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ABSTRACT 

 

How is development of cortical maps in V1 coordinated across cortical layers to form cortical 

columns? Previous neural models propose how maps of orientation (OR), ocular dominance (OD), 

and related properties develop in V1. These models show how spontaneous activity, before eye 

opening, combined with correlation learning and competition, can generate maps similar to those 

found in vivo. These models have not discussed laminar architecture or how cells develop and 

coordinate their connections across cortical layers. This is an important problem since anatomical 

evidence shows that clusters of horizontal connections form, between iso-oriented regions, in layer 

2/3 before being innervated by layer 4 afferents. How are orientations in different layers aligned 

before these connections form? Anatomical evidence demonstrates that thalamic afferents wait in 

the subplate for weeks before innervating layer 4. Other evidence shows that ablation of the cortical 

subplate interferes with the development of OR and OD columns. The model proposes how the 

subplate develops OR and OD maps, which then entrain and coordinate the development of maps in 

other lamina. The model demonstrates how these maps may develop in layer 4 by using a known 

transient subplate-to-layer 4 circuit as a teacher. The model subplate also guides the early clustering 

of horizontal connections in layer 2/3, and the formation of the interlaminar circuitry that forms 

cortical columns. It is shown how layer 6 develops and helps to stabilize the network when the 

subplate atrophies. Finally the model clarifies how BDNF manipulations may influence cortical 

development. 

 

 

KEYWORDS: cortical development, cortical subplate, V1, orientation map, ocular dominance 

map, cortical columns, cortical layers, BDNF 
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Topographically organized maps in functional columns have been found in visual (Duffy et 

al., 1998; Tootell et al., 1982, 1998), auditory (Komiya and Eggermont, 2000; Stanton and 

Harrison, 2000), somatosensory (Dykes et al., 1980; Grinvald et al., 1986; Wallace and Stein, 1996) 

and motor (Chakrabarty and Martin, 2000; Munoz et al., 1991; Nieoullon and Rispal-Padel, 1976) 

thalamic and cortical areas. In cortical area V1, cells tuned to orientation and ocular dominance are 

found within its map (Blasdel, 1992a, 1992b; Crair et al., 1997a, 1997b; Hubener et al., 1997). 

Cortical columns show consistent tuning for orientation and ocular dominance along vertical 

penetrations of this map across multiple cortical layers (Hubel and Wiesel, 1974). An important task 

in understanding the brain, and in building computational models thereof, is to explain how such 

maps emerge and are organized within interacting cortical columns.  

A rich modeling literature addresses the development of orientation and ocular dominance 

maps in V1 (Grossberg, 1976; Kohonen, 1982; Linsker 1986a, 1986b, 1986c; Miller et al., 1989; 

Olson and Grossberg, 1998; Rojer and Schwartz, 1990; Swindale, 1980, 1992; von der Malsburg, 

1973; Willshaw and von der Malsburg, 1976). Most models do not, however, address how maps are 

distributed or coordinated across the layered circuits of striate cortex to form cortical columns. 

Furthermore, these models typically do not address the development of key intercolumnar 

properties, such as the clusters of horizontal connections found in layers 2/3 and 5 (Gilbert and 

Wiesel, 1983, 1985, 1989, Katz et al., 1989, 1989; McGuire et al., 1991; Ts’o et al., 1986; Sincich 

and Blasdel, 2001; Schmidt et al., 1997a, 1997b, 1999). These connections have been shown to 

preferentially target other cells of similar ocularity and orientation tuning (Bosking et al., 1997; 

Yoshioka et al., 1996). 

A challenge to modeling is that the orientation maps in layers 4 and 6, and the crude 

clustering in layers 2/3 and 5, begin to develop before there are interlaminar connections to 

coordinate the formation of such maps across layers (Callaway and Katz, 1992). These initial 

preferences are maintained as patterned vision refines them (Callaway and Katz, 1990, 1991). How 

are these initial preferences coordinated in the absence of interlaminar connections? This article 

proposes that this problem is solved by the cortical subplate (Allendoerfer, 1994; Ghosh et al., 

1994, 1995; Kostovic and Molliver, 1974; Luskin and Shatz, 1985; McAllister, 1999; Rakic, 1976). 

The subplate serves as an early target of thalamocortical connections and in turn makes connections 

throughout the developing cortical plate (Ghosh and Shatz, 1993; McConnell et al., 1994). 
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Furthermore, ablation of the subplate eliminates the formation of cells tuned to orientation (Kanold 

et al., 2001) and ocular dominance maps (Ghosh and Shatz, 1992).  

A new neural model provides herein a unified account of how development of orientation 

tuning and ocular dominance columns, clustered horizontal connections, and interlaminar 

connections occurs to form cortical columns. The model also simulates data about how ablation of 

the cortical subplate may interfere with the development of OR and OD columns, and the 

development of vertical interlaminar connections. The model hereby shifts the focus of the 

modeling literature from the development of cortical maps to the coordinated development of 

functional columns of cells across cortical layers, of the horizontal and vertical receptive fields of 

these cells within and between cortical layers, as well as of the maps that organize the spatial 

arrangement of these cells across the cortex. Some of these results were briefly reported in Seitz and 

Grossberg (2001, 2002). Modeling simulations emulate the order of biological development. Inputs 

from the Lateral Geniculate Nucleus (LGN) to the cortical subplate induce a map, which is taught 

via interlaminar connections from the subplate to the other cortical layers. Connections between the 

layers of the cortical plate next develop and these connections are shown to be stable after subplate 

atrophy. Finally, patterned vision segregates ON and OFF receptive fields. The model also clarifies 

how BDNF manipulations may influence map development (Cabelli et al., 1995, 1997). 

      

RATIONALE AND METHODS 

This section summarizes key properties that the model clarifies of the laminar organization of 

cortex, the cortical subplate, orientation tuning, ocular dominance columns, and clustered horizontal 

connections. The model is then introduced. The Results section compares model simulations of the 

various developmental stages with physiological and anatomical data. 

 

Laminar Organization of Neocortex  

The six characteristic layers of neocortex differ in their configuration of cell types, and the 

makeup of the layers differs across brain areas (Brodmann 1909). In V1, layers 4 and 6 receive 

inputs from the LGN. Layers 2/3 and 5 exhibit long-range horizontal connections between cells in 

their respective layers.  

A fundamental question in cortical development is how do the receptive field properties of the 

cortical layers develop? The very young cortex looks similar across different brain regions, yet the 

adult cortex shows remarkable differences. For example, V1 has a prominent layer 4, consisting of 
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multiple sublaminae, whereas motor cortex has almost no layer 4. Competing “Protomap” and 

“Protocortex” theories have emerged with different explanations of how cortex differentiates 

(Donoghue and Rakic, 1999). The “Protocortex” theory suggests that different cortical areas have 

different innate make-ups of patterning molecules, which cause differentiation after cell migration. 

The “Protomap” theory suggests that the cortex differentiates due to differences found in their 

thalamic inputs. 

During development, cells migrate from the ventricular zone into the cortical plate in an 

inward out manner: layer 6, then 5, then onwards until layer 2 forms. Cells in different layers come 

from different generations of cell divisions in the ventricular zone, and have different molecular 

make-ups (McAllister et al., 1997). Studies in culture demonstrate that cells of each generation 

innately “know” to what layer to send their axons and dendrites (McConnell and Kaznowski, 1991), 

although the specification of connections to sublaminae and within layers requires activity-

dependent refinement (Callaway, 1998b). 

 

Subplate 

The cortical subplate is traditionally thought of as a transient cortical area underlying the 

cortical plate that is responsible for proper target recognition of developing thalamocortical 

connections (McConnell et al., 1989). If the V1 subplate is ablated before the LGN growth cones 

contact cortex, the LGN efferents will grow past V1 and instead innervate other cortical areas 

(Ghosh and Shatz, 1993). Afferents from the LGN “wait” in the cortical subplate for a period of 

weeks before growing into the cortical plate (Chun et al., 1987; Kostovic and Rakic, 1990; Rakic, 

1976). If the subplate is ablated shortly after the LGN grows into layer 4, ocular dominance 

columns (Ghosh and Shatz, 1992, 1994) and orientation tuning (Kanold et al., 2001) fail to develop. 

There exist reciprocal connections between the subplate and layer 4 (Ghosh, 1995). There also exist 

connections from the subplate to layer 1 (Allendoerfer and Shatz, 1994). Cells in layers 2/3 and 5 

have apical dendrites in layer 1 (Callaway, 1998b). Connections also exist from most cortical layers 

to the subplate (Callaway, 1998b). In addition, afferents from the LGN are pruned in the subplate 

yielding a retinotopically more precise map (Naegele et al, 1988). Thus, circuits exist by which 

early activity in each of the layers of the cortical plate may be driven and coordinated by the 

subplate. 

The present model proposes that the subplate contains sufficient circuitry (Chun and Shatz, 

1989; Kostovic and Rakic, 1980; Meinecke and Rakic 1989) to develop its own ocular dominance 
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and orientation maps, including lateral excitation and inhibition, spontaneous inputs from the 

thalamus, and correlation learning (Grossberg and Olson, 1994). When the LGN efferents grow into 

layer 4, the subplate also makes connections in layer 4. Teaching signals from the subplate are 

proposed to guide the growth of the LGN-to-layer 4 connections and result in layer 4 learning the 

map induced by the subplate inputs. Likewise, the subplate is the main source of drive for layer 2/3, 

via the apical dendrites of the cells in layer 1. Teaching signals from the subplate are proposed to 

guide the clustering of horizontal connections in this layer as well. The correlated teaching signals 

that are provided by the subplate across layers are also proposed to energize the development of 

vertical interlaminar connections.  

 

Orientation Tuning 

Hubel and Wiesel discovered cells in area 17 (V1) of the cat that fire in preference to bars of a 

particular orientation (Hubel and Wiesel, 1959). The preferred orientation of V1 cells varies 

smoothly in tangential penetrations and remains mostly constant in vertical penetrations within a 

cortical column. Hubel and Wiesel (1962) proposed that orientation tuning originates from an 

oriented pattern of input from the LGN. In this proposal, multiple LGN cells, with spatially offset 

receptive fields, terminate onto a single V1 simple cell. Other researchers have verified that the 

input from the LGN to an individual cortical simple cell are oriented along the same axis as the 

preferred orientation of that cell (Chapman et al., 1991; Reid and Alonso, 1995). The sufficiency of 

this oriented input to explain data of orientation selectivity is still controversial (Anderson et al., 

2000; Carandini and Ringach, 1997; Ferster and Miller, 2000). 

The clearest data concerning the development of orientation selectivity comes from two 

sources: optical imaging and electrophysiology. The data from optical imaging indicates global 

properties of orientation maps, but since this method necessarily averages the response of many 

cells within and across layers, it does not give much insight into the tuning curves or receptive 

fields of individual cells, or of differences across cortical layers. The data from electrophysiology 

provides tuning curves of single cells, can be used to derive receptive fields, and can look at laminar 

differences, but does not give clear data on the global organization of the properties of these cells. 

Crair et al. (1998) examined the time course of the development of orientation selectivity in 

the cat. They found that regular orientation maps were in place by the end of the second postnatal 

week (W2). At this point, the response from visual input to the contralateral eye was much stronger 

than tha t to the ipsilateral eye, but the orientation maps were similar between the two eyes. The 
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orientation map continued to be refined until W4, but the overall pattern of the map remained 

largely constant. 

Albus and Wolf (1984) conducted a laminar analysis of the development of orientation tuning 

in the cat. They discovered a number of orientationally tuned cells at the time of eye opening and 

that, within a few days of patterned vision, both the responsiveness and proportion of orientationally 

tuned cells increased. They also found that layers 4 and 6 developed light responsiveness and tuning 

a week or two before the cells in layers 2/3 and 5 become responsive and tuned. During the next 

few weeks, the proportion of orientationally tuned cells increased dramatically, reaching adult 

levels by week 6. 

 

Ocular Dominance 

Hubel and Wiesel (1962) also found that ocular dominance, or a cell’s preference for one 

eye’s input over another, varies smoothly in tangential penetrations and remains constant in vertical 

penetrations. In the input layers of V1, cells are predominantly monocular, and in the output layers, 

cells are often binocular with a preference for a given eye. Injecting [3H]-Proline into a single eye 

revealed alternating stripes of cortex connected to one or the other eye (Shatz et al., 1977). Such 

ocular dominance columns (ODCs) have been identified in cats, ferrets, new world monkeys, and 

humans. 

Older studies using [3H]-Proline typically first identified ODCs in the third or fourth weeks of 

life. Since cats open their eyes early in the second week, it was concluded that patterned visual 

activity was necessary for the formation of ODCs. More recently, optical imaging has been used to 

identify ODCs that form by the second postnatal week (Crair et al., 2001). It is possible that ODCs 

exist even earlier than this, as the signal in optical imaging is less reliable in the deeper layers. The 

data from Albus and Wolf (1984) indicate that the first visibly responsive cells are monocular and 

respond to either eye. However, their data do not show the organization of these cells in each layer. 

 

ON and OFF Receptive Fields  

Ganglion cells in the retina, the primary retinal output cells, include ON cells that respond to 

increments of light in the center of their receptive fields, and OFF cells that respond to decrements 

of light their receptive fields centers. These cell types terminate in different sublaminae of the LGN 

in ferrets (Weliky and Katz, 1999) and in different subregions of the receptive fields of cortical 

simple cells (Alonso et al., 2001; Reid and Alonso, 1995). The organization of ON and OFF 
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subregions play a role in the degree of orientation tuning, direction tuning, and construction of 

complex cells, among other properties. 

The receptive field structure of V1 cells changes dramatically over the course of the first few 

weeks. Young cells have receptive fields that are largely monocular and dominated by contralateral 

eye inputs (Crair et al., 1998). These cells typically have a single excitatory region dominated by 

OFF-cell input (Albus and Wolf, 1984). By the fourth week, the typical cell has both ON and OFF 

regions and is responsive to inputs from each eye. It is likely that the increase of orientation 

selectivity occurring through the fourth week (Albus and Wolf, 1984; Crair et al., 1998) is due to 

coordination of OFF and ON activity in response to visual inputs. 

 

Horizontal Connections in Layer 2/3 

Layer 2/3 of V1 contains cells that have long-range lateral connections. These intralaminar 

connections are clustered and primarily connect cells of similar ocular dominance (Löwel and 

Singer, 1992) and orientation preference (Ts'o et al., 1986) and their long axis is in the same 

direction as the cells’ preferred orientation (Grossberg and Mingolla, 1985; Sincich and Blasdel, 

2001; Schmidt et al., 1997a, 1997b, 1999). These clusters are identified by applying Rhodamine (an 

anterograde/retrograde tracer) in layers 2/3 or 5 (Gilbert and Wiesel, 1983). These horizontal 

connections are used to explain perceptual grouping and attentional effects in models of visual 

processing (Grossberg and Raizada, 2000; Grossberg and Williamson, 2001). 

Clustered horizontal connections in layer 2/3 provide important clues about how the early 

stages of the orientation map develop. Such connections are found by postnatal day 8 (P8), before 

the age of visual responsiveness in these layers and before the in-growth of connections from layer 

4 (Callaway and Katz, 1992). The clusters also form during binocular deprivation (Callaway and 

Katz, 1991; Ruthazer and Stryker, 1996). The clusters align with the later-forming orientation map 

in these layers (Callaway and Katz, 1990). They require eye opening in order to refine, and perhaps 

to grow to their maximum extent, but this refinement typically consists of increased growth of 

existing clusters, not a reorganization of them (Callaway and Katz, 1990). This fact is important 

since it has been shown that the later clusters connect iso-oriented areas (Bosking et al., 1997; 

Yoshioka et al., 1996). These data imply that the maps in layers 4 and 2/3 are coordinated before 

they connect to each other. Such coordination would seem to require a different input source. The 

model proposes that this input is the cortical subplate, and supports this hypothesis with a summary 

of consistent data and simulations showing that such a mechanism works. 
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How vertical interlaminar connections form is also a key problem for a theory of laminar 

development. Before eye opening, coarse layer 2/3 clustering makes everything look "coarse." This 

coarse clustering, however, coexists with precise vertical layer 4-to-2/3 connections. The model 

proposes how the subplate organizes correlations between layers 4 and 2/3 and thereby guides 

formation both of coarse horizontal clustering and precise vertical connections between layers.  

 

Models of Map Formation 

There is a rich modeling literature on how maps of oriented cells can develop on a cortical 

sheet. The earliest models showed that an associative learning rule and recurrent lateral inhibition, 

or competition, produces orientation tuning when presented with oriented inputs (Grossberg, 1976; 

von der Malsburg, 1973). Linsker (1986a, 1986b, 1986c) subsequently demonstrated self-

organization of orientation tuning without oriented inputs. Other modeling work has shown how 

ocular dominance maps can arise from uncorrelated inputs (Kohonen, 1982; Miller et al., 1989; 

Rojer and Schwartz, 1990; Swindale, 1980), how maps of orientation and ocular dominance may 

develop simultaneously (Durbin and Mitchison, 1990; Obermayer et al., 1992, 1993; Sirosh and 

Miikkulainen, 1997; Swindale, 1992), and how the development of orientationally tuned simple 

cells and their arrangement into cortical maps may progress synchronously (Olson and Grossberg 

1998; Miller, 1992). While the models vary in their details, Rojer and Schwartz (1990) 

demonstrated that basic filter properties of lateral excitation and inhibition (i.e., a bandpass filter) 

naturally produce either ocular dominance or orientation maps when they interact with a noise 

source. Later, Grossberg and Olson (1994) analyzed existent models to show that, when three 

computational principles that are shared by all the models interact together, namely a source of 

noisy input, a band pass filter, and normalization across all feature dimensions, then maps of 

orientation and ocular dominance are generated with experimentally observed features like 

singularities, fractures, and linear zones, as well as the occurrence of nearby pairs of like-oriented 

simple cells that are sensitive to opposite contrast polarities. 

 More recent modeling work (Grossberg and Raizada, 2000; Grossberg and Williamson, 

2001) proposes how laminar circuits in V1 and V2 help to explain data on development, learning, 

perceptual grouping, and attention. Callaway (1998a) has examined the same substrate 

anatomically, and has produced a conceptual model in which a layer with horizontal connections 

(B) receives both the inputs and outputs of a feedforward layer (A), and thus (B) acts as a control 

system by feeding back to, and modulating the activity of, layer (A). 
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Subplate map formation and model dynamics  

The present model builds on and extends the work of previous models. It demonstrates how 

the orientation and ocular dominance maps form and are coordinated across multiple area V1 layers 

to form cortical columns and the crude clustering of horizontal connections across columns found in 

the superficial and deep layers. 

The model proposes how the subplate circuits embody a source of noisy input, a band pass 

filter (see Figure 1), and normalization, and thus how orientation and ocular dominance maps 

develop there. In fact, all of the model cortical layers embody variants of a band pass filter and 

normalization. Both of these properties are simultaneously realized by an on-center off-surround 

network of interactions between cells that obey membrane, or shunting, equations (Hodgkin and 

Huxley, 1952; Grossberg, 1973, 1976, 1980). Such networks are ubiquitous in the brain. They 

realize a balance between cell cooperation and competition that can preserve the sensitivity of cell 

activations to the relative size of inputs whose total size may vary greatly through time. When the 

on-center off-surround networks includes recurrent, or feedback, interactions, then they can also 

contrast-enhance their cell responses to input patterns while also normalizing them. Such contrast-

enhancement is important when the initial inputs to the network are very small due to the small size 

of adaptive weights before learning occurs. The contrast-enhanced activities allow learning to occur 

in an efficient manner. 

Another property of the subpla te, and all the networks of the cortical layers, is that they 

include habituative, or depressing, synaptic transmitters (Abbott et al., 1997; Grossberg, 1976, 

1980). These transmitters gate, or multiply, the signals between cells and habituate in an activity-

dependent way. They prevent the earliest cells that win the competition in the network from 

persistently dominating network dynamics. Such habituative, recurrent on-center off-surround 

networks define all the information processing within and among the model layers. The associative 

learning laws that control model development are ones that have been used in many developmental 

and learning models since they were first used for this purpose in Grossberg (1976). 

After a map is learned in the subplate, it is used as a source of teaching signals to drive map 

formation in the other layers. This hypothesis is provides a theoretical rationale for why, for 

example, ablation of the subplate results in the lack of formation of orientation selectivity and 

ocular dominance maps (Ghosh and Shatz, 1992; Kanold et al., 2001). In a similar vein, 

evolutionary analysis indicates that phylogenic emergence of columns coincides with the 
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emergence of the subplate and, importantly, with the LGN-subplate waiting period (McAllister et 

al., 1999). 

 
  

Figure 1 – Diagram of different model stages. A: Monocular subplate circuit. Spontaneous activity 

in retinal OFF cells drives the LGN, which inputs to the subplate. Feedforward weights from the 

subplate and feedback weights to the LGN develop into a map of oriented receptive fields. B: 

Binocular subplate circuit. Here input from a second eye is introduced and a map of ocular 

dominance develops in the subplate, superimposed on the existing orientation map. C: Binocular 

layer 4 circuit. Here the orientation and ocular dominance maps that exist in the subplate are taught 

to layer 4. In a subsequent simulation, ON retinal ganglion cells are introduced and patterned retinal 

inputs provide correlations that help to segregate ON and OFF subfields in layer 4. D: Layer 2/3 

circuit. Here clusters of horizontal connections develop in layer 2/3 guided by the correlations 

provided by the subplate. E: Circuit of the fully developed model. Here layer 6 is introduced, which 

develops connections to and from the LGN. Then interlaminar connections are developed from 

layer 6 to layer 4 and from layer 4 to layer 2/3. Finally the inputs to and from the subplate are 

removed and the model is shown to be stable. In all figures, black circles denote OFF receptive 

fields, white circles denote ON receptive fields, ovals denote orientationally tuned cells, lines 
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ending in open circles denote plastic connections. Lines without circles denote feedforward non-

additive connections. 

 

Another novel feature of the model is tha t it reflects the temporally ordered process of 

development. The model starts with a circuit containing the retina, LGN and subplate (Figure 1A). 

This first circuit is monocular, based upon several lines of evidence. Physiological recordings in 

area 17 of kittens show that at eye opening the majority of cells respond only to contralateral eye 

inputs (Albus and Wolf, 1984). Studies in young ferrets demonstrate that the pattern of activity in 

the LGN is largely unchanged when the ipsilateral inputs from the retina are cut (Welikey and Katz, 

1999). In addition, there is an early bias of oriented OFF cells in the kitten cortex (Albus and Wolf, 

1984) and of OFF activity in the retina before eye opening (Wong and Oakley, 1996). 

Correspondingly this stage of the model contains only OFF ganglion cells.  

Spontaneous activity in the retina drives network dynamics and associative learning allows 

for the development of feedforward and feedback connections between the LGN and subplate. After 

development, the pattern of feedforward connections to a given subplate cell and the feedback 

connections from that cell share the same axis of elongation, as has been experimentally reported 

(Murphy et al., 1999).  

The second stage of the model introduces binocular inputs to the subplate in a way that has 

not been captured by previous models (Figure 1B). In this simulation, the connections serving the 

contralateral eye continue developing as activity in the ipsilateral eye is introduced. The 

contralateral LGN already has developed oriented connections to the subplate at this stage, whereas 

those from the ipsilateral LGN are introduced as random spatial receptive fields, just like those of 

the contralateral LGN before refinement. The spontaneous activity in the retina provides intra-

ocular correlations that also drive the formation of ocular dominance columns in the subplate. 

An important advantage of having ocular dominance columns develop after the orientation 

map has been specified is that no special mechanisms are needed to coordinate the orientation map 

between the two eyes. The orientation map of the contralateral eye is inherited by the ipsilateral eye, 

just as the receptive fields of the cortical layers inherit properties of the subplate. 

Next, the subplate guides map formation in the each of the cortical layers as follows: Because 

the early map development in each of the cortical layers develops independently (i.e., without 

interlaminar cortical connections), they are described as separate simulations. This is not meant to 

imply that the there is no interesting time-course in the map development during this stage. In fact, 
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much of the learning in layer 2/3, which contains much younger cells, occurs after layer 4 has 

developed its orientation map (Callaway and Katz, 1992; Galuske and Singer, 1996).  

The development of layer 4 is proposed to occur as follows: Afferents from the subplate are 

introduced in layer 4 and the afferents from the LGN begin to develop into layer 4 (Figure 1C). 

Endogenously active inputs in the retina enable signals from the subplate to layer 4 to act as 

teaching signals that guide the pattern of developing connections from the LGN into layer 4. The 

layer 4 circuit includes the same types of mechanisms as the subplate, with the exception that layer 

4 also receives teaching inputs from the subplate in addition to that from the LGN. The layer 4 

weights stabilize once a map similar to that found in the subplate is achieved. As described in 

greater detail below, maps of ocular dominance and orientation tuning form in layer 6 (Figure 1E) 

at a time and manner similar to that in which they develop in layer 4. 

The model next describes the development of the horizontal connections in layer 2/3 (Figure 

1D). Here subplate inputs are introduced to the model layer 2/3. The basis of this circuit in vivo are 

the axonal branches in the marginal zone from the subplate (Ghosh, 1995), where layer 2/3 has 

dendritic branches (Callaway, 1998b). In this simulation, the connections between layer 2/3 cells 

develop in response to lateral correlations provided by the subplate inputs. As the connections 

between layer 2/3 cells develop, the layer 2/3 network amplifies the correlations found in the 

subplate input and refines the pattern of connections. It is important to realize that the subplate 

inputs to layer 2/3 are the same as those to layer 4, but in layer 2/3 lateral connections are developed 

instead of connections from the LGN. While not explicitly modeled, we suggest that the horizontal 

connections found in layer 5 develop in a similar fashion as those of layer 2/3. 

Once maps have developed in each of the cortical layers, interlaminar connections grow 

(Callaway and Katz, 1992). In the model, layer 4-to-2/3 and layer 6-to-4 connections are developed 

(Figure 1E). As the subplate provides the same input to each of the cortical layers, there are strong 

“vertical correlations” in the activity across layers. These correlations, combined with an 

appropriate correlational learning law, result in cells that have mostly vertical interlaminar 

connections. These vertical connections are the basis of stable adult columns and are a vital 

component of the model. Simulations show that poorer correlations between cortical layers develop 

in the absence of subplate teaching signals. 

Since the subplate is a transient layer, it is important to show that the cortical circuits and 

maps are stable after the subplate atrophies. With the introduction of layer 6, the model 

demonstrates how the circuitry and map structure of the layered cortical circuit can be maintained. 
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The model layer 6 receives inputs from the subplate and develops a similar pattern of connections 

from the LGN as is found from the LGN to layer 4. Layer 6 also develops a set of connections to 

the LGN, which are similar to those from the subplate to the LGN. As noted above, interlaminar 

connections from layer 6 to layer 4 are developed. When the layer 6 connections have stabilized, the 

subplate is removed from the network and simulations demonstrate that this new, adult- like, circuit 

is stable. 

Finally, patterned vision is used to allow for the formation of distinct ON and OFF subregions 

of simple cell receptive fields. While the earlier orientationally tuned cells found in cortex are 

monocular and are mostly dominated by OFF inputs, mature cells contain both ON and OFF 

subregions. The model accomplishes this in a simulation of eye opening. At eye opening, the mean 

firing rates of the ON and OFF cells in the retina equalizes. More importantly, with the introduction 

of patterned vision, the ON and OFF cells in the retina become anti-correlated: wherever an ON cell 

is active, the OFF cell at that location is hyperpolarized and a spatially neighboring OFF cell is 

active. In vivo, layer 4 cells quickly develop distinct ON and OFF subfields (see Albus and Wolf, 

1984).  The importance for patterned vision in the segregation of ON and OFF receptive fields is 

verified in the ferret LGN where dark-raising results in increased convergence of ON and OFF to 

thalamic relay cells (Akerman et al., 2002). 

Ablation of the subplate, shortly after afferents from the LGN contact layer 4, results in a loss 

of orientation tuning and ocular dominance column development in layer 4. It has been 

demonstrated that the levels of brain-derived neurotrophic factor (BDNF) increase dramatically at 

this time (Ghosh and Shatz, 1994). Other data demonstrate that either an increase or decrease of the 

intrinsic level of BDNF in cortex will result in the loss of ocular dominance columns (Cabelli et al., 

1995, 1997). BDNF has been shown to increase the release of both Glutamate and GABA (Berardi 

and Maffei, 1999). 

To model the effects of subplate ablation, the subplate layer is removed from the network and 

random weights are introduced between the LGN and layer 4. To model the effects of BDNF, a 

parameter is introduced to the activity equation for layer 4 that equally modulates the effectiveness 

of the excitatory and inhibitory connections. An increase of BDNF is modeled by increasing this 

parameter. To model a reduction of BDNF, this term is reduced. A sufficiently large change in 

either direction interferes with the development of orientation tuning and ocular dominance 

columns. This result suggests that the balance between excitation and inhibition works best in an 

intermediate range of cell activation. Such an “inverted U” in cell processing is also known to occur 
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in models of opponent processing where, again, the balance between excitation and inhibition 

controls cell sensitivity (e.g., Grossberg, 2000). 

 

Computational Model  

The model equations are chosen to be consistent with those used in the FACADE model 

(Grossberg, 1994, 1997; Grossberg and Mcloughlin 1997; Grossberg et al., 2002) of 3-D vision and 

figure-ground perception. Earlier modeling of visual development within this framework has 

illustrated how development of horizontal connections within layer 2/3 can lead to an adult model 

that can simulate data about adult human psychophysics (Grossberg and Williamson, 2001). The 

present modeling results are consistent with these demonstrations and extend them to analyze the 

coordinating role of the subplate in interlaminar development of cortical columns. 

The model was implemented in the Matlab simulation environment and run on a dual 1.4 Ghz 

Athlon computer running Linux. In the retina, activity was assumed to react quickly to noise 

fluctuations and was thus computed at steady state. The other continuous time cell activity 

equations were solved using an adaptive step size Runge-Kutte 4,5 method. For computational 

simplicity, the equations for learning by the adaptive weights were solved at a slower time scale 

using Euler’s method. Each stage of the model was run for 20,000-100,000 input iterations until the 

weights converged to a stable pattern. 

 

RESULTS 

Development of Orientation in the Subplate 

The model starts with a circuit containing the retina, LGN and subplate (Figure 1A). This 

model is similar to other models of how orientation maps develop and it produces a robust map of 

oriented cells; see Figure 3A. This figure shows a 9-by-9 region in the center of the network and 

was constructed by probing the network bars of 8 different orientations and measuring the peak 

response of each cell to each orientation. The orientation of each bar portrays the orientation of the 

stimulus that elicited the maximum response from that cell. The length of each bar portrays the 

orientation index of that cell (the difference between the peak and null (stimulus orthogonal to the 

peak) orientations divided by their sum). Using vector sums to determine the peak and circular 

variance as an index produce similar maps. Figure 2 also shows the raw receptive fields (Figure 2B) 

for 4 neighboring cells in the middle of the network, their orientation tuning curves (Figure 2C), and 

the schematic of their orientation tuning (Figure 2D). 
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Figure 2 – Development of orientation tuning in the monocular subplate circuit; see Figure 1A. A: 

Summary of orientation tuning for a 9-by-9 grid of cells in the center of the subplate layer. Each 

block represents a single cell and portrays that cell’s preferred orientation and degree of tuning, as 

detailed in B-D. B: Raw receptive fields for 4 typical cells. C: Orientation tuning curves, for cells in 

B, produced by probing the network, at each spatial location, with bars of 8 different orientations 

and plotting the peak response to each orientation. The number above each curve is the orientation 

index (difference between peak and null orientations divided by sum) for each cell. D: For each cell, 

the line corresponding to the peak orientation, from C, is drawn with length proportional to the 

orientation index. 
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0.54 0.48 
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Figure 3 – Pattern of feedforward and feedback connections between the LGN and subplate before 

and after learning. A: Initial weight profiles from the LGN to subplate are generated as white spatial 

noise with limited spatial extent. B: Initial weight profiles from the subplate to LGN are initially 

uniform and equal to 1. C: After learning, weights from the LGN to subplate are refined and 

oriented. D: After learning, weights from subplate to LGN are patterned and are oriented in the 

same manner as the equivalent LGN-to-subplate weights. 

 

 

B 

D 

A 
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The receptive fields in this model are spatially defined and thus there is great diversity in the 

degree of tuning and the shape of the raw receptive fields, shown in Figure 3. Feedback connections 

from the subplate to LGN are developed simultaneously to the development of the feedforward 

LGN-to-subplate connections. After development, the feedforward connections to a given subplate 

cell and the feedback connections from that cell share the same long-axis (c.f., Murphy et al., 1999). 

This figure shows the receptive fields before and after learning. Initial weight profiles from the 

LGN to subplate are generated as white spatial noise with limited spatial extent (Figure 3A). After 

learning, weights from the LGN to subplate are refined and oriented (Figure 3C). Initial weight 

profiles from the subplate to LGN are initially uniform and equal to 1 (Figure 3B). After learning 

weights from subplate to LGN are also patterned and are oriented in the same manner as their 

equivalent LGN to subplate weights (Figure 3D). The coarseness of these receptive fields is due 

extreme computational load of the simulations (requiring many months of computer time), which 

necessitated a low-resolution grid. 

 

Development of Ocular Dominance in the Subplate 

The second stage of the model introduces binocular inputs in the subplate (Figure 1B). In this 

simulation, ocular dominance columns emerge, as in Figure 4a. Plotted is the ocularity index (the 

difference of the ipsilateral and contralateral weights divided by the sum). This index is valued 

between –1 and 1, where cells with large absolute values are the most monocular. In this simulation, 

the typical cell has an index of +/- .8 which means that they are highly monocular. At the beginning 

of the simulation, the cells are all dominated by the contralateral eye. The ipsilateral eye invades 

territory that was only weakly activated by the contralateral eye. Since the total connection strength 

to each subplate cell is conserved, competition results in cells that are largely monocular. Since the 

total input from each eye to the subplate is equal, the number of cells devoted to each eye equalizes 

(Miller et al., 1989). Finally, the width of the columns approximates the extent of the local 

excitatory and inhibitory connections (c.f., Fitzpatrick et al., 1985; Lund et al., 1995). 
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Figure 4 – Ocular dominance columns and orientation preferences in the subplate and layer 4; see 

Figure 1C. A: Ocular dominance columns in the subplate. B: Nearly identical ocular dominance 

columns in layer 4. C: Orientation preferences in the subplate. D: Nearly identical orientation 

preferences in layer 4. Ocular dominance is shown for the entire 26-by-26 network, orientation for a 

9-by-9 subset. 

 

Layer 4 Simulations  

In this simulation, afferents from the subplate are introduced in layer 4 and the afferents from 

the LGN begin to grow into layer 4 (Figure 1C). The layer 4 simulations demonstrate that the 

orientation and ocular dominance maps, which are learned in the subplate, can be subsequently 

taught to other cortical layers, as shown in Figure 4. Here it can be seen the orientation and ocular 
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dominance maps are almost identical between the two layers. A comparison of the peak orientations 

between the subplate and layer 4 shows that 80% of the layer 4 cells have the same orientation peak 

as is found in the underlying subplate cell. A comparison of the receptive fields between the 

subplate and layer 4 shows that, in almost every case, pattern weights from the LGN to layer 4 

correspond to those from the LGN to the subplate. There is a 96% correlation between these 

weights in a pixel-by-pixel comparison. 

 

Subplate Ablation and BDNF 

Ablation of the subplate results in a loss of orientation tuning and ocular dominance column 

development in layer 4. It has been demonstrated that the levels of brain-derived neurotrophic factor 

(BDNF) increase dramatically at this time (Ghosh and Shatz, 1994). Other data demonstrate that 

either an increase or decrease of the intrinsic level of BDNF in cortex will result in the loss of 

ocular dominance columns (Cabelli et al., 1995, 1997). BDNF has been shown to increase the 

release of both Glutamate and GABA (Berardi and Maffei, 1999). 

To model the effects of subplate ablation, the subplate inputs were removed from layer 4 and 

the LGN. A parameter modulating the model’s excitatory (Glutamate) and inhibitory (GABA) 

transmitter release was introduced to activity equation (12) that describes layer 4. To model the 

effects of an increase of BDNF, this parameter was increased. As shown in Figure 5, increasing 

BDNF levels by 50% caused the initial pattern of weights from the LGN to layer 4, which were 

initialized to random values, to fail to refine. Thus neither ocular dominance columns nor 

orientation developed in layer 4. At baseline levels of BDNF, ocular dominance and orientation 

maps developed in layer 4, but have no relationship to the maps that existed in the subplate before it 

was ablated. If BDNF levels are reduced by 50%, receptive fields do refine, but are not well 

oriented and ocular dominance does not develop. In addition, the receptive fields that develop with 

low values of BDNF are not stable; see Figure 6. 
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Figure 5 – Connection weights and ocular dominance columns when BDNF ( J 4( )) is decreased. A 

and C: Ocular dominance columns and contralateral eye receptive field profiles for normal BDNF 

levels ( J 4( ) = 1). In C, the receptive fields profiles that are unpatterned correspond to cells 

dominated by the ipsilateral eye. B and D: No ocular dominance columns and less oriented 

receptive field profiles when BDNF levels are reduced ( J 4( ) = 0.1). 
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Figure 6 – Stability of weights when BDNF ( J 4( )) is varied. Plotted is the pixel-by-pixel correlation 

between the weights at each time point and those of iteration 40,000, for different values of BDNF. 

For normal BDNF levels (J 4( ) = 1): These weights are the most stable and, once the weights 

converge, there is only a slow variation of the weights. For a 50% reduction of BDNF (J 4( ) = 0.5): 

Weights develop more rapidly, but also are less stable. For a 90% reduction of BDNF (J 4( ) = 0.1): 

Weights are extremely unstable. For a 50% increase of BDNF (J 4( ) = 1.5): Weights do not develop 

significantly from initial values. This last case is consistent with experiments about subplate 

ablation. 

 

 
Other simulations have shown that, just as an equal change to both excitation and inhibition 

will affect map development, so too does a sufficiently large increase of the net level of excitation 

or inhibition. An increase of excitation reduces the selectivity of cells by enlarging their receptive 

fields. An increase of inhibition, beyond a certain point, causes a loss of cell response and thus more 

random receptive fields.  

BDNF is involved in many more functions that regulating transmitter release and it is possible 

that its other activities are important in functional development. For example, an alternate 

explanation of the role of BDNF is that LGN neurons require BDNF to survive. In cases where 

BDNF is abundant, the LGN neurons proliferate. Where BDNF is scarce, the LGN inputs atrophy. 
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In this situation, only a certain range of BDNF levels will produce the necessary competition for 

resources that produce ocular dominance columns.  

 

Development of ON and OFF Receptive Fields  

While the early orientationally tuned cells found in cortex are dominated by OFF inputs, 

mature cells contain both ON and OFF subregions; see Figure 1C. The model simulates how, at eye 

opening, the mean firing rates of the ON and OFF cells in the retina equalizes, and how patterned 

vision causes the ON and OFF cells in the retina become anti-correlated, so that, as in vivo, model 

layer 4 cells quickly develop distinct ON and OFF subfields (see Albus and Wolf, 1984).  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7 – Patterned vision segregates ON and OFF subfields in layer 4; see Figure 1C. Top row 

shows the patterns of connection strength from the ON LGN layer to four representative layer 4 

cells. Bottom row shows the patterns of connection strength from the OFF LGN layer to the same 

cells. Note that the ON and OFF layers are segregated. As is found in vivo, both even and odd 

symmetric cell types develop. 

 

The model uses an input consisting of patterns of randomly configured rectangles, of random 

luminance and orientation, as described in the Retina section. Filtering such an image separately 

with ON or OFF filters produces patterns that have spatially offset areas of high activation. In the 

network, the OFF cell activities are spatially offset from those of the ON cells and, as a result, 

correlational learning in layer 4 produces cells with distinct ON and OFF subfields; see Figure 7. 

AFFERENTS FROM ON LAYERS 

AFFERENTS FROM OFF LAYERS 
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Layer 2/3 Simulations  

Simulation results of how the subplate instructs the growth of intralaminar connections in 

layer 2/3 (Figure 1D) are shown in Figure 10A. Each block represents the lateral connections from a 

single layer 2/3 cell. Connections of strong weight, in white, are clustered together separated by 

gaps, in black, of zero or small weight. Here the pattern of horizontal connections is more refined 

than the scattered horizontal connections found in vivo (Callaway and Katz, 1990). This difference 

results from the fact that there is no noise in the Difference-of-Gaussian filters used in the 

simulation. Cluster size is determined by the extent of the local excitatory interactions, whereas 

cluster spacing is influenced by the extent the local inhibitory connections. If these filters were 

multiplied with noise, the clustered horizontal connections would be more scattered as found in 

vivo.  

The simulated clusters correspond to underlying subplate cells of all orientations. We predict 

that the early clusters found before eye opening in vivo are also nonspecific to orientation. This is 

consistent with the double- label data from Callaway and Katz (1990), where they applied a 

retrograde stain in the same area of the same animal at both P15 and P29. These data show that the 

P29 stain labels areas that were stained with the P15 tracer, but also that the P15 stain labels many 

areas that are no longer labeled at P29. It seems that during the refinement of the clusters, which 

occurs when the eyes are opened, connections to ortho-orientations drop off, resulting in horizontal 

connections to iso-oriented regions of the orientation map (Bosking et al., 1997). 
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Figure 8 – Pattern of connections for layer 2/3 simulation; see Figure 1D. Each block shows the 

pattern of connections to a different layer 2/3 cell. The patterns of connections are centered on the 

location of each cell. A: Clustered horizontal connections between layer 2/3 cells. B: Learned 

interlaminar connections from layer 4 to layer 2/3. 

 
 

Development of Layer 4-to-2/3 Connections  

After clusters form in layer 2/3, connections from layer 4 to layer 2/3 are developed; see 

Figure 1E. The formation of a map in the subplate and connections of the subplate with other 

cortical layers provides the “vertical correlations” that are necessary for proper interlaminar 

connections, which support cortical columns, to form.  
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The results of this simulation are shown in Figure 8B. In this figure, the white spots in the 

center of each block demonstrate that cells in layer 4 are connected to the directly overlying layer 

2/3 cells. Together, the simulations in Figure 8 show how coarsely clustered intralaminar 

connections in layer 2/3 can coexist with precisely organized vertical interlaminar connections. 

 

Death of the Subplate and Rise of Layer 6 

Since the subplate is a transient layer, it is important to show that the cortical circuits and 

maps are stable after the subplate atrophies. With the introduction of layer 6, the model 

demonstrates how the circuitry and map structure of the layered cortical circuit can be maintained; 

see Figure 1E.  

The results of the layer 6 simulations are almost identical to those shown in Figure 4. Layer 6 

has inputs from the subplate and it develops a nearly identical pattern of connections from the LGN 

as is found from the LGN to layer 4; compare Figures 4A and 4C with Figures 4B and 4D. 

Comparing the receptive fields of layer 6 to those of layer 4 show a 93% correlation in a pixel-by-

pixel comparison. Layer 6 develops a set of connections to the LGN, which are similar to those 

from the subplate to the LGN, with a 96% correlation.  

In addition, interlaminar connections from layer 6 to layer 4 are developed; see Figure 9A. 

These interlaminar connections develop vertically in a similar fashion as the layer 4 to layer 2/3 

connections. When all sets of layer 6 connections have stabilized, the subplate is removed from the 

network as the newly developed layer 6 circuits become active. Simulations have shown that this 

new circuit is stable.  

To demonstrate the importance of the subplate in the vertical development of interlaminar 

connections, a simulation was run without the influence of the subplate. In this simulation, layers 6 

and 4 start off with random connection weights from the LGN. Maps of orientation and ocular 

dominance develop in both layers, but the maps are not coordinated. In addition, the layer 6-to-4 

connections that develop are not vertical; see Figure 9B.  
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Figure 9 - Learned connections from layer 6 to layer 4. A: Normally forming interlaminar 

connections are vertical. B: Subplate is ablated before interlaminar connections develop. As a result 

layer 6-to-4 connections do not develop vertically. 

 
 

DISCUSSION 

The cortical subplate is traditionally thought of as a trans ient cortical area underlying the 

cortical plate that is responsible for proper target recognition of developing thalamocortical 

connections. If the V1 subplate is ablated before the LGN growth cones contact cortex, the LGN 

efferents will grow past V1 and instead innervate other cortical areas (Ghosh and Shatz, 1993).  
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We predict that the subplate plays the equally important role of coordinating the development 

of cortical columns. This hypothesis is consistent with all the data known to us about early cortical 

development. For example, afferents from the LGN “wait” in the cortical subplate for a period of 

weeks before growing into the cortical plate (Chun et al., 1987; Kostovic and Rakic, 1990; Rakic, 

1976). If the subplate is ablated shortly after the LGN grows into layer 4, ocular dominance 

columns and orientation tuning (Ghosh and Shatz, 1992, 1994; Kanold et al., 2001) fail to develop. 

There exist reciprocal connections between the subplate and layer 4 (Ghosh, 1995). There also exist 

connections from the subplate to layer 1 (Allendoerfer and Shatz, 1994). Cells in layers 2/3 and 5 

have apical dendrites in layer 1 (Callaway, 1998b). Connections also exist from most cortical layers 

to the subplate (Callaway, 1998b). Thus, circuits exist by which early activity in the cortical plate 

may be driven by the subplate. 

The subplate contains sufficient circuitry (Chun and Shatz, 1989; Kostovic and Rakic, 1980; 

Meinecke and Rakic 1989) to develop ocular dominance and orientation maps (Allendoerfer and 

Shatz, 1994); namely, lateral excitation and inhibition, spontaneous inputs from the thalamus, and 

associative learning (Grossberg and Olson, 1994). It is thus proposed that the subplate learns a map 

of orientation tuning and ocular dominance. When the LGN efferents grow into layer 4, the subplate 

also makes connections in layer 4 and correlations from the subplate guide the growth of the LGN-

to-layer 4 connections and result in layer 4 developing the same map as found in the subplate. 

Likewise, the subplate is the main source of drive for layer 2/3, via the apical dendrites of the cells 

in layer 1, and the correlations from the subplate guide the clustering of horizontal connections in 

these layers. The fact that the subplate connects to all of the cortical layers results in vertical 

correlations that instruct the development of interlaminar connections. Once these interlaminar 

connections are in place, they are self-maintaining and when the subplate atrophies the developed 

cortical circuit remains stable. 

Experiments are needed to verify these predictions. The model predicts that physiological 

recording of the subplate will reveal cells tuned for orientation. It also predicts that anatomical 

staining will reveal ocular dominance columns in the subplate. Since the subplate atrophies shortly 

after eye opening, and is deep in cortex, there exists little physiological recording from this layer, 

but it is likely that cells are inadvertently recorded from the subplate and mistaken for layer 6 cells, 

which are orientationally tuned. 

The model suggests how map loss after subplate ablation may be due to the resulting increase 

of BDNF in the cortical plate. It is possible that if the subplate is ablated, or inactivated, and the 
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BDNF levels controlled, that maps of ocular dominance and orientation tuning might still form in 

cortex, since layers 4 and 6 have the same mechanisms supporting map formation as found in the 

subplate. We predict that, if this is verified, then vertical electrode penetrations would not initially 

find iso-oriented cells. Instead, while maps might still form in each cortical layer, they would be 

less coordinated across the layers. It is important to note that BDNF plays roles other than those 

discussed in our model which may play a role such an experiment. 

We also predict that interlaminar connections that develop after the subplate is ablated would 

be less “vertical” than found in normal cortex. In the model, the vertical correlations provided by 

the subplate play an important role in the development of these interlaminar connections. In 

particular, the lateral correlations found in the horizontal layer 2/3 connections would drive the 

layer 4-to-2/3 connections in subplate-ablated cortex to be more scattered than in the normal 

animal. 

 

Molecular and Activity-Based Mechanisms in Map Formation 

It has been recently suggested that the initial specification of ocular dominance maps in the 

LGN and V1 is controlled by molecules expressed differently between the two eyes, or between the 

nasal and temporal regions of each eye. This hypothesis is supported by evidence that ocular 

dominance columns form in the cat at two weeks of age (Crair et al., 2001), and at three weeks in 

the ferret (Crowley and Katz, 1999, 2000), much earlier than first hypothesized and around the time 

that the LGN first innervates layer 4. Since Crowley and Katz did not eliminate the spontaneous 

activity between the LGN and subplate, they do not address the mechanisms used in our model. In 

fact, their data show eye-specific clusters of axons in the subplate before eye opening.  

Other evidence against an activity-related mechanism comes from the fact that ocular 

dominance columns develop prior to visual input (Rakic, 1977). This brings up the important 

distinction between visually-evoked activity and spontaneously-evoked activity. Studies have 

demonstrated spontaneous activity in the retina (Wong et al., 1983), LGN and cortex (Weliky and 

Katz, 1997) prior to eye opening. Interference with this activity disrupts the segregation of eye-

specific layers in the LGN and in V1 (Rakic, 1981). 

While some steps of visual map formation might be initially guided by activity- independent 

signals, such as ephrins (Cheng et al., 1995; Wilkinson, 2001), refined and complex patterning 

requires activity (Callaway and Katz, 1991; Cook et al., 1999; Dantzker and Callaway, 1998; Katz 

and Shatz, 1996; Penn et al., 1998; Weliky and Katz, 1997). Activity-based processing is needed if 
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only to offset the lack of precision of the molecular map. On the scale of hundreds of microns, 

differences in the molecular gradients are too flat for exact target recognition. It may also be the 

case that maps related to visual features, such as orientation, are too specific for molecular 

patterning. Spontaneous activity may have evolved as the biological solution to efficient 

blueprinting. Later, patterned vision may refine these maps by optimizing them to fit environmental 

statistics, as well as individual differences in eye size and lateral separation. Binocular disparity 

tuning is a classical example of a process that depends on properties, like changing positions of the 

eyes in a growing head, that requires visual experience for final tuning (cf., Grunewald and 

Grossberg, 1998). 

 

Modeling Issues 

Simulating development in the model requires running a large number of input iterations until 

the weights converge to a stable value. Each stage of the model required running 20,000-100,000 

iterations, and each iteration takes from 4 seconds to 1 minute to compute, depending on the 

number of layers and feedback connections. Each simulation thus takes from a day to a month to 

run on a 1.4 Ghz Athlon processor. Thus in order to carry out the full set of simulations, it was 

necessary to use a relatively small network of 26-by-26 cells for each layer.  

While this model produces very good orientation tuning, the orientation map is not very 

smooth. The reason for this is the granularity of the network. Ocular dominance columns are only a 

few cells wide, which leaves no room for a full set of orientations. The granularity also introduces 

aliasing of isotropic filters, which has the result of producing an uneven distribution of orientations. 

A careful observer will note that there are a greater number of cells that prefer 45º and 135º than 

other angles. Since the model concerns how the orientation map is coordinated across layers, and 

not the fine-structure properties of such maps, and since fine resolution simulations of orientation 

maps that obey similar principles have been run elsewhere (e.g. Olson and Grossberg, 1998), our 

hypotheses are not compromised by these effects.  

 

Generality of Model Across Species 

 The present model attempts to embody key processes during the development of mammals 

such as cats, ferrets, macaques and humans. While there are important differences between each of 

these species, they all share a prominent subplate and properties such as orientation and ocular 

dominance maps, as well as clustered horizontal connections in the infragranular and 
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supragranualar layers. Although most data used to test the model come from experiments on cats 

and ferrets, the coordinating role of the subplate may be important in other species as well. Cross-

species studies of the subplate indicate that it becomes a more prominent structure in higher species, 

peaking in size in the macaque and man at twice the thickness of the cortical plate (Kostovic and 

Rakic, 1990). This increase in size may indicate the increasing role of the subplate in developmental 

coordination. For in addition to the inputs from the thalamus, discussed in this paper, afferents from 

the brain stem, basal forebrain, as well as cortico-cortical connections “wait” in the subplate before 

entering the cortical plate (Kostovic and Rakic, 1990). The subplate may be important in the 

functional organization of these fibers before they enter the cortical plate (Naegele et al., 1988) and 

in the coordination of these connections within the cortical plate. Even if accounting for species-

specific variations may require model specializations, the general hypothesis of ordered 

development based upon the waiting period in the subplate is likely to hold across species. 

Conclusion 

A model is proposed of how the cortical subplate learns a map of orientation and ocular 

dominance tuning and teaches this map to the other cortical layers via known anatomical 

connections. The model accounts for the coordination of orientation and ocular dominance maps, 

the coordination of ON and OFF subregions of simple cells receptive fields, the crude clustering of 

horizontal connections in layers 2/3, and the development of precise columns of coordinated 

receptive field properties across the multiple cortical layers. Related modeling work (Grossberg and 

Raizada, 2000; Grossberg and Williamson, 2001) supplements these results by showing how 

consistent laminar cortical mechanisms can account for the refinement of the horizontal connections 

in layer 2/3, develop a correct balance of excitation and inhibition within and between cortical 

layers, and explain neural recording during psychophysical experiments in adult animals. 
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APPENDIX A: MODEL EQUATIONS 

The model equations are chosen to be consistent with those used in the FACADE model 

(Grossberg, 1994, 1997; Grossberg and Mcloughlin 1997; Grossberg et al., 2002) of 3-D vision and 

figure-ground perception. The reader can directly study the data simulations in the Results section 

before considering these equations. Earlier modeling of visual development within this framework 

has illustrated how development of horizontal connections within layer 2/3 can lead to an adult 

model that can simulate data about adult human psychophysics (Grossberg and Williamson, 2001). 

The present modeling results are consistent with these demonstrations and extend them to analyze 

the coordinating role of the subplate in interlaminar development of cortical columns. 

The symbols and notation used in the network equations are as follows. Superscripts 

abbreviate each area of the model: (R) for Retina, (L) for LGN, (S) for Subplate and (3), (4), (6) for 

layers 2/3, 4, and 6, respectively. Subscripts denote the position of a cell in each area: i and j, denote 

horizontal and vertical spatial coordinates, and l denotes which of the four regions in the two eyes to 

which a cell belongs: Contra-ON, Contra-OFF, Ipsi-ON, and Ipsi-OFF. For example, Iijl
R( ) is an 

input to a retinal cell, and, x ij
S( ) is the activity of a subplate cell. Note that l does not appear in the 

subplate input, or anywhere in the cortex, since the inputs from all retinal regions converge onto 

each cortical layer. 

The model was implemented in the Matlab simulation environment and run on a dual 1.4 Ghz 

Athlon computer running Linux. In the retina, activity was assumed to react quickly to noise 

fluctuations and was thus computed at steady state. The other continuous time cell activity 

equations were solved using an adaptive step size Runge-Kutte 4,5 method. For computational 

simplicity, the equations for learning by the adaptive weights were solved at a slower time scale 

using Euler’s method. Each stage of the model was run for 20,000-100,000 input iterations until the 

weights converged to a stable pattern. 

 

Retina 

Retinal inputs, Iijl
R( ), to the model are generated by thresholding a set of random numbers 

chosen from a normal distribution, which allows 5-10% of cells to be active at a given time, 

consistent with estimates of the rate of spontaneous activity found in the LGN (Papaioannou and 

White, 1972; Kaplan et al., 1987). Successful simulations have also been run using white noise.  
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The simulations that mimicked patterned vision after eye opening used structured visual 

inputs defined by randomly sized, positioned and oriented rectangles, as described in Grossberg and 

Williamson (2001), since essentially all visual objects have linear contours on a sufficiently small 

spatial scale. Each input contained seven rectangles, each with a luminance that was randomly 

distributed between 0 and 2. The length and width of each rectangle was determined by an iterative 

random process in which each dimension started at zero pixels, grew (independently) by one pixel 

at each iteration, and stopped growing with probability .1 at each iteration. The images were 

processed with wrap-around in both the x and y dimensions to avoid spurious boundary effects. 

Retinal activity, x ij
R( ), is assumed to obey a membrane, or shunting, equation whose inputs 

result from putting Iijl
R( ) through an on-center/off-surround feedforward network: 

dx ijl
R( )

dt
= −A R( )x ijl

R( ) + B R( ) − x ijl
R( )( ) Gijuv

R +( )Iuvl
R( )

uv
∑ − C R( ) + x ijl

R( )( ) Gijuv
R −( )Iuvl

R( )

uv
∑   .    (1) 

Here, A R( ) represents the leakage coefficient and B R( ) and C R( ) represent the excitatory and 

inhibitory reversal potentials, respectively. The terms Guvij
R +( ) and Guvij

R −( ) represent the on-center and 

off-surround receptive fields, respectively, and are defined by a two-dimensional normalized 

Gaussian kernel: 

Gijuv
R + /−( ) =

1

2π σ R + /−( )( )2 e
− u− i( )2 − v− j( )2

2σ R+/ −( )2

.         (2) 

Parameters for the Retina are A R( ) = 1, B R( ) = 5, C R( ) = 5, σ R +( ) =
1
2

, and σ R−( ) =
3
2

. 

Lateral Geniculate Nucleus  

The outputs from the retina are thresholded functions of retinal activity, namely 

x ijl
R( )[ ]+

= max x ijl
R( ),0( ). These outputs are fed into a model of the LGN via a feedforward on-

center/off-surround network. The LGN activity, x ijl
L( ), is also modulated multiplicatively by 

feedback, Iijl
L( ), from the subplate:  

dx ijl
L( )

dt
= −A L( )x ijl

L( ) + (B L( ) − x ijl
L( )) Gijuv

L +( ) D L( )Iuvl
L( ) + 1( )[xuvl

R( )]+[ ]
uv

∑

−(C L( ) + x ijl
L( )) Gijuv

L−( ) E L( )Iuvl
L( ) + 1( )[xuvl

R( )]+[ ]
uv

∑
 .    (3) 

The subplate feedback signals are defined by: 
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Iijl
L( ) = F xuv

S( )( )wuvijl
SL( )

uv
∑ .                                (4) 

Here F xuv
S( )( ) represents a sigmoid output signal function of subplate activity: 

F x S( )( )=
T x S( )( )n

T x S( )( )n
+ f n

,         (5) 

The parameters n and f are fixed for all layers, and, 

T x S( )( )=
x S( )  if x S( ) ≥ Γ S( )

0  otherwise

 
 
 

 .          (6) 

In this equation, the parameter Γ  follows the superscript of the input. For example, in T x L( )( ) the 

threshold Γ L( ) is used instead of Γ S( ).  

In the model, the outputs of LGN cells are threshold- linear, as in (6), due to the linear 

properties of LGN X cells, whereas the cortical outputs are represented by sigmoid signal functions 

(Sclar et al., 1985; Skottun et al., 1987; Maunsell et al., 1999), as in (5). 

The top-down adaptive weights, wuvijl
SL( ), from subplate position (u,v) to LGN position (i,j,l) in 

(4) are learned adaptively, using an outstar learning law (Grossberg 1968, 1980):  

dwuvijl
SL( )

dt
= A SL( )F xuv

S( )( )T x ijl
L( )( )− wuvijl

L( )[ ].                          (7) 

In this associative learning law, learning is gated on or off by the activity of a presynaptic signal, in 

this case a top-down output signal from the subplate, F xuv
S( )( ); see (5). The weights track the 

threshold level of activity in the LGN, T x ijl
L( )( ); see (6). An outstar law is often used to learn a 

pattern of activity via feedback connections at sampled cells, whereas an instar learning law (see 

below for definition) is invoked for feedforward connections (Carpenter and Grossberg, 1987). 

Parameters for the LGN equations  are: A L( ) = 1, B L( ) = 5, C L( ) = 5, D L( ) = 10, E L( ) =10, σ L+( ) =
1
2

, 

σ L−( ) =
3
2

, A SL( ) = 0.25, Γ S( ) = 0.001, n = 3, f = 0.8, and Γ L( ) = 0.3. 
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Subplate 

The output of the LGN is fed into a model of the cortical subplate. The activity of the 

subplate, x ij
S( ), is defined via a combination of feedforward and feedback on-center/off-surround 

interactions:  

dx ij
S( )

dt
= −A S( )x ij

S( ) + (B S( ) − x ij
S( )) Gijuv

S +( )zuv
S( ) Iuv

S( ) + D S( ) F xuv
S( )( )+ F xuv

4( )( )( )[ ]
uv

∑

−(C S( ) + x ij
S( )) Gijuv

S−( ) Iuv
S( ) + E S( ) F xuv

S( )( )+ F xuv
4( )( )( )[ ]

uv

∑
 .      (8) 

The input, Iij
S( ), to the subplate from the LGN is computed by gating bottom-up LGN signals, 

T xuvl
L( )( ), with adaptive weights, wuvlij

LS( ), before summing them across all LGN cell positions (u,v) and 

layers l (ON, OFF, contralateral, ipsilateral): 

Iij
S( ) = T xuvl

L( )( )wuvlij
LS( )

uvl
∑ .                                              (9) 

A notable difference between the subplate and the LGN is the presence of horizontal positive and 

negative feedback, F xuv
S( )( ), consistent with data showing isotropic excitatory and inhibitory 

anatomical connections in the subplate (Galuske and Singer, 1996). In later occurring simulations, 

where layer 4 is present, feedback from layer 4, F xuv
4( )( ), also influences the subplate (Callaway 

1998b; Ghosh, 1995). Feedback from layer 4 to the subplate is additive, unlike the multiplicative 

feedback from the subplate to the LGN, and thus acts as an additional input to the subplate, rather 

than as the gain control found in the LGN. 

As noted above, habituative transmitters prevent the earliest cells that learn from persistently 

dominating network dynamics: 

dz ij
S( )

dt
= A Sz( )(1− zij

S( )) − B Sz( )zij
S( ) Iij

S( ) + D S( ) F x ij
S( )( )+ F x ij

4( )( )( )[ ]2
.                                    (10) 

The habituative transmitters, z ij
S( ), vary between the value of 1 and zero. When zij

S( ) = 1, the synapse 

is at full strength, and at values less than 1 the level of the transmitter is diminished. The parameter 

A Sz( ) governs the rate of recovery of the transmitter, whereas the parameter B Sz( ) governs the rate of 

habituation. Habituation occurs at a rate proportional to the square of the amplitude of the inputs 

that the transmitter gates in (8), namely Iij
S( ) + D S( ) F x ij

S( )( )+ F x ij
4( )( )( )[ ]2

. The squaring of this input 
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allows for proportionately greater habituation for large inputs than small (Gaudiano and Grossberg, 

1991). 

The bottom-up adaptive weights, wuvlij
LS( ), from LGN position (u,v,l) to subplate position (i,j), 

are computed by an instar learning law that conserves the total weight converging onto each 

subplate cell (Carpenter and Grossberg, 1987; Grossberg, 1976, 1980): 

dwuvlij
LS( )

dt
= A LS( )F x ij

S( )( )T xuvl
L( )( ) B LS( ) − wpqrij

LS( )

pqr

∑
 

 
  

 

 
  − wuvlij

LS( ) T x pqr
L( )( )

pqr≠uvl

∑
 

 
 
 

 

 
 
 
.              (11) 

The instar is postsynaptically gated by the subplate signal F x ij
S( )( ), and, unlike the outstar, the 

weights track the level of the bottom-up signal from the LGN, T xuvl
L( )( ); see (6). The parameter B LS( ) 

limits the total weight to a given subplate cell, and is consistent with evidence for limited 

neurotrophic factors (Purves, 1988). In the model, conservation plays a role in the formation of 

ocular dominance columns. In simulations lacking conservation, the ipsilateral eye fails to take over 

territory in the subplate since the weights from the contralateral eye are already large. This effect is 

similar to that obtained in models that place explicit limits on the levels of trophic factors (Elliot 

and Shadbolt, 1999).  

The spatial extent of LGN inputs to each subplate cell is limited to a circular region for 

computational efficiency. Thus (11) holds if u2 + v 2 ≤16; otherwise, wuvlij
LS( ) = 0. Simulations have 

been run to demonstrate that extending this limit does not lead to qualitatively different results. 

Parameters for the subplate equations are: A S( ) = 1, B S( ) = 6, C S( ) = 6, D S( ) = 20, E S( ) = 20, 

σ S +( ) =
3

4 2
, σ S−( ) =

3
2

, Γ 4( ) = 0.001, A Sz( ) = 0.5, B Sz( ) = 5 , A LS( ) = 0.25 , and B LS( ) = 5. 

 

Layer 4 

The activity of layer 4, x ij
4( ), obeys an equation similar to (8) for the subplate:  

dx ij
4( )

dt
= −A 4( )x ij

4( ) + (B 4( ) − x ij
4( )) Gijuv

4 +( )zuv
4( )J 4( ) Iuv

4( ) + D 4( ) F xuv
S( )( )+ F xuv

4( )( )( )[ ]
uv

∑

−(C 4( ) + x ij
4( )) Gijuv

4−( )J 4( ) Iuv
4( ) + E 4( ) F xuv

S( )( )+ F xuv
4( )( )( )[ ]

uv

∑
 .                       (12) 

The habituative transmitters, z ij
4( ), prevent the earliest cells that learn from persistently dominating 

network dynamics: 
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dz ij
4( )

dt
= A 4 z( ) 1− zij

4( )( )− B 4 z( )zij
4( ) Iij

4( ) + D 4( ) F x ij
S( )( )+ F x ij

4( )( )( )[ ]2
.                            (13) 

The modulatory term, J 4( ), in (2) models the effect of changing BDNF levels. Varying the value of 

J 4( ) allows us to approximate an equal percent change of release of GABA and Glutamate (Berardi 

and Maffei, 1999). Unless otherwise mentioned, J 4( ) is set to 1. 

The input, Iij
4( ), to layer 4 from the LGN is computed by gating bottom-up LGN signals, 

T xuvl
L( )( ), with adaptive weights, wuvlij

L4( ), before summing them across all LGN cell positions (u,v) and 

layers l (ON, OFF, contralateral, ipsilateral): 

Iij
4( ) = T xuvl

L( )( )wuvlij
L4( )

uvl
∑  .                                         (14) 

The bottom-up adaptive weights, wuvlij
L 4( ), from LGN position (u,v,l) to layer 4 position (i,j), are 

computed by an instar learning law, which conserves the total weight converging onto each layer 4 

cell: 

dwuvlij
L 4( )

dt
= A L4( )F x ij

4( )( )T xuvl
L( )( ) B L4( ) − wpqrij

L 4( )

pqr

∑
 

 
  

 

 
  − wuvlij

L4( ) T xpqr
L( )( )

pqr≠uvl

∑
 

 
 
 

 

 
 
 
 .                        (15) 

The spatial extent of LGN inputs to each layer 4 cell is limited to a circular region for 

computational efficiency. Thus (15) holds if u2 + v 2 ≤16; otherwise, wuvlij
L4( ) = 0. 

The LGN-to-4 weights, wuvlij
L 4( ), start with values of zero. Early in the simulation, these weights 

are small, and the inputs from the subplate dominate the activity of layer 4 cells. This allows the 

subplate to instruct the pattern of weights in layer 4, which are stabilized by the same circuit 

mechanisms in layer 4 that allows the weights from the LGN to the subplate to stabilize. The 

assumption of zero initial weights is not necessary, as simulations beginning with random LGN-to-

layer 4 weights also successfully learn the subplate maps. Parameters for the layer 4 equations are: 

A 4( ) = 1, B 4( ) = 6, C 4( ) = 6, D 4( ) = 30, E 4( ) = 30, σ 4 +( ) =
3

4 2
, σ 4−( ) =

3
2

, A 4 z( ) = 0.5, B 4 z( ) = 5 , 

A L 4( ) = 0.25 , and B L 4( ) = 5. 

 

Layer 2/3 Long-Range Connection Development 

The activity of layer 2/3, x ij
3( ), obeys an equation similar to that of the other layers except that 

adaptive horizontal connections also exist:  
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dx ij
3( )

dt
= −A 3( )x ij

3( ) + (B 3( ) − x ij
3( )) Gijuv

3+( ) zuv
3( )Iuv

3( ) + D 3( )F xuv
S( )( )[ ]

uv

∑

−(C 3( ) + x ij
3( )) Gijuv

3−( ) Iuv
3( ) + E 3( )F xuv

S( )( )[ ]
uv

∑
  .                                 (16) 

The habituative transmitters, z ij
3( ), prevent the earliest cells that learn from persistently dominating 

network dynamics: 

dz ij
3( )

dt
= A 3z( )(1− zij

3( )) − B 3z( )zij
3( ) Iij

3( )( )2
.                  (17) 

Here these transmitters gate the horizontal connections, Iij
3( ), to each layer 2/3 cell from other layer 

2/3 cells: 

Iij
3( ) = F xuv

3( )( )wuvij
3( )

uv
∑ .                               (18) 

An instar learning law is used to compute the adaptive weights, wuvij
3( ) , between layer 2/3 cells: 

dwuvij
3( )

dt
= A 3 w( )F x ij

3( )( )F xuv
3( )( )− wuvij

3( )[ ] .                                         (19) 

The spatial extent of horizontal connections in layer 2/3 is limited for computational efficiency. 

Thus (19) holds if u2 + v 2 ≤ 144 ; otherwise, wuvij
3( ) = 0.  

In layer 2/3, the only feedforward source of input, F xuv
S( )( ), is from the subplate. The lateral 

weights, wuvij
3( ) , start with values of zero and the correlations in the input from the subplate guide the 

outgrowth of connections layer 2/3 connections. As these connections develop, recurrent bursts of 

activity become common in this layer, as found in vivo (Welikey and Katz, 1999). Parameters for 

the layer 2/3 equations are: A 3( ) = 1, B 3( ) = 10, C 3( ) =10, D 3( ) =10 , E 3( ) = 10, σ 3+( ) = 2 , 

σ 3−( ) = 2 2 , Γ 3( ) = 0.01, A 3 z( ) = 0.05 , B 3z( ) = 0.5, and A 3w( ) = 0.01. 

 

Layer 6 

The activity of layer 6, x ij
6( ), obeys an equation similar to that of layer 4:  

dx ij
6( )

dt
= −A 6( )x ij

6( ) + (B 6( ) − x ij
6( )) Gijuv

6 +( )zuv
6( ) Iuv

6( ) + D 6( ) F xuv
S( )( )+ F xuv

6( )( )( )[ ]
uv

∑

−(C 6( ) + x ij
6( )) Gijuv

6−( ) Iuv
6( ) + E 6( ) F xuv

S( )( )+ F xuv
6( )( )( )[ ]

uv

∑
 .                      (20) 
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The habituative transmitters, z ij
6( ), prevent the earliest cells that learn from persistently dominating 

network dynamics: 

dz ij
6( )

dt
= A 6z( ) 1− zij

6( )( )− B 6 z( )zij
6( ) Iij

6( ) + D 6( ) F x ij
6( )( )+ F x ij

S( )( )( )[ ]2
.                                         (21) 

The input, Iij
6( ), to layer 6 from the LGN is computed by gating bottom-up LGN signals, T xuvl

L( )( ), 

with adaptive weights, wuvlij
L6( ), before summing them across all LGN cell positions (u,v) and layers l 

(ON, OFF, contralateral, ipsilateral): 

Iij
6( ) = T xuvl

L( )( )wuvlij
L 6( )

uvl
∑  .                                         (22) 

As with the LGN to layer 4 weights, the adaptive weights, wuvlij
L6( ), from the LGN to layer 6 are 

computed by an instar learning law, which conserves the total output from each LGN cell:     

dwuvlij
L 6( )

dt
= A L6( )F x ij

6( )( )T xuvl
L( )( ) B L 6( ) − wpqrij

L 6( )

pqr

∑
 

 
  

 

 
  − wuvlij

L6( ) T x pqr
L( )( )

pqr≠uvl

∑
 

 
 
 

 

 
 
 
 .                        (23) 

The spatial extent of LGN inputs to each layer 6 cell is limited to a circular region for 

computational efficiency. Thus (23) holds if u2 + v 2 ≤16; otherwise, wuvlij
L 6( ) = 0 . 

Top-down adaptive weights, wuvijl
6L( ), from layer 6 to the LGN are learned using an outstar 

learning law: 

dwuvijl
6 L( )

dt
= A 6L( )F xuv

6( )( )T x ijl
L( )( )− wuvijl

6L( )[ ].                                                          (24) 

Parameters for the layer 6 equations are: A 6( ) = 1, B 6( ) = 6 , C 6( ) = 6, D 6( ) = 30, E 6( ) = 30, 

σ 6+( ) =
3

4 2
, σ 6−( ) =

3
2

, Γ 6( ) = 0.001, A 6 z( ) = 0.5 , B 6z( ) = 5, A L 6( ) = 0.25, B L 6( ) = 5 , and 

A 6L( ) = 0.25. 

 

Development of Interlaminar Connections  

Interlaminar connections from layer 4-to-2/3, wuvij
43( ), and from layer 6-to-4, wuvij

64( ), are 

developed in the final set of simulations. The layer 6-to-4 weights, wuvij
64( ), and the layer 4-to-2/3 

weights, wuvij
43( ), are both computed by instar learning laws: 

dwuvij
64( )

dt
= A 64( )F x ij

4( )( )F xuv
6( )( )− wuvij

64( )[ ]                                                 (25) 
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and 

dwuvij
43( )

dt
= A 43( )F x ij

3( )( )F xuv
4( )( )− wuvij

43( )[ ].                                     (26) 

These simulations are run in two stages. First, the interlaminar connections are developed guided by 

the subplate activity. For these simulations, F xuv
6( )( )wijluv

6L( ) + F xuv
S( )( )w ijluv

SL( )( ) replaces F xuv
S( )( )w ijluv

SL( ) in 

(4), F xuv
S( )( )+ F xuv

6( )( )wuvij
64( )

uv

∑
 

 
 

 

 
  replaces F xuv

S( )( ) in (12) and (13), and F xuv
S( )( )+ F xuv

3( )( )wuvij
43( )

uv

∑
 

 
 

 

 
  

replaces F xuv
S( )( ) in (16). Once the interlaminar connections partially develop, the model subplate is 

removed and simulations demonstrate that the network remains stable. Explicitly, F xuv
S( )( )w ijluv

SL( ) is 

removed from (4), F xuv
S( )( ) is removed from (12) and (13), and F xuv

S( )( ) is removed from (16). 

Parameters are: A 43( ) = 0.01 and A 64( ) = 0.01. 

 

 

 

 

 

 

 

 


