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Abstract

The visual cortex has a laminar organization whose circuits form functional columns in cortical maps. How this laminar architecture
supports visual percepts is not well understood. A neural model proposes how the laminar circuits of V1 and V2 generate perceptual
groupings that maintain sensitivity to the contrasts and spatial organization of scenic cues. The model can decisively choose which groupings
cohere and survive, even while balanced excitatory and inhibitory interactions preserve contrast-sensitive measures of local boundary
likelihood or strength. In the model, excitatory inputs from lateral geniculate nucleus (LGN) activate layers 4 and 6 of V1. Layer 6 activates
an on-center off-surround network of inputs to layer 4. Together these layer 4 inputs preserve analog sensitivity to LGN input contrasts. Layer
4 cells excite pyramidal cells in layer 2/3, which activate monosynaptic long-range horizontal excitatory connections between layer 2/3
pyramidal cells, and short-range disynaptic inhibitory connections mediated by smooth stellate cells. These interactions support inward
perceptual grouping between two or more boundary inducers, but not outward grouping from a single inducer. These boundary signals feed
back to layer 4 via the layer 6-to-4 on-center off-surround network. fotded feedbacjoins cells in different layers into functional columns
while selecting winning groupings. Layer 6 in V1 also sends top-down signals to LGN using an on-center off-surround network, which
suppresses LGN cells that do not receive feedback, while selecting, enhancing, and synchronizing activity of those that do. The model is used
to simulate psychophysical and neurophysiological data about perceptual grouping, including various Gestalt groupi@g2Gids.
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1. Introduction: cortical substrates of perceptual causes depends on modeling the underlying neural mechan-
grouping isms by which the brain organizes local image features into
coherent groupings of scenic features. Crucial to the process
The laminar organization of the visual cortex supports of perceptual organization are the cortical circuits that
interactions among local circuits that form functional convert retinogeniculate measures of local image contrast
columns, which are themselves organized in cortical mapsinto representations of oriented boundaries in a context-
(Hubel & Wiesel, 1977). Yet, how the structures of layer sensitive way. Emergent boundary groupings efficiently
and column interact to generate visual percepts remainsrepresent object borders and surface contours in response
obscure. This article develops a neural model of how to texture, shading and depth cues (Beck, Prazdny & Rosen-
the interacting structures of laminae, columns, and mapsfeld, 1983; Grossbherg, 1994; Julesz, 1971; Polat & Sagi,
cooperate to generate perceptual groupings. Preliminary1994; Ramachandran & Nelson, 1976). The cortical model
reports of some of the present results have appeared indeveloped herein shows how the context-sensitivity of such
Grossberg, Mingolla and Ross (1997). perceived boundary groupings can be explained by the
While perceptual groupings have long been studied as context-sensitivity of neuronal responses, notably their
psychophysical phenomena, a full understanding of their “non-classical” receptive field properties, which can, in
turn, be traced to specific aspects of the organization of
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detailed local-circuit model of V1 and V2 cell interactions
has had to answer two difficult computational questions:
first, how can the “inward” logic of necessary and sufficient
arrangements of inducers for perceptual interpolation be
reconciled with the “outward” axonal connectivity patterns
of long-range horizontal connections of visual cortex
(McGuire, Gilbert, Rivlin & Wiesel, 1991)? While a sketch
of possible circuits for accomplishing this feat has already
been provided (Grossberg et al., 1997), this article is the first
to provide the equations of a model that addresses this issue.
The second key computational question addressed in this
article concerns the reconciliation of: (a) the bipole prop-
erty; (b) neural feedback circuits; and (c) the need for neural
codes to assume a functional continuum of values (e.g.
neural firing rates). Before even stating the question,
however, some preliminary points must be clarified. To
separation, illusory contours offer a particularly useful begin, the word “feedback” is used in several different
testbed for study. lllusory contours are instances of percep-senses in various scientific and technical communities.
tual grouping because they are cases where disconnectedefore explaining the significance of feedback in our
local contrasts in a scene are linked together to form unbro- model, we must clarify that in using the term we refer to
ken perceptual units. They are usually but not always any “closed loop” of connectivity between neural units.
perceptually sharp, typically support visible light/dark Thus, “horizontal connectivity” whereby neuron A in a
differences in abutting regions, and are often associatedparticular lamina of V1 synapses on neuron B of the same
with perceived surface depth differences. (See Lesher,lamina, and where neuron B also synapses on neuron A, is
1995 for a review.) While such striking perceptual effects the simplest possible example of nerve feedback. Such feed-
may be absent in more prosaic forms of grouping, an impor- back is often referred to as “recurrent.” Our model includes
tant common mechanism unites the analysis of many this form of feedback, as well as other forms. Some physiol-
perceptual phenomena in which percepts of continuous, ogists appear to reserve the word feedback to refer only to
elongated, and thin structures (i.e. contours) emerge fromprojections from a “later” cortical area to an earlier one (e.g.
discrete scenic elements. To address such phenomena, Beck?2 to V1, or V1 to LGN). We prefer to describe the entire
et al. (1983) refer to “linking”, Field, Hayes and Hess (1993) loop of such inter-area circuits, including both the
invoke an *“association field”, and our work analyzes “forward” and “backward” connections, as a feedback

Y

Fig. 1. A grouping cell can fire: (a) if it receives enough oriented, almost
collinear input from both branches of its receptive field; but not (b) if it
receives input from only one branch.

“cooperative bipole cells” (Gove, Grossberg & Mingolla,
1995; Grossbherg, 1987; Grossberg & Mingolla, 1985).
To function effectively in perceptual contour formation or

circuit, and the work presently reported includes such feed-
back. Finally, closed feedback loops can also be found
within cortical areas, but involving cells of two or more

completion, a linking mechanism is required to possess alaminae of a single area; we will discuss such feedback,
key computational characteristic: it must be activated when- and its relation to the other forms, at length.

ever the receptive field of the mechanism is simultaneously The next point for clarification concerns the need for a
stimulated on two sides by “bottom-up” input based on near-continuum of possible output values in a neural code;
retinally registered contrasts, bubt be activated whenever  we refer to this property a@snalog sensitivityThe percepts
input, no matter how strong, is only registered on one side of many perceptual phenomena, including illusory contours,

(see Fig. 1). We call this tendency “the bipole property.”
This property patently requires some form of non-linear
computation, as the bipole must “decide” whether it is
being stimulated by a sufficient number of units of activity
on eachside of its receptive field (e.g. five and five) to
respond, or whether it is being stimulated only on one
side (e.g. ten units) with no stimulation at all on the other,
in which case it should not respond. Another way of stating
the bipole property is to say that a bipole unit murger-
polate a response supporting a perceptual contour if its

have been shown to be resolvable to rather fine gradations,
using a variety of scaling techniques. (For a review, see
Lesher, 1995.) That is, it is meaningful to speak of weak,
or strong, illusory contours, or to reliably rank-order several
illusory contour exemplars on dimensions such as clarity or
brightness. Similarly, neural units in cortical areas have
been shown to vary in response strength as a function of
variables similar to those shown to affect perceptual
response strength in humans (von der Heydt, Peterhans &
Baumgartner, 1984). We assume that a causal connection

receptive field center is located between two appropriately exists between response rates of neural units in early cortical

spaced inducing elements, but rttrapolatea perceptual
contour away from a single isolated inducer.
The journey from a functional understanding of the bipole

areas and perceptual response, and assert that any complete
model of perceptual grouping, including illusory contour
formation, must address how thstrength of illusory

property to our present understanding of its instantiation in a contours can be represented along some analog dimension
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of neural response. As will be seen, our model equationsdirections that correspond to the orientational preference
employ a lumped representation of neural potential, with a of the cell forming the axonal connection (Bosking et al.,
continuum of possible real-valued output signals, bounded 1997; Schmidt, Goebel, Lowel & Singer, 1997). In the 1985
above and below by saturation constants. These outputmodel, input signals arriving at each half of the figure-eight
signals may be viewed as proportional to firing rate in the were separately subjected to saturating transformations. The
output of more articulated equations for neural activity. transformations would map ever-increasing input values to

The second key computational question of our work can the same “plateau” value, after an initial rising regime. The
now be statedhow can a neural feedback circuit both bipole cell would fire only if the sum of such transformed
embody the bipole property and have analog sensitivity in values from both sides of the figure-eight exceeded the
its output valuesThe case for using positive feedback to maximum value attainable by inputs to just one side.
select the correct context-sensitive perceptual grouping isWhile this step guaranteed interpolation without extrapola-
intuitively compelling (Grossberg & Mingolla, 1985), and tion, it also damaged the bipole’s ability to reflect the
we will describe the particular relevance of feedback to strength of its input in the value of its output. (Recall that
illusory contour formation later in this article. Moreover, a bipole is “supposed” to fire if, say, inputs valued at 3 on a
positive feedback is not intrinsically incompatible with scale of 0—10 arrive on both sides, but not if an input valued
analog sensitivity in neural models. Since the work of at 8 is on one side, with an input of O on the other.) The
Grossbherg (1973), we have known that a suitable choice combination of such bipole computations with feedback,
of feedback signal function (the transformation whereby however, guaranteed that the model system as a whole
the potential of one cell forms the signal that is transmitted would converge to one of two possible values in a possible
as input to another cell), combined with a balance of exci- locus for an illusory contour. Either there would be comple-
tatory and inhibitory connections, can guarantee analogtion (i.e. cells reaching a uniform positive output value) or
sensitivity. It is the bipole property that, until recently, not (i.e. cells at resting potential).
had thwarted modeling attempts at realizing robust Intuitively, what was missing from the earlier model
analog-sensitive perceptual completion in feedback circuits. bipole computation was some procedure for assessing
Without analog sensitivity, groupings formed at an early whether a certain alignment of inducing input elements
processing stage could easily lead to incorrect perceptswas sufficient for completion of a contogiven the context
and recognition events at higher processing stages. of surrounding inputsPut another way, the completion

The bipole property was first predicted based upon a signal needs to be scaled relative to the input signals, and
psychophysical analysis (Cohen & Grossberg, 1984; Gross-the mechanism for determiningow stronga completed
berg, 1984; Grossberg & Mingolla, 1985) at around the contour signal should be needs to be buffered from the
same time that it was reported in electrophysiological effects of the non-linear mechanism for decidiwbether
recordings from area V2 (von der Heydt et al., 1984). to complete a contour. Grossberg et al. (1997) sketched
Until the simulations of Grossberg et al. (1997), however, intuitively how to accomplish this feat, but that brief report
no neural model had displayed analog sensitive behavior incontained no computational details of the key model
a feedback circuit embodying the bipole property. Predeces-mechanisms. The present article describes the laminar
sors to the present model, including those of Gove et al. circuits of cortical areas V1 and V2 that compute analog
(1995) and Grossberg and Mingolla (1985), had displayed groupings, the model equations that realize this property,
“all-or-none” contour completion. That is, if the model simulations of psychophysical and neurophysiological
completed a contour at all between inducers, it would grouping data, the dependence of model behavior on
complete a contour of a certain strength, regardless of parameter choices, and additional model explanations of
whether there were several strongly aligned inducers, orrelevant data.
only the minimum set of inducers necessary to trigger
completion.

For an intuitive understanding of the limitations of the 2, Methods
predecessor model, consider that the bipole property was
instantiated by certain simple non-linear transformations This section states the assumptions and linking hypo-
intended to create the type of “statistical and gate” required theses of the model and describe its core computational
for perceptual interpolation without extrapolation (Gross- principles intuitively, for the sake of clarity. After present-
berg & Mingolla, 1985). The model bipole cell was consid- ing model equations and parameters, data simulations are
ered to have a two-lobed receptive field in the shape of a described. Neurophysiological data that directly test the
figure-eight. Recent research combining optical imaging of model architecture are described in the present section,
tree shrew cortex with biocytin injections has strikingly while consideration of additional data that the model helps
confirmed the hypothesis that cells which form long-range to explain is deferred Section 5.
connections in cortex contact cells of similar orientational ~ Five computational properties comprise the core of the
preference and that the receptive field centers of the model. The description of these properties refers to the
contacted cells are aligned in the cortical map along macrocircuit of the entire model shown in Fig. 2. This
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Fig. 2. Schematic of the entire model’s circuitry, including LGN, V1, and

V2 components. Open circles represent neurons, whether pyramidal cells in

those layers labeled 2/3 or simple cells in layers labeled 4. Small dark
circles represent inhibitory interneurons. The dark circles with light centers
at the level labeled LGN stand for ON-center, OFF-surround cells. The

model includes OFF-center, ON-surround cells as well, but these are not
shown for simplicity. Triangles at the end of thin curves represent synapses.
Open triangles represent excitatory synapses, and closed triangles represe

inhibitory ones. The thin vertical line emanating from the center circle in
the top layer (V2, 2/3) of the diagram represents a pyramidal cell's apical
dendrite. A similar icon appears at the corresponding location at the V1 2/3
layer. The V2 circuit is proposed to be isomorphic to the V1 circuit, with all
V2 cells having proportionately larger receptive fields than corresponding
ones in V1. See the accompanying text for additional remarks on how to
interpret this diagram. (Adapted with permission from Grossberg et al.
(1997), Fig. 5).

macrocircuit includes a number of simplifications of the
model equations to highlight the essential components
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Fig. 3. Triangles at the end of thin curves represent synapses. Open triangles
represent excitatory synapses, and closed triangles represent inhibitory
ones. Model retinal, LGN and V1 circuit. (A) Horizontal bipole interactions

in layer 2/3: layer 2/3 complex pyramidal cells monosynaptically excite one
another via horizontal connections, primarily on their apical dendrites.
They also inhibit one another via disynaptic inhibition that is mediated

nt}y model smooth stellate cells. Multiple horizontal connections are

proposed to share a common pool of stellate cells near each target complex
cell. The bipole property is hereby achieved. (B) Feedforward circuit from
retina to LGN to cortical layers 4 and 6. Retina: retinal ON cells have an
on-center off-surround organization. Retinal OFF cells have an off-center
on-surround organization. LGN: the LGN ON and OFF cells receive feed-
forward ON and OFF cell inputs from the retina. Layer 4: layer 4C cells
receive feedforward inputs from LGN and layer 6. LGN ON and OFF cell
excitatory inputs to layer 4 establish oriented simple cell receptive fields.
Layer 6 cells excite layer 4 cells with a narrow on-center and inhibit them
from using layer 4 inhibitory interneurons, represented by small dark disks,
that span a broader off-surround. Like-oriented layer 4 simple cells with
opposite contrast polarities compete (not shown) before generating half-
wave rectified outputs that converge on layer 2/3 complex cells. Layer 2/3:

re_qUired for _perceptual grouping. These circgits are Next the converging simple cell outputs enable complex cells to respond to both
briefly described, so that the flow of neural signals in the polarities. They hereby full-wave rectify the image. (C) Cortical feedback

model is clear. Supporting data and a description of the loop from layer 2/3 to layer 6: layer 6 cells receive excitatory inputs from
functional significance of the circuits are then provided. layer 2/3. The long-range cooperation hereby engages the feedforward
The model's circuits include center—surround cells of layer 6-to-4 on-center off-surround network. This cooperative—competitive

. . . feedback loop can select winning groupings without a loss of analog-sensi-
LGN, which send excitatory signals to cells of layers 6
and 4 of V1, and receive inter-area feedback from layer 6
of V1. The feedback from layer 6 to LGN is modulated by a

tivity. (D) Top-down corticogeniculate feedback from layer 6: LGN ON
and OFF cells receive topographic excitatory feedback from layer 6, and
more broadly distributed inhibitory feedback via LGN inhibitory interneur-

ons that are excited by layer 6 signals. The feedback signals pool outputs

local center—surround circuit, indicated by three synaptic - : i :
over all cortical orientations and are delivered equally to ON and OFF cells.

connections, two ‘?f which are to Inhlbltory Interneurons, Corticogeniculate feedback selects, gain controls, and synchronizes LGN
at the bottom of Fig. _3- _NOte also that the LG_N t(_) layer 4 celis that are consistent with the cortical activation that they cause. Layer 6-
pathway engages a similar center—surround circuit. Cells of to-4 inhibition and layer 6-to-LGN inhibition (mediated by inhibitory
layer 4 of V1 send excitatory signals to pyramidal cells in interneurons, represented by small dark disks) both contribute to length-
layer 2/3 of their own cortical column. These pyramidal sensitive (endstopped) responses that facilitate grouping perpendicular to
. Co line ends. (Adapted with permission from Grossberg et al. (1997), Fig. 3).
cells are at the same time part of a horizontal feedback
circuit formed with pyramidal cells with similar orienta-
tional preferences from nearby columns of layer 2/3. This of Fig. 2. This is because, for graphical simplicity, only a
feedback circuit also involves inhibitory interneurons. “minimal set” of existing connections is shown. For
That the intra-laminar connections of layer 2/3 form a example, although only the middle cell (open circle) in
lateral feedback circuit may not be evident from the icons layers 2/3 is shown as having an apical dendrite (vertical
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line emanating from open circle), the others also have suchthat the net amount propagating inhibition “supported by” a
structures, along with the corresponding synaptic connec-single isolated inducing contrast on the retina is sufficient to
tions and interneurons. Similarly, the center—surround cancel the net amount of propagating excitation. This prop-
circuits in layer 4 of V1 and the LGN, while only indicated erty is in accordance with studies showing that, when a
by a single set of icons, are assumed to be replicated in ansingle input source drives horizontal pathways at threshold
interdigitated way for all corresponding locations in the intensities in vivo, excitatory postsynaptic potentials
neural layers. Although the off-surround connections are (EPSPs) are generated, whereas suprathreshold stimulus
assumed to be radially symmetric in the model, and to currents elicit disynaptic inhibitory postsynaptic potentials
have a corresponding radial effect on cells’ receptive fields, (IPSPs) that can overwhelm the EPSPs (Cannon & Fullen-
the horizontal circuits of layer 2/3 are assumed to preferen- kamp, 1993; Hirsch & Gilbert, 1991; Knierim & van Essen,
tially link cells with similar orientational preference and 1992; Somers, Nelson & Sur, 1995; Stemmler, Usher &
whose receptive field centers are roughly aligned along Niebur, 1995). The perceptual correlate of this property is
the direction given by the cells’ orientational preferences. that grouping or illusory contour completion does not extra-

Besides processing inputs from layer 4 and engaging in polate, that is, propagate “outward” from a single inducing
recurrent feedback with neighbors, pyramidal cells of layers element.

2/3 also send excitatory signals, possibly via a polysynaptic

route, to cells of layer 6 in retinotopically corresponding

locations, that is, in their own cortical columns. Finally,

we note that the structure of the model V2 circuit replicates
its V1 circuit, but V2 cells are shown larger in the diagram
in recognition of their larger receptive fields. The following

sections provide an intuitive description of the model’s key
functional properties and how its circuits realize them
computationally.

2.1. Property 1: boundary completion and grouping by
bipole interactions among layer 2/3 pyramidal cells

According to the model, cooperative bipole interactions
are achieved in layers 2/3 of V1 or V2 by recurrent long-
range horizontal connections among cortical pyramidal
cells. In order for cooperation to build a boundary like an

Bipole completion occurs due to model interactions
between monosynaptic excitation and disynaptic inhibition
when layer 2/3 cells receive horizontally induced (i.e. intra-
laminar) activations from a surrounding neighborhood of
cells with oriented receptive fields, and whose receptive
field centers are displaced along the direction of orienta-
tional preference of the individual neurons (Grosof, Shapley
& Hawkin, 1993; von der Heydt et al., 1984). The signifi-
cance of disynaptic inhibition in our model is paramount.
The interneuron receives excitatory signals from the same
pyramidal cells of layers 2/3 that are attempting to activate a
pyramidal neighbor. Its own synapse on that recipient pyra-
midal cell is inhibitory; this is the anatomy of “one against
one” suppression of excitation by inhibition.

Convergent horizontal activations from both sides of the
target cell can overcome the effect of disynaptic inhibition
as follows. All the horizontal connections arriving in a corti-

illusory contour, monosynaptic excitatory connections from cal column are proposed to converge on a single population
cells that are being driven by spatially separated retinal of inhibitory interneurons whose total activity is assumed to
contrasts need to converge on the same pyramidal cell ornormalize or saturate (Fig. 3A). At the same time, a pyra-
cells. This class of pyramidal cells would thereby exhibit midal cell is assumed to have a significantly higher satura-
elongated and possibly figure-eight shaped receptive fields.tion potential than the inhibitory interneurons when it
The fanning out of the two lobes of the receptive field receives excitatory inputs from both branches of its recep-
supports the possibility that perceptual completion or illu- tive field. The net effect on the target pyramidal cell is
sory contours can form along somewhat curvilinear, as therefore excitatory; it is a case of “two (or more) against
opposed to only strictly collinear, paths. The horizontal one.” That is, multiple sources (two or more) of convergent
synaptic connections also activate smooth stellate cells,input from direct pyramidal-to-pyramidal excitatory
which inhibit nearby pyramidal cells via disynaptic inhibi- coupling can overcome the (one) sourcerediatednhibi-
tion (Hirsch & Gilbert, 1991; McGuire et al., 1991). This tion via the interneuron population. The outward propagat-
disynaptic inhibition is proposed to modulate the effects of ing long-range horizontal signals from pyramidal cells are
the monosynaptic excitation, and also to give rise to the hereby converted into the selective inward activation of
bipole property, as follows. pyramidal cells according to a bipole property.

Horizontal waves of activation propagating outwards
from neurons driven by spatially isolated inducers are atte- 2 > property 2: analog sensitivity to LGN inputs through
nuated rapidly by subsequent disynaptic inhibition. It is a layers 6 and 4
case of “one against one”, in the sense that every unit of

excitatory signal propagated outward is attenuated by a unit The second design property suggests how V1 cortex

of inhibitory signal sufficient to negate the excitatory
signal's effect, possibly after a brief temporal interval
during which the earlier-arriving excitatory signal may tran-
siently activate a recipient neuron. The important point is

preserves its contrast-sensitivity to signals from LGN,
despite the non-linear processing required for bipole
completion. As in the brain, inputs to the model area V1
arrive at layers 4 and 6 from the LGN (Hubel & Wiesel,
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1962); see Fig. 3B. LGN inputs directly activate orientation- notably to variable contrast (Grossberg, 1973), as has been
ally tuned simple cells in layer 4C. This property has been shown in vivo (Douglas, Koch, Mahowald, Martin &
verified by cross-correlational analysis (Reid & Alonso, Suarez, 1995).
1995) and by chemical and cooling inactivation experiments  Inhibition from layer 6 to layer 4 in the model influences
in the cortex (Chapman, Zahs & Stryker, 1991; Ferster, different orientations and positions by being distributed
Chung & Wheat, 1996). Oriented arrays of spatially across a cortical hypercolumn map where cells sensitive
displaced LGN ON and OFF cells excite mutually inhibitory to these features are spatially organized (Blasdel, 1992a,b;
simple cells that are sensitive to the same orientation butBlasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991;
opposite contrast polarities (Chapman et al., 1991; Ferster,Grinvald, Lieke, Frostig & Hildesheim, 1994; Hubel &
1988; Ferster et al., 1996). The LGN is proposed to indir- Wiesel, 1977; LeVay, Connolly, Houde & Van Essen,
ectly excite and inhibit layer 4 via layer 6 using a short- 1985; Lowel et al., 1987; Olson and Grossberg, 1988).
range excitatory and longer-range inhibitory interaction that This inhibition can relatively enhance cell responses that
is mediated by layer 4 inhibitory interneurons. Electro- cooperate in positional, orientation, and length-sensitive
physiological recordings (Grieve & Sillito, 1991, 1995) groupings by suppressing those cells that respond to weaker
and antidromic activation of layer 6 cells from the cat groupings, incoherent noise, or background signals.
LGN (Ferster & Lindstrom, 1985) support the idea that  The pathways through layers 2/3, 5, 6, and 4, is called
layer 6 gives rise to a short-range excitatory input to layer folded feedbackGrossberg, 1999) due to the way in which
4 and a longer-range inhibitory interaction that is mediated it folds the top-down feedback from layer 2/3 into the feed-
by layer 4 inhibitory interneurons. The net effect is that forward processing of bottom-up inputs to layer 4 (Fig. 3C),
LGN influences layer 4 via a feedforward on-center off- using the same layer 6-to-4 on-center off-surround network
surround network. In the model, the cells in this network as the feedforward processing uses (Fig. 3B). The laminar
are proposed to obey membrane equations, or shunting lawsstructure of the cortical circuit makes such folded feedback
(Hodgkin, 1964). Such a network preserves cell sensitivity possible. Folded feedback achieves two desirable modeling
to analog, or graded, input values even if absolute input results. (1) It enables the output of the layer 2/3 recurrent
amplitudes vary over a large dynamical range (Grossberg,bipole grouping circuit to be processed by the same network
1973, 1980). It is critical to note that the property of analog parameters as the feedforward inputs from LGN. This
sensitivity obtainsvhateverthe source or sources of input; ensures that the strength of completion signals that indicate
in particular, it is preserved when contour completion a set of inducers is “sufficiently close” or “sufficiently
signals generated by the layer 2/3 bipole circuit join the aligned” or “has sufficient contrast” to be grouped can be
“bottom-up” signals from LGN by feeding into layer 6 cells. assessed relative to the sizes and distributions of the
“bottom-up” signals from LGN generated by those same
2.3. Property 3: folded feedback—interlaminar cortical inducers. (2) The off-surround of the folded feedback circuit
circuits and functional columns is well placed to selectively inhibit the influence of bottom-
up LGN inputs at those locations which are not sufficiently
The third design property shows how the cortex makes supported by feedback from layer 2/3, thereby shutting
double use of the layer 6-to-4 pathway to coherently select down weaker groupings and preventing the propagation of
correct groupings, while suppressing incorrect ones, without perceptual “noise” to all subsequent stages of laminar
a loss of analog sensitivity to the amount of contrast in cortical processing.
inducing retinal signals. In particular, layer 4 cells activate
pyramidal cells in layer 2/3, which then attempt to cooperate 2 4. property 4: corticogeniculate feedback
using their long-range horizontal connections and short-
range disynaptic inhibition. All the layer 2/3 cells that The fourth design property makes a third use of layer 6
become active either via direct layer 4 inputs or by bipole processing. Layer 6 in both brain and model sends topo-
cooperation then generate excitatory feedback signals tographic excitation and broader-range inhibition back to
layer 6 via layer 5 (Ferster & Lindstrom, 1983; Gilbert & the LGN (Murphy & Sillito, 1987, 1996; Weber, Kalil &
Wiesel, 1979); see Fig. 3C. Layer 2/3 hereby gains access toBehan, 1989) see Fig. 3D. This feedback selects and ampli-
the shunting on-center off-surround network from layer 6 to fies LGN cell activities that are consistent with cortical cell
layer 4. The total interlaminar feedback loop proceeds activity, relative to those that are not. It carries out a type of
through layers 4, 2/3, 5, 6, and 4. It converts the interacting top-down matching that increases signal-to-noise ratio by
cells throughout these layers into functional columns (Hubel selectively attenuating LGN cells whose outputs do not
& Wiesel, 1962, 1977; Mountcastle, 1957). The long-range succeed in activating, or maintaining activity in, cortical
cooperation in layer 2/3 can now use the shorter-rangecells (McClurkin et al., 1994; Sillito et al.,, 1994). In
on-center off-surround network from layer 6 to 4 to selec- summary, top-down feedback from cortical layer 2/3 to 6
tively amplify those cell activations that are favored by the uses the 6-to-4 pathway to shut down cortical cells in layer 4
cooperative grouping, while suppressing those that are not,whose outputs do not lead to strong layer 2/3 groupings.
without eliminating their sensitivity to stimulus strength, Layer 6-to-LGN feedback shuts down the inputs from
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preferred orientational contacts across areas V1 and V2, but
did show a larger scale in V2 than V1. This property may be
summarized by the hypothesis that the interblob circuits of
V1 and the interstripe circuits of V2 have a similar organi-
zation. We propose that the V1 horizontal interactions help
to organize the development of positional, orientational, and
disparity tuning in this area, whereas the longer-range V2
interactions support long-range boundary completion and
grouping across the blind spot, retinal veins, and textured
ol scenes. As in the brain, layer 2/3 of the model V1 circuit
SLLIIIIIIIIIL activates layers 4 and 6 of the model V2 circuit (van Essen
DIIIIZIIIIIII & Maunsell, 1983; Felleman & van Essen, 1991); see Fig. 2.

‘o0 -
co0 ¢
c000 °
0o 00O0O

o 0 00000000 o

: R e 3. Model equations

e Below are the equations and simulation methods that we
SoLToLTIolol used to develop and evaluate the model. Each section
""""" includes a discussion of how we chose parameters, includ-

D ing a description of where in the model parameters are
o robust and our understanding of the reasons for sensitivity

B of certain parameters. Tables list the values of all para-
meters used and Fig. 4 graphically depicts the important

e i R excitatory and inhibitory connectivity patterns (kernels) of
LT the model. The reader can understand Section 4, in which

data simulations are shown, without first reading these

Fig. 4. Connectivity kernels: the size of the empty circles (filled circles .
9 Y Py ( ) model equations.

corresponds to the magnitude of positive (negative) connectivity values at a
cell located at the center of the pattern. (A) Retinal center—surround
connectivity. (B) Simple cell ON-OFF cell excitatory activation for a 3.1. General forms of model equations

vertically oriented cell. (C) The spatio-orientational pattern of the layer

6-to-4 inhibitory surround connectivity. Superimposed at each location in Each neuron was modeled as a single voItage compart-

the lattice are short line segments of up to 12 possible orientations, corre- ment in which the membrane potential was given by
sponding to the orientational preferences of cells of layer 4C. The length of

each segment codes the weight of an inhibitory interaction from a cell of dv(t)

similar (in the case shown, horizontal) orientational preference, and whose “~m Tdt = —(V(®) — Eexcm)9excir(®)
receptive field center is displaced from the inhibited cell by the distance

from a particular lattice location to the center. (D) V1 layer 2/3 oriented — (V) — Egmig)9inmis (O

lateral excitatory connectivity for a horizontally oriented complex cell. (E)
V2 layer 2/3 oriented lateral excitatory connectivity.

— (V) — ELeak)OLEAK s 1

LGN cells to layer 4 cells that are not part of “winning” where the parameteErepresent reversal potentiatggax

groupings. Layer 6 hereby seems to do triple duty in orga- is a constant leakage conductance, and the time-varying

nizing feedforward inputs, intracortical feedback, and corti- conductancegexcir(t) andgnmis (t) represent the total inputs

cogeniculate feedback. to the cell. Transient after hyperpolarization terms (AHP)
were not incorporated since all groupings were allowed to

2.5. Property 5: similar organization at different scales of ~each steady state. For present purposes, layers of nerve

areas V1 and V2 cells (or cell populations) are denoted by their positions
(i,J) in a rectangular array. These cells are influenced by

The fifth design property implements data showing that excitatory E; and inhibitory I;; inputs according to the

cortical areas V1 and V2 (areas 17 and 18 in the cat) exhibit membrane equation (1), now rewritten for the purposes of

circuits with many homologous features, but V2 has longer- computational intuition in the form (Grossberg, 1973):

range interactions than V1 (Amir, Harel & Malach, 1993; AW

see Fig. 2) Consistent with this idea, Kisvarday, Toth, —2 = —AW; + (B — WpE; — (C + Wy)l;;. 2

Rausch and Eysel (1995) have presented a quantitative dt

study of orientation maps (using multiunit recordings) and In Eq. (2), a cell's “resting” activation is scaled to equal

of cortical connections (using biocytin injections analyzed zero, and its potential can range from a positive vaiBie

in horizontal sections) showing no significant differences in to a negative valué—C, whereC is a positive number).

the proportions of excitatory and inhibitory cells and their At equilibrium, each cell's activity can be expressed as a
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Table 1 different orientations at each of the layer’s 65,536 locations.
Cortical BCS parameters | In the following description of model stages, we do not
Name Description Value Equation(s) explicitly write equations for a particular layer’s cell activa-

tions or outputs. Instead, we write explicit formulas defining

Stage I:V" modeled retinal processing ' the excitatory, Ej, and inhibitory, I, inputs to the

A Activation decay rate 1.0 Retina shunt emprane equations (2) that define cell activities within a

B Saturation level 1.0 Retina shunt ticular | We also define th ti ight

C Hyperpolarization term 1.0 Retina shunt particular fayer. _e also detine the Con_ne(? lon W.elg. S (or

or Retina surround 1.2 6 kernels) that specify the strength of excitation or inhibition
standard deviation delivered to a cell by other cells whose receptive field loca-

tions or orientational preferences bear fall within some
(often Gaussian) tolerance zone. The activation equations
biased difference-of-Gaussians (DOG) divided by a biased for Wj; and for the rectified output signai§ of Eq. (2) are
sum-of-Gaussians (SOG), due to the automatic gain controlhereby completely defined for each model layer in turn.

termsW; in Eq. (2) that multiply the inputg; andl;;. These We use the following index conventions. Location on a
equilibrium activities are half-wave rectified to generate two-dimensional spatial grid and orientational preference,
output signalsvj, namely, where appropriate, are specified by three subsciigtsand
N k, respectively. The identity of a cell activatioW, or output
Y _[ BE; — Clj ] i 3) value V—that is, the layer in the model to which a cell
A+ Ej + 1 belongs—is coded by the following superscripts: R for

retina, L forLGN, S1 for simple cells of layer 4 of V1, S2
for simple cells of opposite contrast polarity to those labeled
S1, 3 for pyramidal cells of layer 2/3, 4 for “complex-like”
cells of layer 4, and 6 for cells of layer 6. Inputs from ON
and OFF retinal streams are coded by superscript glys,
and minus,—, signs, respectively.

where[w]™ = maxw, 0) represents the half-wave rectifica-
tion operation. The definitions d&; andl;, as well as the
parameterdA, B, andC for each level, are defined below.
Throughout, two types of Gaussian kernels will be used to
define receptive fields. Processing in the retinal and LGN
stages of the model use unoriented, symmetric, normalized

Gaussian kernels of the form: 3.2. Retina
G = 1 e %) The retinal ON-cell (OFF-cell) activities and outputs are
E /2 ’ : R+ R— R+ /R—
ovem denoted, respectively, bW™" (W"") and V™" (V" ),

respectively. Retinal inputs and kernels also have a super-
script “R” to denote the retina. The retinal parameters are
given in Table 1. Once these parameters are determined, the
retinal excitatory and inhibitory inputs fully define Eq. (2)

where(i, j) represent positional indices andrepresents the
kernel's standard deviation. Cortical receptive fields typi-
cally use oriented, normalized Gaussian kernels of the form:

2
i Cosk_1T —j sin k_“T for retinal activation. For the ON-cell activationg™", the
Gy =exp| — .5 122 12 narrow on-center is defined by:
Yy
Ei']?e+ = Sjv (6)

. kmr , kw2 and the broad off-surround is defined by:
+ — +(j+ —
(i + offsef) cos 12 (j + offsef) sin 12

+ 2o , IR = Z Smj+nChns @
mn

(5 where theS; are the input image intensities, a6, is the
where(i, j) represent positional indicek the orientation of ~ unoriented Gaussian defineq in Eq. (4); see Fig. 4A. The
the major axis of the oriented Gaussian distribution, and the OFF-cell activationsV"~ exhibit a broad on-surround:

os represent standard deviations in the directions of recep-gl R_ Z S GR ®)
tive field length () and width ). The factor “offset” speci- FmjEnEmn
fies the displacement of Gaussians from the center of the
receptive field of the unit described in Eq. (5). and a narrow off-center:

We next describe the particular equations of each model |r- 9

IJ - Sj ( )

layer in turn. The input image for a simulation is denoted by
an array of input intensitie§;. For our simulations, image Parameters for retinaEqg. (3) combines biased DOG

sizes were 256 rows by 256 columns except for the “shifted processing with a term that normalizes activity with a biased
grating” simulations, which were 128128, and the inten-  SOG in its denominator. This is just DOG/SOG processing
sities ranged from O to 255. All model layers representing with a relatively small value oA (see Table 1). The input
cells with orientational selectivity had units tuned to 12 gray levels were chosen between 0 and 255, but could have
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Table 2
Cortical BCS parameters Il

Name Description Value Equation(s)
Stage I1:V* modeled LGN processing

A Activation decay rate 1.0 LGN shunt
B Saturation level 1.0 LGN shunt
C Hyperpolarization term 1.0 LGN shunt
oy, LGN center standard deviation 0.3 10

oL, LGN surround standard 2.0 11

deviation

579

are listed in Table 2. As with the retinal equatioAsB, and
Cin Eq. (3) were set equal to 1.0 to balance the effects of
excitatory and inhibitory kernels.

3.4. Cortical area V1 (layer 4)

The V1 layer 4 activities!/\/ij1 receive oriented arrays of
spatially displaced LGN ON and OFF cell outputs which
excite mutually inhibitory simple cells that are sensitive to
the same orientation but opposite contrast polarities. The
oriented simple cell receptive fields are defined by the Gaus-
sian kernel described in Eq. (5), wherg ando,,, represent

spanned a much wider dynamic range. See Neumann (1996§1€ standard deviations of the length and width of the
for a thorough analysis of the effects of parameter variations ©fiénted simple cell kernels. In particular, each simple cell

in such networks.

In our simulations of retinal cells (Egs. (6)—(9)), para-
metersA, B, andC in Eq. (3) are set equal to 1.0 to balance
the effects of excitatory and inhibitory kernels. This choice

of parameters guarantees that any input region that hasgj! = <4ZViij i+n.kGrnk
mn

uniform values results in zero outputs, a property sometimes
referred to as “featural noise suppression.”

3.3. Lateral geniculate nucleus

The LGN ON-cell (OFF-cell) activities have a superscript
L+ (L-). Their ON-cell and OFF-cell inputs from the
retina have the superscripttRor R—, while inputs from
layer 6 have the superscript 6. Both centej) @nd surround
(Lo unoriented LGN kernel&ks, andGLs, are used to define
the interactions among these inputs in the LGN membrane
equations. The LGN ON-cell activatior‘qlsiijL+ obey:

Ein_Jr = Vi:':H (1 + Z Viim.jJrn,kGlr_ncn) (10
mnk

and

5" = Zviqrijrn,kGIr_nsn- (11

mnk

In Eq. (10),EiJL+ describes how bottom-up retinal ON-cell
output directly activates LGN, whereas on-center feedback
from layer 6 can multiplicatively amplify this activation. In
Eq. (11), IijL+ describes how off-surround feedback from
layer 6 can broadly inhibit LGN ON-cell activity. The
combined effect of these top-down terms is to select and
synchronize LGN cells that receive both bottom-up retinal
inputs and top-down layer 6 input, while inhibiting LGN
cells that do not. In a similar fashion, the LGN OFF-cell
activationsW{X~ obey:

Eilj__ = Vin_ (1 + Z Vi6+mj+n,kGh1Cn) 12
mnk

and

Iilj__ = Zviimﬁn,kGll"_nsn (13

mnk

Parameters for LGNThe parameters for LGN processing

is excited by an oriented sample of LGN ON-cell output and
excited by an adjacent and parallel oriented sample of the
LGN OFF-cell output, as in Egs. (14) and (15):

2
) (14

2
), 15

where each kernéb is defined by an oriented Gaussian; see
Fig. 4B. The centers of these kernels are slightly offset from
each simple cell’s centroid directions along an axis perpen-
dicular to the simple cell's direction of elongated sampling.
In Egs. (14) and (15), the oriented sample of the LGN ON-
cell output was multiplied by a factor of 4 to compensate for
the asymmetrical response of the on-center off-surround
operators on opposite sides of an edge. To understand this
asymmetry, consider the denominator of Eg. (3). On oppo-
site sides of a bright-to-dark edge, the denominator varies
greatly. Specifically, it is much smaller on the dark side of
the edge. For this reason, at an edge, positive ON-cell
signals are much weaker than adjacent positive OFF-cell
signals. Oriented detectors driven by these asymmetrical
ON/OFF responses show faster fall-off in response with
distance on the bright side of an edge. This asymmetry
complicates the problem of boundary sharpening using
subsequent center—surround contrast enhancement. In parti-
cular, parameters which successfully sharpen the dark side
of straight edges tend to suppress bright concave edges alto-
gether. For the kernel sizes that we used, a factor of 4
compensated for this asymmetry, enabling a single inhibi-
tory surround to sharpen the localization of boundary
responses in many circumstances. After compensated ON
and OFF cell oriented samplings were combined, the result-
ing simple cell activations were squared to exaggerate the
response differences between weak and strong boundary
responses. This sample non-linearity facilitated the subse-
guent competitive sharpening whereby strong boundary
activities at edges inhibit surrounding boundary activations.
Simple cells of opposite polarity but of like orientation

and location are then subtracted from each other and the two

L— Ak—
+ Z Vi+mj+n,kank
mn

s2 _ L+ Ak L- ak+
Eix = <4ZVi+m,j+n,kank + > Viimj+nkGmnk
mn mn
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Table 3
Cortical BCS parameters lll

Name Description Value  Equation(s)

Stage I11:V* modeled layer 4C processing

A Activation decay rate 1.0 Layer 4C shunt

B Saturation level 1.0 Layer 4C shunt

C Hyperpolarization term 2.0 Layer 4C shunt

oy Simple cell length standard 2.4 5, (16, 17)
deviation

o Simple cell width standard 0.5 5, (16, 17)
deviation

Offsef*  Simple cell ON offset 0.5 5, (16, 17)

Offset™  Simple cell OFF offset -0.5 5, (16, 17)

oL 6-to-4 spatial standard deviation 4.0 5, (18)

oy, 6-to-4 orientational standard 45 5, (18)

deviation

terms are rectified (Ferster et al., 1996; Gove et al., 1995; Eﬁk = Vﬁ"k + Hifk,

Liu, Gaska, Jacobson & Pollen, 1992). Finally, opposite
polarity simple cells are additively combined to give a

polarity-insensitive oriented cell activaticF:fj:i< :
Eji = [Ef — Ejcl” + [Ej — ER1". (16)

In vivo, layer 4 simple cells combine at layer 2/3 to drive

complex cells. The simulations made the simplification of ,,

combining like-oriented but opposite polarity simple cells
immediately as inputs to layers 4 and 6. This simplification

makes the simulations computationally more tractable, by

W.D. Ross et al. / Neural Networks 13 (2000) 571-588

Fig. 4). However, varying the scales of the LGN and simple
cells in proportion to each other would give similar
performance.

3.5. Cortical area V1 (layer 2/3)

Layer 2/3 defines the long-range monosynaptic excitatory
horizontal interactions and short-range disynaptic inhibitory
interactions between pyramidal cells, whose activities are
denoted by\/\lu3 Parameterg, u, andA in Eq. (26) below
define the shape of the bipole kernel. Performance was
insensitive to the exact values of these parameters.
However, a small3 gave sharper sensitivity to alignment
between inducers, an intermediatemade the bipole more
tolerant of less than perfectly collinear alignment among
inducers, and a large gave sharper orientational selectivity
in completion choices. The layer 2/3 activatidh§ obey:

19

whereVij, defines the oriented input from layer 4 aHg
defines the total monosynaptic excitatory horizontal input.
This horizontal input is composed of a short-range (s) and
long-range (I) bipole signal:

reducing the number of equations by a factor of 2, but does and

not affect performance on the polarity-insensitive boundary

groupings which are simulated in this paper. For an
unlumped treatment of simple-to-complex cell interactions,

Hijsk = ﬁk + h!jk’ (20)
here
hik =9 Z f(VE 4k 0)Zoomc, 200G, 0k (21
mno
h!jk = Z [Viglm,j+n, kro — 11" Zomye, 2nc,0k (22

mno

see Grossberg and McLoughlin (1997), Grunewald and Inhibition at layer 2/3 is driven by a recurrent spatial and

Grossberg (1998), and McLoughlin and Grossberg (1998).

In all,

Ejk = Ejk + Vik (17)
and

lik = Zvi6+m,j+n,k+oGanno (18

mno

are the total model excitatory and inhibitory signals to layer
4, which include on-center and off-surround inputs from
layer 6; see Fig. 4C. The parameters are listed in Table 3.
V1, layer 4 parameterd.he simple cells (Egs. (14)—(16))
use aC = 2.0 parameter for the purposes of weighing the
kernels in Eg. (3). This favors the inhibitory term in the
simple cell activation equation, and allows sufficient bound-

ary sharpening (i.e. suppression of spurious simple cell

activity in regions with little image contrast) even with a
large surround standard deviation; , of 4.0 and a
standard deviationg, , for orientational inhibition of 4%

orientation-sharpening ternv?) and a ternD that is driven
disynaptically by the long-range bipole:

i = D" Vi 0Go” + Diges (23
(o]
where
Dik = gf(hgjk) (24)
with
f(w) = _ 5
(W) Yy (25

The horizontal interaction kernel that defines the bipole
property in Egs. (21) and (22) obeys

%W:wmmwm—ﬂﬁ+¥»w%ﬂ4%f}

k-—om 2n
(T sgn{m} arctar( o m))

Eq. (26) gives rise to the types of oriented kernels shown in

x cos (26)

The large spread of the surround cleans up boundaries inFig. 4D and E, where the value pfdetermines the tolerated
response to complex imagery. Simple cell size was chosendeviation from strict collinearity. Variants of this kernel
to fit the size of LGN center—surround receptive fields (see were introduced by Grossberg and Mingolla (1985) and
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msO 00 000 00O OO0 waves of excitation in both directions using the long-range
horizontal connections. The short-range disynaptic inhibi-
T YoNo XN XeRoNeX NeNeoXe tion quickly inhibits excitation outside the square, due to the
one-against-one property. Within the square, however, the
m20 00 @00 0000 two-against-one property enab_les the_lo_ng-_ra_lnge excitation
to overcome the short-range disynaptic inhibition and form
M1 OO0 @00 00 OO0 the illusory contour.

To understand the dynamics of the bipole mechanism,
consider the time-course of the model’s layer 2/3 response
to boundary inducers. Initially, bottom-up excitation of
layer 2/3 results in an activation of boundary cells represent-
ing the inducers. The activation pattern results from excita-

‘ * tion described in Eg. (19) and is embodied in non-zero
activity of layer 4 cells ¥*). At this point, boundary cells
in layer 2/3 without bottom-up support froxf are inactive.

Fig. 5. Schematic of boundary completion in time. In response to the Next. the subset of these cells whose receptive field
collinear edges of a Kanizsa square, layer 2/3 pyramidal cells first get ’

activated at the positions of the edges (Time 1). A wave of activation centers ar_e collinear or slightly curv_lllnear—that_ls, ‘rela-
then begins to spread in an oriented fashion in both directions to other table” (Shipley & Kellman, 1992)—with boundary inducers
pyramidal cells (Time 2). Cells at positions that lie outside the square are and whose receptive fields include the inducers are activated
quickly inhibited by disynaptic inhibition (Time 3). Cells that lie between through the influence of the long-range horizontal bipole
the edges can get strongly activated because the monosynaplic excitatonga||g - again through the excitation equation (19) but this
horlzpntal inputs are stro_r?gertha_m the total disynaptic inhibitory interneur- time due to the horizontal componeriﬂs( see Eq. (20))
onal inputs at these positions (Time 4). o 3 |
and specifically through thél® long-range termh' (see
Eq. (22)). At this point, layer 2/3 boundary activations are

later supported by many data, including those of Field et al. beginning to build at both interpolated and extrapolated
(1995), Polat and Sagi (1994), and Shipley and Kellman boundary locations (see Fig. 5).
(1992). In the bipole signal functiof{w) in Eq. (25),« is Next the influence of both disynaptic inhibitio®Y and
set small to define a steep response. The inhibitory gain short-range bipole excitatiomY are engaged and the criti-
Eq. (24) is set so that the short-range excitatory bipole signal cal balance between these two acts to suppress extrapolated
h®in Eqg. (21) must be maximally active to overcome the boundaries, in agreement with neuroanatomical and neuro-
disynaptic inhibitory effect oDy, which is a function of the physiological data suggesting that horizontal connections in
long-range excitatory bipole signhl. This balance ensures layer 2/3 have both excitatory and inhibitory influences
that each active layer 2/3 pyramidal cell either receives (Cannon & Fullenkamp, 1993; Hirsch & Gilbert, 1991;
direct bottom-up activation or that it falls on a collinear or Knierim & van Essen, 1992; Somers et al., 1995; Stemmler
slightly curvilinear path between two or more such cells. et al., 1995). In the model, disynaptic inhibition is a saturat-

In particular, initial exposure to an image spreads a tran- ing function of long-range bipole activationh'), as
sient monosynaptic pattern of boundary cell activation described in Eq. (24). Disynaptic inhibition is a steep func-
across layer 2/3 through the lateral excitatory connectivity tion of ("), sincef(w) described in Eq. (25) is virtually a
H3. Next, consider those cells where boundary activation step function withe: set very small. It should be noted that,
was induced through lateral connectivity alone, and not from a computational perspective, disynaptic inhibition
through direct bottom-up activation—that is, aBy term could also be driven by the short-range bipole activations
whereV* is zero in Eq. (19). At such locations, the long- (h®), but no functional advantage is gained by including this
range interactiorh’ excitesV® via Eq. (20) and then the  additional connectivity.
short-range ternh® via Eq. (21). This short-range terht In order to capture the disynaptic time-course of the inhi-
thereupon competes with the disynaptic inhibitory tddbm  bitory term Dy, the activity in layer 2/3 was calculated
via Egs. (20) and (23), respectively. At boundary activities twice for each iteration of the layer 2/3 equations, each
that spread beyond rather than between inducers, the absendgéme using Dy, from the previous time-step or iterative
of strong enough short-range bipole activation results in instant. The parameters are listed in Table 4.
suppression and the shrinking back of boundary activation VI, layer 2/3 parametersThe complex cells in layer 2/3
toward inducers. Between pairs or greater numbers of indu- (Egs. (3) and (19)—(26)) are more sensitive to parameter
cers, short-range excitatory bipole activation overcomes variations than the other cells in our model. First, the
disynaptic inhibition and a completed contour grows in largeAterm (see Table 1) means that the activation equation
strength in proportion to the contextual evidence. (3) for this layer functions essentially as a DOG with little

Fig. 5 illustrates these ideas by showing how the normalizing influence from the SOG in the denominator. Of
dynamics of boundary completion can occur in response course, the SOG normalization in earlier layers guarantees
to a Kanizsa square. Initially, the pac man figures generatethat activation at subsequent layers is always bounded and



582 W.D. Ross et al. / Neural Networks 13 (2000) 571-588

Table 4 approximately balance short-range bipole activation due to
Cortical BCS parameters [V h'in Eq. (20). Given the choicg = 2.0, it follows that the
Name  Description value Equation(s) dlsynapyc |nh|b|yon_ D) _at any Iocqnon receiving long-
range bipole activation in Eq. (24) is nearly (i.e. close to,
Stage IV:V® modeled layer 3 processing and just less than) 2.0.
A Activation decay rate 20000 Layer 3 shunt Again for concreteness, assume that the spatial extent of
B Saturation level 0.5 Layer 3 shunt th hort biole in E 21) is th | it
C Hyperpolarization term 1.0 Layer 3 shunt € shor 'ra_‘nge ipole in Eq. ( ) IS r(?e neura u'_ﬁ“ S,
o Non-linearity constant 0.0000001 f(w) encompassing the boundary cell in question and a single
T Bipole rule threshold 0.00001 22 boundary cell on either side of that cell. By “either side”
G Disynaptic inhibitory gain 2.0 24 is meant those locations “pointed to” by the orientational
g\LN g:gg:g {Ei:i?t:h 21%'0 2211232 preference of the boundary cell in question. Thus, the rele-
P Distance blur 08 o5 vant neighbors for a cell tuned tq hor_|zontal boundan_es
" Curvature blur 11 25 would be those cells whose receptive field centers are just
A Orientational blur 90 25 to the left and just to the right of the cell in question. For a

vertically tuned cell, the neighbors’ receptive field centers
would be just above and just below that of the cell in ques-
in a “known” range. This helped to implement the bipole tion, and so forth. When all three of these cells are activated,
property by using the difference between excitatory and the short-range bipole of Eqg. (21) achieves a value of 2.0.
inhibitory influences. The signal saturation constantn This occurs because, in Eq. (21), the approximate step
Eqg. (25) and the bipole thresholdin Eq. (22) were both  functionf(w) in Eq. (25) reaches full activation in response
set small to implement the bipole role. The disynaptic inhi- to theV° terms at the location of, and at locations on either
bition gain, g, was set equal to 2.0 in order to enforce side of, the boundary cell in question. In this case, the
suppression of boundaries extrapolated beyond edges rathenormalized bipole functionz) is fully activated through
than interpolated between them. multiplication with f(V®) at each bipole location and, after
The parameters that implement the bipole property need multiplication byg, the total activation oft{) approximates
to properly balance excitation and inhibition during the 1.0. Thus, for interpolated boundary activations, the
grouping process. The balance ensures three key outcomesdisynaptic inhibition of 2.0 is cancelled out by the short-
at locations lacking direct “bottom-up” excitatory input: range bipole excitation of 2.0 and the excitatory influence of
(1) interpolation, if that location is aligned with two or the long-range bipole can be expressed.
more other active cells with similar orientational prefer- On the other hand, at the leading or outermost edge of
ences; (2) no extrapolation at cells that have such active extrapolated boundaries, the disynaptic inhibition is still 2.0,
neighbors on only one side; and (3) a proportionality of while the short-range bipole activation is only driven by two
response, such that the strength of a completion signal isout of three bipole components and its activation has a lower
similar to the strength of supporting signals from nearby value (approximately 1.5). At these locations, the disynaptic
active cells. inhibition, D is not cancelled out by the short-range bipole,
We achieved these computational results as follows. The h®, andD can suppress the smaller excitatory influence of
constant of 20 embedded in the spatial indices of Eq. (21) the long-range bipoleh{). By this mechanism, extrapolated
generates a functional “short-range” gating mechanism, boundaries are progressively pruned away and they retreat
which acts like a switch that allows a layer 2/3 cell to remain back to induced boundary cells, which are supported
active only if its immediate collinear and like-oriented through bottom-up activation.
neighbors are also active, as explained below. The corre- In summary, the disynaptic inhibitionD, should be
sponding constant 2 in Eq. (22) allows longer-range strong enough to counteract excitation due to partial activa-
“evidence gathering” in support of grouping to extend tion (in this case, two components) of the short-range
over several nearby lattice locations. The values 20 and 2bipole,h®, plus any possible long-range bipokeexcitation.
generate a 10-1 range of sizes for the effective kernels of This can be ensured through a sufficiently large choice of
these computations; other sizes could also have been usedhe gain parameteg, which scales both disynaptic inhibi-
We wrote 20 and 2 as opposed to 10 and 1 because doing stion and short-range bipole contributions in Egs. (24) and
allows the bipole kerne¥ in Eqg. (26) to be written more  (21), respectively. When this is accomplished, the system
simply. The indexing o is scaled byC, andC,y in Egs. interpolates and does not extrapolate as follows: (1) bottom-
(21) and (22) as a way of specifying bipole length and aspect up input results in an initial boundary activity @t from v*
ratio. Fig. 4D and E shows that the bipole kernels are narrow simple cells in Eq. (19); (2) lateral excitation spreads across
and biased along the positions that are aligned with the cell V® by way ofh' in Eq. (20), resulting in a non-zeté® that
orientational preferences. Compare Fig. 24 of Gove et al. recurrently excite¥ through Eq. (19); (3) short-range exci-
(1995) and Figs. 32 and 33 of Grossberg and Mingolla tation and disynaptic inhibition acts througl? to h® in
(1985) for variants of this bipole shape. Eq. (21) andH? in Eq. (20), and then vi&® in Eq. (19);
The inhibitory gain parameteqg in Eq. (24) is set to (4) disynaptic inhibition acts throughl in Eq. (22) and in
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A B of levels was iterated until a convergence criterion was

CONTOUR CONTOUR satisfied (between 2 and 5 iterations were typically needed).
STRENGTH STRENGTH The convergence criterion specified that no activation level
ﬂ- . $o could change by more than 10% during the final iteration
N step. Sequential iteration of the equilibrium solutions of

each stage reduced the simulation time. Comparisons with
1 bl 1 simulations of the full system as a set of differential equa-
tions verified that all the qualitative properties of the iterated
+ solution held. The cortical loop was simulated in the follow-
I ing repeating cycle: LGN-6—-4-2/3-6. Including the feed-
back to layer 6 after computing layer 2/3 ensured that the
cr 69 €9 Cn 6m e e_ffects of internal cortical processing influenced the LGN

ce 09 &9 GO Y 9 via feedback from Iayer.6 on each cycle.

All Gaussian kernels in the model were truncated at plus

Fig. 6. Model simulations of psychophysical data. (A) In response to the and minus two standard deviations. To avoid spurious edge

edge inducers in Fig. 6A, illusory contour strength increases with support effects at the border of the image, the image was extended
ratio. Supportratio is the ratio of real to total contour length. (B) Forthe line  gutwards for a distance corresponding to two standard

end inducers in Fig. 6B, contour strength is an inverted U function of the o o hilai ;
number and density of line end inducers. Contour strength was determineddewatlons of the (Iarger) mhlbltory retinal kernel.

by computing the average cell activity in layer 2/3 along the path of the
illusory portion of the contour. (Adapted with permission from Grossberg et

al. (1997), Fig. 2). 4. Results

Eq. (24) tol® in Eq. (23); and (5) wherever* (Eq. (19)) is 4.1. Boundary completion perpendicular to line ends

zDert(;], ': '3 tthe b_alance rt])ettk\]Nee_n dexmt:tigﬁang |nh|b|t'l_ont_ The model displays properties of spatial context-sensi-
at determineés whether inauced boundary activation tivity by forming groupings that are either collinear with

survives or is su_ppresged. Step four repeatls until the eXtra'edges or perpendicular to line ends, depending upon the
polated boundarlgs shrink back to boundane; .s.upported byspatial arrangement of the input elements. A key property
bottom-up activation. In other words, after an initial burst of of such groupings is the sensitivity of their perceptual

Iong-rangg biole exc_ltatlorhb, cells must be surrounded strength to contextual changes in stimulus properties. This
on two sides by active boundary cells, or they are sensitivity is illustrated by the following two properties. As
suppressed bp. the support ratio (namely, the ratio of real to total contour
length) of a Kanizsa square increases, so too does the
strength of the illusory contours that form between the

Activity W5 was computed from a bottom-up oriented Sduare’s pac man inducers (Shipley & Kellman, 1992).
term that is assumed to come from LGN and a top-down This propgrty is §t|mulated in F|g._6A. In addition, contour
term from layer 2/3. It was assumed that this term derives its Strength is an inverted U function of the number and
oriented tuning by being associated with oriented signals density of line-end inducers of an illusory square (Lesher
from other cortical layers, including layers 4 and 2/3. For & Mingolla, 1993; Soriano, Spillman & Bach, 1996). This

computational tractability, this term was approximatedfy ~ Property is simulated in Fig. 6B. Such sensitivity to context
suggests that the visual system is not merely computing

Ef = 0.5Ej + Vii. 27 independent measures of the likelihood or strength of
local boundary orientations, but also evaluates the
coherency of boundary groupings as well. Spatial context-
sensitivity allows perceptual groupings to selectively bind
In the model of area V2 layers, the equations for the V1 t09€ther those image features—whether defined by edge,
layers 4, 2/3, and 6 were replicated with layer 2/3 from V1 texture, shading, or stereo cues—that belong to the same
forming the excitatory input to layers 4 and 6 in area V2. In OPiects in a scene. We call the property of analog-sensitive
area V2, the scale of horizontal bipole connectivity, in both "€SPonse to spatially distributed contextual evideamalog
length and width (parametefs andC,y in Table 4) were ~ coherence Such responses reflect more than just local

doubled, while all other parameters remained the same. stimulus energy. Instead, they are measures of the spatially
distributed coherent energyfor boundary likelihood or

3.8. Simulation methods strength. . _ _
The sensitivity during feedforward processing to input
In simulations of the model, equilibrium solutions at each contrast is due to the action of on-center off-surround
processing level were calculated and the whole progressionnetwork from layer 6-to-4. The preservation of contrast-

3.6. Cortical area VI (layer 6)

3.7. Cortical area V2
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Fig. 7. (A) An ambiguous grouping (both vertical and horizontal) may be [ | [ | . D D D
perceived in response to this image, and is simulated by the model. (B)

Additional aligned horizontal items cause the grouping to become horizon- [ ]
tal in perception and the model. (Adapted with permission from Grossberg

et al. (1997), Fig. 6). N [ H ] [ 1

sensitivity when the feedback loop closes between layers 6—
4-2/3-6 is due to the folded feedback that the loop acti- Fig. 8. (A) An ambiguous grouping (both vertical and horizontal) may be
vgtes. Th,e Increase In contour Str,ength V\_”th SUpPort rat',o In pegrceived in respor?se to ?his i,?nagge (left panel), and is simulated gy the
Fig. 6A is due to the cooperative action of increasing model (right panel). (B) The addition of horizontal bars blocking the
numbers of pyramidal cells on a shared target pyramidal vertical groupings causes the perceived and model groupings to become
cell in |ayer 2/3. The inverted U property in Fig. 6B is exclusively horizontal. Note: the perception of depth, a level of complexity
due to the fact that, as input density increases, eachhot ha_mdled by the current version of our model, may re;tore the vertical
bottom-up input is attenuated more by layer 6-to-4 spatial groupings behind the bars (see Grossberg (1997) for a discussion of such
S N R X . factors).

inhibition before it can activate target pyramidal cells in

layer 2/3. Thus, although there are more input sources,
each one has a smaller effect on grouping by the layer 2/3
pyramidal cells.

additional elements within the rows of this figure, as in Fig.
7B (top) leads to an unambiguous percept of a horizontal
grouping. A similar effect is seen in the model simulation of
this grouping in Fig. 7B (bottom). This demonstration
4.2. Gestalt grouping illustrates the Gestalt law gdroximity. It results from the
analog coherence of the horizontal and vertical boundary
The analog sensitivity of grouping strength to the balance groupings. As more horizontal inducers are added in
between these cooperative and competitive factors can beFig. 7B, the horizontal grouping increases in strength in
used to explain various Gestalt grouping laws. The Gestaltlayer 2/3. This stronger grouping causes greater inhibition
psychologists (e.g. Koffka, 1935; Wertheimer, 1923) of the vertical grouping than conversely via layers 6 and 4.
proposed that perceptual grouping is the result of attractive  Fig. 8 illustrates the Gestalt law gbod continuationin
field forces between stimulus elements. This Gestalt field Fig. 8A, an ambiguous horizontal and vertical grouping is
theory did not survive, but the Gestaltists’ demonstrations generated both perceptually and in the model simulation. In
stimulated a great deal of additional empirical research andFig. 8B, horizontal lines are interpolated between the square
concept formation. The present cortical model exhibits a inducers. Now the vertical groupings are broken and the
number of Gestalt properties without invoking fields. horizontal groupings are in the same direction as the hori-
In response to Fig. 7A (top), many observers perceive an zontal lines. This effect again results from the context-sensi-
ambiguous grouping in which both horizontal and vertical tive interaction of long-range cooperation in layer 2/3 with
groupings coexist, the horizontal groupings joining the input shorter-range competition from layer 6 to 4 in the model.
elements within each row of the image, whereas the vertical
groupings join the elements within each column. A similar 4 3. Collinear cooperation and perpendicular competition
organization is seen in Fig. 7A (bottom), which simulates i vv1 and v2
the model’s response to the input pattern in Fig. 7A (top).
Fig. 7A (bottom) plots the simulated equilibrium values of It is known in vivo that cells in both V1 and V2 respond
the layer 2/3 complex cells in area V2 of the model. Placing when illusory contours span closely spaced line ends
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Fig. 10. lllusory contours form perpendicular to regular line ends (e.g.
Fig. 8), but not perpendicular to pointed line ends, both in perception and
in the model simulation.

activation (see stronger vertical activations in the middle of
the figure than at its left hand side). In the model, the
perpendicular competition is the V1 version of the V2
competition that broke the vertical grouping in Figs. 7B
and 8B. The improved stimulus detectability is due to the
sensitivity to collinear vertical groupings.

Not all aligned line ends can generate perpendicular
groupings (Kennedy, 1978). In particular, line ends that
come to a point cannot generate groupings as part of
Fig. 9. Simulation of the: (A) Grosof et al. (1993) display—illusory many Conflguratl(_)ns n WhICh regular line gpds can gener?‘te
contours between the offset gratings occur in both V1 and V2; (B) von @n Offset grouping. This context-sensitive property is
der Heydt et al. (1984) display—illusory contours group the line ends in illustrated by the computer simulations in Fig. 10.

V2 but not V1; (C) Kapadia et al. (1995) display—horizontal orientations
compete with the vertical grouping. The displays are in the top row, the . . .
simulated V1 responses are in the middle row, and the simulated V2 4.4. Slgqal—to-n0|se ratio enhancement and camouflage
responses are in the bottom row. Kapadia et al. (1995) reported data onlyP€netration

from V1. Note that the longer range of bipole interactions in V2, as opposed
to V1—see Fig. 4D and E, respectively—accounts for the ability of the
model to form the grouping of column B in V2 but not V1. (Adapted with
permission from Grossberg et al. (1997), Fig. 4).

Aninteresting property of the model isits enhanced signal-
to-noise ratio shown by the recovered measures of coherent
orientational “energy”—that is, a consistent large-scale
alignment of locally weak signals—using purely local

(Grosof et al., 1993; Redies, Crook & Creutzfelt, 1986), as
shown in the simulation of Fig. 9A, which displays the
equilibrium activities of layer 2/3 complex cells in areas
V1 (middle row) and V2 (bottom row). On the other hand,
cells in V1 do not respond when illusory contours span

boundary energy measurements. Fig. 11 illustrates this
model property using a noise-degraded image. Fig. 11A
shows the textured summation of cell activitle's (see Eq.

(16)) that results from a noise-degraded image of a dark
square on a gray background. The square edge signals are

larger distances in response to thinner inducers, whereasamouflaged by noise. Fig. 11B shows how the model layer
cells in V2 do (von der Heydt et al., 1984; von der Heydt 2/3 horizontal cell grouping can select the boundaries out of

and Peterhans, 1989), as shown in the simulation of Fig. 9B. the clutter, thereby enhancing the signal-to-noise ratio.
Within the model, these properties are due to the hypothesis

that areas V1 and V2 share a similar organization, but that

V2 can group over larger distances. As a result, both the 5. Discussion

shorter-range horizontal connections of V1 and the longer-

range horizontal connections of V2 can group across the The cortical model presented in this article suggests how

input elements in Fig. 9A, but only the longer-range connec- the laminar, columnar, and map structures of cortical areas

tions of V2 can group across the more widely separated V1 and V2 are organized for the purposes of perceptual

input elements in Fig. 9B. grouping. The model shows how distributed visual features
Fig. 9C simulates data of Kapadia, Ito, Gilbert and can be coherently bound together through feedback inter-

Westheimer (1995) from monkey area V1 showing how actions, without a loss of analog sensitivity. The model

perpendicular inducers can prevent groupings from hereby suggests how the visual system measures the coher-

occurring (see broken vertical grouping at the right hand ent spatially distributed evidence for a local visual feature’s

side of the figure), even while groupings between collinear likelihood or strength, thereby computing a feature’s coher-

inducers form and improve stimulus detectability by mutual ent, rather than purely local, energy. The model describes
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‘' . tially change orientational selectivity of cells in visual
' cortex. The same is true in the model, due to the fact that
) the excitatory inputs to layer 4C model cells are already
orientationally tuned.
The possible role of layer 6-to-4 inhibition in endstopping
) has been questioned because layer 6 connectivity also
— ) enhances the excitability of non-length-tuned cells in layers
LA ‘ 2/3 and 4 (Grieve & Sillito, 1995). The model proposes that
’ this interaction is, more generally, part of the mechanism
that ensures analog coherence of cortical processing,

, ) _ namely, it helps to preserve contrast-sensitivity to inputs
Fig. 11. (A) A noise-degraded image of a dark square on a gray background . .
gives rise to textured summation of complex cell input strengthsn from the LGN and helps to select Cf)”eCt groupings m_
which the square edge signals are camouflaged by noise. (B) After proces-fesponse to feedback from layer 2/3, without a loss of sensi-
sing by complex cells in layer 2/3, the coherent boundary signals emerge tivity to feature contrast or spatial context. Various other
out of the clutter. cortical models (e.g. Douglas et al., 1995; Grossberg,

1976a,b; Heeger, 1993; Olson and Grossberg, 1998; Somers
how the laminar organization of visual cortex is capable of et al., 1995; Stemmler et al., 1995; Willshaw & von der
realizing such processes through the use of the folded feed-Malsburg, 1976) have discussed the possible role of recur-
back pathway from the pyramidal cells in layer 2/3 back to rent interactions in visual cortex. Neumann and Sepp (1999)
layer 4 via layer 6. This feedback interaction helps to bind have proposed a related model of V1 and V2 processing,
cortical cells into functional columns. The model also which explores the role of recurrent long-range completion
suggests how non-classical properties of cell receptive mechanisms, but does not address the laminar structure of
fields, such as their patch-suppressed responses (Born &hese cortices. None of these models have yet modeled how
Tootell, 1991; Sillito, Grieve, Jones Cudeiro & Davis, cortical layers and their interactions control the formation of
1995), may arise through combining long-range horizontal perceptual groupings that preserve their analog coherence
grouping interactions in layer 2/3 with the shorter-range under a wide range of stimulus conditions. The present arti-
on-center off-surround interactions from layer 6-to-4, cles begins to close this gap.
when these interactions are embedded within the cortical
hypercolumn map.
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