig. 2. This
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macrocircuit includes a number of simplifications of the
model equations to highlight the essential components
required for perceptual grouping. These circuits are next
briefly described, so that the flow of neural signals in the
model is clear. Supporting data and a description of the
functional significance of the circuits are then provided.

The model’s circuits include center–surround cells of
LGN, which send excitatory signals to cells of layers 6
and 4 of V1, and receive inter-area feedback from layer 6
of V1. The feedback from layer 6 to LGN is modulated by a
local center–surround circuit, indicated by three synaptic
connections, two of which are to inhibitory interneurons,
at the bottom of Fig. 3. Note also that the LGN to layer 4
pathway engages a similar center–surround circuit. Cells of
layer 4 of V1 send excitatory signals to pyramidal cells in
layer 2/3 of their own cortical column. These pyramidal
cells are at the same time part of a horizontal feedback
circuit formed with pyramidal cells with similar orienta-
tional preferences from nearby columns of layer 2/3. This
feedback circuit also involves inhibitory interneurons.

That the intra-laminar connections of layer 2/3 form a
lateral feedback circuit may not be evident from the icons

of Fig. 2. This is because, for graphical simplicity, only a
“minimal set” of existing connections is shown. For
example, although only the middle cell (open circle) in
layers 2/3 is shown as having an apical dendrite (vertical
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Fig. 3. Triangles at the end of thin curves represent synapses. Open triangles
represent excitatory synapses, and closed triangles represent inhibitory
ones. Model retinal, LGN and V1 circuit. (A) Horizontal bipole interactions
in layer 2/3: layer 2/3 complex pyramidal cells monosynaptically excite one
another via horizontal connections, primarily on their apical dendrites.
They also inhibit one another via disynaptic inhibition that is mediated
by model smooth stellate cells. Multiple horizontal connections are
proposed to share a common pool of stellate cells near each target complex
cell. The bipole property is hereby achieved. (B) Feedforward circuit from
retina to LGN to cortical layers 4 and 6. Retina: retinal ON cells have an
on-center off-surround organization. Retinal OFF cells have an off-center
on-surround organization. LGN: the LGN ON and OFF cells receive feed-
forward ON and OFF cell inputs from the retina. Layer 4: layer 4C cells
receive feedforward inputs from LGN and layer 6. LGN ON and OFF cell
excitatory inputs to layer 4 establish oriented simple cell receptive fields.
Layer 6 cells excite layer 4 cells with a narrow on-center and inhibit them
from using layer 4 inhibitory interneurons, represented by small dark disks,
that span a broader off-surround. Like-oriented layer 4 simple cells with
opposite contrast polarities compete (not shown) before generating half-
wave rectified outputs that converge on layer 2/3 complex cells. Layer 2/3:
the converging simple cell outputs enable complex cells to respond to both
polarities. They hereby full-wave rectify the image. (C) Cortical feedback
loop from layer 2/3 to layer 6: layer 6 cells receive excitatory inputs from
layer 2/3. The long-range cooperation hereby engages the feedforward
layer 6-to-4 on-center off-surround network. This cooperative–competitive
feedback loop can select winning groupings without a loss of analog-sensi-
tivity. (D) Top-down corticogeniculate feedback from layer 6: LGN ON
and OFF cells receive topographic excitatory feedback from layer 6, and
more broadly distributed inhibitory feedback via LGN inhibitory interneur-
ons that are excited by layer 6 signals. The feedback signals pool outputs
over all cortical orientations and are delivered equally to ON and OFF cells.
Corticogeniculate feedback selects, gain controls, and synchronizes LGN
cells that are consistent with the cortical activation that they cause. Layer 6-
to-4 inhibition and layer 6-to-LGN inhibition (mediated by inhibitory
interneurons, represented by small dark disks) both contribute to length-
sensitive (endstopped) responses that facilitate grouping perpendicular to
line ends. (Adapted with permission from Grossberg et al. (1997), Fig. 3).

Fig. 2. Schematic of the entire model’s circuitry, including LGN, V1, and
V2 components. Open circles represent neurons, whether pyramidal cells in
those layers labeled 2/3 or simple cells in layers labeled 4. Small dark
circles represent inhibitory interneurons. The dark circles with light centers
at the level labeled LGN stand for ON-center, OFF-surround cells. The
model includes OFF-center, ON-surround cells as well, but these are not
shown for simplicity. Triangles at the end of thin curves represent synapses.
Open triangles represent excitatory synapses, and closed triangles represent
inhibitory ones. The thin vertical line emanating from the center circle in
the top layer (V2, 2/3) of the diagram represents a pyramidal cell’s apical
dendrite. A similar icon appears at the corresponding location at the V1 2/3
layer. The V2 circuit is proposed to be isomorphic to the V1 circuit, with all
V2 cells having proportionately larger receptive fields than corresponding
ones in V1. See the accompanying text for additional remarks on how to
interpret this diagram. (Adapted with permission from Grossberg et al.
(1997), Fig. 5).



line emanating from open circle), the others also have such
structures, along with the corresponding synaptic connec-
tions and interneurons. Similarly, the center–surround
circuits in layer 4 of V1 and the LGN, while only indicated
by a single set of icons, are assumed to be replicated in an
interdigitated way for all corresponding locations in the
neural layers. Although the off-surround connections are
assumed to be radially symmetric in the model, and to
have a corresponding radial effect on cells’ receptive fields,
the horizontal circuits of layer 2/3 are assumed to preferen-
tially link cells with similar orientational preference and
whose receptive field centers are roughly aligned along
the direction given by the cells’ orientational preferences.

Besides processing inputs from layer 4 and engaging in
recurrent feedback with neighbors, pyramidal cells of layers
2/3 also send excitatory signals, possibly via a polysynaptic
route, to cells of layer 6 in retinotopically corresponding
locations, that is, in their own cortical columns. Finally,
we note that the structure of the model V2 circuit replicates
its V1 circuit, but V2 cells are shown larger in the diagram
in recognition of their larger receptive fields. The following
sections provide an intuitive description of the model’s key
functional properties and how its circuits realize them
computationally.

2.1. Property 1: boundary completion and grouping by
bipole interactions among layer 2/3 pyramidal cells

According to the model, cooperative bipole interactions
are achieved in layers 2/3 of V1 or V2 by recurrent long-
range horizontal connections among cortical pyramidal
cells. In order for cooperation to build a boundary like an
illusory contour, monosynaptic excitatory connections from
cells that are being driven by spatially separated retinal
contrasts need to converge on the same pyramidal cell or
cells. This class of pyramidal cells would thereby exhibit
elongated and possibly figure-eight shaped receptive fields.
The fanning out of the two lobes of the receptive field
supports the possibility that perceptual completion or illu-
sory contours can form along somewhat curvilinear, as
opposed to only strictly collinear, paths. The horizontal
synaptic connections also activate smooth stellate cells,
which inhibit nearby pyramidal cells via disynaptic inhibi-
tion (Hirsch & Gilbert, 1991; McGuire et al., 1991). This
disynaptic inhibition is proposed to modulate the effects of
the monosynaptic excitation, and also to give rise to the
bipole property, as follows.

Horizontal waves of activation propagating outwards
from neurons driven by spatially isolated inducers are atte-
nuated rapidly by subsequent disynaptic inhibition. It is a
case of “one against one”, in the sense that every unit of
excitatory signal propagated outward is attenuated by a unit
of inhibitory signal sufficient to negate the excitatory
signal’s effect, possibly after a brief temporal interval
during which the earlier-arriving excitatory signal may tran-
siently activate a recipient neuron. The important point is

that the net amount propagating inhibition “supported by” a
single isolated inducing contrast on the retina is sufficient to
cancel the net amount of propagating excitation. This prop-
erty is in accordance with studies showing that, when a
single input source drives horizontal pathways at threshold
intensities in vivo, excitatory postsynaptic potentials
(EPSPs) are generated, whereas suprathreshold stimulus
currents elicit disynaptic inhibitory postsynaptic potentials
(IPSPs) that can overwhelm the EPSPs (Cannon & Fullen-
kamp, 1993; Hirsch & Gilbert, 1991; Knierim & van Essen,
1992; Somers, Nelson & Sur, 1995; Stemmler, Usher &
Niebur, 1995). The perceptual correlate of this property is
that grouping or illusory contour completion does not extra-
polate, that is, propagate “outward” from a single inducing
element.

Bipole completion occurs due to model interactions
between monosynaptic excitation and disynaptic inhibition
when layer 2/3 cells receive horizontally induced (i.e. intra-
laminar) activations from a surrounding neighborhood of
cells with oriented receptive fields, and whose receptive
field centers are displaced along the direction of orienta-
tional preference of the individual neurons (Grosof, Shapley
& Hawkin, 1993; von der Heydt et al., 1984). The signifi-
cance of disynaptic inhibition in our model is paramount.
The interneuron receives excitatory signals from the same
pyramidal cells of layers 2/3 that are attempting to activate a
pyramidal neighbor. Its own synapse on that recipient pyra-
midal cell is inhibitory; this is the anatomy of “one against
one” suppression of excitation by inhibition.

Convergent horizontal activations from both sides of the
target cell can overcome the effect of disynaptic inhibition
as follows. All the horizontal connections arriving in a corti-
cal column are proposed to converge on a single population
of inhibitory interneurons whose total activity is assumed to
normalize or saturate (Fig. 3A). At the same time, a pyra-
midal cell is assumed to have a significantly higher satura-
tion potential than the inhibitory interneurons when it
receives excitatory inputs from both branches of its recep-
tive field. The net effect on the target pyramidal cell is
therefore excitatory; it is a case of “two (or more) against
one.” That is, multiple sources (two or more) of convergent
input from direct pyramidal-to-pyramidal excitatory
coupling can overcome the (one) source ofmediatedinhibi-
tion via the interneuron population. The outward propagat-
ing long-range horizontal signals from pyramidal cells are
hereby converted into the selective inward activation of
pyramidal cells according to a bipole property.

2.2. Property 2: analog sensitivity to LGN inputs through
layers 6 and 4

The second design property suggests how V1 cortex
preserves its contrast-sensitivity to signals from LGN,
despite the non-linear processing required for bipole
completion. As in the brain, inputs to the model area V1
arrive at layers 4 and 6 from the LGN (Hubel & Wiesel,
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1962); see Fig. 3B. LGN inputs directly activate orientation-
ally tuned simple cells in layer 4C. This property has been
verified by cross-correlational analysis (Reid & Alonso,
1995) and by chemical and cooling inactivation experiments
in the cortex (Chapman, Zahs & Stryker, 1991; Ferster,
Chung & Wheat, 1996). Oriented arrays of spatially
displaced LGN ON and OFF cells excite mutually inhibitory
simple cells that are sensitive to the same orientation but
opposite contrast polarities (Chapman et al., 1991; Ferster,
1988; Ferster et al., 1996). The LGN is proposed to indir-
ectly excite and inhibit layer 4 via layer 6 using a short-
range excitatory and longer-range inhibitory interaction that
is mediated by layer 4 inhibitory interneurons. Electro-
physiological recordings (Grieve & Sillito, 1991, 1995)
and antidromic activation of layer 6 cells from the cat
LGN (Ferster & Lindstrom, 1985) support the idea that
layer 6 gives rise to a short-range excitatory input to layer
4 and a longer-range inhibitory interaction that is mediated
by layer 4 inhibitory interneurons. The net effect is that
LGN influences layer 4 via a feedforward on-center off-
surround network. In the model, the cells in this network
are proposed to obey membrane equations, or shunting laws
(Hodgkin, 1964). Such a network preserves cell sensitivity
to analog, or graded, input values even if absolute input
amplitudes vary over a large dynamical range (Grossberg,
1973, 1980). It is critical to note that the property of analog
sensitivity obtainswhateverthe source or sources of input;
in particular, it is preserved when contour completion
signals generated by the layer 2/3 bipole circuit join the
“bottom-up” signals from LGN by feeding into layer 6 cells.

2.3. Property 3: folded feedback—interlaminar cortical
circuits and functional columns

The third design property shows how the cortex makes
double use of the layer 6-to-4 pathway to coherently select
correct groupings, while suppressing incorrect ones, without
a loss of analog sensitivity to the amount of contrast in
inducing retinal signals. In particular, layer 4 cells activate
pyramidal cells in layer 2/3, which then attempt to cooperate
using their long-range horizontal connections and short-
range disynaptic inhibition. All the layer 2/3 cells that
become active either via direct layer 4 inputs or by bipole
cooperation then generate excitatory feedback signals to
layer 6 via layer 5 (Ferster & Lindstrom, 1983; Gilbert &
Wiesel, 1979); see Fig. 3C. Layer 2/3 hereby gains access to
the shunting on-center off-surround network from layer 6 to
layer 4. The total interlaminar feedback loop proceeds
through layers 4, 2/3, 5, 6, and 4. It converts the interacting
cells throughout these layers into functional columns (Hubel
& Wiesel, 1962, 1977; Mountcastle, 1957). The long-range
cooperation in layer 2/3 can now use the shorter-range
on-center off-surround network from layer 6 to 4 to selec-
tively amplify those cell activations that are favored by the
cooperative grouping, while suppressing those that are not,
without eliminating their sensitivity to stimulus strength,

notably to variable contrast (Grossberg, 1973), as has been
shown in vivo (Douglas, Koch, Mahowald, Martin &
Suarez, 1995).

Inhibition from layer 6 to layer 4 in the model influences
different orientations and positions by being distributed
across a cortical hypercolumn map where cells sensitive
to these features are spatially organized (Blasdel, 1992a,b;
Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991;
Grinvald, Lieke, Frostig & Hildesheim, 1994; Hubel &
Wiesel, 1977; LeVay, Connolly, Houde & Van Essen,
1985; Lowel et al., 1987; Olson and Grossberg, 1988).
This inhibition can relatively enhance cell responses that
cooperate in positional, orientation, and length-sensitive
groupings by suppressing those cells that respond to weaker
groupings, incoherent noise, or background signals.

The pathways through layers 2/3, 5, 6, and 4, is called
folded feedback(Grossberg, 1999) due to the way in which
it folds the top-down feedback from layer 2/3 into the feed-
forward processing of bottom-up inputs to layer 4 (Fig. 3C),
using the same layer 6-to-4 on-center off-surround network
as the feedforward processing uses (Fig. 3B). The laminar
structure of the cortical circuit makes such folded feedback
possible. Folded feedback achieves two desirable modeling
results. (1) It enables the output of the layer 2/3 recurrent
bipole grouping circuit to be processed by the same network
parameters as the feedforward inputs from LGN. This
ensures that the strength of completion signals that indicate
a set of inducers is “sufficiently close” or “sufficiently
aligned” or “has sufficient contrast” to be grouped can be
assessed relative to the sizes and distributions of the
“bottom-up” signals from LGN generated by those same
inducers. (2) The off-surround of the folded feedback circuit
is well placed to selectively inhibit the influence of bottom-
up LGN inputs at those locations which are not sufficiently
supported by feedback from layer 2/3, thereby shutting
down weaker groupings and preventing the propagation of
perceptual “noise” to all subsequent stages of laminar
cortical processing.

2.4. Property 4: corticogeniculate feedback

The fourth design property makes a third use of layer 6
processing. Layer 6 in both brain and model sends topo-
graphic excitation and broader-range inhibition back to
the LGN (Murphy & Sillito, 1987, 1996; Weber, Kalil &
Behan, 1989) see Fig. 3D. This feedback selects and ampli-
fies LGN cell activities that are consistent with cortical cell
activity, relative to those that are not. It carries out a type of
top-down matching that increases signal-to-noise ratio by
selectively attenuating LGN cells whose outputs do not
succeed in activating, or maintaining activity in, cortical
cells (McClurkin et al., 1994; Sillito et al., 1994). In
summary, top-down feedback from cortical layer 2/3 to 6
uses the 6-to-4 pathway to shut down cortical cells in layer 4
whose outputs do not lead to strong layer 2/3 groupings.
Layer 6-to-LGN feedback shuts down the inputs from

W.D. Ross et al. / Neural Networks 13 (2000) 571–588576



LGN cells to layer 4 cells that are not part of “winning”
groupings. Layer 6 hereby seems to do triple duty in orga-
nizing feedforward inputs, intracortical feedback, and corti-
cogeniculate feedback.

2.5. Property 5: similar organization at different scales of
areas V1 and V2

The fifth design property implements data showing that
cortical areas V1 and V2 (areas 17 and 18 in the cat) exhibit
circuits with many homologous features, but V2 has longer-
range interactions than V1 (Amir, Harel & Malach, 1993;
see Fig. 2) Consistent with this idea, Kisvarday, Toth,
Rausch and Eysel (1995) have presented a quantitative
study of orientation maps (using multiunit recordings) and
of cortical connections (using biocytin injections analyzed
in horizontal sections) showing no significant differences in
the proportions of excitatory and inhibitory cells and their

preferred orientational contacts across areas V1 and V2, but
did show a larger scale in V2 than V1. This property may be
summarized by the hypothesis that the interblob circuits of
V1 and the interstripe circuits of V2 have a similar organi-
zation. We propose that the V1 horizontal interactions help
to organize the development of positional, orientational, and
disparity tuning in this area, whereas the longer-range V2
interactions support long-range boundary completion and
grouping across the blind spot, retinal veins, and textured
scenes. As in the brain, layer 2/3 of the model V1 circuit
activates layers 4 and 6 of the model V2 circuit (van Essen
& Maunsell, 1983; Felleman & van Essen, 1991); see Fig. 2.

3. Model equations

Below are the equations and simulation methods that we
used to develop and evaluate the model. Each section
includes a discussion of how we chose parameters, includ-
ing a description of where in the model parameters are
robust and our understanding of the reasons for sensitivity
of certain parameters. Tables list the values of all para-
meters used and Fig. 4 graphically depicts the important
excitatory and inhibitory connectivity patterns (kernels) of
the model. The reader can understand Section 4, in which
data simulations are shown, without first reading these
model equations.

3.1. General forms of model equations

Each neuron was modeled as a single voltage compart-
ment in which the membrane potential was given by

Cm
dV�t�

dt
� 2�V�t�2 EEXCIT�gEXCIT�t�

2 �V�t�2 EINHIB �gINHIB �t�
2 �V�t�2 ELEAK �gLEAK ; �1�

where the parametersE represent reversal potentials,gLEAK

is a constant leakage conductance, and the time-varying
conductancesgEXCIT(t) andgINHIB(t) represent the total inputs
to the cell. Transient after hyperpolarization terms (AHP)
were not incorporated since all groupings were allowed to
reach steady state. For present purposes, layers of nerve
cells (or cell populations) are denoted by their positions
�i; j� in a rectangular array. These cells are influenced by
excitatory Eij and inhibitory Iij inputs according to the
membrane equation (1), now rewritten for the purposes of
computational intuition in the form (Grossberg, 1973):

dWij

dt
� 2AWij 1 �B 2 Wij �Eij 2 �C 1 Wij �Iij : �2�

In Eq. (2), a cell’s “resting” activation is scaled to equal
zero, and its potential can range from a positive value�B�
to a negative value�2C; whereC is a positive number).
At equilibrium, each cell’s activity can be expressed as a
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Fig. 4. Connectivity kernels: the size of the empty circles (filled circles)
corresponds to the magnitude of positive (negative) connectivity values at a
cell located at the center of the pattern. (A) Retinal center–surround
connectivity. (B) Simple cell ON–OFF cell excitatory activation for a
vertically oriented cell. (C) The spatio-orientational pattern of the layer
6-to-4 inhibitory surround connectivity. Superimposed at each location in
the lattice are short line segments of up to 12 possible orientations, corre-
sponding to the orientational preferences of cells of layer 4C. The length of
each segment codes the weight of an inhibitory interaction from a cell of
similar (in the case shown, horizontal) orientational preference, and whose
receptive field center is displaced from the inhibited cell by the distance
from a particular lattice location to the center. (D) V1 layer 2/3 oriented
lateral excitatory connectivity for a horizontally oriented complex cell. (E)
V2 layer 2/3 oriented lateral excitatory connectivity.



biased difference-of-Gaussians (DOG) divided by a biased
sum-of-Gaussians (SOG), due to the automatic gain control
termsWij in Eq. (2) that multiply the inputsEij andIij : These
equilibrium activities are half-wave rectified to generate
output signalsVij ; namely,

Vij �
BEij 2 CIij

A 1 Eij 1 Iij

" #1

; �3�

where�w�1 � max�w;0� represents the half-wave rectifica-
tion operation. The definitions ofEij and Iij ; as well as the
parametersA, B, andC for each level, are defined below.
Throughout, two types of Gaussian kernels will be used to
define receptive fields. Processing in the retinal and LGN
stages of the model use unoriented, symmetric, normalized
Gaussian kernels of the form:

Gij � 1

s
����
2p
p exp 2

i 2 1 j2

2s

 !
; �4�

where�i; j� represent positional indices ands represents the
kernel’s standard deviation. Cortical receptive fields typi-
cally use oriented, normalized Gaussian kernels of the form:

Gijk � exp

8>><>>: 2 :5

2664
0BB@ i cos

kp
12

2 j sin
kp
12

2s l

1CCA
2

1

0BB@ �i 1 offset� cos
kp
12

1 � j 1 offset� sin
kp
12

2sw

1CCA
23775
9>>=>>;;
�5�

where�i; j� represent positional indices,k the orientation of
the major axis of the oriented Gaussian distribution, and the
ss represent standard deviations in the directions of recep-
tive field length (l) and width (w). The factor “offset” speci-
fies the displacement of Gaussians from the center of the
receptive field of the unit described in Eq. (5).

We next describe the particular equations of each model
layer in turn. The input image for a simulation is denoted by
an array of input intensitiesSij : For our simulations, image
sizes were 256 rows by 256 columns except for the “shifted
grating” simulations, which were 128× 128, and the inten-
sities ranged from 0 to 255. All model layers representing
cells with orientational selectivity had units tuned to 12

different orientations at each of the layer’s 65,536 locations.
In the following description of model stages, we do not
explicitly write equations for a particular layer’s cell activa-
tions or outputs. Instead, we write explicit formulas defining
the excitatory, Eij ; and inhibitory, Iij ; inputs to the
membrane equations (2) that define cell activities within a
particular layer. We also define the connection weights (or
kernels) that specify the strength of excitation or inhibition
delivered to a cell by other cells whose receptive field loca-
tions or orientational preferences bear fall within some
(often Gaussian) tolerance zone. The activation equations
for Wij and for the rectified output signalsVij of Eq. (2) are
hereby completely defined for each model layer in turn.

We use the following index conventions. Location on a
two-dimensional spatial grid and orientational preference,
where appropriate, are specified by three subscripts,i, j, and
k, respectively. The identity of a cell activation,W, or output
value V—that is, the layer in the model to which a cell
belongs—is coded by the following superscripts: R for
retina, L forLGN, S1 for simple cells of layer 4 of V1, S2
for simple cells of opposite contrast polarity to those labeled
S1, 3 for pyramidal cells of layer 2/3, 4 for “complex-like”
cells of layer 4, and 6 for cells of layer 6. Inputs from ON
and OFF retinal streams are coded by superscript plus,1,
and minus,2, signs, respectively.

3.2. Retina

The retinal ON-cell (OFF-cell) activities and outputs are
denoted, respectively, byWR1 �WR2� and VR1 �VR2�;
respectively. Retinal inputs and kernels also have a super-
script “R” to denote the retina. The retinal parameters are
given in Table 1. Once these parameters are determined, the
retinal excitatory and inhibitory inputs fully define Eq. (2)
for retinal activation. For the ON-cell activationsWR1

; the
narrow on-center is defined by:

ER1
ij � Sij ; �6�

and the broad off-surround is defined by:

IR1
ij �

X
mn

Si1m; j1nGR
mn; �7�

where theSij are the input image intensities, andGR
mn is the

unoriented Gaussian defined in Eq. (4); see Fig. 4A. The
OFF-cell activationsWR2 exhibit a broad on-surround:

ER2
ij �

X
mn

Si1m; j1nGR
mn; �8�

and a narrow off-center:

IR2
ij � Sij : �9�

Parameters for retina.Eq. (3) combines biased DOG
processing with a term that normalizes activity with a biased
SOG in its denominator. This is just DOG/SOG processing
with a relatively small value ofA (see Table 1). The input
gray levels were chosen between 0 and 255, but could have
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Table 1
Cortical BCS parameters I

Name Description Value Equation(s)

Stage I:VR modeled retinal processing
A Activation decay rate 1.0 Retina shunt
B Saturation level 1.0 Retina shunt
C Hyperpolarization term 1.0 Retina shunt
sR Retina surround

standard deviation
1.2 6



spanned a much wider dynamic range. See Neumann (1996)
for a thorough analysis of the effects of parameter variations
in such networks.

In our simulations of retinal cells (Eqs. (6)–(9)), para-
metersA, B, andC in Eq. (3) are set equal to 1.0 to balance
the effects of excitatory and inhibitory kernels. This choice
of parameters guarantees that any input region that has
uniform values results in zero outputs, a property sometimes
referred to as “featural noise suppression.”

3.3. Lateral geniculate nucleus

The LGN ON-cell (OFF-cell) activities have a superscript
L1 (L2). Their ON-cell and OFF-cell inputs from the
retina have the superscript R1 or R2, while inputs from
layer 6 have the superscript 6. Both center (Lc) and surround
(Ls) unoriented LGN kernelsGLc

mn andGLs
mn are used to define

the interactions among these inputs in the LGN membrane
equations. The LGN ON-cell activationsWL1

ij obey:

EL1
ij � VR1

ij 1 1
X
mnk

V6
i1m; j1n;kG

Lc
mn

 !
�10�

and

IL1
ij �

X
mnk

V6
i1m; j1n;kG

Ls
mn: �11�

In Eq. (10),EL1
ij describes how bottom-up retinal ON-cell

output directly activates LGN, whereas on-center feedback
from layer 6 can multiplicatively amplify this activation. In
Eq. (11), IL1

ij describes how off-surround feedback from
layer 6 can broadly inhibit LGN ON-cell activity. The
combined effect of these top-down terms is to select and
synchronize LGN cells that receive both bottom-up retinal
inputs and top-down layer 6 input, while inhibiting LGN
cells that do not. In a similar fashion, the LGN OFF-cell
activationsWR2

ij obey:

EL2
ij � VR2

ij 1 1
X
mnk

V6
i1m; j1n;kG

Lc
mn

 !
�12�

and

IL2
ij �

X
mnk

V6
i1m; j1n;kG

Ls
mn �13�

Parameters for LGN.The parameters for LGN processing

are listed in Table 2. As with the retinal equations,A, B, and
C in Eq. (3) were set equal to 1.0 to balance the effects of
excitatory and inhibitory kernels.

3.4. Cortical area V1 (layer 4)

The V1 layer 4 activitiesW4
ij receive oriented arrays of

spatially displaced LGN ON and OFF cell outputs which
excite mutually inhibitory simple cells that are sensitive to
the same orientation but opposite contrast polarities. The
oriented simple cell receptive fields are defined by the Gaus-
sian kernel described in Eq. (5), wheres4l ands4w represent
the standard deviations of the length and width of the
oriented simple cell kernels. In particular, each simple cell
is excited by an oriented sample of LGN ON-cell output and
excited by an adjacent and parallel oriented sample of the
LGN OFF-cell output, as in Eqs. (14) and (15):

ES1
ijk � 4

X
mn

VL1
i1m; j1n;kG

4k1
mnk 1

X
mn

VL2
i1m; j1n;kG

4k2
mnk

 !2

�14�

ES2
ijk � 4

X
mn

VL1
i1m; j1n;kG

4k2
mnk 1

X
mn

VL2
i1m; j1n;kG

4k1
mnk

 !2

; �15�

where each kernelG is defined by an oriented Gaussian; see
Fig. 4B. The centers of these kernels are slightly offset from
each simple cell’s centroid directions along an axis perpen-
dicular to the simple cell’s direction of elongated sampling.
In Eqs. (14) and (15), the oriented sample of the LGN ON-
cell output was multiplied by a factor of 4 to compensate for
the asymmetrical response of the on-center off-surround
operators on opposite sides of an edge. To understand this
asymmetry, consider the denominator of Eq. (3). On oppo-
site sides of a bright-to-dark edge, the denominator varies
greatly. Specifically, it is much smaller on the dark side of
the edge. For this reason, at an edge, positive ON-cell
signals are much weaker than adjacent positive OFF-cell
signals. Oriented detectors driven by these asymmetrical
ON/OFF responses show faster fall-off in response with
distance on the bright side of an edge. This asymmetry
complicates the problem of boundary sharpening using
subsequent center–surround contrast enhancement. In parti-
cular, parameters which successfully sharpen the dark side
of straight edges tend to suppress bright concave edges alto-
gether. For the kernel sizes that we used, a factor of 4
compensated for this asymmetry, enabling a single inhibi-
tory surround to sharpen the localization of boundary
responses in many circumstances. After compensated ON
and OFF cell oriented samplings were combined, the result-
ing simple cell activations were squared to exaggerate the
response differences between weak and strong boundary
responses. This sample non-linearity facilitated the subse-
quent competitive sharpening whereby strong boundary
activities at edges inhibit surrounding boundary activations.

Simple cells of opposite polarity but of like orientation
and location are then subtracted from each other and the two
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Table 2
Cortical BCS parameters II

Name Description Value Equation(s)

Stage II:VL modeled LGN processing
A Activation decay rate 1.0 LGN shunt
B Saturation level 1.0 LGN shunt
C Hyperpolarization term 1.0 LGN shunt
sLc

LGN center standard deviation 0.3 10
sLs

LGN surround standard
deviation

2.0 11



terms are rectified (Ferster et al., 1996; Gove et al., 1995;
Liu, Gaska, Jacobson & Pollen, 1992). Finally, opposite
polarity simple cells are additively combined to give a
polarity-insensitive oriented cell activationEC

ijk :

EC
ijk � �ES1

ijk 2 ES2
ijk �1 1 �ES2

ijk 2 ES1
ijk �1: �16�

In vivo, layer 4 simple cells combine at layer 2/3 to drive
complex cells. The simulations made the simplification of
combining like-oriented but opposite polarity simple cells
immediately as inputs to layers 4 and 6. This simplification
makes the simulations computationally more tractable, by
reducing the number of equations by a factor of 2, but does
not affect performance on the polarity-insensitive boundary
groupings which are simulated in this paper. For an
unlumped treatment of simple-to-complex cell interactions,
see Grossberg and McLoughlin (1997), Grunewald and
Grossberg (1998), and McLoughlin and Grossberg (1998).
In all,

E4
ijk � EC

ijk 1 V6
ijk �17�

and

I4
ijk �

X
mno

V6
i1m; j1n;k1oGL

mno �18�

are the total model excitatory and inhibitory signals to layer
4, which include on-center and off-surround inputs from
layer 6; see Fig. 4C. The parameters are listed in Table 3.

V1, layer 4 parameters.The simple cells (Eqs. (14)–(16))
use aC � 2:0 parameter for the purposes of weighing the
kernels in Eq. (3). This favors the inhibitory term in the
simple cell activation equation, and allows sufficient bound-
ary sharpening (i.e. suppression of spurious simple cell
activity in regions with little image contrast) even with a
large surround standard deviation,sLmn

; of 4.0 and a
standard deviation,sLo

; for orientational inhibition of 458.
The large spread of the surround cleans up boundaries in
response to complex imagery. Simple cell size was chosen
to fit the size of LGN center–surround receptive fields (see

Fig. 4). However, varying the scales of the LGN and simple
cells in proportion to each other would give similar
performance.

3.5. Cortical area V1 (layer 2/3)

Layer 2/3 defines the long-range monosynaptic excitatory
horizontal interactions and short-range disynaptic inhibitory
interactions between pyramidal cells, whose activities are
denoted byW3

ij : Parametersb , m , andl in Eq. (26) below
define the shape of the bipole kernel. Performance was
insensitive to the exact values of these parameters.
However, a smallb gave sharper sensitivity to alignment
between inducers, an intermediatem made the bipole more
tolerant of less than perfectly collinear alignment among
inducers, and a largel gave sharper orientational selectivity
in completion choices. The layer 2/3 activationsW3

ij obey:

E3
ijk � V4

ijk 1 H3
ijk ; �19�

whereV4
ijk defines the oriented input from layer 4 andH3

ijk

defines the total monosynaptic excitatory horizontal input.
This horizontal input is composed of a short-range (s) and
long-range (l) bipole signal:

H3
ijk � hs

ijk 1 hl
ijk ; �20�

where

hs
ijk � g

X
mno

f �V3
i1m; j1n;k1o�Z20m=CL ;20n=CW;o;k �21�

and

hl
ijk �

X
mno

�V3
i1m; j1n;k1o 2 T�1Z2m=CL ;2n=CW;o;k �22�

Inhibition at layer 2/3 is driven by a recurrent spatial and
orientation-sharpening term (V3) and a termD that is driven
disynaptically by the long-range bipole:

I3
ijk �

X
o

V3
i; j;k1oG3s

o 1 Dijk ; �23�

where

Dijk � gf�hl
ijk � �24�

with

f �w� � w
a 1 w

: �25�

The horizontal interaction kernel that defines the bipole
property in Eqs. (21) and (22) obeys

Zmnok� sgn{m} exp{ 2 b�m2 1 n2�} exp 2m
n

m2

� �2� �
� cosl

�k 2 o�p
K

2 sgn{m} arctan
2n
m

;m
� �� �

: (26)

Eq. (26) gives rise to the types of oriented kernels shown in
Fig. 4D and E, where the value ofm determines the tolerated
deviation from strict collinearity. Variants of this kernel
were introduced by Grossberg and Mingolla (1985) and
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Table 3
Cortical BCS parameters III

Name Description Value Equation(s)

Stage III:V4 modeled layer 4C processing
A Activation decay rate 1.0 Layer 4C shunt
B Saturation level 1.0 Layer 4C shunt
C Hyperpolarization term 2.0 Layer 4C shunt
s4l Simple cell length standard

deviation
2.4 5, (16, 17)

s4w Simple cell width standard
deviation

0.5 5, (16, 17)

Offset41 Simple cell ON offset 0.5 5, (16, 17)
Offset42 Simple cell OFF offset 20.5 5, (16, 17)
sLmn

6-to-4 spatial standard deviation 4.0 5, (18)
sLo

6-to-4 orientational standard
deviation

458 5, (18)



later supported by many data, including those of Field et al.
(1995), Polat and Sagi (1994), and Shipley and Kellman
(1992). In the bipole signal functionf �w� in Eq. (25),a is
set small to define a steep response. The inhibitory gaing in
Eq. (24) is set so that the short-range excitatory bipole signal
hs in Eq. (21) must be maximally active to overcome the
disynaptic inhibitory effect ofDijk ; which is a function of the
long-range excitatory bipole signalhl. This balance ensures
that each active layer 2/3 pyramidal cell either receives
direct bottom-up activation or that it falls on a collinear or
slightly curvilinear path between two or more such cells.

In particular, initial exposure to an image spreads a tran-
sient monosynaptic pattern of boundary cell activation
across layer 2/3 through the lateral excitatory connectivity
H3. Next, consider those cells where boundary activation
was induced through lateral connectivity alone, and not
through direct bottom-up activation—that is, anyE3 term
whereV4 is zero in Eq. (19). At such locations, the long-
range interactionhl excitesV3 via Eq. (20) and then the
short-range termhs via Eq. (21). This short-range termhs

thereupon competes with the disynaptic inhibitory termD
via Eqs. (20) and (23), respectively. At boundary activities
that spread beyond rather than between inducers, the absence
of strong enough short-range bipole activation results in
suppression and the shrinking back of boundary activation
toward inducers. Between pairs or greater numbers of indu-
cers, short-range excitatory bipole activation overcomes
disynaptic inhibition and a completed contour grows in
strength in proportion to the contextual evidence.

Fig. 5 illustrates these ideas by showing how the
dynamics of boundary completion can occur in response
to a Kanizsa square. Initially, the pac man figures generate

waves of excitation in both directions using the long-range
horizontal connections. The short-range disynaptic inhibi-
tion quickly inhibits excitation outside the square, due to the
one-against-one property. Within the square, however, the
two-against-one property enables the long-range excitation
to overcome the short-range disynaptic inhibition and form
the illusory contour.

To understand the dynamics of the bipole mechanism,
consider the time-course of the model’s layer 2/3 response
to boundary inducers. Initially, bottom-up excitation of
layer 2/3 results in an activation of boundary cells represent-
ing the inducers. The activation pattern results from excita-
tion described in Eq. (19) and is embodied in non-zero
activity of layer 4 cells (V4). At this point, boundary cells
in layer 2/3 without bottom-up support fromV4 are inactive.

Next, the subset of these cells whose receptive field
centers are collinear or slightly curvilinear—that is, “rela-
table” (Shipley & Kellman, 1992)—with boundary inducers
and whose receptive fields include the inducers are activated
through the influence of the long-range horizontal bipole
cells, again through the excitation equation (19) but this
time due to the horizontal component (H3, see Eq. (20))
and specifically through theH3 long-range termhl (see
Eq. (22)). At this point, layer 2/3 boundary activations are
beginning to build at both interpolated and extrapolated
boundary locations (see Fig. 5).

Next the influence of both disynaptic inhibition (D) and
short-range bipole excitation (hs) are engaged and the criti-
cal balance between these two acts to suppress extrapolated
boundaries, in agreement with neuroanatomical and neuro-
physiological data suggesting that horizontal connections in
layer 2/3 have both excitatory and inhibitory influences
(Cannon & Fullenkamp, 1993; Hirsch & Gilbert, 1991;
Knierim & van Essen, 1992; Somers et al., 1995; Stemmler
et al., 1995). In the model, disynaptic inhibition is a saturat-
ing function of long-range bipole activation (hl), as
described in Eq. (24). Disynaptic inhibition is a steep func-
tion of (hl), sincef �w� described in Eq. (25) is virtually a
step function witha set very small. It should be noted that,
from a computational perspective, disynaptic inhibition
could also be driven by the short-range bipole activations
(hs), but no functional advantage is gained by including this
additional connectivity.

In order to capture the disynaptic time-course of the inhi-
bitory term Dijk ; the activity in layer 2/3 was calculated
twice for each iteration of the layer 2/3 equations, each
time using Dijk from the previous time-step or iterative
instant. The parameters are listed in Table 4.

VI, layer 2/3 parameters.The complex cells in layer 2/3
(Eqs. (3) and (19)–(26)) are more sensitive to parameter
variations than the other cells in our model. First, the
largeA term (see Table 1) means that the activation equation
(3) for this layer functions essentially as a DOG with little
normalizing influence from the SOG in the denominator. Of
course, the SOG normalization in earlier layers guarantees
that activation at subsequent layers is always bounded and
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Fig. 5. Schematic of boundary completion in time. In response to the
collinear edges of a Kanizsa square, layer 2/3 pyramidal cells first get
activated at the positions of the edges (Time 1). A wave of activation
then begins to spread in an oriented fashion in both directions to other
pyramidal cells (Time 2). Cells at positions that lie outside the square are
quickly inhibited by disynaptic inhibition (Time 3). Cells that lie between
the edges can get strongly activated because the monosynaptic excitatory
horizontal inputs are stronger than the total disynaptic inhibitory interneur-
onal inputs at these positions (Time 4).



in a “known” range. This helped to implement the bipole
property by using the difference between excitatory and
inhibitory influences. The signal saturation constanta in
Eq. (25) and the bipole thresholdT in Eq. (22) were both
set small to implement the bipole role. The disynaptic inhi-
bition gain, g, was set equal to 2.0 in order to enforce
suppression of boundaries extrapolated beyond edges rather
than interpolated between them.

The parameters that implement the bipole property need
to properly balance excitation and inhibition during the
grouping process. The balance ensures three key outcomes
at locations lacking direct “bottom-up” excitatory input:
(1) interpolation, if that location is aligned with two or
more other active cells with similar orientational prefer-
ences; (2) no extrapolation at cells that have such active
neighbors on only one side; and (3) a proportionality of
response, such that the strength of a completion signal is
similar to the strength of supporting signals from nearby
active cells.

We achieved these computational results as follows. The
constant of 20 embedded in the spatial indices of Eq. (21)
generates a functional “short-range” gating mechanism,
which acts like a switch that allows a layer 2/3 cell to remain
active only if its immediate collinear and like-oriented
neighbors are also active, as explained below. The corre-
sponding constant 2 in Eq. (22) allows longer-range
“evidence gathering” in support of grouping to extend
over several nearby lattice locations. The values 20 and 2
generate a 10–1 range of sizes for the effective kernels of
these computations; other sizes could also have been used.
We wrote 20 and 2 as opposed to 10 and 1 because doing so
allows the bipole kernelZ in Eq. (26) to be written more
simply. The indexing ofZ is scaled byCL andCW in Eqs.
(21) and (22) as a way of specifying bipole length and aspect
ratio. Fig. 4D and E shows that the bipole kernels are narrow
and biased along the positions that are aligned with the cell
orientational preferences. Compare Fig. 24 of Gove et al.
(1995) and Figs. 32 and 33 of Grossberg and Mingolla
(1985) for variants of this bipole shape.

The inhibitory gain parameter,g in Eq. (24) is set to

approximately balance short-range bipole activation due to
hl in Eq. (20). Given the choiceg� 2:0; it follows that the
disynaptic inhibition (D) at any location receiving long-
range bipole activation in Eq. (24) is nearly (i.e. close to,
and just less than) 2.0.

Again for concreteness, assume that the spatial extent of
the short-range bipole in Eq. (21) is three neural units,
encompassing the boundary cell in question and a single
boundary cell on either side of that cell. By “either side”
is meant those locations “pointed to” by the orientational
preference of the boundary cell in question. Thus, the rele-
vant neighbors for a cell tuned to horizontal boundaries
would be those cells whose receptive field centers are just
to the left and just to the right of the cell in question. For a
vertically tuned cell, the neighbors’ receptive field centers
would be just above and just below that of the cell in ques-
tion, and so forth. When all three of these cells are activated,
the short-range bipole of Eq. (21) achieves a value of 2.0.

This occurs because, in Eq. (21), the approximate step
function f �w� in Eq. (25) reaches full activation in response
to theV3 terms at the location of, and at locations on either
side of, the boundary cell in question. In this case, the
normalized bipole function (Z) is fully activated through
multiplication with f �V3� at each bipole location and, after
multiplication byg, the total activation of (hs) approximates
1.0. Thus, for interpolated boundary activations, the
disynaptic inhibition of 2.0 is cancelled out by the short-
range bipole excitation of 2.0 and the excitatory influence of
the long-range bipole can be expressed.

On the other hand, at the leading or outermost edge of
extrapolated boundaries, the disynaptic inhibition is still 2.0,
while the short-range bipole activation is only driven by two
out of three bipole components and its activation has a lower
value (approximately 1.5). At these locations, the disynaptic
inhibition, D is not cancelled out by the short-range bipole,
hs, andD can suppress the smaller excitatory influence of
the long-range bipole (hl). By this mechanism, extrapolated
boundaries are progressively pruned away and they retreat
back to induced boundary cells, which are supported
through bottom-up activation.

In summary, the disynaptic inhibition,D, should be
strong enough to counteract excitation due to partial activa-
tion (in this case, two components) of the short-range
bipole,hs, plus any possible long-range bipole,hl excitation.
This can be ensured through a sufficiently large choice of
the gain parameter,g, which scales both disynaptic inhibi-
tion and short-range bipole contributions in Eqs. (24) and
(21), respectively. When this is accomplished, the system
interpolates and does not extrapolate as follows: (1) bottom-
up input results in an initial boundary activity atV3 from V4

simple cells in Eq. (19); (2) lateral excitation spreads across
V3 by way ofhl in Eq. (20), resulting in a non-zeroH3 that
recurrently excitesV3 through Eq. (19); (3) short-range exci-
tation and disynaptic inhibition acts throughV3 to hs in
Eq. (21) andH3 in Eq. (20), and then viaE3 in Eq. (19);
(4) disynaptic inhibition acts throughhl in Eq. (22) andD in
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Table 4
Cortical BCS parameters IV

Name Description Value Equation(s)

Stage IV:V3 modeled layer 3 processing
A Activation decay rate 2000.0 Layer 3 shunt
B Saturation level 0.5 Layer 3 shunt
C Hyperpolarization term 1.0 Layer 3 shunt
a Non-linearity constant 0.0000001 f �w�
T Bipole rule threshold 0.00001 22
G Disynaptic inhibitory gain 2.0 24
CL Bipole length 10.0 21, 22
CW Bipole width 2.0 21,22
b Distance blur 0.8 25
m Curvature blur 11 25
l Orientational blur 90 25



Eq. (24) toI3 in Eq. (23); and (5) whereverV4 (Eq. (19)) is
zero, it is the balance between excitationH3 and inhibition
D that determines whether induced boundary activation
survives or is suppressed. Step four repeats until the extra-
polated boundaries shrink back to boundaries supported by
bottom-up activation. In other words, after an initial burst of
long-range bipole excitation (hl), cells must be surrounded
on two sides by active boundary cellshs, or they are
suppressed byD.

3.6. Cortical area VI (layer 6)

Activity W6
ijk was computed from a bottom-up oriented

term that is assumed to come from LGN and a top-down
term from layer 2/3. It was assumed that this term derives its
oriented tuning by being associated with oriented signals
from other cortical layers, including layers 4 and 2/3. For
computational tractability, this term was approximated byEC:

E6
ij � 0:5EC

ijk 1 V3
ijk : �27�

3.7. Cortical area V2

In the model of area V2 layers, the equations for the V1
layers 4, 2/3, and 6 were replicated with layer 2/3 from V1
forming the excitatory input to layers 4 and 6 in area V2. In
area V2, the scale of horizontal bipole connectivity, in both
length and width (parametersCL andCW in Table 4) were
doubled, while all other parameters remained the same.

3.8. Simulation methods

In simulations of the model, equilibrium solutions at each
processing level were calculated and the whole progression

of levels was iterated until a convergence criterion was
satisfied (between 2 and 5 iterations were typically needed).
The convergence criterion specified that no activation level
could change by more than 10% during the final iteration
step. Sequential iteration of the equilibrium solutions of
each stage reduced the simulation time. Comparisons with
simulations of the full system as a set of differential equa-
tions verified that all the qualitative properties of the iterated
solution held. The cortical loop was simulated in the follow-
ing repeating cycle: LGN–6–4–2/3–6. Including the feed-
back to layer 6 after computing layer 2/3 ensured that the
effects of internal cortical processing influenced the LGN
via feedback from layer 6 on each cycle.

All Gaussian kernels in the model were truncated at plus
and minus two standard deviations. To avoid spurious edge
effects at the border of the image, the image was extended
outwards for a distance corresponding to two standard
deviations of the (larger) inhibitory retinal kernel.

4. Results

4.1. Boundary completion perpendicular to line ends

The model displays properties of spatial context-sensi-
tivity by forming groupings that are either collinear with
edges or perpendicular to line ends, depending upon the
spatial arrangement of the input elements. A key property
of such groupings is the sensitivity of their perceptual
strength to contextual changes in stimulus properties. This
sensitivity is illustrated by the following two properties. As
the support ratio (namely, the ratio of real to total contour
length) of a Kanizsa square increases, so too does the
strength of the illusory contours that form between the
square’s pac man inducers (Shipley & Kellman, 1992).
This property is stimulated in Fig. 6A. In addition, contour
strength is an inverted U function of the number and
density of line-end inducers of an illusory square (Lesher
& Mingolla, 1993; Soriano, Spillman & Bach, 1996). This
property is simulated in Fig. 6B. Such sensitivity to context
suggests that the visual system is not merely computing
independent measures of the likelihood or strength of
local boundary orientations, but also evaluates the
coherency of boundary groupings as well. Spatial context-
sensitivity allows perceptual groupings to selectively bind
together those image features—whether defined by edge,
texture, shading, or stereo cues—that belong to the same
objects in a scene. We call the property of analog-sensitive
response to spatially distributed contextual evidenceanalog
coherence. Such responses reflect more than just local
stimulus energy. Instead, they are measures of the spatially
distributed coherent energyfor boundary likelihood or
strength.

The sensitivity during feedforward processing to input
contrast is due to the action of on-center off-surround
network from layer 6-to-4. The preservation of contrast-
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Fig. 6. Model simulations of psychophysical data. (A) In response to the
edge inducers in Fig. 6A, illusory contour strength increases with support
ratio. Support ratio is the ratio of real to total contour length. (B) For the line
end inducers in Fig. 6B, contour strength is an inverted U function of the
number and density of line end inducers. Contour strength was determined
by computing the average cell activity in layer 2/3 along the path of the
illusory portion of the contour. (Adapted with permission from Grossberg et
al. (1997), Fig. 2).



sensitivity when the feedback loop closes between layers 6–
4–2/3–6 is due to the folded feedback that the loop acti-
vates. The increase in contour strength with support ratio in
Fig. 6A is due to the cooperative action of increasing
numbers of pyramidal cells on a shared target pyramidal
cell in layer 2/3. The inverted U property in Fig. 6B is
due to the fact that, as input density increases, each
bottom-up input is attenuated more by layer 6-to-4 spatial
inhibition before it can activate target pyramidal cells in
layer 2/3. Thus, although there are more input sources,
each one has a smaller effect on grouping by the layer 2/3
pyramidal cells.

4.2. Gestalt grouping

The analog sensitivity of grouping strength to the balance
between these cooperative and competitive factors can be
used to explain various Gestalt grouping laws. The Gestalt
psychologists (e.g. Koffka, 1935; Wertheimer, 1923)
proposed that perceptual grouping is the result of attractive
field forces between stimulus elements. This Gestalt field
theory did not survive, but the Gestaltists’ demonstrations
stimulated a great deal of additional empirical research and
concept formation. The present cortical model exhibits a
number of Gestalt properties without invoking fields.

In response to Fig. 7A (top), many observers perceive an
ambiguous grouping in which both horizontal and vertical
groupings coexist, the horizontal groupings joining the input
elements within each row of the image, whereas the vertical
groupings join the elements within each column. A similar
organization is seen in Fig. 7A (bottom), which simulates
the model’s response to the input pattern in Fig. 7A (top).
Fig. 7A (bottom) plots the simulated equilibrium values of
the layer 2/3 complex cells in area V2 of the model. Placing

additional elements within the rows of this figure, as in Fig.
7B (top) leads to an unambiguous percept of a horizontal
grouping. A similar effect is seen in the model simulation of
this grouping in Fig. 7B (bottom). This demonstration
illustrates the Gestalt law ofproximity. It results from the
analog coherence of the horizontal and vertical boundary
groupings. As more horizontal inducers are added in
Fig. 7B, the horizontal grouping increases in strength in
layer 2/3. This stronger grouping causes greater inhibition
of the vertical grouping than conversely via layers 6 and 4.

Fig. 8 illustrates the Gestalt law ofgood continuation.In
Fig. 8A, an ambiguous horizontal and vertical grouping is
generated both perceptually and in the model simulation. In
Fig. 8B, horizontal lines are interpolated between the square
inducers. Now the vertical groupings are broken and the
horizontal groupings are in the same direction as the hori-
zontal lines. This effect again results from the context-sensi-
tive interaction of long-range cooperation in layer 2/3 with
shorter-range competition from layer 6 to 4 in the model.

4.3. Collinear cooperation and perpendicular competition
in V1 and V2

It is known in vivo that cells in both V1 and V2 respond
when illusory contours span closely spaced line ends
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Fig. 7. (A) An ambiguous grouping (both vertical and horizontal) may be
perceived in response to this image, and is simulated by the model. (B)
Additional aligned horizontal items cause the grouping to become horizon-
tal in perception and the model. (Adapted with permission from Grossberg
et al. (1997), Fig. 6).

Fig. 8. (A) An ambiguous grouping (both vertical and horizontal) may be
perceived in response to this image (left panel), and is simulated by the
model (right panel). (B) The addition of horizontal bars blocking the
vertical groupings causes the perceived and model groupings to become
exclusively horizontal. Note: the perception of depth, a level of complexity
not handled by the current version of our model, may restore the vertical
groupings behind the bars (see Grossberg (1997) for a discussion of such
factors).



(Grosof et al., 1993; Redies, Crook & Creutzfelt, 1986), as
shown in the simulation of Fig. 9A, which displays the
equilibrium activities of layer 2/3 complex cells in areas
V1 (middle row) and V2 (bottom row). On the other hand,
cells in V1 do not respond when illusory contours span
larger distances in response to thinner inducers, whereas
cells in V2 do (von der Heydt et al., 1984; von der Heydt
and Peterhans, 1989), as shown in the simulation of Fig. 9B.
Within the model, these properties are due to the hypothesis
that areas V1 and V2 share a similar organization, but that
V2 can group over larger distances. As a result, both the
shorter-range horizontal connections of V1 and the longer-
range horizontal connections of V2 can group across the
input elements in Fig. 9A, but only the longer-range connec-
tions of V2 can group across the more widely separated
input elements in Fig. 9B.

Fig. 9C simulates data of Kapadia, Ito, Gilbert and
Westheimer (1995) from monkey area V1 showing how
perpendicular inducers can prevent groupings from
occurring (see broken vertical grouping at the right hand
side of the figure), even while groupings between collinear
inducers form and improve stimulus detectability by mutual

activation (see stronger vertical activations in the middle of
the figure than at its left hand side). In the model, the
perpendicular competition is the V1 version of the V2
competition that broke the vertical grouping in Figs. 7B
and 8B. The improved stimulus detectability is due to the
sensitivity to collinear vertical groupings.

Not all aligned line ends can generate perpendicular
groupings (Kennedy, 1978). In particular, line ends that
come to a point cannot generate groupings as part of
many configurations in which regular line ends can generate
an offset grouping. This context-sensitive property is
illustrated by the computer simulations in Fig. 10.

4.4. Signal-to-noise ratio enhancement and camouflage
penetration

An interesting property of the model is its enhanced signal-
to-noise ratio shown by the recovered measures of coherent
orientational “energy”—that is, a consistent large-scale
alignment of locally weak signals—using purely local
boundary energy measurements. Fig. 11 illustrates this
model property using a noise-degraded image. Fig. 11A
shows the textured summation of cell activitiesEC (see Eq.
(16)) that results from a noise-degraded image of a dark
square on a gray background. The square edge signals are
camouflaged by noise. Fig. 11B shows how the model layer
2/3 horizontal cell grouping can select the boundaries out of
the clutter, thereby enhancing the signal-to-noise ratio.

5. Discussion

The cortical model presented in this article suggests how
the laminar, columnar, and map structures of cortical areas
V1 and V2 are organized for the purposes of perceptual
grouping. The model shows how distributed visual features
can be coherently bound together through feedback inter-
actions, without a loss of analog sensitivity. The model
hereby suggests how the visual system measures the coher-
ent spatially distributed evidence for a local visual feature’s
likelihood or strength, thereby computing a feature’s coher-
ent, rather than purely local, energy. The model describes
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Fig. 9. Simulation of the: (A) Grosof et al. (1993) display—illusory
contours between the offset gratings occur in both V1 and V2; (B) von
der Heydt et al. (1984) display—illusory contours group the line ends in
V2 but not V1; (C) Kapadia et al. (1995) display—horizontal orientations
compete with the vertical grouping. The displays are in the top row, the
simulated V1 responses are in the middle row, and the simulated V2
responses are in the bottom row. Kapadia et al. (1995) reported data only
from V1. Note that the longer range of bipole interactions in V2, as opposed
to V1—see Fig. 4D and E, respectively—accounts for the ability of the
model to form the grouping of column B in V2 but not V1. (Adapted with
permission from Grossberg et al. (1997), Fig. 4).

Fig. 10. Illusory contours form perpendicular to regular line ends (e.g.
Fig. 8), but not perpendicular to pointed line ends, both in perception and
in the model simulation.



how the laminar organization of visual cortex is capable of
realizing such processes through the use of the folded feed-
back pathway from the pyramidal cells in layer 2/3 back to
layer 4 via layer 6. This feedback interaction helps to bind
cortical cells into functional columns. The model also
suggests how non-classical properties of cell receptive
fields, such as their patch-suppressed responses (Born &
Tootell, 1991; Sillito, Grieve, Jones Cudeiro & Davis,
1995), may arise through combining long-range horizontal
grouping interactions in layer 2/3 with the shorter-range
on-center off-surround interactions from layer 6-to-4,
when these interactions are embedded within the cortical
hypercolumn map.

Layer 6-to-4 inhibition may also contribute to the
endstopping effect by which the responses of oriented
cells to the middle portion of a long edge are attenuated
relative to cell responses at edge ends or at short edges.
Experimental studies of endstopping have used reversible
inactivation of layer 6 in V1 using the inhibitory transmitter
GABA. This manipulation causes cells in layer 4 to lose
their end-inhibition, as well as cells in layer 2/3 that receive
their inputs from layer 4 (Bolz & Gilbert, 1986; Bolz,
Gilbert & Wiessel, 1989). An inhibitory interaction with a
mean length of 2.8 degrees in cat cortical area V1 (area 17)
has been reported (Grieve & Sillito, 1991), which matches
well the value predicted for the inhibitory field that gener-
ates endstopping (Kato, Bishop & Orban, 1978; Sillito,
1977; Yamane, Maske & Bishop, 1985).

These data do not necessarily imply, however, that layer
6-to-4 inhibition is the only mechanism that influences
endstopping. In particular, corticogeniculate feedback,
which also exhibits a center–surround organization, may
also indirectly influence endstopping (Murphy & Sillito,
1987). In the model, feedback from layer 6 cells to the
LGN enhances LGN cell responses near line ends, thereby
strengthening the perpendicular cortical responses at line
ends that enable the corresponding cortical cells to group
cooperatively, as in the simulations of Figs. 6B and 7A.

Reversible inactivation of layer 6 in V1 using GABA
(Bolz & Gilbert, 1986; Bolz et al., 1989) does not substan-

tially change orientational selectivity of cells in visual
cortex. The same is true in the model, due to the fact that
the excitatory inputs to layer 4C model cells are already
orientationally tuned.

The possible role of layer 6-to-4 inhibition in endstopping
has been questioned because layer 6 connectivity also
enhances the excitability of non-length-tuned cells in layers
2/3 and 4 (Grieve & Sillito, 1995). The model proposes that
this interaction is, more generally, part of the mechanism
that ensures analog coherence of cortical processing,
namely, it helps to preserve contrast-sensitivity to inputs
from the LGN and helps to select correct groupings in
response to feedback from layer 2/3, without a loss of sensi-
tivity to feature contrast or spatial context. Various other
cortical models (e.g. Douglas et al., 1995; Grossberg,
1976a,b; Heeger, 1993; Olson and Grossberg, 1998; Somers
et al., 1995; Stemmler et al., 1995; Willshaw & von der
Malsburg, 1976) have discussed the possible role of recur-
rent interactions in visual cortex. Neumann and Sepp (1999)
have proposed a related model of V1 and V2 processing,
which explores the role of recurrent long-range completion
mechanisms, but does not address the laminar structure of
these cortices. None of these models have yet modeled how
cortical layers and their interactions control the formation of
perceptual groupings that preserve their analog coherence
under a wide range of stimulus conditions. The present arti-
cles begins to close this gap.

Acknowledgements

The authors wish to thank Robin Amos and Diana Meyers
for their valuable assistance in the preparation of the manu-
script. W.D.R. was supported in part by the Air Force Office
of Scientific Research (AFOSR 90-0175), British Petroleum
(BP 89A-1204), the Defense Advanced Research Projects
Agency and the Office of Naval Research (ONR N00014-
92-J-4015), HNC Software (SC-94-001), the National
Science Foundation (NSF IRI-90-00530), and the Office
of Naval Research (ONR N00014-91-J4100 and ONR
N00014-95-1-0409). S.G. was supported in part by the
Defense Advanced Research Projects Agency and the Office
of Naval Research (ONR N00014-1-009 and the Office of
Naval Research (ONR N00014-95-1-0657). E.M. was
supported in part by the Defense Advanced Research
Projects Agency and the Office of Naval Research (ONR
N00014-95-1-0409).

References

Amir, Y., Harel, M., & Malach, R. (1993). Cortical hierarchy reflected in
the organization of intrinsic connections in macaque monkey visual
cortex.Journal of Comparative Neurology, 334, 19–46.

Beck, J., Prazdny, K., & Rosenfeld, A. (1983). A theory of textural
segmentation. In J. Beck, B. Hope & A. Rosenfeld,Human and machine
vision. New York: Academic Press.

Blasdel, G. G. (1992a). Differential imaging of ocular dominance and

W.D. Ross et al. / Neural Networks 13 (2000) 571–588586

Fig. 11. (A) A noise-degraded image of a dark square on a gray background
gives rise to textured summation of complex cell input strengthsEC in
which the square edge signals are camouflaged by noise. (B) After proces-
sing by complex cells in layer 2/3, the coherent boundary signals emerge
out of the clutter.



orientation selectivity in monkey striate cortex.Journal of
Neuroscience, 12, 3115–3138.

Blasdel, G. G. (1992b). Orientation selectivity, preference, and continuity
in monkey striate cortex.Journal of Neuroscience, 12, 3139–3161.

Blasdel, G. G., & Salama, G. (1986). Voltage-sensitive dyes reveal a
modular organization in monkey striate cortex.Nature, 321, 579–585.

Bolz, J., & Gilbert, C. D. (1986). Generation of end-inhibition in the visual
cortex via interlaminar connections.Nature, 320, 362–365.

Bolz, J., Gilbert, C. D., & Wiesel, T. N. (1989). Pharmacological analysis of
cortical circuitry.Trends in Neurosciences, 12, 292–296.

Bonhoeffer, T., & Grinvald, A. (1991). Iso-orientation domains in cat visual
cortex are arranged in pinwheel-like patterns.Nature, 353, 429–431.

Born, R. T., & Tootell, R. B. H. (1991). Spatial-frequency tuning of single
units in macaque supragranular striate cortex.Proceedings of the
National Academy of Sciences, USA, 88, 7071–7075.

Bosking, W., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orienta-
tion selectivity and the arrangement of horizontal connections in tree
shrew striate cortex.Journal of Neuroscience, 17 (6), 2112–2127.

Cannon, M. W., & Fullenkamp, S. C. (1993). Spatial interactions in appar-
ent contrast: individual differences in enhancement and suppression
effects.Vision Research, 33, 1685–1695.

Chapman, B., Zahs, K. R., & Stryker, M. P. (1991). Relation of cortical cell
orientation selectivity to alignment of receptive fields of the geniculo-
cortical afferents that arborize within a single orientation column in
ferret visual cortex.Journal of Neuroscience, 11, 1347–1358.

Cohen, M. A., & Grossberg, S. (1984). Neural dynamics of brightness
perception: features, boundaries, diffusion, and resonance.Perception
and Psychophysics, 36, 428–456.

Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C., & Suarez, H. H.
(1995). Recurrent excitation in neocortical circuits.Science, 269, 981–
985.

van Essen, D. C., & Maunsell, J. H. R. (1983). Hierarchical organization
and functional streams in the visual-cortex.Trends in Neurosciences, 6,
370–375.

Felleman, D. J., & van Essen, D. C. (1991). Distributed hierarchical proces-
sing in the primate cerebral cortex.Cerebral Cortex, 1, 1–47.

Ferster, D. (1988). Spatially opponent excitation and inhibition in simple
cells of the cat visual cortex.Journal of Neuroscience, 8, 1172–1180.

Ferster, D., & Lindstro¨m, S. (1983). An intracellular analysis of geniculo-
cortical connectivity in area 17 of the cat.Journal of Physiology, 342,
181–215.

Ferster, D., & Lindstro¨m, S. (1985). Synaptic excitation of neurons in area
17 of the cat by intracortical axon collaterals of cortico-geniculate cells.
Journal of Physiology, 367, 233–252.

Ferster, D., Chung, S., & Wheat, E. (1996). Orientation selectivity of
thalamic input to simple cells of cat visual cortex.Nature, 380, 249–252.

Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the
human visual-system—evidence for a local association field.Vision
Research, 33 (2), 173–193.

Gilbert, C. D., & Wiesel, T. N. (1979). Brain mechanisms of vision.Nature,
280, 120–125.

Gove, A., Mingolla, E., & Grossberg, S. (1995). Brightness perception,
illusory contours, and corticogeniculate feedback.Visual Neuroscience,
12, 1027–1052.

Grieve, K. L., & Sillito, A. M. (1991). The length summation properties of
layer VI cells in the visual cortex and hypercomplex cell end zone
inhibition. Experimental Brain Research, 84, 319–325.

Grieve, K. L., & Sillito, A. M. (1995). A re-appraisal of the role of layer VI
of the visual cortex in the generation of cortical end inhibition.
Experimental Brain Research, 104, 12–20.

Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical
point-spread function and long-range lateral interactions revealed by
real-time optical imaging of macaque monkey primary visual cortex.
Journal of Neuroscience, 14 (15), 2545–2568.

Grosof, D. H., Shapley, R. M., & Hawken, M. J. (1993). Macaque V1
neurons can signal “illusory” contours.Nature, 365, 550–552.

Grossberg, S. (1973). Contour enhancement, short term memory, and

constancies in reverberating neural networks.Studies in Applied
Mathematics, 52, 217–257.

Grossberg, S. (1976a). Adaptive pattern classification and universal
recoding, I: parallel development and coding of neural feature detectors.
Biological Cybernetics, 23, 121–134.

Grossberg, S. (1976b). Adaptive pattern classification and universal recod-
ing, II: feedback, expectation, olfaction, and illusions.Biological
Cybernetics, 23, 187–202.

Grossberg, S. (1980). How does a brain build a cognitive code?Psycholo-
gical Review, 87, 1–51.

Grossberg, S. (1984). Outline of a theory of brightness, color, and form
perception. In E. Degreef & J. van Buggenhaut,Trends in Mathematical
Psychology(pp. 59–86). Amsterdam: Elsevier/North-Holland.

Grossberg, S. (1987). Cortical dynamics of three-dimensional form, color,
and brightness perception, I: monocular theory.Perception and Psycho-
physics, 41, 87–116.

Grossberg, S. (1994). 3-D vision and figure–ground separation by visual
cortex.Perception and Psychophysics, 55, 48–120.

Grossberg, S. (1997). Cortical dynamics of three-dimensional figure–
ground perception of two-dimensional pictures.Psychological Review,
104, 618–658.

Grossberg, S. (1999). How does the cerebral cortex work? Learning,
attention, and grouping by the laminar circuits of visual cortex.Spatial
Vision, 12, 163–185.

Grossberg, S., & McLoughlin, E. (1997). Cortical dynamics of 3-D surface
perception: binocular and half-occluded scenic images.Neural
Networks, 10, 1583–1605.

Grossberg, S., & Mingolla, E. (1985). Neural dynamics of perceptual
grouping: textures, boundaries, and emergent segmentations.Percep-
tion and Psychophysics, 38, 141–171.

Grossberg, S., Mingolla, E., & Ross, W. D. (1997). Visual brain and visual
perception: how does the cortex do perceptual grouping?Trends in
Neurosciences, 20, 106–111.

Grunewald, A., & Grossberg, S. (1998). Self-organization of binocular
disparity tuning by reciprocal corticogeniculate interactions.Journal
of Cognitive Neuroscience, 10, 199–215.

Heeger, D. J. (1993). Modeling simple-cell direction selectivity with
normalized, half-squared, linear operators.Journal of Neurophysiology,
71, 2543–2547.

von der Heydt, R., & Peterhans, E. (1989). Mechanisms of contour percep-
tion in monkey visual cortex. I. Lines of pattern discontinuity.Journal
of Neuroscience, 9, 1731–1748.

von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory
contours and cortical neuron responses.Science, 224, 1260–1262.

Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal
connections in the cat visual cortex.Journal of Neuroscience, 11,
1800–1809.

Hodgkin, A. L. (1964).The conduction of the nervous impulse, Liverpool,
UK: Liverpool University.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields and functional archi-
tecture of monkey striate cortex.Journal of Physiology, 160, 106–154.

Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque
monkey visual cortex.Proceedings of the Royal Society of London (B),
198, 1–59.

Julesz, B. (1971).Foundations of cyclopean perception, Chicago, IL:
University of Chicago Press.

Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995).
Improvement in visual sensitivity by changes in local context: parallel
studies in human observers and in V1 of alert monkeys.Neuron, 15,
843–856.

Kato, H., Bishop, P. O., & Orban, G. A. (1978). Hypercomplex and simple/
complex cell classifications in cat striate cortex.Journal of Neuro-
physiology, 41, 1071–1096.

Kennedy, J. M. (1978). Illusory contours and the ends of lines.Perception,
7, 605–607.

Kisvarday, Z. K., Toth, E., Rausch, M., & Eysel, U. T. (1995). Comparison

W.D. Ross et al. / Neural Networks 13 (2000) 571–588 587



of lateral excitatory and inhibitory connections in cortical orientation
maps of the cat.Society for Neuroscience Abstracts, 21, 907.

Knierim, J. J., & van Essen, D. C. (1992). Neuronal responses to static
texture patterns in area V1 of the alert macaque monkey.Journal of
Neurophysiology, 67, 961–980.

Koffka, K. (1935).Principles of Gestalt psychology, New York: Harcourt,
Brace and Jovanovich.

Lesher, G. (1995). Illusory contours: toward a neurally based perceptual
theory.Psychonomic Bulletin and Review, 2(3), 279–321.

Lesher, G. W., & Mingolla, E. (1993). The role of edges and line-ends in
illusory control formation.Vision Research, 33, 2253–2270.

LeVay, S., Connolly, M., Houde, J., & Van Essen, D. (1985). The complete
pattern of ocular dominance stripes in the striate cortex and visual field
of the macaque monkey.Journal of Neuroscience, 5, 476–591.

Liu, Z., Gaska, J. P., Jacobson, L. D., & Pollen, D. A. (1992). Interneuronal
interaction between members of quadrature phase and anti-phase pairs
in the cat’s visual cortex.Vision Research, 32, 1193–1198.

McClurkin, J. W., Optican, L. M., & Richmond, B. J. (1994). Cortical feed-
back increases visual information transmitted by monkey parvocellular
lateral geniculate nucleus neurons.Visual Neuroscience, 11, 601–617.

McGuire, B. A., Gilbert, C. D., Rivlin, P. K., & Wiesel, T. N. (1991).
Targets of horizontal connections in macaque primary visual cortex.
Journal of Comparative Neurology, 305, 370–392.

McLoughlin, N. P., & Grossberg, S. (1998). Cortical computation of stereo
disparity.Vision Research, 38, 91–99.

Mountcastle, V. B. (1957). Modality and topographic properties of single
neurons of cats somatic sensory cortex.Journal of Neurophysiology, 20,
408–434.

Murphy, P. C., & Sillito, A. M. (1987). Corticofugal feedback influences the
generation of length tuning in the visual pathway.Nature, 329, 727–729.

Murphy, P. C., & Sillito, A. M. (1996). Functional morphology of the
feedback pathway from area 17 of the cat visual cortex to the lateral
geniculate nucleus.Journal of Neuroscience, 16, 1180–1192.

Neumann, H. (1996). Mechanisms of neural architecture for visual contrast
and brightness perception.Neural Networks, 9 (6), 921–936.

Neumann, H., & Sepp, W. (1999). Recurrent V1–V2 interaction in early
visual boundary processing.Biological Cybernetics, 81, 425–444.

Olson, S. J., & Grossberg, S. (1998). A neural network model for the devel-
opment of simple and complex cell receptive fields within cortical maps
of orientation and ocular dominance.Neural Networks, 11, 189–208.

Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial inter-
actions.Vision Research, 34, 73–78.

Ramachandran, V. S., & Nelson, J. I. (1976). Global grouping overrides
point-to-point disparities.Perception, 5, 125–128.

Redies, C., Crook, J. M., & Creutzfeldt, O. D. (1986). Neural responses to
borders with and without luminance gradients in cat visual cortex and
dLGN. Experimental Brain Research, 61, 469–481.

Reid, R. C., & Alonso, J. -M. (1995). Specificity of monosynaptic connec-
tions from thalamus to visual cortex.Nature, 378, 281–284.

Schmidt, K. E., Goebel, R., Lowel, S., & Singer, W. (1997). The perceptual
grouping criterion of collinearity is reflected by anisotropies of
connections in the primary visual cortex.European Journal of
Neuroscience, 9, 1083–1089.

Shipley, T. F., & Kellman, P. J. (1992). Strength of visual interpolation.
Perception and Psychophysics, 52, 97–106.

Sillito, A. M. (1977). Inhibitory processes underlying the directional speci-
ficity of simple, complex, and hypercomplex cells in the cat’s visual
cortex.Journal of Physiology, 271, 699–720.

Sillito, A. M., Jones, H. E., Gerstein, G. L., & West, D. C. (1994). Feature-
linked synchronization of the thalamic relay cell firing induced by feed-
back from the visual cortex.Nature, 369, 479–482.

Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. (1995).
Visual cortical mechanisms detecting focal orientation discontinuities.
Nature, 378, 492–496.

Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of
orientation selectivity in cat visual cortical simple cells.Journal of
Neuroscience, 15, 5448–5465.

Soriano, M., Spillman, L., & Bach, M. (1996). The abutting grating illusion.
Vision Research, 36, 109–116.

Stemmler, M., Usher, M., & Niebur, E. (1995). Lateral interactions in
primary visual cortex: a model bridging physiology and psychophysics.
Science, 269, 1877–1880.

Weber, A. J., Kalil, R. E., & Behan, M. (1989). Morphology of single,
physiologically identified retinogeniculate Y-cell axons in the cat
following damage to visual cortex at birth.Journal of Comparative
Neurology, 289, 156–164.

Wertheimer, M. (1923). Untersuchungen yur Lehre von der Gestalt. II.
Psychologische Forschung, 4, 301–350.

Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural
connections can be set up by self-organization.Proceedings of the
Royal Society of London (B), 194, 431–445.

Yamane, S., Maske, R., & Bishop, P. O. (1985). Direction selectivity of
simple cells in cat striate cortex to moving light bars: relation to moving
dark bar responses.Experimental Brain Research, 60, 200–203.

W.D. Ross et al. / Neural Networks 13 (2000) 571–588588


