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Self-Supervised ARTMAP 

 
Abstract:  Computational models of learning typically train on labeled input patterns (supervised 
learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semi-
supervised learning). In each case input patterns have a fixed number of features throughout 
training and testing. Human and machine learning contexts present additional opportunities for 
expanding incomplete knowledge from formal training, via self-directed learning that 
incorporates features not previously experienced. This article defines a new self-supervised 
learning paradigm to address these richer learning contexts, introducing a neural network called 
self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled 
patterns with some features), knowledge from the environment (unlabeled patterns with more 
features), and knowledge from internal model activation (self-labeled patterns). Self-supervised 
ARTMAP learns about novel features from unlabeled patterns without destroying partial 
knowledge previously acquired from labeled patterns. A category selection function bases 
system predictions on known features, and distributed network activation scales unlabeled 
learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on 
novel features and confident predictions, defining classification boundaries that were ambiguous 
in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative low-
dimensional problems and on high-dimensional benchmarks. Model code and benchmark data 
are available from:  http://techlab.bu.edu/SSART/. 
 
Keywords:  Self-supervised learning, supervised learning, Adaptive Resonance Theory (ART), 
ARTMAP, unsupervised learning, machine learning 
 
 
1. Supervised, unsupervised, semi-supervised, and self-supervised learning 
 
Computational models of supervised pattern recognition typically utilize  two learning phases. 
During an initial training phase, input patterns, described as values of a fixed set of features, are 
presented along with output class labels or patterns. During a subsequent testing phase, the 
model generates output predictions for unlabeled inputs, while no further learning takes place.  
 
Although the supervised learning paradigm has been successfully applied for a wide variety of 
applications, it does not reflect many natural learning situations. Humans do learn from explicit 
training, as from a textbook or a teacher, and they do take tests. However, students do not stop 
learning when they leave the classroom. Rather, they continue to learn from experience, 
incorporating not only more information but new types of information, all the while building on 
their earlier classroom knowledge. The self-supervised learning system introduced here models 
such life-long experiences. 
 
An unsupervised learning system clusters unlabeled input patterns. Semi-supervised systems 
(Chapelle, Schölkopf, & Zien, 2006) learn from unlabeled as well as labeled inputs during 
training. The self-supervised paradigm models two learning stages. During Stage 1 learning, the 
system receives all output labels, but only a subset of possible feature values for each input. 
During Stage 2 learning, the system receives all feature values for each input, but no output 
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labels (Table 1). 
 

 

Table 1 

Learning paradigms 

Paradigm 

Learning 

Training set 

No learning 

Test set 

Input features Output labels 

Supervised All All 
All input 

features 

________ 

All output 

labels 

Semi-supervised Stage 1 All All 

Stage 2 All None 

Self-supervised 

New definition 

Stage 1 Some All 

Stage 2 All None 

Unsupervised All None 

 

 
 
Preparing students for a lifetime of independent learning has always been a primary principle of 
good education. As described by Stephen Krashen, an expert in second language acquisition:  

An autonomous acquirer is not a perfect speaker of the second language, just good 
enough to continue to improve without us. This is, of course, the goal of all 
education – not to produce masters but to allow people to begin work in their 
profession and to continue to grow. (Krashen, 2004, p. 6) 

 
Self-supervised learning models the continuing growth of the autonomous acquirer. By analogy 
with Stage 1 learning, a medical student may, for example, initially learn to treat diseases from 
case studies with clear diagnoses for a small sample of patients using a limited number of 
specified features such as major symptoms and test results. Later in practice (Stage 2), the 
doctor, no longer supervised, diagnoses patients with myriad symptoms, test results, and contexts 
that were not fully specified during training. The doctor not only successfully treats under these 
enhanced circumstances but also learns from the experiences. 
 
In addition to modeling the human learning experience, self-supervised learning promises to be 
useful for technological applications such as web page classification. A supervised learning 
system that completes all training before making test predictions does not adapt to new 
information and varying contexts. An adaptive system that continues to learn unsupervised 
during testing risks degrading its supervised knowledge. The self-supervised learning system 
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developed here continues to learn from new experiences without, in most cases, degrading 
performance. 
 
 
2. A computational example of self-supervised learning 
 
A simplified medical diagnosis example

 
(Figure 1) illustrates the dynamics of the self-supervised 

learning model. The problem is to identify exemplars as belonging to the output class normal or 
hypothermic or septic, given the input feature values temperature and shock. During Stage 1 
learning, class labels are paired with inputs that specify only the feature temperature (Figure 1a). 
The system models incremental online learning that addresses just one case at a time. Projected 
onto the temperature axis, classes overlap, and, even with a large training set, optimal test 
accuracy is 65%. Although extreme temperatures unambiguously indicate hypothermic or septic, 
these class labels are densely mixed with normal at moderately low and moderately high 
temperatures.  
 
During Stage 2 self-supervised learning, inputs specify both temperature and shock, but no class 
labels are provided (Figure 1b). The self-supervised learning system has an opportunity to 
incorporate shock information, but needs to be designed in such a way that it does not degrade 
the partial knowledge that it gained during Stage 1 learning. 
 
Figure 1c illustrates results of a typical self-supervised learning simulation. Following Stage 1, 
where only one input feature (temperature) was available, the model attains a near-optimal test 
accuracy of 65%. During slow self-supervised Stage 2 learning on unlabeled (but fully featured) 
inputs, the model adds novel shock information to Stage 1 temperature knowledge. After 5,000 
Stage 2 learning samples, the test set is labeled with 100% accuracy.  
 
 
3. ART and ARTMAP 
 
The self-supervised learning system of Figure 1 is based on Adaptive Resonance Theory (ART). 
ART neural networks model real-time prediction, search, learning, and recognition. Design 
principles derived from scientific analyses and design constraints imposed by targeted 
applications have jointly guided the development of many variants of the basic supervised 
learning ARTMAP networks, including fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, 
Reynolds, & Rosen, 1992), ARTMAP-IC (Carpenter & Markuzon, 1998), and Gaussian 
ARTMAP (Williamson, 1998). A defining characteristic of various ARTMAP systems is the 
nature of their internal code representations. Early ARTMAP networks, including fuzzy 
ARTMAP, employed winner-take-all coding, whereby each input activates a single category 
node during both training and testing. When a node is first activated during training, it is mapped 
to its designated output class.  
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Figure 1.  Simplified medical diagnosis example. (a) During Stage 1 self-supervised 
learning, each input, specified only by its temperature value, is paired with one of three 
output classes. (b) During Stage 2 learning, both input features but no class labels are 
specified. (c) Test predictions during a typical self-supervised model simulation trial. 
During Stage 1, test accuracy reaches an optimal 65% after 28 training points. Further 
learning attempts to correct errors in regions of overlap but does not improve test 
accuracy. The Stage 1 figure is the result of training on 50 points. Performance steadily 
improves during Stage 2 self-supervised learning, with most system updates occurring 
on unambiguous inputs, either at extreme temperatures, which clearly indicate 
hypothermic or septic, or at moderate temperatures, which indicate normal.  



CAS/CNS TR-2009-006 Self-Supervised ARTMAP 6 

 
Starting with ART-EMAP (Carpenter & Ross, 1995), ARTMAP systems have used distributed 
coding during testing, which typically improves predictive accuracy while avoiding the 
computational challenges inherent in the use of distributed code representations during training. 
In order meet these challenges, distributed ARTMAP (Carpenter, 1997; Carpenter, Milenova, & 
Noeske, 1998) introduces a new network configuration and new learning laws that realize stable 
fast learning with distributed coding during both training and testing. 
 
Comparative analysis of the performance of ARTMAP systems on a variety of benchmark 
problems has led to the identification of a default ARTMAP network (Carpenter, 2003; Amis & 
Carpenter, 2007), which features simplicity of design and robust performance in many 
application domains (http://techlab.bu.edu/). Default ARTMAP employs winner-take-all coding 
during training and distributed coding during testing within a distributed ARTMAP network 
architecture. During Stage 1, when the system can incorporate externally specified output labels 
with confidence, self-supervised ARTMAP (SS ARTMAP) employs winner-take-all coding and 
fast learning. During Stage 2, when the network internally generates its own output labels, codes 
are distributed and learning is slow, so that incorrect hypotheses do not abruptly override Stage 1 
“classroom learning.” 
 
Sections 3.1 – 3.4 introduce the key ARTMAP computations that are implemented in the 
SS ARTMAP architecture. 
 
 
3.1. Complement coding:  Learning both absent and present features 
 
Unsupervised ART and supervised ARTMAP networks employ a preprocessing step called 
complement coding (Carpenter, Grossberg, & Rosen, 1991). When the learning system is 
presented with a set of input features a ≡ a1...ai ...aM( ), complement coding doubles the number 

of input components, presenting to the network both the original feature vector and its 
complement. 
 
Complement coding allows a learning system to encode features that are consistently absent on 
an equal basis with features that are consistently present. Features that are sometimes absent and 
sometimes present when a given category is being learned become regarded as uninformative 
with respect to that category. 
 
To implement complement coding, component activities ia  of an M-dimensional feature vector a 

are scaled so that 0 1ia≤ ≤ . For each feature i, the ON activity 
 
a

i( ) determines the 

complementary OFF activity ( )1 ia− . Both a and its complement   a
c  are concatenated to form 

the 2M-dimensional system input vector 
  
A = a ac( ) (Figure 2). Subsequent network 

computations operate in this 2M-dimensional input space, which may be interpreted as 
representing ON-channel and OFF-channel dynamics. 
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Figure 2.  Complement coding transforms an M-dimensional feature vector a into a 2M-
dimensional system input vector A. A complement-coded system input represents both 
the degree to which a feature i is present ai( ) and the degree to which that feature is 

absent 1− ai( ). 

 
 
 
3.2. ARTMAP search and match tracking 
 
Matching bottom-up inputs against top-down expectations is a fundamental computation of all 
ART networks. The ART matching process triggers either learning or a parallel memory search 
(Figure 3). If search ends at an established code, the memory representation may either remain 
the same or delete mismatched portions of the current input. While this dynamic applies to 
arbitrarily distributed activation patterns, the F2 code will be described here as a single category 
node in a winner-take-all system. 
 
Before ARTMAP makes a class prediction, the bottom-up input A is matched against the top-
down learned expectation that is read out by the active node (Figure 3b). The matching criterion 
is set by a parameter ρ  called vigilance. Low vigilance permits the learning of abstract 
prototype-like patterns, while high vigilance requires the learning of specific exemplar-like 
patterns. When an input arrives, vigilance equals a baseline level ρ . Baseline vigilance is set 
equal to zero by default, in order to maximize generalization. Vigilance rises only after the 
system has made a predictive error. The internal control process that determines how far ρ  must 
rise in order to correct the error is called match tracking (Carpenter, Grossberg, & Reynolds, 
1991). As vigilance rises, the network is required to pay more attention to how well top-down 
expectations match the current bottom-up input. 
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Figure 3. A fuzzy ART search cycle (Carpenter, Grossberg & Rosen, 1991), with a 
distributed ART network configuration (Carpenter, 1997). The ART 1 search cycle 
(Carpenter & Grossberg, 1987) is the same, but allows only binary inputs and did not 
originally feature complement coding. The match field F1 represents the matched 
activation pattern   x = A ∧ w

J
, where ∧  denotes the component-wise minimum, or 

fuzzy intersection, between the bottom-up input A and the winner-take-all top-down 
expectation   wJ

. If the matched pattern fails to meet the matching criterion, then the 

active code is reset at F2, and the system searches for another code y that better 
represents the input. The match / mismatch decision is made in the ART orienting 
system. Each component of the input pattern A excites the orienting system with gain 
equal to the vigilance parameter ρ . Hence, with complement coding, the total excitatory 

input is 
2

1

M

i
i

A Mρ ρ ρ
=

= =∑A . Active cells in the matched pattern x inhibit the orienting 

system, leading to a total inhibitory input equal to 
2

1

M

i
i

x
=

− = −∑x . If 0ρ − ≤A x , then 

the orienting system remains quiet, allowing resonance and learning to occur. If 
0ρ − >A x , then the reset signal   r = 1, initiating search for a better matching code.  
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Match tracking forces an ARTMAP system not only to reset its mistakes, but to learn from them. 
With match tracking and fast learning, each ARTMAP network passes the Next Input Test, 
which requires that, if a training input were re-presented immediately after its learning trial, it 
would directly activate the correct output class, with neither predictive errors nor search. While 
match tracking guarantees that a winner-take-all network passes the Next Input Test, it does not 
also guarantee that a distributed prediction, such as those made during default ARTMAP testing, 
would pass the Next Input Test. A training step added to default ARTMAP 2 does provide such a 
guarantee (Amis & Carpenter, 2007). 
 
Match tracking simultaneously implements the design goals of maximizing generalization and 
minimizing predictive error, without requiring the choice of a fixed matching criterion. 
ARTMAP memories thereby include both broad and specific pattern classes, with the latter 
formed as exceptions to the more general “rules” defined by the former. ARTMAP learning 
typically produces a wide variety of such mixtures, whose exact composition depends upon the 
order of training exemplar presentation. 
 
Activity x at the ART field F1 continuously computes the match between the field’s bottom-up 
and top-down input patterns. The reset signal r shuts off the active F2 node J when x fails to meet 
the matching criterion determined by the value of the vigilance parameter ρ . Reset alone does 
not, however, trigger a search for a different F2 node:  unless the prior activation has left an 
enduring trace within the F0-to-F2 subsystem, the network will simply reactivate the same node 
as before. As modeled in ART 3 (Carpenter & Grossberg, 1990), biasing the bottom-up input to 
the coding field F2 to favor previously inactive nodes implements search by allowing the 
network to activate a new node in response to a reset signal. The ART 3 search mechanism 
defines a medium-term memory in the F0-to-F2 adaptive filter which biases the system against 
rechoosing a node that had just produced a reset. 
 
 
3.3. Committed nodes and uncommitted nodes 
 
With winner-take-all ARTMAP fast learning, a node J becomes committed the first time it is 
activated. The weight vector wJ  converges to the input A, and node J is permanently linked to 
the current output. 
 
Unless they have already activated all their coding nodes, ART systems contain a reserve of 
nodes that have never been activated, with weights at their initial values. These uncommitted 
nodes receive bottom-up inputs and compete on an equal footing with the previously activated 
nodes. Any input may then choose an uncommitted node over poorly matched committed nodes 
(Figure 4). 
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Figure 4.  The ART choice function Tj  specifies the total signal that the complement-

coded input A sends to the F2  node j , where α is a small parameter. The fuzzy 
intersection A ∧ w j  represents the match between A and the weight vector w j , where 

∧  denotes the component-wise minimum of the two vectors. Uncommitted nodes have 

never won an F2  competition. Their weights still equal their initial values wij = 1( ), plus 

small variations that serve to break ties with winner-take-all coding. In ARTMAP 
networks, a node is linked to the output class of the first input that activates it, while 
uncommitted nodes are linked to all possible output classes. 
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An ARTMAP design constraint specifies that an active uncommitted node should not reset itself. 
Weights begin with all wij = 1 . Since 0 ≤ Ai ≤ 1, when a winner-take-all active node J is 

uncommitted, match field activity x = A ∧ wJ = A . In this case, therefore, 

ρ A − x = ρ A − A = ρ − 1( ) A . Thus ρ A − x ≤ 0  and an uncommitted node does not 

trigger a reset, provided that ρ ≤ 1. While seemingly mundane, the requirement that an 
uncommitted node does not trigger a reset has proven to be a key design constraint across a 
variety of ART systems. 
 
 
3.4. ART geometry 
 
ART long-term memories are visualized as hyper-rectangles called category boxes. The weight 
vector wJ  is represented geometrically as a box RJ  whose ON-channel corner uJ  and OFF-
channel corner vJ  are, in the format of the complement-coded input vector, defined by 

uJ v J
c( )≡ wJ  where v J

c ≡ 1 − v J  (Figure 5a). When a node J is first committed, RJ  equals the 

point box a. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.  ART geometry. (a) The weight of a category node J is represented in 

complement-coding form as wJ = uJ v J
c( ), and the M-dimensional vectors uJ  and vJ  

define opposite corners of the category box RJ . When M = 2 , the size of RJ  equals its 

width plus its height.  (b) JR ⊕ a is the smallest box that includes JR  and a. Its corners 

are   a ∧ u
J
 and   a ∨ v

J
, where ∧  denotes the component-wise minimum of two vectors 

and ∨  denotes the component-wise maximum. The active node J resets if 
RJ ⊕ a > M 1− ρ( ). (c) If RJ ⊕ a ≤ M 1− ρ( ), RJ  expands toward RJ ⊕ a  during 

learning. 
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For fuzzy ART, the choice-by-difference F0 → F2  signal function (Figure 4) is defined as: 

 Tj = A ∧ w j + 1− α( ) M − w j( ) (1) 

(Carpenter & Gjaja, 1994). The function Tj  translates to a geometric interpretation of category 

choice. The size Rj  of box j is defined as the sum of the edge lengths vij − uij( )
i =1

M

∑ , which 

implies that 

 Rj = M − w j . 

Rj ⊕ a , defined as the smallest box enclosing both Rj  and a (Figure 5b), has size: 

 Rj ⊕ a = M − A ∧ w j , 

and the city-block (L1 ) distance from Rj  to a is: 

 d Rj ,a( )= Rj ⊕ a − Rj = w j − A ∧ w j . 

Thus geometrically the choice function is: 

 Tj = M − d Rj ,a( )− α Rj . (2) 

When the choice parameter α is small, maximizing Tj  is almost equivalent to minimizing 

d Rj ,a( ), so an input a activates the node J of the closest category box RJ . In case of a distance 

tie, as when a lies in more than one box, the node with the smallest Rj  is chosen.  

 
According to the ART vigilance matching criterion, the chosen node J will reset if: 
 ρ A − A ∧ wJ = ρM − A ∧ wJ > 0 , 

or, geometrically, if: 
 RJ ⊕ a > M 1− ρ( ). 

If node J is not reset, RJ  expands toward RJ ⊕ a  during learning (Figure 5c). Vigilance thereby 
sets an upper bound on the size of RJ , with 

 RJ ≤ M 1− ρ( )≤ M 1− ρ( ). 

After a fast learning trial, RJ
new = RJ

old ⊕ a . 
 

 

4. Self-supervised ARTMAP:  Geometry 
 

ART weights 
 
w

ij
 initially equal 1. With winner-take-all coding, while the category node J is 

active yJ = 1( ), bottom-up weights in   F0
→ F

2
 paths decrease during learning according to a 

version of the instar (Grossberg, 1976) learning law: 

Instar 
  

d

dt
w

iJ
= y

J
x

i
− w

iJ( )= A
i
∧ w

iJ
− w

iJ( )= − w
iJ

− A
i

 
+

= − w
iJ

− A
i( ) if w

iJ
> A

i

0 otherwise





. (3) 
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In equation (3), i = 1...2M  and ...[ ]+
 denotes rectification, with p[ ]+ ≡ max p,0{ }. Top-down 

weights 
 
w

ji
 obey an outstar (Grossberg, 1968) learning law, but with fast learning, 

 
w

ji
= w

ij
. 

 
Recall that, for i = 1...M ,  Ai

= a
i
 and 

 
w

ij
= u

ij
. Thus by (3), while node J is active,  uiJ

 values 

decrease during learning according to: 

 
  

d

dt
u

iJ
= − u

iJ
− a

i
 

+
= − u

iJ
− a

i( ) if   u
iJ

> a
i

0 otherwise





. 

Geometrically, uJ moves toward a, subject to the constraints of rectification (Figure 6a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Geometry of ART learning. (a) During learning, components of the category 
box corner   uJ

 can only decrease. (b) Similarly, components of the corner   v J
 can only 

increase during learning.  
 
 
 

Also for   i = 1...M , 
  
A

i + M
= 1− a

i( ) and 
  
w

i + M , j
= 1− v

ij( ). Thus while the category node J is 

active,  viJ
 values increase during learning according to: 

 
  

d

dt
v

iJ
= a

i
− v

iJ
 

+
= a

i
− v

iJ( ) if   v
iJ

< a
i

0 otherwise





. 

Like   uJ
,   v J

 moves toward a, subject to the constraints of rectification (Figure 6b). 

 
With winner-take-all coding and fast learning, weights converge to their asymptotes on each 
input trial. In this case, J →w A  when node J is first activated, and J →u a  and J →v a . 

Thereafter, node J is committed. On subsequent learning trials that activate J (without reset),  RJ
 

expands just enough to incorporate input a (Figure 5c). 
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Before its first activation, an   F2
 category node J is uncommitted and 

   
w

J
= 2M . At the corners 

of  RJ
,   uiJ

= 1 and   viJ
= 0 , so  uiJ

> v
iJ

 and the category box is inverted (Figure 7a). Formally, 

 

 
   
R

J
= v

iJ
− u

iJ( )
i =1

M

∑ = M − w
J

= − M  

 
If learning is slow,  RJ

 will remain inverted as long as  uiJ
> v

iJ
 for at least one feature i 

(Figure 7b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Geometric representations of undercommitted coding nodes. (a) Initially, all 
coding weights   wiJ

= 1, and each node J is uncommitted. The corresponding category 

boxes RJ are inverted. (b) With slow learning, RJ remains inverted in the dimension of an 
undercommitted feature i for as long as  uiJ

> v
iJ

. 

 
 
 
4.1. Undercommitted nodes and features 
 
In order to describe the dynamics of slow self-supervised learning during Stage 2, SS ARTMAP 
defines a new node state between uncommitted and committed. During Stage 1 learning, a subset 

of feature values   i = 1 ... M  are specified, while the remaining feature values 
  
i = M + 1( ) ... M  

are unspecified. The new definition supports the description of how features that were 
unspecified during Stage 1 are learned during Stage 2. 
 
For a given node J, a feature i that is unspecified is called an uncommitted feature during Stage 1 
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learning. Whether or not a feature is specified, all weights obey the same learning law. By 
equation (3), the self-supervised learning model hypothesis that weights maintain their initial 
values at uncommitted features is equivalent to the hypothesis that   Ai

= A
i + M

= 1 for the 

unspecified features 
  
i = M + 1( ) ... M . Note that during Stage 1 learning A is complement coded 

only for the specified features   i = 1 ... M , and that 
   
A = M + 2 M − M( )= 2M − M . 

 
At the start of Stage 2 SS ARTMAP learning, all   uiJ

= 1 and   viJ
= 0  for features 

  
i = M + 1( ) ... M . With slow learning, these features do not immediately become fully 

committed, which requires that  uiJ
≤ v

iJ
 (Figure 5). For as long as iJ iJu v> , i is said to be an 

undercommitted feature with respect to node J, and node J is said to be an undercommitted node 
if its weight vector has one or more undercommitted features. Figure 8 illustrates the geometry of 
Stage 2 learning at undercommitted nodes.  
 
Table 2 summarizes the definitions of feature commitment levels. The degree of feature 
undercommitment, defined as 

 
 
Φ

iJ
= u

iJ
− v

iJ
 

+
, 

quantifies the amount of learning needed for node J to become fully committed in feature i. The 
average  

 
  
Φ

J
= 1

M
Φ

iJ
i =1

M

∑   

quantifies the degree of undercommitment of node J. 
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Figure 8.  Stage 2 learning on undercommitted nodes activated by input a. (a) With 
  M = 2 and   M = 1, when an input a first activates node J during Stage 2 learning, this 
node is committed in feature i=1 and uncommitted in feature i=2, and the coding box  RJ

 

is inverted in the vertical dimension (dashed lines). During Stage 2, both   uJ
 and   v J

 

move toward a, subject to the constraints of rectification. Slow learning contracts  RJ
 



CAS/CNS TR-2009-006 Self-Supervised ARTMAP 17 

vertically and expands it horizontally, as   uJ
 and   v J

 follow the dotted arrows. Fast 

learning collapses the inverted box to a line, making node J fully committed. (b) When 
input a activates a node J that is undercommitted in both feature i=1 and feature i=2,  RJ

 

is inverted in both dimensions. Slow learning contracts  RJ
toward a in both features, and 

fast learning collapses the box to a line. (c) When input a activates an inverted box  RJ
 

that contains a, slow learning contracts all sides of  RJ
. Fast learning completes the 

contraction to a fully committed point box with   uJ
 =   v J

 = a. 

 
 
 

Table 2 

Commitment definitions 
 

Uncommitted 
feature 

 
 
 
 
 

 

  

 u
iJ

= 1, v
iJ

= 0

w
iJ

+ w
i + M ,J

= 2
 

 
Uncommitted node 

All features are 
uncommitted 

   ΦJ
= 1 

 
Undercommitted 

feature 

 
 
 
 
 

 

  

   1≥ u
iJ

> v
iJ

≥ 0

2 ≥ w
iJ

+ w
i + M ,J

> 1
 

 
Undercommitted node 

At least one feature is 
undercommitted 

  0 < Φ
J

≤ 1 

 
Committed 

feature 

 
 
 
 
 

 

  

         u
iJ

≤ v
iJ

0 ≤ w
iJ

+ w
i + M ,J

≤ 1
 

 
Committed node 

All features are 
committed 

  ΦJ
= 0  
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Recall that 
   
w

J
≡ u

J
,v

J
c( ), so: 

 
  
Φ

J
= 1

M
w

iJ
− w

i + M ,J
c





+

i =1

M

∑  = 
  

1
M

w
iJ

+ w
i + M ,J

− 1





+

i =1

M

∑ .  (4) 

For an uncommitted node, all   wiJ
= 1 and   ΦJ

= 1. For a committed node, all  uiJ
≤ v

iJ
 and 

  ΦJ
= 0 . Once a node J has been activated during Stage 1, features   i = 1...M  are committed 

 
u

iJ
≤ v

iJ( ) while features   i = M + 1...M  remain uncommitted 
  
u

iJ
= 1,  v

iJ
= 0( ), so 

 
Φ

J
= M − M( ) M . 

 
 
5. Distributed Stage 2 learning 
 
SS ARTMAP Stage 2 learning updates weights according to the learning laws of distributed 
ART architectures (Carpenter, 1997). 
 
 
5.1. Distributed ART learning 
 
Distributed ART networks are designed to support stable fast learning with arbitrarily distributed 

  F2
 code patterns y. Achieving this computational goal led to the definition of a new unit of 

memory, a dynamic weight 
 

y j − τ ij






+
 equal to the degree to which the activity of coding node j 

exceeds an adaptive threshold 
 
τ ij . The distributed instar (dInstar) updates the thresholds 

 
τ ij  in 

bottom-up pathways from 
  
F0  to 

  
F2 , and the distributed outstar (dOutstar) updates thresholds 

 
τ ji  in top-down pathways from 

  
F2  to 

  
F1 : 

dInstar (bottom-up): 
 

d

dt
τ ij = y j − τ ij







+
− Ai








+

= y j − τ ij − Ai






+
 (5) 

dOutstar (top-down): 
 

d

dt
τ ji = y j − τ ji







+
σ i − xi( ) ,  where 

 
σ i = yλ − τλi

 
+

λ
∑  (6) 

 

In the dOutstar equation (6), the top-down dynamic weight 
 

y j − τ ji






+
 is proportional to the 

input from the 
  
F2  node j to the 

  
F1  node i, and 

 
σ i  is the total input from 

  
F2  to node i (Carpenter, 

1994). During dOutstar learning, the top-down signal  σ i
 tracks 

  
F1  activity 

 
xi , with each 

adaptive threshold 
 
τ ji  increasing according to the contribution of its dynamic weight to the total 

signal, with fast as well as slow learning. 
 
Formally defining the bottom-up weights 

  
wij ≡ 1− τ ij  and the top-down weights 

  
wji ≡ 1− τ ji  
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transforms equations (5) and (6) to: 

dInstar (bottom-up): 
  

d

dt
wij = − y j − 1− wij( )− Ai







+
 

dOutstar (top-down): 
  

d

dt
wji = − y j − 1− wji( )





+
σ i − xi( ) ,  where 

  
σ i = yλ − 1− wλi( )





+

λ
∑  

With winner-take-all coding, 

 
  
y j =

1   if  j = J

0   if  j ≠ J





 

In this case, the bottom-up dynamic weight is 

 

  

y j − τ ij






+
=

1− τ iJ( ) if   j = J

0            if  j ≠ J






= 

  

wiJ   if  j = J

0     if  j ≠ J






. 

With winner-take-all fast learning, bottom-up and top-down weights are equal. In this case, with 

 
xi = Ai ∧ wiJ  when node j=J is active, dInstar and dOutstar equations reduce to an instar learning 

law (equation (3)). 
 
Even with fast learning, bottom-up weights of distributed ART do not generally equal top-down 
weights. This is because, according to distributed instar learning , a bottom-up weight 

 
wij  

depends only on the activity 
 
y j  at its target node. In contrast, according to distributed outstar 

learning, a top-down weight 
 
wji  is a function of the entire active coding pattern y. 

 
SS ARTMAP employs winner-take-all fast learning during Stage 1. Therefore at the start of 
Stage 2, bottom-up weights equal top-down weights. During Stage 2 learning, the 

  
F2  code y is 

distributed, so bottom-up and top-down weights would diverge. Since top-down weights will not 
be used again, they are not computed in the current SS ARTMAP algorithm. Extensions of this 
system that alternate between Stage 1 and Stage 2 learning, or that need to compute the bottom-
up/top-down match during Stage 2 or testing, would need to update the top-down weights via 
distributed outstar learning during Stage 2. 
 
The dInstar and dOutstar equations are piecewise-linear and can be solved analytically. During 
Stage 2 learning, weights are updated according to the dInstar solution: 

 
  
wij = wij

old − β y j − 1− wij
old( )− Ai







+
  

where  0 < β ≤ 1. With fast learning,  β = 1. With slow learning, β  is small. Simulations here set 

 β = 0.01 for Stage 2 slow learning computations. 
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5.2. Distributed activation patterns 
 
During SS ARTMAP testing and Stage 2 learning, the 

  
F2  code is distributed, with the activation 

pattern y a contrast-enhanced and normalized version of the 
  
F0 → F2  signal pattern T. While the 

transformation of T to y is assumed to be realized in a real-time network by a competitive field, 
simulations typically approximate competitive dynamics in their steady-state, according to an 
algebraic rule. For this purpose, the SS ARTMAP algorithm uses the Increased Gradient 
Content-Addressable Memory (IG CAM) Rule, which was developed for distributed ARTMAP 
(Carpenter et al., 1998). 
 
The IG CAM Rule features a contrast parameter p. As p increases, the  T → y  transformation 
becomes increasingly sharp, approaching winner-take-all as  p → ∞ . SS ARTMAP simulations 
set p=2 for distributed activation during Stage 2 and testing. The hypothesis that SS ARTMAP 
activation is winner-take-all during Stage 1 learning, when answers are provided, corresponds to 
the hypothesis that confidence modulates the competitive field, with high-confidence states 
corresponding to large values of the contrast parameter p. 
 
With the IG CAM Rule, if a is in one or more category boxes, activation 

 
y j  is distributed among 

these nodes, with 
 
y j  largest where the boxes 

 
Rj  that contain a are smallest. If a is not in any 

box, 
 
y j  is distributed according to the distance 

   
d Rj ,a( ), with 

 
y j  largest where a is closest to 

 
Rj . 

 
 
6. Modifying the choice function for undercommitted coding nodes 
 
During Stage 2, when learning is slow and distributed and inputs a are fully featured, the degree 

of undercommitment 
 
Φ

j
 decreases from 

  
1− M M( ) toward 0 as a coding node j gradually 

becomes more committed. Within Stage 2, 
 
Φ

j
values vary across nodes. The ART choice 

function 
 
T

j
 as defined by equation (1) would favor more committed nodes to the point that 

nodes that became active early in Stage 2 would block learning in all other nodes. Self-
supervised ARTMAP therefore modifies the definition of 

 
T

j
 so that the less committed nodes 

are able to compete successfully with the more committed nodes, as follows. 
 
 
6.1. Balancing committed and undercommitted nodes during Stage 2 learning 
 
Fast-learn winner-take-all ARTMAP networks choose the coding node J that maximizes the 
choice-by-difference signal function: 
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T

j
= M − w

j
− A ∧ w

j( )− α M − w
j( ) = 

   
M − d R

j
,a( )− α R

j
 

(Figure 4). Since α is small, the choice function 
 
T

j
 favors nodes j whose category boxes 

 
R

j
 are 

closest to a. Distance ties are broken in favor of smaller boxes. The example illustrated in 
Figure 9 shows that, in a learning system with mixed degrees of coding node commitment, this 
signal function also implicitly favors the nodes with greatest commitment. In order to focus on 
primary 

 
T

j
 design with respect to the distance from 

 
R

j
 to a, α is temporarily set equal to 0: 

 
 
T

j
≅  

   
M − d R

j
,a( ). (7) 

 
Figure 9 illustrates a hypothetical case such as might occur during Stage 2 self-supervised 
learning, when various coding nodes j have different degrees of undercommitment 

 
Φ

j
 

(equation (4)). In this example, node j=1 is fully committed 
 
Φ

1
= 0( ), while node j=2 is still 

uncommitted in feature i=2 
 

Φ
2

= 0.5( ). If the ARTMAP choice function (equation (7)) were 

used, the signal   T1
 to the committed node j=1 would be greater than the signal   T2

 to the 

undercommitted node j=2 for all inputs a, as indicated by the grey area of Figure 9a. This 
function excessively favors nodes that happened to become active, and therefore more 
committed, early in Stage 2. Many of the Stage 1 nodes would be left permanently inactive, 
unable either to contribute to predictions or to learn from Stage 2 experience. 
 
To see why the signal function of Figure 9a favors committed over undercommitted nodes, note 
that, for any a at the start of Stage 2, all weights 

  
w

ij
= w

i + M , j
= 1 for features   i = M + 1...M . 

Thus at this moment, 

 
   
d R

j
,a( )≡ w

j
− A ∧ w

j
= w

ij
− A

i






+

i =1

2M

∑ =  

 
  

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i( )





+





i =1

M

∑ =  

 
  

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i( )





+





i =1

M

∑ + 1− a
i( )+ 1− 1− a

i( )( )( )
i = M +1

M

∑  = (8) 

 
  

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i( )





+





i =1

M

∑ + M − M  = 

 
  

w
ij

− a
i







+
+ w

i + M , j
− 1− a

i( )





+





i =1

M

∑ + MΦ
j
 



CAS/CNS TR-2009-006 Self-Supervised ARTMAP 22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Choosing the Stage 2 SS ARTMAP signal function. The coding node j=1, 

corresponding to the weight vector 
  
w

1
= 0.5,0.5  0.5,0.5( ) and the point box   R1

, is 
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committed 
 
Φ

1
= 0( ). The coding node j=2, corresponding to the weight vector 

  
w

2
= 0.3,1  0.7,1( ) and the inverted box   R2

, is undercommitted 
 

Φ
2

= 0.5( ). Grey areas 

indicate the test points 
   
a = a

1
,a

2( ) that would activate node j=1 more than node j=2 for 

each alternative signal function 
 
T

j
. Term 

 
δ

j
 is the distance from a to 

 
R

j
 in committed 

features only. The approximate signal functions set α equal to 0, in order to focus on the 
geometry of distance from input a to boxes 

 
R

j
. (a) 

 
T

j
 favors committed over 

undercommitted nodes. (b) 
 
T

j
 favors undercommitted over committed nodes. (c) 

 
T

j
 

strikes a balance between committed and undercommitted nodes. 
 
 
 
Table 2 summarizes the definitions of feature commitment levels. The degree of feature 
undercommitment, defined as 

 
 
Φ

iJ
= u

iJ
− v

iJ
 

+
, 

quantifies the amount of learning needed for node J to become fully committed in feature i. The 
average  

 
  
Φ

J
= 1

M
Φ

iJ
i =1

M

∑   

quantifies the degree of undercommitment of node J. 
 
As long as 

  
w

j
 remains uncommitted in features   i = M + 1...M , the term  

 
  
δ

j
≡ w

ij
− a

i






+
+ w

i + M , j
− 1− a

i( )





+





i =1

M

∑  

in equation (8) may be interpreted as the distance from a to 
 
R

j
 in the committed features 

  i = 1...M . The committed distances  δ1
 and  δ2

 are illustrated in Figure 9 for the point a = 

(0.8,0.8), for which  δ1
= 0.6  and  δ2

= 0.5. This analysis suggests adding 
 
MΦ

j
 to the signal 

function 
 
T

j
= M − δ

j
+ MΦ

j( ) (equation (7)) in order to favor nodes j that are closest to a in 

their committed features. The resulting signal function is then: 

 
 
T

j
≅

   
M 1+ Φ

j( )− d R
j,
,a( )=

 
M − δ

j
 

(Figure 9b). 
 
This second strategy raises the concern that a fully committed node with a good match in all 
features might lose to a highly undercommitted node with a good match in just one feature. This 
concern is validated by noting that 

  
Φ

j
= 1 and 

  
δ

j
= 0  at each uncommitted node j, so that 

 
T

j
= M  would be maximal for these nodes, where no learning has ever taken place (Figure 4). 
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Figure 9c suggests an alternative strategy for biasing 
 
T

j
 in such a way that undercommitted 

nodes can compete for Stage 2 activation while respecting the specificity of learning at more 
committed nodes. Here, 

 
 
T

j
≅

   

M − d R
j
,a( )

1− Φ
j( ) =

  

M − δ
j
+ MΦ

j( )
1− Φ

j( ) =

  

M −
δ

j

1− Φ
j( ). 

In Figure 9c,  Φ1
= 0  and 

  
T

1
= 2 − δ

1( ) at the committed node j=1, and  Φ2
= 0.5  and 

  
T

2
= 2 − 2δ

1( ) at the undercommitted node j=2. This third design strategy is implemented in 

SS ARTMAP, though the full definition of 
 
T

j
 is perturbed to break distance ties and avoid 

division by 0. 
 
 
6.2. Balancing committed and uncommitted features during Stage 1 learning 
 
Analysis of Stage 2 learning (Figure 9) supports the signal function definition: 

 

   
Tj =

M − w j − A ∧ w j( )
1− γ Φ j

− α M − w j( ) = 

   

M − d Rj ,a( )
1− γ Φ j

− α Rj  (9) 

where  0 < γ < 1. When a node is committed 
  

Φ j = 0( ), the signal function (9) reduces to the 

ART choice-by-difference signal function (1). This definition is problematic, however, for 
Stage 1 learning. During Stage 1, where only  M  of the M input features are specified, 

 

  

Ai =

ai           if  i=1...M

1− ai( )  if  i= 1+ M( )... M + M( )
1            otherwise










. 

At uncommitted nodes j, all 
  
wij = 1, so 

   
w j = 2M  and the degree of undercommitment 

  
Φ j = 1. 

Thus if j is an uncommitted node, the denominator in equation (9) equals 
 
1− γ( ), which is 

typically small. Hence the only way to keep uncommitted nodes from overwhelming the coding 
pattern y is to require that the signal function numerator equal 0 when 

  
Φ j = 1. For an 

uncommitted node j during Stage 1, 

 
   
d Rj ,a( )= w j − A ∧ w j = 2M − 2M − M( )= M . 

 
This analysis suggests that the Stage 2 signal function of equation (9) needs to be modified for 
Stage 1 to: 

 

   
Tj =

M − w j − A ∧ w j( )
1− γ Φ j

− α M − w j( ) = 

   

M − d Rj ,A( )
1− γ Φ j

− α Rj  (10) 

 
For the Stage 1 signal function (10), 

 
Tj = α M  when j is an uncommitted node. For nodes 
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  j = 1 ... C   which have been chosen at least once during Stage 1, 
  
Φ j = 1− M M( ). For these 

nodes, the numerator in equation (10) equals 
 

M − δ j( ) and the denominator is a constant that is 

independent of j. Thus, except for distance ties, this signal function would choose the category 
node for which a is closest to 

 
Rj  in the specified input dimensions   i = 1...M  during Stage 1 

training. 
 
The signal function (10) proposed for Stage 1 and the signal function (9) proposed for Stage 2 
are reconciled by noting that 

 
   
2M − A =

M    during Stage 1

M    during Stage 2





. 

 
 
6.3. The self-supervised ARTMAP signal function 
 
A signal function that realizes the computational requirements of SS ARTMAP is: 

 

   
Tj =

2M − A( )− w j − A ∧ w j( )
1− γ Φ j

− α M − w j( ) (11) 

where  0 < γ < 1 and  α > 0 . Stage 1 specifies only  M  features of input a, so 
   
A = 2M − M . For 

the nodes j = 1...C  chosen during Stage 1, 
  
Φ j = 1− M M( ). During Stage 2, which specifies all 

M features of a, 
  
A = M  and 

 
Φ j  values slowly decrease toward 0 at active nodes j. Thus for 

j = 1...C : 

Stage 1 
  
Tj =

M − w j − A ∧ w j( )
µ

− α M − w j( )=
   

M − d Rj ,a( )
µ

− α Rj  (12) 

Stage 2 

   
Tj =

M − w j − A ∧ w j( )
1− γ  Φ j

− α M − w j( )=
   

M − d Rj ,a( )
1− γ  Φ j

− α Rj  (13) 

where the denominator 
  
µ ≡ 1− γ 1− M M( ) is constant throughout Stage 1. During testing, 

 
Tj  

is the same as during Stage 2. For each uncommitted node j, 
 
Tj  equals the constant αM 

throughout Stage 1 and Stage 2 learning, and testing. 
 
 
7. Self-supervised learning in the medical diagnosis example 
 
The simplified medical diagnosis example (Figure 1) suggests that Stage 2 learning should favor 
confident predictions, where category boxes of different classes do not overlap, and produce 
little (if any) weight change on low-confidence predictions. Self-supervised ARTMAP 
accomplishes this computational goal by reflecting the degree of overlap of category boxes that 
contain the input a. Inputs that are in just one box indicate confident class membership and 
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produce most of the Stage 2 learning. 
 
Figure 10a illustrates the five category boxes created by the first 28 inputs of Stage 1 learning on 
the specified feature i=1 (temperature). At this stage of learning, test accuracy is a near-optimal 
65%. Each box 

 
Rj  is inverted in the uncommitted feature shock. The hypothermic box 

  
R1 

overlaps the normal box 
  
R5 , and the septic box 

  
R2  overlaps both the normal box 

  
R3  and the 

septic box 
  
R4 . Continued Stage 1 learning creates three more small boxes within the regions of 

overlap. 
 
During Stage 2 self-supervised learning, distributed activation at the coding field   F2

 represents 

the degree of overlap of category boxes containing the input a. In Figure 10a, 
  
a = 0.12,0.75( ) is 

contained only in   R1
, clearly indicating the class hypothermic based on the low value of the 

feature temperature alone. During Stage 2, according to the IG CAM Rule, when an input is 
inside just one category box  RJ

,   yJ
≅ 1 and other 

  
y

j
≅ 0 . In this case, distributed ART learning 

reduces to winner-take-all learning. Weight changes are then limited to   wJ
, with the greatest 

changes occurring in components of the previously uncommitted features   i = M + 1...M  
(Figure 10b). 
 

Input 
  
a = 0.28,0.25( ) is inside both   R1

 and   R5
, indicating ambiguity between normal and 

hypothermic. During Stage 2, the distributed inputs 
  
T

1
≅ T

5( ) split the distributed code 

  
y

1
≅ y

5
≅ 0.5( ), reducing possible learning in   w1

 and   w5
.   R1

 and   R5
 therefore maintain the 

balance between their output classes, reflecting low confidence in any prediction in this 
temperature range (Figure 10c). The distributed instar and distributed outstar learning laws 
(equations (5) and (6)) prevent strong learning on weak predictions, regardless of how often 
unlabeled ambiguous points are presented. 
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Figure 10.  Self-supervised Stage 1 and Stage 2 learning. (a) Category boxes created by 
the first 28 Stage 1 training points on the simplified medical diagnosis problem 
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(Figure 1). Boxes are inverted in the uncommitted feature i=1 (shock), as indicated by the 
dashed edges. (b) When the unlabeled point a = (0.12, 0.75) is presented during Stage 2, 
it activates only node j=1. During learning, 

  
R1 (hypothermic) contracts toward the high 

shock value of this input. (c) When the point a = (0.28, 0.25) is presented during Stage 2, 
it activates nodes j=1 and j=5, which share distributed activations, allowing relatively 
small weight updates in this case of ambiguous class predictions. All parameter values 
are as specified in Table 5, except that the Stage 2 learning rate is uncharacteristically 

high 
 

β = 0.5( ), which speeds up learning so as to make weight changes visible in this 

illustration. 
 
 
 
Figure 11 illustrates the result of slow, distributed SS ARTMAP learning at the end of Stage 2. 
Driven by strong activations on confident predictions at low temperatures,   R1

 (hypothermic) 

stabilizes at the top of shock. Similarly,   R2
 and   R4

 (septic) stabilize at the top of shock. Test 

accuracy has improved to nearly 100% and coding nodes   j = 1...5 are almost fully committed. 
Category boxes do not expand nearly as much as they would in winner-take-all training. Rather, 
inputs outside the boxes produce distributed coding field activations, so distributed ART learning 
inhibits further weight changes. Stage 2 learning thus converges as the degree of node 
undercommitment falls to 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  SS ARTMAP category boxes at the end of Stage 2 learning on the simplified 
medical diagnosis example, with Stage 2 training beginning with the five category boxes 

of Figure 10a. After 10,000 training points and slow learning 
 
β = 0.01( ), test accuracy is 

100%. 
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8. The Boston satellite imagery testbed 
 
The two-dimensional medical diagnosis problem visually illustrates how SS ARTMAP meets 
key challenges presented by self-supervised learning of unlabeled inputs. Higher-dimensional 
problems reveal additional challenges. A self-supervised learning benchmark based on the 
Boston satellite imagery testbed (Carpenter, Martens, & Ogas, 2005) provides such an example 
(Figure 12). The problem requires a system to label pixels as belonging to one of seven classes 
(beach, ocean, ice, river, park, residential, industrial) from satellite data for northeast Boston 
and suburbs. The testbed is partitioned into four vertical strips (Figure 12a), such that training 
and test sets are not only disjoint but drawn from geographically separate locations. The first 
Boston self-supervised learning benchmark specifies only the five input features related to blue 

image data 
  

M = 5( ) during Stage 1 training on three strips, and all thirty-eight input features 

(M=38) during Stage 2 training and testing on the remaining strip. Cross-validation provides the 
total measure of benchmark performance by averaging across four independent simulations, each 
using a different strip for Stage 2 training and testing.  
 
The Boston benchmark presents challenges to a self-supervised learning system beyond those of 
the two-dimensional example. Because testbed pixels have a 15m resolution, many actually 
cover multiple classes. Whereas the labeled training set consists primarily of clear exemplars of 
each class, unlabeled Stage 2 pixels are typically mixtures. Many pixels, for example, include 
both ice and residential patches. Stage 2 vectors thus mix and distort features from multiple 
classes, placing many of the unlabeled feature vectors far from the distinct class clusters of the 
Stage 1 training set. As a result, following Stage 1 training, winner-take-all ARTMAP would, for 
example, overpredict residential on the self-supervised Boston benchmark by an order of 
magnitude. As in Figure 10, distributed Stage 2 activation minimizes the influence of mixed 
pixels, so that most learning occurs only on unambiguous cases, despite the fact that the 
unlabeled pixels provide no external indices of class ambiguity.  
 
 
8.1. Boston benchmark self-supervised learning 
 
Each Boston benchmark simulation follows a standardized image cross-validation protocol 
(Parsons & Carpenter, 2003). With one strip reserved for testing, up to 250 labeled pixels per 
class are selected at random for Stage 1 training. All pixels of the remaining strip are presented 
in random order without labels during Stage 2. Testing calculates the accuracy for each class on 
this strip, with the overall accuracy set equal to the average of these class-wise percentages. This 
performance measure is, like the c-index, independent of the particular class mixture in a given 
test set. Each simulation result is the average of the independent accuracies across the four test 
strips. This procedure is repeated 500 times, each with a different random Stage 1 pixel selection 
and Stage 2 ordering. 
 
The first set of Boston benchmark simulations take the Stage 1 feature vector to be the five input 
components related to blue. Self-supervised Stage 2 learning dramatically improves performance 
on the Boston benchmark (Figure 13). On every one of the 500 individual simulations, Stage 2 
learning improved test accuracy, as unlabeled fully featured inputs consistently expanded 
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knowledge from Stage 1 training. Following Stage 1 (dark bars, Figure 13a), the class-based test 
accuracy was between 50% and 58% across the 500 simulations. Stage 2 self-supervised 
learning, with all 38 features specified, improved accuracy on each simulation to above 70%, 
with a mean of 90% (light bars). Figure 13b displays test accuracy on each class for a typical 
SS ARTMAP trial. Note, for example, that Stage 2 learning improves accuracy of ice ground-
truth pixels from 0% (Stage 1) to 99%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. The satellite image and labeled ground-truth pixels for the Boston testbed 
(http://techlab.bu.edu/classer/data_sets). Only 28,735 of the 216,000 pixels are labeled, of 
which only 6,634 represent classes other than ocean. (a) Cross-validation divides the 
testbed into four vertical strips.  (b) Class distributions vary substantially across strips. 
For example, the right-hand strip contains mainly ocean pixels (dark), while the left-hand 
strip contains neither ocean nor beach pixels.  
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Figure 13.  ARTMAP performance on the Boston self-supervised learning benchmark. 
Stage 1 training specifies class labels and five blue-related features in three strips. Stage 2 
training specifies all 38 input features but no class labels for pixels in the remaining strip. 
Testing evaluates the performance of the system on fully featured inputs from the fourth 
strip. (a) Performance histograms for 500 randomized trials. (b) For one trial, the fraction 
of pixels labeled as belonging to a class that were predicted as in that class. Compared to 
Stage 1, per-class performance in Stage 2 declined only in classes that had been over-
predicted in Stage 2 (residential, industrial). 
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Confusion matrices for one of the Boston simulation examples further illustrate the pattern of 
Stage 2 performance improvements. Following Stage 1 learning (Figure 14a), SS ARTMAP’s 
per-class test accuracy was high for residential and industrial pixels but low for others. For 
example, all beach and ice pixels were misclassified as industrial. If the system were to learn on 
unlabeled pixels as if its own winner-take-all class predictions were ground-truth labels—the 
“self-training” of Chapelle et al. (2006, p. 3)—mistakes on classes like ice would degrade correct 
prior knowledge. Instead, distributed activation of SS ARTMAP focuses Stage 2 learning on 
confident predictions and novel features, fixing nearly all the incorrect industrial predictions on 
the beach and ice pixels while maintaining industrial accuracy (Figure 14b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Confusion matrices for one self-supervised ARTMAP simulation of the 
Boston benchmark. (a) After Stage 1 learning on labeled inputs with the five blue-related 
feature values. (b) After Stage 2 learning on inputs with all 38 features but no class 
labels. 
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Table 3 and Figure 15 show SS ARTMAP performance on the Boston benchmark with different 
feature subsets selected for Stage 1 training. For the Full or Visible subsets, which specify all or 
most of the input features, Stage 1 training produced near-perfect test performance, which was 
either unchanged (Full) or slightly harmed (Visible) by Stage 2 self-supervised learning. The 
subsets Raw, Blue, and Red-Green specify between five and nine of the input features during 
Stage 1 training, where Blue is the feature subset used in Figures 13 and 14. Each of these 
training protocols produced Stage 1 test accuracy of about 50%, which improved to about 80-
90% during Stage 2. The remaining two feature subsets specified only one (Raw Blue) or two 
(Raw Red-Green) Stage 1 features. Although Stage 1 performance was similar to that of the 
Raw, Blue, and Red-Green Subsets, Stage 1 learning did not provide a sufficient foundation on 
which SS ARTMAP could build useful additional knowledge during self-supervised Stage 2 
learning. 
 

Table 3 

Self-supervised Boston benchmark feature subsets specified during Stage 1 training 

Subset 

name 

Number of 

features  M  

 
Features 

Full 38 All features 

Visible 26 All features except those related to  

infrared and panchromatic bands 

Raw 9 Unprocessed features 

Blue (B) 5 Features related to blue 

Red-green (RG) 7 Features related to red or green 

Raw blue 1 Blue 

Raw red-green 2 Green, red 
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Figure 15.  Boston benchmark class-based accuracy after SS ARTMAP Stage 1 (dark 
bars) and Stage 2 (light bars) across 50 randomly chosen training sets. Stage 1 feature 
subsets are specified in Table 3.  

 
 
 
9. Experimental studies of self-supervised learning 
 
Research on aging summarized by Healey, Campbell, and Hasher (2008) supports the basic 
SS ARTMAP hypothesis that humans increase the number of attended input features over their 
lifetimes. Experiments comparing the reaction times of younger and older subjects show that 
older subjects are more easily distracted by task-irrelevant information. For decades these 
observations were interpreted negatively, as impairment of older subjects’ ability to ignore 
distractors. Recent experiments (Kim, Hasher, & Zacks, 2007) suggest, however, that older 
subjects make better use of contextual information when its task relevance is not specified a 
priori . Younger subjects show a narrower focus of attention, which improves their performance 
on tasks that require ignoring distractors but impairs their performance on tasks for which 
peripheral information was, in fact, relevant. 
  
Li and DiCarlo (2008) suggest that self-supervised learning by neurons in the inferotemporal 
cortex (ITC) may underlie view-invariant object recognition. A subject sees only one view of an 
object when it is paired with a label (Stage 1) but many views of the same object when the 
teaching signal is absent (Stage 2). Single-cell recordings in monkey ITC show increases in 
neurons’ object selectivity and tolerance to different object orientations and positions as a result 
of Stage 2 learning. 
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Smith and Minda (2000) summarized thirty experiments on human pattern learning and 
classification. In each experiment, subjects unlearn in a characteristic way exemplars they had 
learned to classify perfectly during training. In Amis, Carpenter, Ersoy, and Grossberg (2009), 
ARTMAP simulations fit the experimental data and explain how classification patterns are 
learned and forgotten in real time. The model tests two competing hypotheses: (a) that the 
observed forgetting is the result of an unsupervised learning process; and (b) that the forgetting is 
the result of a corruption of long-term memory (LTM) traces by noise. The noise hypothesis (b) 
better fits the data and is also consistent with the mechanisms of self-supervised ARTMAP. 
Distributed learning during Stage 2 focuses LTM adaptation on input features whose values were 
unspecified during Stage 1. The unsupervised hypothesis (a) is equivalent to Stage 2 learning but 
with no novel input features specified, and so not enough additional learning occurs to model the 
data.  
 
 
 
10. Related models of self-supervised learning 
 
SS ARTMAP introduces a new definition of self-supervised learning:  a system trained on 
labeled data with limited features continues to learn on an expanded but unlabeled feature set. As 
such, no prior work directly addresses this learning paradigm. There are, however, many studies 
related to this form of self-supervised learning.  
 
Semi-supervised learning incorporates labeled and unlabeled inputs in its supervised training set, 
but unlike self-supervised learning, all inputs have the same number of specified feature values. 
Without any novel features from which to learn, semi-supervised learning systems use the 
unlabeled data to refine the model parameters defined using the labeled data. Reviews of semi-
supervised learning (Chapelle, Schölkopf, & Zien, 2006; Zhu, 2005) find that its success is 
sensitive to underlying data distributions, in particular to whether data cluster or lie on a lower-
dimensional manifold. Typically, models must be carefully selected and tuned for each problem 
space, using a priori knowledge of the domain. Chapelle et al. (2006) conclude that none of the 
semi-supervised models they reviewed is robust enough to be considered general purpose, and 
that semi-supervised learning remains an open problem. The main difficulty is that, whenever the 
unlabeled data are different enough from the labeled data to merit learning, it is unclear whether 
differences are useful, or whether they are the result of noise or other distortions that would 
damage the system’s performance. 
 
Another class of models admits inputs with different numbers of features, but in a different 
context than self-supervised ARTMAP learning. These methods assume that feature values are 
missing randomly and infrequently, and thus can be filled in based on a statistical analysis of 
other exemplars in the training set (Little & Rubin, 2002). Some applications add missing feature 
estimates to neural network architectures such as fuzzy ARTMAP (Lim, Leong, & Kuan, 2005) 
or multilayer perceptrons (Tresp, Neuneier, & Ahmad, 1995). Whereas feature estimates can 
succeed for problems with stationary statistics and redundant training data, challenging problems 
risk inappropriate learning on filled-in values. For this reason, exemplars with missing feature 
values are often excluded from the training set. In many situations, however, data points for an 
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entire cluster, class, or dataset have a common set of unspecified feature values. Structurally 
missing features are either ignored or substituted, and typical solutions are specific to a particular 
model architecture. For example, Chechik, Heitz, Elidan, Abbeel, and Koller (2008) created a 
support vector machine (SVM) that redefines the margin maximization objective to ignore 
unspecified feature values. Ishibuchi, Miyazaki, Kwon, and Tanaka (1993) modified a multilayer 
perceptron such that hidden layer nodes track feature value intervals rather than scalar values, 
representing a missing feature value as the interval [0,1].  
 
 
 
11. Conclusion 
 
Self-supervised ARTMAP defines a novel problem space that may be tested on almost any 
existing dataset designed for supervised learning. The system learns during an initial “textbook” 
supervised learning phase that is followed by a “real world” unsupervised learning phase. The 
novel aspect of the SS ARTMAP learning protocol is that inputs of the second, self-supervised 
phase specify more features than did the labeled inputs of the first phase. The expanded feature 
set provides to a learning system the capacity to teach the network important new information, so 
that accuracy may improve dramatically compared to that of the initial trained system, while 
avoiding performance deterioration from unlabeled data. New problem domains include 
applications in which a trained system performs in novel contexts, such as an image recognition 
problem in which an initial set of sensor data is later augmented on-line with unlabeled data from 
a new sensor. 
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Appendix A 
 
Self-supervised ARTMAP algorithm 
 
Figure 16 and Table 4 summarize self-supervised ARTMAP notation, and Table 5 lists default 
parameter values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Self-Supervised ARTMAP network. 
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Table 4 

Self-Supervised ARTMAP Notation  

Notation Description 

i input component index 

j coding node index 

k output class index 

M number of input features specified during Stage 2 learning and testing 

 M  number of features specified during Stage1 learning,  M ≤ M  

a feature vector 
 
a

i( ),   0 ≤ a
i

≤ 1,  i = 1,…,M 

A complement coded input vector (Ai), i = 1,…,2M 

K actual output class for an input 

K' predicted output class  

J chosen coding node (winner-take-all) 

C number of activated coding nodes 

ΛΛΛΛ , ′ΛΛΛΛ  coding node index subsets 

Tj signal from input field to coding node  j 

y coding field activation pattern (yj) 

 σ i
 signal from coding field to match field node i 

kσ  signal from coding field to output node k 

 
w

ij
 

  F0
→ F

2
  bottom-up weights from input node i to coding node j 

 
w

ji
 

  F2
→ F

1
  top-down weights from coding node j to match field node i 
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jΦ  degree of undercommitment of coding node j 

jκ  output class associated with coding node j 

ρ  vigilance variable 

∧  component-wise minimum (fuzzy intersection):  ( ) { }min ,i ii
p q∧ =p q  

∨  component-wise maximum (fuzzy union):  
   
p ∨ q( )

i
= max p

i
, q

i{ } 

⋅  vector size (  L1
-norm):  ii

p≡∑p  

  [ ]+⋅  rectification: [ ] { }max , 0p p+ =  
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Table 5 

Self-supervised ARTMAP parameters 

Name Para- 
meter 

Range Default 
value 

Value for  
Boston 

benchmark 

Notes 

signal rule parameter α  ( )0,1  0.01 0.01 0α +=  maximizes 
code compression 

Stage 1 
learning fraction 

β  ( ]0,1  1.0 1.0 1β =  implements 
fast learning 

Stage 2 
learning fraction 

β  [ ]0,1  0.01 0.01  

signal rule 
undercommitment 
factor 

γ  
 
0,1− α(    1− α   1− α  

Setting 
 
γ ≤ 1− α( ) 

ensures that 
 
T

j
≤ M  for 

the IG CAM Rule 

match tracking 
parameter 

ε  ( )1,1−  -0.01 -0.01 0ε <  (MT–) codes 
inconsistent cases 

baseline vigilance ρ  [ ]0,1  0.0 0.0 0ρ =  maximizes 
code compression 

CAM rule power 
Stage 2 & testing 

p 
 
0,∞(   2 2 

IG CAM Rule converges 
to winner-take-all 
as p → ∞  

# Stage 1 training 
epochs 

E  1≥  1 1 1E =  simulates 
on-line learning 

# Stage 2 training 
epochs E  1≥  1 2  

# voting systems V 1≥  5 5  

# cross-validation 
strips 

F 1≥  4 4  

maximum # Stage 1 
training points per 
class 

P 1≥  250 250  
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A.1. Self-supervised learning – Stage 1 

Each input 
   
a = a1...ai ...aM( ) is associated with an output class K. Feature values 

 
ai    

i = 1...M( ) 

are specified. Coding field activation is winner-take-all.  
 
 
A.1.1. Initialize the system 
All coding nodes j are uncommitted. 
1. Set the initial number of coding nodes that have been activated one or more times:  C = 0 
2. Set weights to their initial values: 

  
wij = 1 

3. Set the initial coding field signals to all coding nodes:  
 
Tj = α M  

4. Set the initial degree of undercommitment of coding nodes:  
  
Φ

j
= 1 

 
 
A.1.2. Stage 1 learning 
Repeat the following loop E  times, where E  is the number of Stage 1 training epochs. 
1. Choose a new training pair   a → K  
2. Set vigilance at its baseline value:  ρ ρ=  
3. Complement code the  M  specified features of a: 
  For   i = 1,...,M  

  
Ai = ai , Ai + M = 1− ai  

  For   i = M + 1,...,M  
  
Ai = Ai + M = 1  

  
   
A = 2M − M  

4. Calculate the coding field signals 
 
Tj  : 

  

   
Tj =

2M − A( )− w j − A ∧ w j( )
1− γ Φ j

− α M − w j( ) for  j = 1...C  

5. Define the initial index set ΛΛΛΛ  of candidate nodes: 

  
  
ΛΛΛΛ = j : Tj > α M{ }⊆ 1,...,C{ } 

6. If ΛΛΛΛ  is empty, choose an uncommitted node:  Go to Step 8 
7. If ΛΛΛΛ  is not empty, choose a candidate node: 

  Choose coding field winner: 
  
J = argmax

j ∈ΛΛΛΛ
Tj{ }, breaking ties randomly 

  Activate the coding field (winner-take-all):  
  
yJ = 1, all other 

  
y j = 0  

  If  J ρ
∧

<
A w

A
,  J fails to meet the matching criterion:  

   Reset J:  Remove J  from ΛΛΛΛ  
   Continue search: Go to Step 6 
  If κJ = K,  J predicts the correct class. Learning: 
   Supervised learning of weights in 

  
F0 → F2  (bottom-up) paths and 

  
F2 → F1  
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(top-down) paths:  
  
wiJ = wJi = wiJ

old − β wiJ
old − Ai







+
 for i = 1,…,2M. 

    With fast learning 
 
β = 1( ), 

  
wiJ = wJi = Ai ∧ wiJ

old . 

   Update the degree of undercommitment of node J: 

    
  
Φ

J
= 1

M
w

iJ
− 1− w

i + M ,J( )





+

i =1

M

∑  

 
   Continue to the next training pair:  Go to Step 1 
  If κJ ≠ K,  J  predicts an incorrect class. Match tracking and reset: 

   Match track: Jρ ε
∧

= +
A w

A
 

   Reset J: Remove J from ΛΛΛΛ  
   Continue search: Go to Step 6 
8. Activate a new node: 
  Add 1 to the activated node count C  
  ( )1,..., 2 ,iC i Cw A i M Kκ= = =  

  Continue to next training pair: Go to Step 1 
 
 
A.2. Self-supervised learning – Stage 2 

All feature values 
 
ai  are specified 

  
i = 1...M( ). Coding field activation is distributed, and 

learning is slow. No output classes are specified. The vigilance parameter  ρ = 0 during Stage 2 
and during testing, so weight updates in top-down pathways are not computed in the algorithm. 
 

Repeat the following loop E  times, where E  is the number of Stage 2 training epochs. 
1. Choose a new input a 
2. Reset coding field activation:  y = 0 
3. Complement code all features of a: 
  For 1,...,i M= :  

  
Ai = ai , Ai+ M = 1− ai  

  
  
A = M  

4. Calculate coding field inputs for    j = 1...C : 

  

   
Tj =

2M − A( )− w j − A ∧ w j( )
1− γ Φ j

− α M − w j( ) 
5. Define index subsets of 

  
F2  nodes j: 

 Nodes with input above inputs to uncommitted nodes:   
  
ΛΛΛΛ = j :Tj > α M{ } 

 Point box nodes with 
 
Rj  identical to a:   

   
′ΛΛΛΛ = j : w j = A{ } 

6. If ΛΛΛΛ  is empty, go to Step 1 (no learning). 
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7. Activate the distributed code y at the field 
  
F2  

  If ′ΛΛΛΛ is not empty, activation is distributed evenly at nodes whose point boxes equal the 
input a: 

 

  

y j =
1

′ΛΛΛΛ
   for j ∈ ′ΛΛΛΛ  

0       otherwise









 

 If ′ΛΛΛΛ is empty, 
  
F2  activation y is distributed: 

  

  

y j =

M − Tj






− p

M − Tλ 
− p

λ∈ΛΛΛΛ
∑

 for j ∈ΛΛΛΛ

0                           otherwise













 

 If a is in one or more boxes , activation 
 
y j  is distributed among the corresponding nodes, 

with 
 
y j  largest where the boxes 

 
Rj  are smallest. If a is not in any box, 

 
y j  is distributed 

according to  
   
d Rj ,a( ), with  

 
y j  largest where a is closest to 

 
Rj . 

8. Self-supervised distributed instar learning:  

  
  
wij = wij

old − β y j − 1− wij
old( )− Ai







+
for i = 1,...,2M , j ∈ΛΛΛΛ   

9. Update the degree of undercommitment for nodes  j ∈Λ : 

  
  
Φ

j
= 1

M
w

ij
− 1− w

i + M , j( )





+

i =1

M

∑  

10. Continue to the next input:  Go to Step 1 
 
 
A.3. Testing 
All feature values 

 
ai  are specified. Coding field activation is distributed. No learning occurs. 

1. Choose a new test input a 
2. Complement code all features of a: 
  For 1,...,i M= : 

  
Ai = ai , Ai+ M = 1− ai  

  
  
A = M  

3. Reset coding field activation:  y = 0 
4. Calculate coding field inputs for   j = 1...C : 

  

   
Tj =

2M − A( )− w j − A ∧ w j( )
1− γ Φ j

− α M − w j( ) 
5. Define index subsets of 

  
F2  nodes j: 

 Nodes with input above inputs to uncommitted nodes:   
  
ΛΛΛΛ = j :Tj > α M{ } 



CAS/CNS TR-2009-006 Self-Supervised ARTMAP 47 

 Point box nodes with 
 
Rj  identical to a:   

   
′ΛΛΛΛ = j : w j = A{ } 

6. If ΛΛΛΛ  is empty, go to Step 1 (no prediction). 
7. Activate the distributed code y at the field 

  
F2  

  If ′ΛΛΛΛ is not empty, activation is distributed evenly at nodes whose point boxes equal the 
input a: 

 

  

y j =
1

′ΛΛΛΛ
   for j ∈ ′ΛΛΛΛ  

0       otherwise









 

 If ′ΛΛΛΛ is empty, 
  
F2  activation y is distributed: 

  

  

y j =

M − Tj






− p

M − Tλ 
− p

λ∈ΛΛΛΛ
∑

 for j ∈ΛΛΛΛ

0                           otherwise













 

8. Activate the mapping field:  

  

σ k = y j

j∈ΛΛΛΛ: κ j =k{ }
∑   

9. Make an output class prediction:   { }arg max k
k

K σ′ = ,  breaking ties randomly 

10. If the ground-truth label K is available, record prediction accuracy 
11. Continue to the next test input:  Go to Step 1 
 
 
A.4. Voting 
1. Apply self-supervised learning Stages 1 and 2 to V ARTMAP systems, each with a different 

sampling or ordering of inputs 
2. During testing: 
  Generate a class prediction for each voter 
  Predict the class with the most votes 
 
 
A.5. Cross-validation of image dataset (Boston testbed) 
Given a dataset of labeled and unlabeled input vectors, divided into F disjoint strips. 
For each strip f : 
 
A.5.1. Stage 1 training 
  Create a training data source by concatenating labeled inputs from the other 1F −  strips 

(all except for f ). If a fully featured dataset is being used for evaluation (e.g., the 
Boston testbed), identify a feature subset to use in Stage 1. Remove all other feature 
values from each Stage 1 training input. 

  Train (Stage 1) V ARTMAP voters on a random selection of at most P inputs per class.  
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A.5.2. Stage 2 training 
  Train (Stage 2) each voter on a random ordering of all (fully featured) inputs in strip f, 

including labeled and unlabeled inputs.  
 
A.5.3. Testing 
  Generate ensemble class predictions on the fully featured, labeled inputs in f. 
  Record per-class and average class accuracy. 
 


