
CAS/CNS TR-2009-006 Self-Supervised ARTMAP 1

Self-Supervised ARTMAP

Gregory P. Amis and Gail A. Carpenter

Department of Cognitive and Neural Systems
Boston University
677 Beacon Street

Boston, MA, 02215

[gamis, gail] @cns.bu.edu

May, 2009

Neural Networks, in press.

Technical Report CAS/CNS TR-2009-006
Boston, MA: Boston University

Acknowledgements: This research was supported by the SyNAPSE program of the Defense
Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA
prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under
DARPA prime contract HR0011-09-C-0001) and by CELEST, an NSF Science of Learning
Center (SBE-0354378).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 2

Self-Supervised ARTMAP

Abstract: Computational models of learning typically train on labeled input patterns (supervised
learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semi-
supervised learning). In each case input patterns have a fixed number of features throughout
training and testing. Human and machine learning contexts present additional opportunities for
expanding incomplete knowledge from formal training, via self-directed learning that
incorporates features not previously experienced. This article defines a new self-supervised
learning paradigm to address these richer learning contexts, introducing a neural network called
self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled
patterns with some features), knowledge from the environment (unlabeled patterns with more
features), and knowledge from internal model activation (self-labeled patterns). Self-supervised
ARTMAP learns about novel features from unlabeled patterns without destroying partial
knowledge previously acquired from labeled patterns. A category selection function bases
system predictions on known features, and distributed network activation scales unlabeled
learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on
novel features and confident predictions, defining classification boundaries that were ambiguous
in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative low-
dimensional problems and on high-dimensional benchmarks. Model code and benchmark data
are available from: http://techlab.bu.edu/SSART/.

Keywords: Self-supervised learning, supervised learning, Adaptive Resonance Theory (ART),
ARTMAP, unsupervised learning, machine learning

1. Supervised, unsupervised, semi-supervised, and self-supervised learning

Computational models of supervised pattern recognition typically utilize two learning phases.
During an initial training phase, input patterns, described as values of a fixed set of features, are
presented along with output class labels or patterns. During a subsequent testing phase, the
model generates output predictions for unlabeled inputs, while no further learning takes place.

Although the supervised learning paradigm has been successfully applied for a wide variety of
applications, it does not reflect many natural learning situations. Humans do learn from explicit
training, as from a textbook or a teacher, and they do take tests. However, students do not stop
learning when they leave the classroom. Rather, they continue to learn from experience,
incorporating not only more information but new types of information, all the while building on
their earlier classroom knowledge. The self-supervised learning system introduced here models
such life-long experiences.

An unsupervised learning system clusters unlabeled input patterns. Semi-supervised systems
(Chapelle, Schölkopf, & Zien, 2006) learn from unlabeled as well as labeled inputs during
training. The self-supervised paradigm models two learning stages. During Stage 1 learning, the
system receives all output labels, but only a subset of possible feature values for each input.
During Stage 2 learning, the system receives all feature values for each input, but no output

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 3

labels (Table 1).

Table 1

Learning paradigms

Paradigm

Learning

Training set

No learning

Test set

Input features Output labels

Supervised All All
All input

features

All output

labels

Semi-supervised Stage 1 All All

Stage 2 All None

Self-supervised

New definition

Stage 1 Some All

Stage 2 All None

Unsupervised All None

Preparing students for a lifetime of independent learning has always been a primary principle of
good education. As described by Stephen Krashen, an expert in second language acquisition:

An autonomous acquirer is not a perfect speaker of the second language, just good
enough to continue to improve without us. This is, of course, the goal of all
education – not to produce masters but to allow people to begin work in their
profession and to continue to grow. (Krashen, 2004, p. 6)

Self-supervised learning models the continuing growth of the autonomous acquirer. By analogy
with Stage 1 learning, a medical student may, for example, initially learn to treat diseases from
case studies with clear diagnoses for a small sample of patients using a limited number of
specified features such as major symptoms and test results. Later in practice (Stage 2), the
doctor, no longer supervised, diagnoses patients with myriad symptoms, test results, and contexts
that were not fully specified during training. The doctor not only successfully treats under these
enhanced circumstances but also learns from the experiences.

In addition to modeling the human learning experience, self-supervised learning promises to be
useful for technological applications such as web page classification. A supervised learning
system that completes all training before making test predictions does not adapt to new
information and varying contexts. An adaptive system that continues to learn unsupervised
during testing risks degrading its supervised knowledge. The self-supervised learning system

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 4

developed here continues to learn from new experiences without, in most cases, degrading
performance.

2. A computational example of self-supervised learning

A simplified medical diagnosis example

(Figure 1) illustrates the dynamics of the self-supervised

learning model. The problem is to identify exemplars as belonging to the output class normal or
hypothermic or septic, given the input feature values temperature and shock. During Stage 1
learning, class labels are paired with inputs that specify only the feature temperature (Figure 1a).
The system models incremental online learning that addresses just one case at a time. Projected
onto the temperature axis, classes overlap, and, even with a large training set, optimal test
accuracy is 65%. Although extreme temperatures unambiguously indicate hypothermic or septic,
these class labels are densely mixed with normal at moderately low and moderately high
temperatures.

During Stage 2 self-supervised learning, inputs specify both temperature and shock, but no class
labels are provided (Figure 1b). The self-supervised learning system has an opportunity to
incorporate shock information, but needs to be designed in such a way that it does not degrade
the partial knowledge that it gained during Stage 1 learning.

Figure 1c illustrates results of a typical self-supervised learning simulation. Following Stage 1,
where only one input feature (temperature) was available, the model attains a near-optimal test
accuracy of 65%. During slow self-supervised Stage 2 learning on unlabeled (but fully featured)
inputs, the model adds novel shock information to Stage 1 temperature knowledge. After 5,000
Stage 2 learning samples, the test set is labeled with 100% accuracy.

3. ART and ARTMAP

The self-supervised learning system of Figure 1 is based on Adaptive Resonance Theory (ART).
ART neural networks model real-time prediction, search, learning, and recognition. Design
principles derived from scientific analyses and design constraints imposed by targeted
applications have jointly guided the development of many variants of the basic supervised
learning ARTMAP networks, including fuzzy ARTMAP (Carpenter, Grossberg, Markuzon,
Reynolds, & Rosen, 1992), ARTMAP-IC (Carpenter & Markuzon, 1998), and Gaussian
ARTMAP (Williamson, 1998). A defining characteristic of various ARTMAP systems is the
nature of their internal code representations. Early ARTMAP networks, including fuzzy
ARTMAP, employed winner-take-all coding, whereby each input activates a single category
node during both training and testing. When a node is first activated during training, it is mapped
to its designated output class.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 5

sh
o

ck

Figure 1. Simplified medical diagnosis example. (a) During Stage 1 self-supervised
learning, each input, specified only by its temperature value, is paired with one of three
output classes. (b) During Stage 2 learning, both input features but no class labels are
specified. (c) Test predictions during a typical self-supervised model simulation trial.
During Stage 1, test accuracy reaches an optimal 65% after 28 training points. Further
learning attempts to correct errors in regions of overlap but does not improve test
accuracy. The Stage 1 figure is the result of training on 50 points. Performance steadily
improves during Stage 2 self-supervised learning, with most system updates occurring
on unambiguous inputs, either at extreme temperatures, which clearly indicate
hypothermic or septic, or at moderate temperatures, which indicate normal.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 6

Starting with ART-EMAP (Carpenter & Ross, 1995), ARTMAP systems have used distributed
coding during testing, which typically improves predictive accuracy while avoiding the
computational challenges inherent in the use of distributed code representations during training.
In order meet these challenges, distributed ARTMAP (Carpenter, 1997; Carpenter, Milenova, &
Noeske, 1998) introduces a new network configuration and new learning laws that realize stable
fast learning with distributed coding during both training and testing.

Comparative analysis of the performance of ARTMAP systems on a variety of benchmark
problems has led to the identification of a default ARTMAP network (Carpenter, 2003; Amis &
Carpenter, 2007), which features simplicity of design and robust performance in many
application domains (http://techlab.bu.edu/). Default ARTMAP employs winner-take-all coding
during training and distributed coding during testing within a distributed ARTMAP network
architecture. During Stage 1, when the system can incorporate externally specified output labels
with confidence, self-supervised ARTMAP (SS ARTMAP) employs winner-take-all coding and
fast learning. During Stage 2, when the network internally generates its own output labels, codes
are distributed and learning is slow, so that incorrect hypotheses do not abruptly override Stage 1
“classroom learning.”

Sections 3.1 – 3.4 introduce the key ARTMAP computations that are implemented in the
SS ARTMAP architecture.

3.1. Complement coding: Learning both absent and present features

Unsupervised ART and supervised ARTMAP networks employ a preprocessing step called
complement coding (Carpenter, Grossberg, & Rosen, 1991). When the learning system is
presented with a set of input features a ≡ a1...ai ...aM(), complement coding doubles the number

of input components, presenting to the network both the original feature vector and its
complement.

Complement coding allows a learning system to encode features that are consistently absent on
an equal basis with features that are consistently present. Features that are sometimes absent and
sometimes present when a given category is being learned become regarded as uninformative
with respect to that category.

To implement complement coding, component activities ia of an M-dimensional feature vector a

are scaled so that 0 1ia≤ ≤ . For each feature i, the ON activity

a

i() determines the

complementary OFF activity ()1 ia− . Both a and its complement a
c are concatenated to form

the 2M-dimensional system input vector

A = a ac() (Figure 2). Subsequent network

computations operate in this 2M-dimensional input space, which may be interpreted as
representing ON-channel and OFF-channel dynamics.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 7

Figure 2. Complement coding transforms an M-dimensional feature vector a into a 2M-
dimensional system input vector A. A complement-coded system input represents both
the degree to which a feature i is present ai() and the degree to which that feature is

absent 1− ai().

3.2. ARTMAP search and match tracking

Matching bottom-up inputs against top-down expectations is a fundamental computation of all
ART networks. The ART matching process triggers either learning or a parallel memory search
(Figure 3). If search ends at an established code, the memory representation may either remain
the same or delete mismatched portions of the current input. While this dynamic applies to
arbitrarily distributed activation patterns, the F2 code will be described here as a single category
node in a winner-take-all system.

Before ARTMAP makes a class prediction, the bottom-up input A is matched against the top-
down learned expectation that is read out by the active node (Figure 3b). The matching criterion
is set by a parameter ρ called vigilance. Low vigilance permits the learning of abstract
prototype-like patterns, while high vigilance requires the learning of specific exemplar-like
patterns. When an input arrives, vigilance equals a baseline level ρ . Baseline vigilance is set
equal to zero by default, in order to maximize generalization. Vigilance rises only after the
system has made a predictive error. The internal control process that determines how far ρ must
rise in order to correct the error is called match tracking (Carpenter, Grossberg, & Reynolds,
1991). As vigilance rises, the network is required to pay more attention to how well top-down
expectations match the current bottom-up input.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 8

Figure 3. A fuzzy ART search cycle (Carpenter, Grossberg & Rosen, 1991), with a
distributed ART network configuration (Carpenter, 1997). The ART 1 search cycle
(Carpenter & Grossberg, 1987) is the same, but allows only binary inputs and did not
originally feature complement coding. The match field F1 represents the matched
activation pattern x = A ∧ w

J
, where ∧ denotes the component-wise minimum, or

fuzzy intersection, between the bottom-up input A and the winner-take-all top-down
expectation wJ

. If the matched pattern fails to meet the matching criterion, then the

active code is reset at F2, and the system searches for another code y that better
represents the input. The match / mismatch decision is made in the ART orienting
system. Each component of the input pattern A excites the orienting system with gain
equal to the vigilance parameter ρ . Hence, with complement coding, the total excitatory

input is
2

1

M

i
i

A Mρ ρ ρ
=

= =∑A . Active cells in the matched pattern x inhibit the orienting

system, leading to a total inhibitory input equal to
2

1

M

i
i

x
=

− = −∑x . If 0ρ − ≤A x , then

the orienting system remains quiet, allowing resonance and learning to occur. If
0ρ − >A x , then the reset signal r = 1, initiating search for a better matching code.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 9

Match tracking forces an ARTMAP system not only to reset its mistakes, but to learn from them.
With match tracking and fast learning, each ARTMAP network passes the Next Input Test,
which requires that, if a training input were re-presented immediately after its learning trial, it
would directly activate the correct output class, with neither predictive errors nor search. While
match tracking guarantees that a winner-take-all network passes the Next Input Test, it does not
also guarantee that a distributed prediction, such as those made during default ARTMAP testing,
would pass the Next Input Test. A training step added to default ARTMAP 2 does provide such a
guarantee (Amis & Carpenter, 2007).

Match tracking simultaneously implements the design goals of maximizing generalization and
minimizing predictive error, without requiring the choice of a fixed matching criterion.
ARTMAP memories thereby include both broad and specific pattern classes, with the latter
formed as exceptions to the more general “rules” defined by the former. ARTMAP learning
typically produces a wide variety of such mixtures, whose exact composition depends upon the
order of training exemplar presentation.

Activity x at the ART field F1 continuously computes the match between the field’s bottom-up
and top-down input patterns. The reset signal r shuts off the active F2 node J when x fails to meet
the matching criterion determined by the value of the vigilance parameter ρ . Reset alone does
not, however, trigger a search for a different F2 node: unless the prior activation has left an
enduring trace within the F0-to-F2 subsystem, the network will simply reactivate the same node
as before. As modeled in ART 3 (Carpenter & Grossberg, 1990), biasing the bottom-up input to
the coding field F2 to favor previously inactive nodes implements search by allowing the
network to activate a new node in response to a reset signal. The ART 3 search mechanism
defines a medium-term memory in the F0-to-F2 adaptive filter which biases the system against
rechoosing a node that had just produced a reset.

3.3. Committed nodes and uncommitted nodes

With winner-take-all ARTMAP fast learning, a node J becomes committed the first time it is
activated. The weight vector wJ converges to the input A, and node J is permanently linked to
the current output.

Unless they have already activated all their coding nodes, ART systems contain a reserve of
nodes that have never been activated, with weights at their initial values. These uncommitted
nodes receive bottom-up inputs and compete on an equal footing with the previously activated
nodes. Any input may then choose an uncommitted node over poorly matched committed nodes
(Figure 4).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 10

Figure 4. The ART choice function Tj specifies the total signal that the complement-

coded input A sends to the F2 node j , where α is a small parameter. The fuzzy
intersection A ∧ w j represents the match between A and the weight vector w j , where

∧ denotes the component-wise minimum of the two vectors. Uncommitted nodes have

never won an F2 competition. Their weights still equal their initial values wij = 1(), plus

small variations that serve to break ties with winner-take-all coding. In ARTMAP
networks, a node is linked to the output class of the first input that activates it, while
uncommitted nodes are linked to all possible output classes.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 11

An ARTMAP design constraint specifies that an active uncommitted node should not reset itself.
Weights begin with all wij = 1 . Since 0 ≤ Ai ≤ 1, when a winner-take-all active node J is

uncommitted, match field activity x = A ∧ wJ = A . In this case, therefore,

ρ A − x = ρ A − A = ρ − 1() A . Thus ρ A − x ≤ 0 and an uncommitted node does not

trigger a reset, provided that ρ ≤ 1. While seemingly mundane, the requirement that an
uncommitted node does not trigger a reset has proven to be a key design constraint across a
variety of ART systems.

3.4. ART geometry

ART long-term memories are visualized as hyper-rectangles called category boxes. The weight
vector wJ is represented geometrically as a box RJ whose ON-channel corner uJ and OFF-
channel corner vJ are, in the format of the complement-coded input vector, defined by

uJ v J
c()≡ wJ where v J

c ≡ 1 − v J (Figure 5a). When a node J is first committed, RJ equals the

point box a.

Figure 5. ART geometry. (a) The weight of a category node J is represented in

complement-coding form as wJ = uJ v J
c(), and the M-dimensional vectors uJ and vJ

define opposite corners of the category box RJ . When M = 2 , the size of RJ equals its

width plus its height. (b) JR ⊕ a is the smallest box that includes JR and a. Its corners

are a ∧ u
J
 and a ∨ v

J
, where ∧ denotes the component-wise minimum of two vectors

and ∨ denotes the component-wise maximum. The active node J resets if
RJ ⊕ a > M 1− ρ(). (c) If RJ ⊕ a ≤ M 1− ρ(), RJ expands toward RJ ⊕ a during

learning.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 12

For fuzzy ART, the choice-by-difference F0 → F2 signal function (Figure 4) is defined as:

 Tj = A ∧ w j + 1− α() M − w j() (1)

(Carpenter & Gjaja, 1994). The function Tj translates to a geometric interpretation of category

choice. The size Rj of box j is defined as the sum of the edge lengths vij − uij()
i =1

M

∑ , which

implies that

 Rj = M − w j .

Rj ⊕ a , defined as the smallest box enclosing both Rj and a (Figure 5b), has size:

 Rj ⊕ a = M − A ∧ w j ,

and the city-block (L1) distance from Rj to a is:

 d Rj ,a()= Rj ⊕ a − Rj = w j − A ∧ w j .

Thus geometrically the choice function is:

 Tj = M − d Rj ,a()− α Rj . (2)

When the choice parameter α is small, maximizing Tj is almost equivalent to minimizing

d Rj ,a(), so an input a activates the node J of the closest category box RJ . In case of a distance

tie, as when a lies in more than one box, the node with the smallest Rj is chosen.

According to the ART vigilance matching criterion, the chosen node J will reset if:
 ρ A − A ∧ wJ = ρM − A ∧ wJ > 0 ,

or, geometrically, if:
 RJ ⊕ a > M 1− ρ().

If node J is not reset, RJ expands toward RJ ⊕ a during learning (Figure 5c). Vigilance thereby
sets an upper bound on the size of RJ , with

 RJ ≤ M 1− ρ()≤ M 1− ρ().

After a fast learning trial, RJ
new = RJ

old ⊕ a .

4. Self-supervised ARTMAP: Geometry

ART weights

w

ij
 initially equal 1. With winner-take-all coding, while the category node J is

active yJ = 1(), bottom-up weights in F0
→ F

2
 paths decrease during learning according to a

version of the instar (Grossberg, 1976) learning law:

Instar

d

dt
w

iJ
= y

J
x

i
− w

iJ()= A
i
∧ w

iJ
− w

iJ()= − w
iJ

− A
i

 
+

= − w
iJ

− A
i() if w

iJ
> A

i

0 otherwise





. (3)

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 13

In equation (3), i = 1...2M and ...[]+
 denotes rectification, with p[]+ ≡ max p,0{ }. Top-down

weights

w

ji
 obey an outstar (Grossberg, 1968) learning law, but with fast learning,

w

ji
= w

ij
.

Recall that, for i = 1...M , Ai

= a
i
 and

w

ij
= u

ij
. Thus by (3), while node J is active, uiJ

 values

decrease during learning according to:

d

dt
u

iJ
= − u

iJ
− a

i
 

+
= − u

iJ
− a

i() if u
iJ

> a
i

0 otherwise





.

Geometrically, uJ moves toward a, subject to the constraints of rectification (Figure 6a).

Figure 6. Geometry of ART learning. (a) During learning, components of the category
box corner uJ

 can only decrease. (b) Similarly, components of the corner v J
 can only

increase during learning.

Also for i = 1...M ,

A

i + M
= 1− a

i() and

w

i + M , j
= 1− v

ij(). Thus while the category node J is

active, viJ
 values increase during learning according to:

d

dt
v

iJ
= a

i
− v

iJ
 

+
= a

i
− v

iJ() if v
iJ

< a
i

0 otherwise





.

Like uJ
, v J

 moves toward a, subject to the constraints of rectification (Figure 6b).

With winner-take-all coding and fast learning, weights converge to their asymptotes on each
input trial. In this case, J →w A when node J is first activated, and J →u a and J →v a .

Thereafter, node J is committed. On subsequent learning trials that activate J (without reset), RJ

expands just enough to incorporate input a (Figure 5c).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 14

Before its first activation, an F2
 category node J is uncommitted and

w

J
= 2M . At the corners

of RJ
, uiJ

= 1 and viJ
= 0 , so uiJ

> v
iJ

 and the category box is inverted (Figure 7a). Formally,

R

J
= v

iJ
− u

iJ()
i =1

M

∑ = M − w
J

= − M

If learning is slow, RJ

 will remain inverted as long as uiJ
> v

iJ
 for at least one feature i

(Figure 7b).

Figure 7. Geometric representations of undercommitted coding nodes. (a) Initially, all
coding weights wiJ

= 1, and each node J is uncommitted. The corresponding category

boxes RJ are inverted. (b) With slow learning, RJ remains inverted in the dimension of an
undercommitted feature i for as long as uiJ

> v
iJ

.

4.1. Undercommitted nodes and features

In order to describe the dynamics of slow self-supervised learning during Stage 2, SS ARTMAP
defines a new node state between uncommitted and committed. During Stage 1 learning, a subset

of feature values i = 1 ... M are specified, while the remaining feature values

i = M + 1() ... M

are unspecified. The new definition supports the description of how features that were
unspecified during Stage 1 are learned during Stage 2.

For a given node J, a feature i that is unspecified is called an uncommitted feature during Stage 1

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 15

learning. Whether or not a feature is specified, all weights obey the same learning law. By
equation (3), the self-supervised learning model hypothesis that weights maintain their initial
values at uncommitted features is equivalent to the hypothesis that Ai

= A
i + M

= 1 for the

unspecified features

i = M + 1() ... M . Note that during Stage 1 learning A is complement coded

only for the specified features i = 1 ... M , and that

A = M + 2 M − M()= 2M − M .

At the start of Stage 2 SS ARTMAP learning, all uiJ

= 1 and viJ
= 0 for features

i = M + 1() ... M . With slow learning, these features do not immediately become fully

committed, which requires that uiJ
≤ v

iJ
 (Figure 5). For as long as iJ iJu v> , i is said to be an

undercommitted feature with respect to node J, and node J is said to be an undercommitted node
if its weight vector has one or more undercommitted features. Figure 8 illustrates the geometry of
Stage 2 learning at undercommitted nodes.

Table 2 summarizes the definitions of feature commitment levels. The degree of feature
undercommitment, defined as

Φ

iJ
= u

iJ
− v

iJ
 

+
,

quantifies the amount of learning needed for node J to become fully committed in feature i. The
average

Φ

J
= 1

M
Φ

iJ
i =1

M

∑

quantifies the degree of undercommitment of node J.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 16

Figure 8. Stage 2 learning on undercommitted nodes activated by input a. (a) With
 M = 2 and M = 1, when an input a first activates node J during Stage 2 learning, this
node is committed in feature i=1 and uncommitted in feature i=2, and the coding box RJ

is inverted in the vertical dimension (dashed lines). During Stage 2, both uJ
 and v J

move toward a, subject to the constraints of rectification. Slow learning contracts RJ

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 17

vertically and expands it horizontally, as uJ
 and v J

 follow the dotted arrows. Fast

learning collapses the inverted box to a line, making node J fully committed. (b) When
input a activates a node J that is undercommitted in both feature i=1 and feature i=2, RJ

is inverted in both dimensions. Slow learning contracts RJ
toward a in both features, and

fast learning collapses the box to a line. (c) When input a activates an inverted box RJ

that contains a, slow learning contracts all sides of RJ
. Fast learning completes the

contraction to a fully committed point box with uJ
 = v J

 = a.

Table 2

Commitment definitions

Uncommitted
feature

 u
iJ

= 1, v
iJ

= 0

w
iJ

+ w
i + M ,J

= 2

Uncommitted node

All features are
uncommitted

 ΦJ
= 1

Undercommitted

feature

 1≥ u
iJ

> v
iJ

≥ 0

2 ≥ w
iJ

+ w
i + M ,J

> 1

Undercommitted node

At least one feature is
undercommitted

 0 < Φ
J

≤ 1

Committed

feature

 u
iJ

≤ v
iJ

0 ≤ w
iJ

+ w
i + M ,J

≤ 1

Committed node

All features are
committed

 ΦJ
= 0

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 18

Recall that

w

J
≡ u

J
,v

J
c(), so:

Φ

J
= 1

M
w

iJ
− w

i + M ,J
c





+

i =1

M

∑ =

1
M

w
iJ

+ w
i + M ,J

− 1





+

i =1

M

∑ . (4)

For an uncommitted node, all wiJ
= 1 and ΦJ

= 1. For a committed node, all uiJ
≤ v

iJ
 and

 ΦJ
= 0 . Once a node J has been activated during Stage 1, features i = 1...M are committed

u

iJ
≤ v

iJ() while features i = M + 1...M remain uncommitted

u

iJ
= 1, v

iJ
= 0(), so

Φ

J
= M − M() M .

5. Distributed Stage 2 learning

SS ARTMAP Stage 2 learning updates weights according to the learning laws of distributed
ART architectures (Carpenter, 1997).

5.1. Distributed ART learning

Distributed ART networks are designed to support stable fast learning with arbitrarily distributed

 F2
 code patterns y. Achieving this computational goal led to the definition of a new unit of

memory, a dynamic weight

y j − τ ij






+
 equal to the degree to which the activity of coding node j

exceeds an adaptive threshold

τ ij . The distributed instar (dInstar) updates the thresholds

τ ij in

bottom-up pathways from

F0 to

F2 , and the distributed outstar (dOutstar) updates thresholds

τ ji in top-down pathways from

F2 to

F1 :

dInstar (bottom-up):

d

dt
τ ij = y j − τ ij







+
− Ai








+

= y j − τ ij − Ai






+
 (5)

dOutstar (top-down):

d

dt
τ ji = y j − τ ji







+
σ i − xi() , where

σ i = yλ − τλi

 
+

λ
∑ (6)

In the dOutstar equation (6), the top-down dynamic weight

y j − τ ji






+
 is proportional to the

input from the

F2 node j to the

F1 node i, and

σ i is the total input from

F2 to node i (Carpenter,

1994). During dOutstar learning, the top-down signal σ i
 tracks

F1 activity

xi , with each

adaptive threshold

τ ji increasing according to the contribution of its dynamic weight to the total

signal, with fast as well as slow learning.

Formally defining the bottom-up weights

wij ≡ 1− τ ij and the top-down weights

wji ≡ 1− τ ji

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 19

transforms equations (5) and (6) to:

dInstar (bottom-up):

d

dt
wij = − y j − 1− wij()− Ai







+

dOutstar (top-down):

d

dt
wji = − y j − 1− wji()





+
σ i − xi() , where

σ i = yλ − 1− wλi()





+

λ
∑

With winner-take-all coding,

y j =

1 if j = J

0 if j ≠ J





In this case, the bottom-up dynamic weight is

y j − τ ij






+
=

1− τ iJ() if j = J

0 if j ≠ J






=

wiJ if j = J

0 if j ≠ J






.

With winner-take-all fast learning, bottom-up and top-down weights are equal. In this case, with

xi = Ai ∧ wiJ when node j=J is active, dInstar and dOutstar equations reduce to an instar learning

law (equation (3)).

Even with fast learning, bottom-up weights of distributed ART do not generally equal top-down
weights. This is because, according to distributed instar learning , a bottom-up weight

wij

depends only on the activity

y j at its target node. In contrast, according to distributed outstar

learning, a top-down weight

wji is a function of the entire active coding pattern y.

SS ARTMAP employs winner-take-all fast learning during Stage 1. Therefore at the start of
Stage 2, bottom-up weights equal top-down weights. During Stage 2 learning, the

F2 code y is

distributed, so bottom-up and top-down weights would diverge. Since top-down weights will not
be used again, they are not computed in the current SS ARTMAP algorithm. Extensions of this
system that alternate between Stage 1 and Stage 2 learning, or that need to compute the bottom-
up/top-down match during Stage 2 or testing, would need to update the top-down weights via
distributed outstar learning during Stage 2.

The dInstar and dOutstar equations are piecewise-linear and can be solved analytically. During
Stage 2 learning, weights are updated according to the dInstar solution:

wij = wij

old − β y j − 1− wij
old()− Ai







+

where 0 < β ≤ 1. With fast learning, β = 1. With slow learning, β is small. Simulations here set

 β = 0.01 for Stage 2 slow learning computations.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 20

5.2. Distributed activation patterns

During SS ARTMAP testing and Stage 2 learning, the

F2 code is distributed, with the activation

pattern y a contrast-enhanced and normalized version of the

F0 → F2 signal pattern T. While the

transformation of T to y is assumed to be realized in a real-time network by a competitive field,
simulations typically approximate competitive dynamics in their steady-state, according to an
algebraic rule. For this purpose, the SS ARTMAP algorithm uses the Increased Gradient
Content-Addressable Memory (IG CAM) Rule, which was developed for distributed ARTMAP
(Carpenter et al., 1998).

The IG CAM Rule features a contrast parameter p. As p increases, the T → y transformation
becomes increasingly sharp, approaching winner-take-all as p → ∞ . SS ARTMAP simulations
set p=2 for distributed activation during Stage 2 and testing. The hypothesis that SS ARTMAP
activation is winner-take-all during Stage 1 learning, when answers are provided, corresponds to
the hypothesis that confidence modulates the competitive field, with high-confidence states
corresponding to large values of the contrast parameter p.

With the IG CAM Rule, if a is in one or more category boxes, activation

y j is distributed among

these nodes, with

y j largest where the boxes

Rj that contain a are smallest. If a is not in any

box,

y j is distributed according to the distance

d Rj ,a(), with

y j largest where a is closest to

Rj .

6. Modifying the choice function for undercommitted coding nodes

During Stage 2, when learning is slow and distributed and inputs a are fully featured, the degree

of undercommitment

Φ

j
 decreases from

1− M M() toward 0 as a coding node j gradually

becomes more committed. Within Stage 2,

Φ

j
values vary across nodes. The ART choice

function

T

j
 as defined by equation (1) would favor more committed nodes to the point that

nodes that became active early in Stage 2 would block learning in all other nodes. Self-
supervised ARTMAP therefore modifies the definition of

T

j
 so that the less committed nodes

are able to compete successfully with the more committed nodes, as follows.

6.1. Balancing committed and undercommitted nodes during Stage 2 learning

Fast-learn winner-take-all ARTMAP networks choose the coding node J that maximizes the
choice-by-difference signal function:

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 21

T

j
= M − w

j
− A ∧ w

j()− α M − w
j() =

M − d R

j
,a()− α R

j

(Figure 4). Since α is small, the choice function

T

j
 favors nodes j whose category boxes

R

j
 are

closest to a. Distance ties are broken in favor of smaller boxes. The example illustrated in
Figure 9 shows that, in a learning system with mixed degrees of coding node commitment, this
signal function also implicitly favors the nodes with greatest commitment. In order to focus on
primary

T

j
 design with respect to the distance from

R

j
 to a, α is temporarily set equal to 0:

T

j
≅

M − d R

j
,a(). (7)

Figure 9 illustrates a hypothetical case such as might occur during Stage 2 self-supervised
learning, when various coding nodes j have different degrees of undercommitment

Φ

j

(equation (4)). In this example, node j=1 is fully committed

Φ

1
= 0(), while node j=2 is still

uncommitted in feature i=2

Φ
2

= 0.5(). If the ARTMAP choice function (equation (7)) were

used, the signal T1
 to the committed node j=1 would be greater than the signal T2

 to the

undercommitted node j=2 for all inputs a, as indicated by the grey area of Figure 9a. This
function excessively favors nodes that happened to become active, and therefore more
committed, early in Stage 2. Many of the Stage 1 nodes would be left permanently inactive,
unable either to contribute to predictions or to learn from Stage 2 experience.

To see why the signal function of Figure 9a favors committed over undercommitted nodes, note
that, for any a at the start of Stage 2, all weights

w

ij
= w

i + M , j
= 1 for features i = M + 1...M .

Thus at this moment,

d R

j
,a()≡ w

j
− A ∧ w

j
= w

ij
− A

i






+

i =1

2M

∑ =

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i()





+





i =1

M

∑ =

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i()





+





i =1

M

∑ + 1− a
i()+ 1− 1− a

i()()()
i = M +1

M

∑ = (8)

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i()





+





i =1

M

∑ + M − M =

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i()





+





i =1

M

∑ + MΦ
j

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 22

Figure 9. Choosing the Stage 2 SS ARTMAP signal function. The coding node j=1,

corresponding to the weight vector

w

1
= 0.5,0.5 0.5,0.5() and the point box R1

, is

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 23

committed

Φ

1
= 0(). The coding node j=2, corresponding to the weight vector

w

2
= 0.3,1 0.7,1() and the inverted box R2

, is undercommitted

Φ
2

= 0.5(). Grey areas

indicate the test points

a = a

1
,a

2() that would activate node j=1 more than node j=2 for

each alternative signal function

T

j
. Term

δ

j
 is the distance from a to

R

j
 in committed

features only. The approximate signal functions set α equal to 0, in order to focus on the
geometry of distance from input a to boxes

R

j
. (a)

T

j
 favors committed over

undercommitted nodes. (b)

T

j
 favors undercommitted over committed nodes. (c)

T

j

strikes a balance between committed and undercommitted nodes.

Table 2 summarizes the definitions of feature commitment levels. The degree of feature
undercommitment, defined as

Φ

iJ
= u

iJ
− v

iJ
 

+
,

quantifies the amount of learning needed for node J to become fully committed in feature i. The
average

Φ

J
= 1

M
Φ

iJ
i =1

M

∑

quantifies the degree of undercommitment of node J.

As long as

w

j
 remains uncommitted in features i = M + 1...M , the term

δ

j
≡ w

ij
− a

i






+
+ w

i + M , j
− 1− a

i()





+





i =1

M

∑

in equation (8) may be interpreted as the distance from a to

R

j
 in the committed features

 i = 1...M . The committed distances δ1
 and δ2

 are illustrated in Figure 9 for the point a =

(0.8,0.8), for which δ1
= 0.6 and δ2

= 0.5. This analysis suggests adding

MΦ

j
 to the signal

function

T

j
= M − δ

j
+ MΦ

j() (equation (7)) in order to favor nodes j that are closest to a in

their committed features. The resulting signal function is then:

T

j
≅

M 1+ Φ

j()− d R
j,
,a()=

M − δ

j

(Figure 9b).

This second strategy raises the concern that a fully committed node with a good match in all
features might lose to a highly undercommitted node with a good match in just one feature. This
concern is validated by noting that

Φ

j
= 1 and

δ

j
= 0 at each uncommitted node j, so that

T

j
= M would be maximal for these nodes, where no learning has ever taken place (Figure 4).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 24

Figure 9c suggests an alternative strategy for biasing

T

j
 in such a way that undercommitted

nodes can compete for Stage 2 activation while respecting the specificity of learning at more
committed nodes. Here,

T

j
≅

M − d R
j
,a()

1− Φ
j() =

M − δ
j
+ MΦ

j()
1− Φ

j() =

M −
δ

j

1− Φ
j().

In Figure 9c, Φ1
= 0 and

T

1
= 2 − δ

1() at the committed node j=1, and Φ2
= 0.5 and

T

2
= 2 − 2δ

1() at the undercommitted node j=2. This third design strategy is implemented in

SS ARTMAP, though the full definition of

T

j
 is perturbed to break distance ties and avoid

division by 0.

6.2. Balancing committed and uncommitted features during Stage 1 learning

Analysis of Stage 2 learning (Figure 9) supports the signal function definition:

Tj =

M − w j − A ∧ w j()
1− γ Φ j

− α M − w j() =

M − d Rj ,a()
1− γ Φ j

− α Rj (9)

where 0 < γ < 1. When a node is committed

Φ j = 0(), the signal function (9) reduces to the

ART choice-by-difference signal function (1). This definition is problematic, however, for
Stage 1 learning. During Stage 1, where only M of the M input features are specified,

Ai =

ai if i=1...M

1− ai() if i= 1+ M()... M + M()
1 otherwise










.

At uncommitted nodes j, all

wij = 1, so

w j = 2M and the degree of undercommitment

Φ j = 1.

Thus if j is an uncommitted node, the denominator in equation (9) equals

1− γ(), which is

typically small. Hence the only way to keep uncommitted nodes from overwhelming the coding
pattern y is to require that the signal function numerator equal 0 when

Φ j = 1. For an

uncommitted node j during Stage 1,

d Rj ,a()= w j − A ∧ w j = 2M − 2M − M()= M .

This analysis suggests that the Stage 2 signal function of equation (9) needs to be modified for
Stage 1 to:

Tj =

M − w j − A ∧ w j()
1− γ Φ j

− α M − w j() =

M − d Rj ,A()
1− γ Φ j

− α Rj (10)

For the Stage 1 signal function (10),

Tj = α M when j is an uncommitted node. For nodes

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 25

 j = 1 ... C which have been chosen at least once during Stage 1,

Φ j = 1− M M(). For these

nodes, the numerator in equation (10) equals

M − δ j() and the denominator is a constant that is

independent of j. Thus, except for distance ties, this signal function would choose the category
node for which a is closest to

Rj in the specified input dimensions i = 1...M during Stage 1

training.

The signal function (10) proposed for Stage 1 and the signal function (9) proposed for Stage 2
are reconciled by noting that

2M − A =

M during Stage 1

M during Stage 2





.

6.3. The self-supervised ARTMAP signal function

A signal function that realizes the computational requirements of SS ARTMAP is:

Tj =

2M − A()− w j − A ∧ w j()
1− γ Φ j

− α M − w j() (11)

where 0 < γ < 1 and α > 0 . Stage 1 specifies only M features of input a, so

A = 2M − M . For

the nodes j = 1...C chosen during Stage 1,

Φ j = 1− M M(). During Stage 2, which specifies all

M features of a,

A = M and

Φ j values slowly decrease toward 0 at active nodes j. Thus for

j = 1...C :

Stage 1

Tj =

M − w j − A ∧ w j()
µ

− α M − w j()=

M − d Rj ,a()
µ

− α Rj (12)

Stage 2

Tj =

M − w j − A ∧ w j()
1− γ Φ j

− α M − w j()=

M − d Rj ,a()
1− γ Φ j

− α Rj (13)

where the denominator

µ ≡ 1− γ 1− M M() is constant throughout Stage 1. During testing,

Tj

is the same as during Stage 2. For each uncommitted node j,

Tj equals the constant αM

throughout Stage 1 and Stage 2 learning, and testing.

7. Self-supervised learning in the medical diagnosis example

The simplified medical diagnosis example (Figure 1) suggests that Stage 2 learning should favor
confident predictions, where category boxes of different classes do not overlap, and produce
little (if any) weight change on low-confidence predictions. Self-supervised ARTMAP
accomplishes this computational goal by reflecting the degree of overlap of category boxes that
contain the input a. Inputs that are in just one box indicate confident class membership and

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 26

produce most of the Stage 2 learning.

Figure 10a illustrates the five category boxes created by the first 28 inputs of Stage 1 learning on
the specified feature i=1 (temperature). At this stage of learning, test accuracy is a near-optimal
65%. Each box

Rj is inverted in the uncommitted feature shock. The hypothermic box

R1

overlaps the normal box

R5 , and the septic box

R2 overlaps both the normal box

R3 and the

septic box

R4 . Continued Stage 1 learning creates three more small boxes within the regions of

overlap.

During Stage 2 self-supervised learning, distributed activation at the coding field F2

 represents

the degree of overlap of category boxes containing the input a. In Figure 10a,

a = 0.12,0.75() is

contained only in R1
, clearly indicating the class hypothermic based on the low value of the

feature temperature alone. During Stage 2, according to the IG CAM Rule, when an input is
inside just one category box RJ

, yJ
≅ 1 and other

y

j
≅ 0 . In this case, distributed ART learning

reduces to winner-take-all learning. Weight changes are then limited to wJ
, with the greatest

changes occurring in components of the previously uncommitted features i = M + 1...M
(Figure 10b).

Input

a = 0.28,0.25() is inside both R1

 and R5
, indicating ambiguity between normal and

hypothermic. During Stage 2, the distributed inputs

T

1
≅ T

5() split the distributed code

y

1
≅ y

5
≅ 0.5(), reducing possible learning in w1

 and w5
. R1

 and R5
 therefore maintain the

balance between their output classes, reflecting low confidence in any prediction in this
temperature range (Figure 10c). The distributed instar and distributed outstar learning laws
(equations (5) and (6)) prevent strong learning on weak predictions, regardless of how often
unlabeled ambiguous points are presented.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 27

Figure 10. Self-supervised Stage 1 and Stage 2 learning. (a) Category boxes created by
the first 28 Stage 1 training points on the simplified medical diagnosis problem

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 28

(Figure 1). Boxes are inverted in the uncommitted feature i=1 (shock), as indicated by the
dashed edges. (b) When the unlabeled point a = (0.12, 0.75) is presented during Stage 2,
it activates only node j=1. During learning,

R1 (hypothermic) contracts toward the high

shock value of this input. (c) When the point a = (0.28, 0.25) is presented during Stage 2,
it activates nodes j=1 and j=5, which share distributed activations, allowing relatively
small weight updates in this case of ambiguous class predictions. All parameter values
are as specified in Table 5, except that the Stage 2 learning rate is uncharacteristically

high

β = 0.5(), which speeds up learning so as to make weight changes visible in this

illustration.

Figure 11 illustrates the result of slow, distributed SS ARTMAP learning at the end of Stage 2.
Driven by strong activations on confident predictions at low temperatures, R1

 (hypothermic)

stabilizes at the top of shock. Similarly, R2
 and R4

 (septic) stabilize at the top of shock. Test

accuracy has improved to nearly 100% and coding nodes j = 1...5 are almost fully committed.
Category boxes do not expand nearly as much as they would in winner-take-all training. Rather,
inputs outside the boxes produce distributed coding field activations, so distributed ART learning
inhibits further weight changes. Stage 2 learning thus converges as the degree of node
undercommitment falls to 0.

Figure 11. SS ARTMAP category boxes at the end of Stage 2 learning on the simplified
medical diagnosis example, with Stage 2 training beginning with the five category boxes

of Figure 10a. After 10,000 training points and slow learning

β = 0.01(), test accuracy is

100%.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 29

8. The Boston satellite imagery testbed

The two-dimensional medical diagnosis problem visually illustrates how SS ARTMAP meets
key challenges presented by self-supervised learning of unlabeled inputs. Higher-dimensional
problems reveal additional challenges. A self-supervised learning benchmark based on the
Boston satellite imagery testbed (Carpenter, Martens, & Ogas, 2005) provides such an example
(Figure 12). The problem requires a system to label pixels as belonging to one of seven classes
(beach, ocean, ice, river, park, residential, industrial) from satellite data for northeast Boston
and suburbs. The testbed is partitioned into four vertical strips (Figure 12a), such that training
and test sets are not only disjoint but drawn from geographically separate locations. The first
Boston self-supervised learning benchmark specifies only the five input features related to blue

image data

M = 5() during Stage 1 training on three strips, and all thirty-eight input features

(M=38) during Stage 2 training and testing on the remaining strip. Cross-validation provides the
total measure of benchmark performance by averaging across four independent simulations, each
using a different strip for Stage 2 training and testing.

The Boston benchmark presents challenges to a self-supervised learning system beyond those of
the two-dimensional example. Because testbed pixels have a 15m resolution, many actually
cover multiple classes. Whereas the labeled training set consists primarily of clear exemplars of
each class, unlabeled Stage 2 pixels are typically mixtures. Many pixels, for example, include
both ice and residential patches. Stage 2 vectors thus mix and distort features from multiple
classes, placing many of the unlabeled feature vectors far from the distinct class clusters of the
Stage 1 training set. As a result, following Stage 1 training, winner-take-all ARTMAP would, for
example, overpredict residential on the self-supervised Boston benchmark by an order of
magnitude. As in Figure 10, distributed Stage 2 activation minimizes the influence of mixed
pixels, so that most learning occurs only on unambiguous cases, despite the fact that the
unlabeled pixels provide no external indices of class ambiguity.

8.1. Boston benchmark self-supervised learning

Each Boston benchmark simulation follows a standardized image cross-validation protocol
(Parsons & Carpenter, 2003). With one strip reserved for testing, up to 250 labeled pixels per
class are selected at random for Stage 1 training. All pixels of the remaining strip are presented
in random order without labels during Stage 2. Testing calculates the accuracy for each class on
this strip, with the overall accuracy set equal to the average of these class-wise percentages. This
performance measure is, like the c-index, independent of the particular class mixture in a given
test set. Each simulation result is the average of the independent accuracies across the four test
strips. This procedure is repeated 500 times, each with a different random Stage 1 pixel selection
and Stage 2 ordering.

The first set of Boston benchmark simulations take the Stage 1 feature vector to be the five input
components related to blue. Self-supervised Stage 2 learning dramatically improves performance
on the Boston benchmark (Figure 13). On every one of the 500 individual simulations, Stage 2
learning improved test accuracy, as unlabeled fully featured inputs consistently expanded

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 30

knowledge from Stage 1 training. Following Stage 1 (dark bars, Figure 13a), the class-based test
accuracy was between 50% and 58% across the 500 simulations. Stage 2 self-supervised
learning, with all 38 features specified, improved accuracy on each simulation to above 70%,
with a mean of 90% (light bars). Figure 13b displays test accuracy on each class for a typical
SS ARTMAP trial. Note, for example, that Stage 2 learning improves accuracy of ice ground-
truth pixels from 0% (Stage 1) to 99%.

Figure 12. The satellite image and labeled ground-truth pixels for the Boston testbed
(http://techlab.bu.edu/classer/data_sets). Only 28,735 of the 216,000 pixels are labeled, of
which only 6,634 represent classes other than ocean. (a) Cross-validation divides the
testbed into four vertical strips. (b) Class distributions vary substantially across strips.
For example, the right-hand strip contains mainly ocean pixels (dark), while the left-hand
strip contains neither ocean nor beach pixels.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 31

Figure 13. ARTMAP performance on the Boston self-supervised learning benchmark.
Stage 1 training specifies class labels and five blue-related features in three strips. Stage 2
training specifies all 38 input features but no class labels for pixels in the remaining strip.
Testing evaluates the performance of the system on fully featured inputs from the fourth
strip. (a) Performance histograms for 500 randomized trials. (b) For one trial, the fraction
of pixels labeled as belonging to a class that were predicted as in that class. Compared to
Stage 1, per-class performance in Stage 2 declined only in classes that had been over-
predicted in Stage 2 (residential, industrial).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 32

Confusion matrices for one of the Boston simulation examples further illustrate the pattern of
Stage 2 performance improvements. Following Stage 1 learning (Figure 14a), SS ARTMAP’s
per-class test accuracy was high for residential and industrial pixels but low for others. For
example, all beach and ice pixels were misclassified as industrial. If the system were to learn on
unlabeled pixels as if its own winner-take-all class predictions were ground-truth labels—the
“self-training” of Chapelle et al. (2006, p. 3)—mistakes on classes like ice would degrade correct
prior knowledge. Instead, distributed activation of SS ARTMAP focuses Stage 2 learning on
confident predictions and novel features, fixing nearly all the incorrect industrial predictions on
the beach and ice pixels while maintaining industrial accuracy (Figure 14b).

Figure 14. Confusion matrices for one self-supervised ARTMAP simulation of the
Boston benchmark. (a) After Stage 1 learning on labeled inputs with the five blue-related
feature values. (b) After Stage 2 learning on inputs with all 38 features but no class
labels.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 33

Table 3 and Figure 15 show SS ARTMAP performance on the Boston benchmark with different
feature subsets selected for Stage 1 training. For the Full or Visible subsets, which specify all or
most of the input features, Stage 1 training produced near-perfect test performance, which was
either unchanged (Full) or slightly harmed (Visible) by Stage 2 self-supervised learning. The
subsets Raw, Blue, and Red-Green specify between five and nine of the input features during
Stage 1 training, where Blue is the feature subset used in Figures 13 and 14. Each of these
training protocols produced Stage 1 test accuracy of about 50%, which improved to about 80-
90% during Stage 2. The remaining two feature subsets specified only one (Raw Blue) or two
(Raw Red-Green) Stage 1 features. Although Stage 1 performance was similar to that of the
Raw, Blue, and Red-Green Subsets, Stage 1 learning did not provide a sufficient foundation on
which SS ARTMAP could build useful additional knowledge during self-supervised Stage 2
learning.

Table 3

Self-supervised Boston benchmark feature subsets specified during Stage 1 training

Subset

name

Number of

features M

Features

Full 38 All features

Visible 26 All features except those related to

infrared and panchromatic bands

Raw 9 Unprocessed features

Blue (B) 5 Features related to blue

Red-green (RG) 7 Features related to red or green

Raw blue 1 Blue

Raw red-green 2 Green, red

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 34

Figure 15. Boston benchmark class-based accuracy after SS ARTMAP Stage 1 (dark
bars) and Stage 2 (light bars) across 50 randomly chosen training sets. Stage 1 feature
subsets are specified in Table 3.

9. Experimental studies of self-supervised learning

Research on aging summarized by Healey, Campbell, and Hasher (2008) supports the basic
SS ARTMAP hypothesis that humans increase the number of attended input features over their
lifetimes. Experiments comparing the reaction times of younger and older subjects show that
older subjects are more easily distracted by task-irrelevant information. For decades these
observations were interpreted negatively, as impairment of older subjects’ ability to ignore
distractors. Recent experiments (Kim, Hasher, & Zacks, 2007) suggest, however, that older
subjects make better use of contextual information when its task relevance is not specified a
priori . Younger subjects show a narrower focus of attention, which improves their performance
on tasks that require ignoring distractors but impairs their performance on tasks for which
peripheral information was, in fact, relevant.

Li and DiCarlo (2008) suggest that self-supervised learning by neurons in the inferotemporal
cortex (ITC) may underlie view-invariant object recognition. A subject sees only one view of an
object when it is paired with a label (Stage 1) but many views of the same object when the
teaching signal is absent (Stage 2). Single-cell recordings in monkey ITC show increases in
neurons’ object selectivity and tolerance to different object orientations and positions as a result
of Stage 2 learning.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 35

Smith and Minda (2000) summarized thirty experiments on human pattern learning and
classification. In each experiment, subjects unlearn in a characteristic way exemplars they had
learned to classify perfectly during training. In Amis, Carpenter, Ersoy, and Grossberg (2009),
ARTMAP simulations fit the experimental data and explain how classification patterns are
learned and forgotten in real time. The model tests two competing hypotheses: (a) that the
observed forgetting is the result of an unsupervised learning process; and (b) that the forgetting is
the result of a corruption of long-term memory (LTM) traces by noise. The noise hypothesis (b)
better fits the data and is also consistent with the mechanisms of self-supervised ARTMAP.
Distributed learning during Stage 2 focuses LTM adaptation on input features whose values were
unspecified during Stage 1. The unsupervised hypothesis (a) is equivalent to Stage 2 learning but
with no novel input features specified, and so not enough additional learning occurs to model the
data.

10. Related models of self-supervised learning

SS ARTMAP introduces a new definition of self-supervised learning: a system trained on
labeled data with limited features continues to learn on an expanded but unlabeled feature set. As
such, no prior work directly addresses this learning paradigm. There are, however, many studies
related to this form of self-supervised learning.

Semi-supervised learning incorporates labeled and unlabeled inputs in its supervised training set,
but unlike self-supervised learning, all inputs have the same number of specified feature values.
Without any novel features from which to learn, semi-supervised learning systems use the
unlabeled data to refine the model parameters defined using the labeled data. Reviews of semi-
supervised learning (Chapelle, Schölkopf, & Zien, 2006; Zhu, 2005) find that its success is
sensitive to underlying data distributions, in particular to whether data cluster or lie on a lower-
dimensional manifold. Typically, models must be carefully selected and tuned for each problem
space, using a priori knowledge of the domain. Chapelle et al. (2006) conclude that none of the
semi-supervised models they reviewed is robust enough to be considered general purpose, and
that semi-supervised learning remains an open problem. The main difficulty is that, whenever the
unlabeled data are different enough from the labeled data to merit learning, it is unclear whether
differences are useful, or whether they are the result of noise or other distortions that would
damage the system’s performance.

Another class of models admits inputs with different numbers of features, but in a different
context than self-supervised ARTMAP learning. These methods assume that feature values are
missing randomly and infrequently, and thus can be filled in based on a statistical analysis of
other exemplars in the training set (Little & Rubin, 2002). Some applications add missing feature
estimates to neural network architectures such as fuzzy ARTMAP (Lim, Leong, & Kuan, 2005)
or multilayer perceptrons (Tresp, Neuneier, & Ahmad, 1995). Whereas feature estimates can
succeed for problems with stationary statistics and redundant training data, challenging problems
risk inappropriate learning on filled-in values. For this reason, exemplars with missing feature
values are often excluded from the training set. In many situations, however, data points for an

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 36

entire cluster, class, or dataset have a common set of unspecified feature values. Structurally
missing features are either ignored or substituted, and typical solutions are specific to a particular
model architecture. For example, Chechik, Heitz, Elidan, Abbeel, and Koller (2008) created a
support vector machine (SVM) that redefines the margin maximization objective to ignore
unspecified feature values. Ishibuchi, Miyazaki, Kwon, and Tanaka (1993) modified a multilayer
perceptron such that hidden layer nodes track feature value intervals rather than scalar values,
representing a missing feature value as the interval [0,1].

11. Conclusion

Self-supervised ARTMAP defines a novel problem space that may be tested on almost any
existing dataset designed for supervised learning. The system learns during an initial “textbook”
supervised learning phase that is followed by a “real world” unsupervised learning phase. The
novel aspect of the SS ARTMAP learning protocol is that inputs of the second, self-supervised
phase specify more features than did the labeled inputs of the first phase. The expanded feature
set provides to a learning system the capacity to teach the network important new information, so
that accuracy may improve dramatically compared to that of the initial trained system, while
avoiding performance deterioration from unlabeled data. New problem domains include
applications in which a trained system performs in novel contexts, such as an image recognition
problem in which an initial set of sensor data is later augmented on-line with unlabeled data from
a new sensor.

Acknowledgements

This research was supported by the SyNAPSE program of the Defense Advanced Projects

Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract
HR0011-09-3-0001; and HRL Laboratories LLC, subcontract #801881-BS under DARPA
prime contract HR0011-09-C-0001) and by CELEST, an NSF Science of Learning Center
(SBE-0354378).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 37

References

Amis, G.P., & Carpenter, G.A. (2007). Default ARTMAP 2. Proceedings of the International

Joint Conference on Neural Networks (IJCNN’07 – Orlando, Florida), 777-782.
 http://techlab.bu.edu/members/gail/articles/152_Default_ARTMAP2_2007_.pdf

Amis, G.P., Carpenter, G.A., Ersoy, B., & Grossberg, S. (2009). Cortical learning of recognition

categories: a resolution of the exemplar vs. prototype debate. Technical Report, CAS/CNS
TR-2009-002, Boston, MA: Boston University.

Carpenter, G.A. (1994). A distributed outstar network for spatial pattern learning. Neural

Networks, 7, 159-168.
 http://techlab.bu.edu/members/gail/articles/083_dOutstar_1994_.pdf

Carpenter G. A. (1997). Distributed learning, recognition, and prediction by ART and ARTMAP

neural networks. Neural Networks, 10, 1473–1494.
 http://techlab.bu.edu/members/gail/articles/115_dART_NN_1997_.pdf

Carpenter, G. A. (2003). Default ARTMAP. Proceedings of the international joint conference on

neural networks (IJCNN’03), 1396–1401.
 http://techlab.bu.edu/members.gail/articles/142_Default_ARTMAP_2003_.pdf

Carpenter, G.A., & Gjaja, M.N. (1994). Fuzzy ART choice functions. Proceedings of the World

Congress on Neural Networks (WCNN-94), Hillsdale, NJ: Lawrence Erlbaum Associates,
I-713-722. http://techlab.bu.edu/files/resources/articles_cns/CarpenterGjaja1994.pdf

Carpenter G. A., & Grossberg S. (1987). A massively parallel architecture for a self-organizing

neural pattern recognition machine. Computer Vision, Graphics, and Image Processing,
37, 54–115. http://techlab.bu.edu/members/gail/articles/026_ART_1_CVGIP_1987.pdf

Carpenter, G. A., & Grossberg, S. (1990). ART 3: Hierarchical search using chemical

transmitters in self-organizing pattern recognition architectures. Neural Networks, 4, 129-
152. http://techlab.bu.edu/members/gail/articles/042_ART_3_1990_.pdf

Carpenter G. A., Grossberg S., Markuzon N., Reynolds J. H., & Rosen D. B. (1992). Fuzzy

ARTMAP: A neural network architecture for incremental supervised learning of analog
multidimensional maps. IEEE Transactions on Neural Networks, 3, 698–713.

 http://techlab.bu.edu/members/gail/articles/070_Fuzzy_ARTMAP_1992_.pdf

Carpenter G. A., Grossberg S., & Reynolds J. H. (1991a). ARTMAP: Supervised real-time

learning and classification of nonstationary data by a self-organizing neural network.
Neural Networks, 4, 565–588.

 http://techlab.bu.edu/members/gail/articles/054_ARTMAP_1991_.pdf

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 38

Carpenter, G. A., Grossberg S., & Rosen D. B. (1991b). Fuzzy ART: Fast stable learning and

categorization of analog patterns by an adaptive resonance system. Neural Networks, 4,
759–771. http://techlab.bu.edu/members/gail/articles/056_Fuzzy_ART_1991_.pdf

Carpenter, G.A., & N. Markuzon, N. (1998). ARTMAP-IC and medical diagnosis: Instance

counting and inconsistent cases. Neural Networks, 11, 323-336.
 http://techlab.bu.edu/members/gail/articles/117_ARTMAP-IC_1998_.pdf

Carpenter, G.A., Martens, S., & Ogas, O.J. (2005). Self-organizing information fusion and

hierarchical knowledge discovery: a new framework using ARTMAP neural networks.
Neural Networks, 18, 287-295.

 http://techlab.bu.edu/members/gail/articles/148_2005_InfoFusion_CarpenterMartensOgas_.pdf

Carpenter, G.A., Milenova, B.L., & Noeske, B.W. (1998). Distributed ARTMAP: a neural

network for fast distributed supervised learning. Neural Networks, 11, 793-813.
 http://techlab.bu.edu/members/gail/articles/120_dARTMAP_1998_.pdf

Carpenter. G.A., & Ross, W.D. (1995). ART-EMAP: A neural network architecture for object

recognition by evidence accumulation. IEEE Transactions on Neural Networks, 6,
805-818, 1995. http://techlab.bu.edu/members/gail/articles/097_ART-EMAP_1995_.pdf

Chapelle, O., Schölkopf, B., & Zien, A. (Eds.). (2006). Semi-supervised learning. Cambridge,

MA: MIT Press.

Chechik, G., Heitz, G., Elidan, G., Abbeel, P., & Koller, D. (2008). Max Margin classification of

incomplete data. Journal of Machine Learning Research, 9, 1-21.
 http://portal.acm.org/citation.cfm?id=1390681.1390682

Grossberg, S. (1968). Some nonlinear networks capable of learning a spatial pattern of arbitrary

complexity. Proceedings of the National Academy of Sciences, 59, 368-372.
 http://cns.bu.edu/~steve/Gro1968PNAS59.pdf

Grossberg, S. (1976). Adaptive pattern classification and universal recoding. I: Parallel

development and coding of neural feature detectors. Biological Cybernetics, 23, 121-134.
 http://cns.bu.edu/~steve/Gro1976BiolCyb_I.pdf

Healey, M.K., Campbell, K.L., & Hasher, L. (2008). Cognitive aging and increased

distractibility: costs and potential benefits. In W.S. Sossin, J.-C. Lacaille, V.F.
Castellucci, & S. Belleville (Eds.), Progress in Brain Research, 129, 353-363.

 http://www.ncbi.nlm.nih.gov/pubmed/18394486

Ishibuchi, H., Miyazaki, A., Kwon, K., & Tanaka, H. (1993). Learning from incomplete training

data with missing values and medical application. Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN’93), 1871-1874.

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=717020

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 39

Kim, S., Hasher, K., & Zacks, R.T. (2007). Aging and a benefit of distractibility. Psychonomic

Bulletin and Review. 14, 301-305.
 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2121579

Krashen, S. (2004, November). Applying the comprehension hypothesis: Some suggestions.

Presented at 13th International Symposium and Book Fair on Language Teaching
(English Teachers Association of the Republic of China), Taipei, Taiwan.

 http://www.sdkrashen.com/articles/eta_paper/

Li, N., & DiCarlo, J.J. (2008). Unsupervised natural experience rapidly alters invariant object

representation in visual cortex. Science, 321(5895), 1502-1507.
 http://www.sciencemag.org/cgi/content/abstract/321/5895/1502

Lim, C., Leong, J., & Kuan, M. (2005). A hybrid neural network system for pattern classification

tasks with missing features. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(4), 648-653.

 http://www2.computer.org/portal/web/csdl/doi/10.1109/TPAMI.2005.64

Little, R., & Rubin, D. (2002). Statistical analysis with missing data (2nd Ed.). New York: Wiley

Interscience.

Parsons, O., & Carpenter, G. A. (2003). ARTMAP neural networks for information fusion and

data mining: map production and target recognition methodologies. Neural Networks, 16,
1075-1089.
http://techlab.bu.edu/members/gail/articles/143_ARTMAP_map_NN_2003_.pdf

Smith, J.D., & Minda, J.P. (2000). Thirty categorization results in search of a model. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 26, 3-27.

Tresp, V., Neuneier, R., & Ahmad, S. (1995). Efficient methods for dealing with missing data in

supervised learning. Proceedings of Advances in Neural Information Processing Systems
(NIPS), 7, 689-696.

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.6142&rep=rep1&type=pdf

Williamson, J.R. (1996). Gaussian ARTMAP: A neural network for fast incremental learning of

noisy multidimensional maps. Neural Networks, 9(5), 881-897.
 http://techlab.bu.edu/files/resources/articles_tt/Gaussian%20ARTMAP,%20A%20neural

%20network%20for%20past%20incremental%20learning%20of%20noisy%20multidime
nsional%20maps.pdf

Zhu, X. (2005). Semi-supervised learning literature survey. Technical Report 1530, Computer

Sciences, University of Wisconsin-Madison. Updated July 19, 2008.
 http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 40

Appendix A

Self-supervised ARTMAP algorithm

Figure 16 and Table 4 summarize self-supervised ARTMAP notation, and Table 5 lists default
parameter values.

Figure 16. Self-Supervised ARTMAP network.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 41

Table 4

Self-Supervised ARTMAP Notation

Notation Description

i input component index

j coding node index

k output class index

M number of input features specified during Stage 2 learning and testing

 M number of features specified during Stage1 learning, M ≤ M

a feature vector

a

i(), 0 ≤ a
i

≤ 1, i = 1,…,M

A complement coded input vector (Ai), i = 1,…,2M

K actual output class for an input

K' predicted output class

J chosen coding node (winner-take-all)

C number of activated coding nodes

ΛΛΛΛ , ′ΛΛΛΛ coding node index subsets

Tj signal from input field to coding node j

y coding field activation pattern (yj)

 σ i
 signal from coding field to match field node i

kσ signal from coding field to output node k

w

ij

 F0
→ F

2
 bottom-up weights from input node i to coding node j

w

ji

 F2
→ F

1
 top-down weights from coding node j to match field node i

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 42

jΦ degree of undercommitment of coding node j

jκ output class associated with coding node j

ρ vigilance variable

∧ component-wise minimum (fuzzy intersection): () { }min ,i ii
p q∧ =p q

∨ component-wise maximum (fuzzy union):

p ∨ q()

i
= max p

i
, q

i{ }

⋅ vector size (L1
-norm): ii

p≡∑p

 []+⋅ rectification: [] { }max , 0p p+ =

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 43

Table 5

Self-supervised ARTMAP parameters

Name Para-
meter

Range Default
value

Value for
Boston

benchmark

Notes

signal rule parameter α ()0,1 0.01 0.01 0α += maximizes
code compression

Stage 1
learning fraction

β (]0,1 1.0 1.0 1β = implements
fast learning

Stage 2
learning fraction

β []0,1 0.01 0.01

signal rule
undercommitment
factor

γ

0,1− α( 1− α 1− α

Setting

γ ≤ 1− α()

ensures that

T

j
≤ M for

the IG CAM Rule

match tracking
parameter

ε ()1,1− -0.01 -0.01 0ε < (MT–) codes
inconsistent cases

baseline vigilance ρ []0,1 0.0 0.0 0ρ = maximizes
code compression

CAM rule power
Stage 2 & testing

p

0,∞( 2 2

IG CAM Rule converges
to winner-take-all
as p → ∞

Stage 1 training
epochs

E 1≥ 1 1 1E = simulates
on-line learning

Stage 2 training
epochs E 1≥ 1 2

voting systems V 1≥ 5 5

cross-validation
strips

F 1≥ 4 4

maximum # Stage 1
training points per
class

P 1≥ 250 250

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 44

A.1. Self-supervised learning – Stage 1

Each input

a = a1...ai ...aM() is associated with an output class K. Feature values

ai

i = 1...M()

are specified. Coding field activation is winner-take-all.

A.1.1. Initialize the system
All coding nodes j are uncommitted.
1. Set the initial number of coding nodes that have been activated one or more times: C = 0
2. Set weights to their initial values:

wij = 1

3. Set the initial coding field signals to all coding nodes:

Tj = α M

4. Set the initial degree of undercommitment of coding nodes:

Φ

j
= 1

A.1.2. Stage 1 learning
Repeat the following loop E times, where E is the number of Stage 1 training epochs.
1. Choose a new training pair a → K
2. Set vigilance at its baseline value: ρ ρ=
3. Complement code the M specified features of a:
 For i = 1,...,M

Ai = ai , Ai + M = 1− ai

 For i = M + 1,...,M

Ai = Ai + M = 1

A = 2M − M

4. Calculate the coding field signals

Tj :

Tj =

2M − A()− w j − A ∧ w j()
1− γ Φ j

− α M − w j() for j = 1...C

5. Define the initial index set ΛΛΛΛ of candidate nodes:

ΛΛΛΛ = j : Tj > α M{ }⊆ 1,...,C{ }

6. If ΛΛΛΛ is empty, choose an uncommitted node: Go to Step 8
7. If ΛΛΛΛ is not empty, choose a candidate node:

 Choose coding field winner:

J = argmax

j ∈ΛΛΛΛ
Tj{ }, breaking ties randomly

 Activate the coding field (winner-take-all):

yJ = 1, all other

y j = 0

 If J ρ
∧

<
A w

A
, J fails to meet the matching criterion:

 Reset J: Remove J from ΛΛΛΛ
 Continue search: Go to Step 6
 If κJ = K, J predicts the correct class. Learning:
 Supervised learning of weights in

F0 → F2 (bottom-up) paths and

F2 → F1

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 45

(top-down) paths:

wiJ = wJi = wiJ

old − β wiJ
old − Ai







+
 for i = 1,…,2M.

 With fast learning

β = 1(),

wiJ = wJi = Ai ∧ wiJ

old .

 Update the degree of undercommitment of node J:

Φ

J
= 1

M
w

iJ
− 1− w

i + M ,J()





+

i =1

M

∑

 Continue to the next training pair: Go to Step 1
 If κJ ≠ K, J predicts an incorrect class. Match tracking and reset:

 Match track: Jρ ε
∧

= +
A w

A

 Reset J: Remove J from ΛΛΛΛ
 Continue search: Go to Step 6
8. Activate a new node:
 Add 1 to the activated node count C
 ()1,..., 2 ,iC i Cw A i M Kκ= = =

 Continue to next training pair: Go to Step 1

A.2. Self-supervised learning – Stage 2

All feature values

ai are specified

i = 1...M(). Coding field activation is distributed, and

learning is slow. No output classes are specified. The vigilance parameter ρ = 0 during Stage 2
and during testing, so weight updates in top-down pathways are not computed in the algorithm.

Repeat the following loop E times, where E is the number of Stage 2 training epochs.
1. Choose a new input a
2. Reset coding field activation: y = 0
3. Complement code all features of a:
 For 1,...,i M= :

Ai = ai , Ai+ M = 1− ai

A = M

4. Calculate coding field inputs for j = 1...C :

Tj =

2M − A()− w j − A ∧ w j()
1− γ Φ j

− α M − w j()
5. Define index subsets of

F2 nodes j:

 Nodes with input above inputs to uncommitted nodes:

ΛΛΛΛ = j :Tj > α M{ }

 Point box nodes with

Rj identical to a:

′ΛΛΛΛ = j : w j = A{ }

6. If ΛΛΛΛ is empty, go to Step 1 (no learning).

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 46

7. Activate the distributed code y at the field

F2

 If ′ΛΛΛΛ is not empty, activation is distributed evenly at nodes whose point boxes equal the
input a:

y j =
1

′ΛΛΛΛ
 for j ∈ ′ΛΛΛΛ

0 otherwise









 If ′ΛΛΛΛ is empty,

F2 activation y is distributed:

y j =

M − Tj






− p

M − Tλ 
− p

λ∈ΛΛΛΛ
∑

 for j ∈ΛΛΛΛ

0 otherwise













 If a is in one or more boxes , activation

y j is distributed among the corresponding nodes,

with

y j largest where the boxes

Rj are smallest. If a is not in any box,

y j is distributed

according to

d Rj ,a(), with

y j largest where a is closest to

Rj .

8. Self-supervised distributed instar learning:

wij = wij

old − β y j − 1− wij
old()− Ai







+
for i = 1,...,2M , j ∈ΛΛΛΛ

9. Update the degree of undercommitment for nodes j ∈Λ :

Φ

j
= 1

M
w

ij
− 1− w

i + M , j()





+

i =1

M

∑

10. Continue to the next input: Go to Step 1

A.3. Testing
All feature values

ai are specified. Coding field activation is distributed. No learning occurs.

1. Choose a new test input a
2. Complement code all features of a:
 For 1,...,i M= :

Ai = ai , Ai+ M = 1− ai

A = M

3. Reset coding field activation: y = 0
4. Calculate coding field inputs for j = 1...C :

Tj =

2M − A()− w j − A ∧ w j()
1− γ Φ j

− α M − w j()
5. Define index subsets of

F2 nodes j:

 Nodes with input above inputs to uncommitted nodes:

ΛΛΛΛ = j :Tj > α M{ }

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 47

 Point box nodes with

Rj identical to a:

′ΛΛΛΛ = j : w j = A{ }

6. If ΛΛΛΛ is empty, go to Step 1 (no prediction).
7. Activate the distributed code y at the field

F2

 If ′ΛΛΛΛ is not empty, activation is distributed evenly at nodes whose point boxes equal the
input a:

y j =
1

′ΛΛΛΛ
 for j ∈ ′ΛΛΛΛ

0 otherwise









 If ′ΛΛΛΛ is empty,

F2 activation y is distributed:

y j =

M − Tj






− p

M − Tλ 
− p

λ∈ΛΛΛΛ
∑

 for j ∈ΛΛΛΛ

0 otherwise













8. Activate the mapping field:

σ k = y j

j∈ΛΛΛΛ: κ j =k{ }
∑

9. Make an output class prediction: { }arg max k
k

K σ′ = , breaking ties randomly

10. If the ground-truth label K is available, record prediction accuracy
11. Continue to the next test input: Go to Step 1

A.4. Voting
1. Apply self-supervised learning Stages 1 and 2 to V ARTMAP systems, each with a different

sampling or ordering of inputs
2. During testing:
 Generate a class prediction for each voter
 Predict the class with the most votes

A.5. Cross-validation of image dataset (Boston testbed)
Given a dataset of labeled and unlabeled input vectors, divided into F disjoint strips.
For each strip f :

A.5.1. Stage 1 training
 Create a training data source by concatenating labeled inputs from the other 1F − strips

(all except for f). If a fully featured dataset is being used for evaluation (e.g., the
Boston testbed), identify a feature subset to use in Stage 1. Remove all other feature
values from each Stage 1 training input.

 Train (Stage 1) V ARTMAP voters on a random selection of at most P inputs per class.

CAS/CNS TR-2009-006 Self-Supervised ARTMAP 48

A.5.2. Stage 2 training
 Train (Stage 2) each voter on a random ordering of all (fully featured) inputs in strip f,

including labeled and unlabeled inputs.

A.5.3. Testing
 Generate ensemble class predictions on the fully featured, labeled inputs in f.
 Record per-class and average class accuracy.

