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Self-Supervised ARTMAP

Abstract Computational models of learning typically train labeled input patterns (supervised
learning), unlabeled input patterns (unsupervigaaning), or a combination of the two (semi-
supervised learning). In each case input patteave la fixed number of features throughout
training and testing. Human and machine learningeods present additional opportunities for
expanding incomplete knowledge from formal traininga self-directed learning that
incorporates features not previously experiencdus Brticle defines a new self-supervised
learning paradigm to address these richer learoimgexts, introducing a neural network called
self-supervised ARTMAP. Self-supervised learninggnates knowledge from a teacher (labeled
patterns with some features), knowledge from thédrenment (unlabeled patterns with more
features), and knowledge from internal model atiova(self-labeled patterns). Self-supervised
ARTMAP learns about novel features from unlabeleattggns without destroying partial
knowledge previously acquired from labeled patterAscategory selection function bases
system predictions on known features, and distidbubetwork activation scales unlabeled
learning to prediction confidence. Slow distributedrning on unlabeled patterns focuses on
novel features and confident predictions, defirglagsification boundaries that were ambiguous
in the labeled patterns. Self-supervised ARTMAP rowps test accuracy on illustrative low-
dimensional problems and on high-dimensional bercker Model code and benchmark data
are available from: http://techlab.bu.edu/SSART/.

Keywords Self-supervised learning, supervised learnindagtive Resonance Theory (ART),
ARTMAP, unsupervised learning, machine learning

1. Supervised, unsupervised, semi-supervised, and self-supervised learning

Computational models of supervised pattern recagnitypically utilize two learning phases.
During an initial training phase, input patternescribed as values of a fixed set of features, are
presented along with output class labels or patteDuring a subsequent testing phase, the
model generates output predictions for unlabeledtsy while no further learning takes place.

Although the supervised learning paradigm has Iseecessfully applied for a wide variety of
applications, it does not reflect many natural h@ay situations. Humans do learn from explicit
training, as from a textbook or a teacher, and theyake tests. However, students do not stop
learning when they leave the classroom. Rathery ttentinue to learn from experience,
incorporating not only more information but new égpof information, all the while building on
their earlier classroom knowledge. The self-supedilearning system introduced here models
such life-long experiences.

An unsupervisedearning system clusters unlabeled input patteB&mi-supervisedystems
(Chapelle, Scholkopf, & Zien, 2006) learn from Wdéed as well as labeled inputs during
training. Theself-supervisegharadigm models two learning stages. During Sialgarning, the
system receives all output labels, but only a subsgossible feature values for each input.
During Stage 2 learning, the system receives alufe values for each input, but no output
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labels (Table 1).

Tablel
Learning paradigms

Learning No learning
Training set Test set
Paradigm Input features | Output labels
Supervised All All
- . All input
Semi-supervised Stage 1 All All
features
Stage 2 All None
Self-supervised Stage 1 Some All
o All output
New definition Stage 2 All None
labels
Unsupervised All None

Preparing students for a lifetime of independeatrieng has always been a primary principle of
good education. As described by Stephen Krasheexj@rt in second language acquisition:
An autonomous acquirer is not a perfect speak#veo$econd language, just good
enough to continue to improve without us. Thisads,course, the goal of all
education — not to produce masters but to allowplgeto begin work in their
profession and to continue to grow. (Krashen, 2p04)

Self-supervised learning models the continuing ghoaf the autonomous acquirer. By analogy
with Stage 1 learning, a medical student may, k@neple, initially learn to treat diseases from

case studies with clear diagnoses for a small samplpatients using a limited number of

specified features such as major symptoms andréssits. Later in practice (Stage 2), the

doctor, no longer supervised, diagnoses patierits mwyriad symptoms, test results, and contexts
that were not fully specified during training. THector not only successfully treats under these
enhanced circumstances but also learns from theriexges.

In addition to modeling the human learning exparerself-supervised learning promises to be
useful for technological applications such as welgep classification. A supervised learning
system that completes all training before makingt teredictions does not adapt to new
information and varying contexts. An adaptive systthat continues to learn unsupervised
during testing risks degrading its supervised kmaolge. The self-supervised learning system
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developed here continues to learn from new expeggrwithout, in most cases, degrading
performance.

2. A computational example of self-supervised learning

A simplified medical diagnosis examgleigure 1) illustrates the dynamics of the selfewsed
learning model. The problem is to identify exemgplas belonging to the output clagsmal or
hypothermicor septi¢ given the input feature valuésmperatureand shock During Stage 1
learning, class labels are paired with inputs specify only the featureemperaturgFigure 1a).
The system models incremental online learning daaresses just one case at a time. Projected
onto thetemperatureaxis, classes overlap, and, even with a largenitrgi set, optimal test
accuracy is 65%. Although extreme temperatures bigurously indicatdypothermicor septic
these class labels are densely mixed witrmal at moderately low and moderately high
temperatures.

During Stage 2 self-supervised learning, inputcispd®doth temperatureandshock but no class
labels are provided (Figure 1b). The self-supedrisgarning system has an opportunity to
incorporateshockinformation, but needs to be designed in such wa tivat it does not degrade
the partial knowledge that it gained during Stadeatning.

Figure 1c illustrates results of a typical self-swysed learning simulation. Following Stage 1,
where only one input featurée(mperaturg was available, the model attains a near-optirest t
accuracy of 65%. During slow self-supervised Stadearning on unlabeled (but fully featured)
inputs, the model adds now&hockinformation to Stage femperatureknowledge. After 5,000
Stage 2 learning samples, the test set is labalbdl@0% accuracy.

3. ART and ARTMAP

The self-supervised learning system of Figure dased on Adaptive Resonance Theory (ART).
ART neural networks model real-time prediction, reba learning, and recognition. Design
principles derived from scientific analyses and iglesconstraints imposed by targeted
applications have jointly guided the developmentnminy variants of the basic supervised
learning ARTMAP networks, including fuzzy ARTMAP #&tpenter, Grossberg, Markuzon,
Reynolds, & Rosen, 1992), ARTMAP-IC (Carpenter & rkla&zon, 1998), and Gaussian
ARTMAP (Williamson, 1998). A defining characteristof various ARTMAP systems is the
nature of their internal code representations. \E&RTMAP networks, including fuzzy
ARTMAP, employedwinner-take-allcoding, whereby each input activates a singlegoaie
node during both training and testing. When a risdiest activated during training, it is mapped
to its designated output class.
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Figurel. Simplified medical diagnosis example. (a) Duritage 1 self-supervised
learning, each input, specified only by iésnperaturevalue, is paired with one of three
output classes. (b) During Stage 2 learning, bofut features but no class labels are
specified. (c) Test predictions during a typicalf-sepervised model simulation trial.
During Stage 1, test accuracy reaches an optinfal &ber 28 training points. Further
learning attempts to correct errors in regions wértap but does not improve test
accuracy. The Stage 1 figure is the result of ingiron 50 points. Performance steadily
improves during Stage 2 self-supervised learninigh wost system updates occurring
on unambiguous inputs, either at extreme tempearstuwhich clearly indicate
hypothermiaor septi¢ or at moderate temperatures, which indicetenal
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Starting with ART-EMAP (Carpenter & Ross, 1995), MRAP systems have used distributed
coding during testing, which typically improves gietive accuracy while avoiding the
computational challenges inherent in the use dfidiged code representations during training.
In order meet these challenges, distributed ARTMBRrpenter, 1997; Carpenter, Milenova, &
Noeske, 1998) introduces a new network configunagéind new learning laws that realize stable
fast learning with distributed coding during bothining and testing.

Comparative analysis of the performance of ARTMARtams on a variety of benchmark
problems has led to the identification oflefault ARTMARetwork (Carpenter, 2003; Amis &
Carpenter, 2007), which features simplicity of desiand robust performance in many
application domainshftp://techlab.bu.edy/Default ARTMAP employs winner-take-all coding
during training and distributed coding during tegtiwithin a distributed ARTMAP network
architecture. During Stage 1, when the system georporate externally specified output labels
with confidence, self-supervised ARTMAP (SS ARTMAéploys winner-take-all coding and
fast learning. During Stage 2, when the networkrimilly generates its own output labels, codes
are distributed and learning is slow, so that inecrhypotheses do not abruptly override Stage 1
“classroom learning.”

Sections 3.1 — 3.4 introduce the key ARTMAP compore that are implemented in the
SS ARTMAP architecture.

3.1. Complement coding: Learning both absent aiedgnt features

Unsupervised ART and supervised ARTMAP networks lesn@ preprocessing step called
complement codingCarpenter, Grossberg, & Rosen, 1991). When tlaenileg system is

of input components, presenting to the network btitb original feature vectoand its
complement.

Complement coding allows a learning system to eadedtures that are consisterdlysenton

an equal basis with features that are consist@négent Features that are sometimes absent and
sometimes present when a given category is bemgée become regarded as uninformative
with respect to that category.

To implement complement coding, component actisiieof anM-dimensional feature vectar
are scaled so thaD<a <1. For each featura, the ON activity (al) determines the

complementary OFF activitf1l-a ). Botha and its complemen&® are concatenated to form

the 2M-dimensional system input vectorA:(a‘ac) (Figure 2). Subsequent network

computations operate in thisM2dimensional input space, which may be interpressd
representing ON-channel and OFF-channel dynamics.
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complement coded input

s / A\

A=(A..A, | ALy ...A?_M)z(al a’)

ON channelﬁ OFF channel

(@0, ) =2t a = ((1-a)..(1-a) .(1-a,))

a

feature vector

Figure2. Complement coding transforms leidimensional feature vectarinto a M-
dimensional system input vectdr A complement-coded system input represents both

the degree to which a features present(a,) and the degree to which that feature is
absent(l-a ).

3.2. ARTMAP search and match tracking

Matching bottom-up inputs against top-down expémtat is a fundamental computation of all
ART networks. The ART matching process triggerbagiiearning or a parallel memory search
(Figure 3). If search ends at an established cidememory representation may either remain
the same or delete mismatched portions of the wuirgout. While this dynamic applies to
arbitrarily distributed activation patterns, thg code will be described here as a single category
node in a winner-take-all system.

Before ARTMAP makes a class prediction, the bottgminputA is matched against the top-
down learned expectation that is read out by thieeaoode (Figure 3b). The matching criterion
is set by a parametep called vigilance Low vigilance permits the learning of abstract
prototype-like patterns, while high vigilance remsi the learning of specific exemplar-like
patterns. When an input arrives, vigilance equabaseline levelp. Baseline vigilance is set
equal to zero by default, in order to maximize galzation. Vigilance rises only after the
system has made a predictive error. The internairabprocess that determines how jarmust
rise in order to correct the error is calledtch tracking(Carpenter, Grossberg, & Reynolds,
1991). As vigilance rises, the network is requitecpay more attention to how well top-down
expectations match the current bottom-up input.
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Figure3. A fuzzy ART search cycle (Carpenter, Grossberg &dtp 1991), with a
distributed ART network configuration (Carpentef9X). The ART 1 search cycle
(Carpenter & Grossberg, 1987) is the same, butvallonly binary inputs and did not
originally feature complement coding. The matchidfi€&; represents the matched

activation patternx =A Ow,, where [0 denotes the component-wise minimum, or
fuzzy intersection, between the bottom-up inputand the winner-take-all top-down
expectationw, . If the matched pattern fails to meet the matchiriterion, then the

active code is reset d&,, and the system searches for another cpdbat better

represents the input. The match / mismatch decisomade in the ART orienting
system. Each component of the input pat#&rexcites the orienting system with gain
equal to the vigilance parameter. Hence, with complement coding, the total excitato

2M
input is p|A| = p> A =pM . Active cells in the matched pattexrinhibit the orienting
i=1

2M
system, leading to a total inhibitory input equal~x| = -> x . If p|A|-|x|<0, then
i=1

the orienting system remains quiet, allowing resaeaand learning to occur. If
p|A|=|x| >0, then the reset signal=1, initiating search for a better matching code.
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Match tracking forces an ARTMAP system not onlydeet its mistakes, but to learn from them.
With match tracking and fast learning, each ARTMA&work passes the Next Input Test,
which requires that, if a training input were resgnted immediately after its learning trial, it
would directly activate the correct output clasghwneither predictive errors nor search. While
match tracking guarantees that a winner-take-aWok passes the Next Input Test, it does not
also guarantee thatdsstributedprediction, such as those made during default ARPMesting,
would pass the Next Input Test. A training stepeatith default ARTMAP 2 does provide such a
guarantee (Amis & Carpenter, 2007).

Match tracking simultaneously implements the degigals of maximizing generalization and
minimizing predictive error, without requiring thehoice of a fixed matching criterion.
ARTMAP memories thereby include both broad and igepattern classes, with the latter
formed as exceptions to the more general “rulesindd by the former. ARTMAP learning
typically produces a wide variety of such mixture$iose exact composition depends upon the
order of training exemplar presentation.

Activity x at the ART fieldF; continuously computes the match between the &dbdittom-up
and top-down input patterns. The reset sigrediuts off the activé, nodeJ whenx fails to meet
the matching criterion determined by the valuehaf vigilance parametep . Reset alone does
not, however, trigger a search for a differéatnode: unless the prior activation has left an
enduring trace within th&q-to-F, subsystem, the network will simply reactivate siaene node
as before. As modeled in ART 3 (Carpenter & GroggbE990), biasing the bottom-up input to
the coding fieldF, to favor previously inactive nodes implements seaby allowing the
network to activate a new node in response to at ragnal. The ART 3 search mechanism
defines a medium-term memory in theto-F, adaptive filter which biases the system against
rechoosing a node that had just produced a reset.

3.3. Committed nodes and uncommitted nodes

With winner-take-all ARTMAP fast learning, a nodebecomescommittedthe first time it is
activated. The weight vectaw, converges to the inp#, and nodel is permanently linked to

the current output.

Unless they have already activated all their codinges, ART systems contain a reserve of
nodes that have never been activated, with weightkeir initial values. Thesencommitted
nodesreceive bottom-up inputs and compete on an equminig with the previously activated
nodes. Any input may then choose an uncommittee moer poorly matched committed nodes
(Figure 4).
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committed nodes uncommitted nodes

at | fa
Figure4. The ARTchoice functionT; specifies the total signal that the complement-
coded inputA sends to theF, nodej , wherea is a small parameter. The fuzzy
intersectionA Cw; represents the match betwekrand the weight vectow; , where
L denotes the component-wise minimum of the twoarsctUncommittechodes have
never won arF, competition. Their weights still equal their ilaitivalues(vvij = 1), plus

small variations that serve to break ties with wintake-all coding. In ARTMAP
networks, a node is linked to the output classhef first input that activates it, while
uncommitted nodes are linked to all possible outagses.
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An ARTMAP design constraint specifies that an actimcommitted node should not reset itself.
Weights begin with allw; =1. Since 0<A <1, when a winner-take-all active nodeis

uncommitted, match field activity x=ACw,=A. In this case, therefore,
PlA|-1x| = plA]-|A] = (p-1)A|. Thus p|A|-|x|<0 and an uncommitted node does not
trigger a reset, provided thgb<1l. While seemingly mundane, the requirement that an

uncommitted node does not trigger a reset has prtwebe a key design constraint across a
variety of ART systems.

3.4. ART geometry

ART long-term memories are visualized as hyperamgies callectategory boxesThe weight
vector w, is represented geometrically as a b@x whose ON-channetorner u, and OFF-

channel cornerv, are, in the format of the complement-coded inpatter, defined by
(uJ ‘ vj)E w,; wherev]=1-v, (Figure 5a). When a nodkis first committed,R, equals the

point boxa.
A A A
avyv \i
W o 7/ >
~ A =TT | =]
S S S| g
3 u 3 3 |
! J < R, ®a <1 W
| Y 4
[ ) ® o ®
a anu, a a
O = o =+ o -4
6 feature 1 i > (') feature 1 i > (') feature 1 i >
(a) (b) (c)

Figure5. ART geometry. (a) The weight of a category nadés represented in
complement-coding form aw, = (uJ ‘ vj), and theM-dimensional vectorsi; and v,
define opposite corners of the category bex When M =2, the size ofR, equals its
width plus its height. (bR, Oais the smallest box that includé®§ anda. Its corners
arealu, andalyv,, where [ denotes the component-wise minimum of two vectors
and [ denotes the component-wise maximum. The activee nddresets if

IR, 0a>M(1-p). (c) If |R0a<M(1-p), R expands towardR, a during
learning.
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For fuzzy ART, the choice-by-differendg — F, signal function (Figure 4) is defined as:
T, =|A 0w+ @-a)(M -|w,|) (1)

(Carpenter & Gjaja, 1994). The functidi translates to a geometric interpretation of catggo
M

choice. The sizgR| of box ] is defined as the sum of the edge IengEs(vij -u, ) which
i=1

implies that

R|= M ~[w].
R U a, defined as the smallest box enclosing bethanda (Figure 5b), has size:

IR Dal=M-|A 0w,
and the city-block [, ) distance fromR toais:

d(a,a)=‘Rj Oa|-[R[=|w|-|A Dw|.
Thus geometrically the choice function is:

T,=M-d(R.a)-a[R|. @)
When the choice parameter is small, maximizingT, is almost equivalent to minimizing
d(R ,a), S0 an input activates the nodgof the closest category bdy,. In case of a distance

tie, as whera lies in more than one box, the node with the sresa‘IRj‘ is chosen.

According to the ART vigilance matching criteridhe chosen nodé&will reset if:
PIAI=|A Dw,| = oM ~|A Ow, >0,
or, geometrically, if:
IR, 0a>M(1-p).
If nodeJ is not resetR; expands towardR, [J a during learning (Figure 5c). Vigilance thereby
sets an upper bound on the sizeRyf with
IR|<M(1-p)<M(1-p).
After a fast learning trialR** = R D a.

4. Self-supervised ARTMAP: Geometry

ART weights W, initially equal 1. With winner-take-all coding, vita the category nodé is

active (yJ =1), bottom-up weights inF, - F, paths decrease during learning according to a

version of the instar (Grossberg, 1976) learning la

-A) ifw,>A
otherwise

®3)

Instar %Wu =Y, (Xi _\NiJ): (A? Hw, _\Ni.]): _I:VviJ a A|:|+ :{ _(WUO
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In equation (3),i =1..2M and [..]" denotes rectification, witffp]" = max{p,0}. Top-down
weights w, obey aroutstar(Grossberg, 1968) learning law, but with fast héagj, W, =W,

Recall that, fori=1..M, A =a andw, =u,. Thus by (3), while nodd is active,u, values

decrease during learning according to:

EUU :—[uiJ—al}Jr: _(ui.]_al) if uiJ >a| .
dt 0 otherwise
Geometricallyu; moves towar@, subject to the constraints of rectification (Fey6a).

‘u " Ly &
(a) Y ...... .a a.‘ u,
o> ®
: v, ¥ a
(b) ¥ & Vioo® .

Figure6. Geometry of ART learning. (a) During learning, quonents of the category
box corneru, can only decrease. (b) Similarly, components efdbrnerv, can only
increase during learning.

Also for i=1..M, A, , :(1_6‘.) and Wy =0y, ) Thus while the category nodkis

active, v, values increase during learning according to:

d + - i

d Ta-v,] ={ @-v) it v,<a

dt 0 otherwise

Like u,, v, moves toward, subject to the constraints of rectification (Fgéb).

With winner-take-all coding and fast learning, wegy converge to their asymptotes on each
input trial. In this casew;, - A when node] is first activated, andi, - a and v, - a.

Thereafter, nodéd is committed. On subsequent learning trials tietivateJ (without reset),R,
expands just enough to incorporate inp(fEigure 5c).
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Before its first activation, ark, category nodd is uncommitted ancjixvﬂ =2M . At the corners

of R, u, =1 andv, =0, sou, >v, and the category box isverted(Figure 7a). Formally,

‘RJ‘ziZ'jl:(ViJ _uiJ): M —‘WJ‘=—|\/|

If learning is slow, R, will remain inverted as long as, >v, for at least one feature
(Figure 7Db).

Uncommitted Undercommitted
Y node i nodes
|—|--|= ======= ? —
I U ..
™ e’
o : : ~ | I | !
S I R | sl IR, £, [
(@ S ] J ! (b) & I $- —
e J
| | Vv
Iy | J
=3 i ﬁﬁﬁﬁﬁﬁ = O =
(') feature 1 i " (') feature 1 i "

Figure7. Geometric representations of undercommitted gpdiodes. (a) Initially, all
coding weightsw, =1, and each nodé is uncommitted. The corresponding category
boxesR; are inverted. (b) With slow learning; remains inverted in the dimension of an
undercommitted featuiiefor as long asi; > v, .

4.1. Undercommitted nodes and features

In order to describe the dynamics of slow self-suiged learning during Stage 2, SS ARTMAP
defines a new node state between uncommitted anchdted. During Stage 1 learning, a subset

of feature values =1...M are specified, while the remaining feature vaIiJes(l\7I +1) ..M

are unspecified. The new definition supports thecdption of how features that were
unspecified during Stage 1 are learned during S2age

For a given nodé, a feature that is unspecified is called ancommitted featurduring Stage 1
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learning. Whether or not a feature is specified,wadights obey the same learning law. By
equation (3), the self-supervised learning modegiotilyesis that weights maintain their initial

values at uncommitted features is equivalent to hipothesis thatA = A, =1 for the
unspecified features= (M +1) ...M . Note that during Stage 1 learniAgs complement coded

only for the specified featurds=1...M , and that‘A‘ =M +2(M - M): 2M - M.

At the start of Stage2 SS ARTMAP learning, all, =1 and v, =0 for features
iz(l\ﬁ +1)...M. With slow learning, these features do not immiedya become fully

committed, which requires that, <v, (Figure 5). For as long as, >V, , i is said to be an

undercommitted featureith respect to nod& and nodel is said to be anndercommitted node
if its weight vector has one or more undercommifeatures. Figure 8 illustrates the geometry of
Stage 2 learning at undercommitted nodes.

Table 2 summarizes the definitions of feature comment levels. Thedegree of feature
undercommitmendefined as

b, = I:uiJ Vi :|+ '
guantifies the amount of learning needed for ndtie become fully committed in featureThe
average

1 M
CDJ = ng)u

guantifies thalegree of undercommitmeoitnodel.
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Figure8. Stage 2 learning on undercommitted nodes aetival inputa. (a) With
M =2 and M =1, when an inpus first activates nodd during Stage 2 learning, this
node is committed in featurel and uncommitted in feature2, and the coding boR,

is inverted in the vertical dimension (dashed ljné&uring Stage 2, botlu;, and v,
move towarda, subject to the constraints of rectification. Sl@arning contractsR,
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vertically and expands it horizontally, ag and v, follow the dotted arrows. Fast
learning collapses the inverted box to a line, mglkiode] fully committed. (b) When
inputa activates a nodgthat is undercommitted in both featurd and feature=2, R,

is inverted in both dimensions. Slow learning cacts R, towarda in both features, and
fast learning collapses the box to a line. (c) Whaut a activates an inverted bokk,
that containsa, slow learning contracts all sides &, . Fast learning completes the
contraction to a fully committed point box with, = v, =a.

Table2
Commitment definitions
Uncommitted - u,=1,v, =0 Uncommitted node
@ — = = = i T
feature v, u, wotw, =2 All features are
" > ’ uncommitted
0 i 1 o, =1
Undercommitted ®o— — -9 1>u, >v, 20 Undercommitted node
feature Vi Uy 2>w +w,  >1 | Atleastone feature i
= _ > ’ undercommitted
¢ 1 0<®, <1
Committed *—-=e TRV Committed node
Uu. V. I I
feature ; ! ! | Osw, +w, <1 All features are
0 i 1 ’ committed
®,=0
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Recall thatw, = (uJ vj) SO:

1 S +
P, :MZ[W.J _V\,iC+M,J] = VZ[\NL] T Wom _1] : (4)
i=1 i=1
For an uncommitted node, aly, =1 and ®, =1. For a committed node, all, <v, and
,=0. Once a nodd has been activated during Stage 1, featired..M are committed

(v,
o, =(M-M)/Mm.

st) while features i=M +1..M remain uncommitted (uU=1, VU=O), SO

5. Distributed Stage 2 learning

SS ARTMAP Stage 2 learning updates weights accgrdinthe learning laws of distributed
ART architectures (Carpenter, 1997).

5.1. Distributed ART learning

Distributed ART networks are designed to supp@tlst fast learning with arbitrarily distributed
F, code patterny. Achieving this computational goal led to the défon of a new unit of
memory, adynamic weigh{ Y~ T, T equal to the degree to which the activity of cgdmodej
exceeds amadaptive thresholdrij . Thedistributed instar(dinstar) updates the thresholdi§ in

bottom-up pathways fronF, to F,, and thedistributed outstar(dOutstar) updates thresholds

T, in top-down pathways fronf, to F, :

+

dinstar (bottom-up): %ru =Hyj -1, T _ A} =|:yj -7, - AT (5)

dOutstar (top-down):% T, = [yj -7 T (O'i - xi) , Whereg, = Z[yA -7, :|+ (6)
A

In the dOutstar equation (6), the top-down dynaméght [yj -7 T Is proportional to the
input from theF, nodej to the F, nodei, and o; is the total input fromF, to node (Carpenter,
1994). During dOutstar learning, the top-down sigma tracks F, activity x, with each

adaptive threshoIaLji increasing according to the contribution of itsdwmic weight to the total
signal, with fast as well as slow learning.

Formally defining the bottom-up Weighlwij =1- T and the top-down Weightssvji =1- T;
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transforms equations (5) and (6) to:

dinstar (bottom-up): —W ——[ (1 V\/”)AJ
dOutstar (top-down):awji = —[yj - (1— w; )} (Ji - xi), where o, = Z[VA - (1_ WAi)T
A

With winner-take-all coding,

y = 1 ifj=J
Folo ifjzd

In this case, the bottom-up dynamic weight is
[yj—r} {(1 Z')Ifj _{WU i_f_j:J.
ifj#J 0 ifj#J
With winner-take-all fast learning, bottom-up aog-down weights are equal. In this case, with
x = A Ow, when nodg=J is active, dInstar and dOutstar equations redoi@tinstar learning
law (equation (3)).

Even with fast learning, bottom-up weights of dimited ART do not generally equal top-down
weights. This is because, according to distributestar learning , a bottom-up weigrw”.

depends only on the activityj at its target node. In contrast, according torithigted outstar

learning, a top-down Weighilvji is a function of the entire active coding pattgrn

SS ARTMAP employs winner-take-all fast learning idgr Stage 1. Therefore at the start of
Stage 2, bottom-up weights equal top-down weightsing Stage 2 learning, thE, codey is
distributed, so bottom-up and top-down weights waililerge. Since top-down weights will not
be used again, they are not computed in the cu88MARTMAP algorithm. Extensions of this
system that alternate between Stage 1 and Staggrdirig, or that need to compute the bottom-
up/top-down match during Stage 2 or testing, wowed to update the top-down weights via
distributed outstar learning during Stage 2.

The dinstar and dOutstar equations are piecewisadiand can be solved analytically. During
Stage 2 learning, weights are updated accorditigetalinstar solution:

w =wf =By, - @i} AT

where 0 < ,[>’ <1. With fast Iearningz =1. With slow Iearning,[:? is small. Simulations here set

73: 0.01 for Stage 2 slow learning computations.
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5.2. Distributed activation patterns

During SS ARTMAP testing and Stage 2 learning, Bjecode is distributed, with the activation

patterny a contrast-enhanced and normalized version ofRthe F, signal patteri. While the

transformation off toy is assumed to be realized in a real-time netwgrk bompetitive field,
simulations typically approximate competitive dynesnin their steady-state, according to an
algebraic rule. For this purpose, the SS ARTMAPoatgm uses thelncreased Gradient
Content-Addressable Memory (IG CAM) RuMhich was developed for distributed ARTMAP
(Carpenter et al., 1998).

The IG CAM Rule features a contrast paramgteAs p increases, thd - y transformation
becomes increasingly sharp, approaching winnerdilkas p - «. SS ARTMAP simulations
setp=2 for distributed activation during Stage 2 anstitey. The hypothesis that SS ARTMAP

activation is winner-take-all during Stage 1 leagiiwhen answers are provided, corresponds to
the hypothesis that confidence modulates the catiyeefield, with high-confidence states
corresponding to large values of the contrast patarp.

With the IG CAM Rule, ifais in one or more category boxes, activat';qnis distributed among

these nodes, Witryj largest where the boxij that contaima are smallest. I& is not in any

box, Y is distributed according to the distand(Rj ,a), with Y largest whera is closest to

R.

6. Modifying the choice function for undercommitted coding nodes

During Stage 2, when learning is slow and disteduand inputs are fully featured, the degree
of undercommitmentCDj decreases fror‘r(l— M/M) toward 0 as a coding nodegradually

becomes more committed. Within Stageczj values vary across nodes. The ART choice

function T, as defined by equation (1) would favor more corteditnodes to the point that

nodes that became active early in Stage 2 wouldkblearning in all other nodes. Self-
supervised ARTMAP therefore modifies the definitioth so that the less committed nodes

are able to compete successfully with the more cittednnodes, as follows.

6.1. Balancing committed and undercommitted nodeisg Stage 2 learning

Fast-learn winner-take-all ARTMAP networks chooke toding nodel that maximizes the
choice-by-difference signal function:
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T=M —(ij\—\A ij‘)—a(M —‘WJ.D: M-d(R.a)-afR)|
(Figure 4). Sincex is small, the choice functiomj favors nodeg whose category boxelRj are

closest toa. Distance ties are broken in favor of smaller Isox€he example illustrated in
Figure 9 shows that, in a learning system with mhigegrees of coding node commitment, this
signal function also implicitly favors the nodesthvgreatest commitment. In order to focus on

primary T, design with respect to the distance frtb'{pto a, a is temporarily set equal to O:

TOM —d(Rj,a). (7)

Figure 9 illustrates a hypothetical case such aghmoccur during Stage 2 self-supervised
learning, when various coding nodg¢shave different degrees of undercommitmernt]
(equation (4)). In this example, nogel is fully committed ((Dl=0), while nodej=2 is still
uncommitted in feature=2 (d>2 :O.S). If the ARTMAP choice function (equation (7)) were

used, the signall, to the committed nodg=1 would be greater than the sigri) to the

undercommitted nodg=2 for all inputsa, as indicated by the grey area of Figure 9a. This
function excessively favors nodes that happenedbéoome active, and therefore more
committed, early in Stage 2. Many of the Stage @lesowould be left permanently inactive,

unable either to contribute to predictions or tartefrom Stage 2 experience.

To see why the signal function of Figure 9a favooemitted over undercommitted nodes, note
that, for anya at the start of Stage 2, all weigh\teﬁ =W, =1 for featuresi=M +1..M .

Thus at this moment,

2M .
d(R.a)=|w,|-[A DWJ‘:;‘[Wn -A] =

(_Wu ~a | +[w,, -@-a)]

M=

1
[y

+

™M=

1
[y

) = ®)

w-a | +w,, -(0-a)

)
( )
([w-a] +[w..,-@-a)] ) +m-m -
( )

™M=

1
[y

™M=

1
[y

w-a | +w, -(0-a)
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committed (d)l =O). The coding nodej=2, corresponding to the weight vector
w, = (0.3,1‘ 0.7,1) and the inverted boR,, is undercommittec(CD2 = 0.5). Grey areas

indicate the test pointa = (al,az) that would activate nodel more than nodg=2 for

each alternative signal functio‘F]. Term 5] is the distance froma to R in committed

features onlyThe approximate signal functions seequal to O, in order to focus on the
geometry of distance from inpud to boxes R. (@) T, favors committed over

undercommitted nodes. (b'lfj favors undercommitted over committed nodes. '(lc)
strikes a balance between committed and undercdaedmbdes.

Table 2 summarizes the definitions of feature comment levels. Thedegree of feature
undercommitmendefined as

b, = I:uiJ Vi :|+ '
guantifies the amount of learning needed for ndtie become fully committed in featureThe
average

1 M
CDJ = ng)u

guantifies thalegree of undercommitmeoitnodel.

As long asw, remains uncommitted in features M +1..M , the term

5,=3([w-a] +[w., ~-a)])

in equation (8) may be interpreted as the distadnom a to R in the committed features

i=1..M . The committed distance®) and J, are illustrated in Figure 9 for the poiat=
(0.8,0.8), for whichg, =0.6 andd, =0.5. This analysis suggests addilhlgtbj to the signal

function T =M- (5] + M(DJ.) (equation (7)) in order to favor nodpshat are closest ta in
their committed features. The resulting signal fiorcis then:

TOM@+o )d(Ra)M-g
(Figure 9b).

This second strategy raises the concern that g ¢olinmitted node with a good match in all
features might lose to a highly undercommitted nedh a good match in just one feature. This

concern is validated by noting thabj =1 and JJ =0 at each uncommitted nodgeso that

TJ. = M would bemaximalfor these nodes, where no learning has ever tpleee (Figure 4).
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Figure 9c suggests an alternative strategy forirtgaij in such a way that undercommitted

nodes can compete for Stage 2 activation whilee@syy the specificity of learning at more
committed nodes. Here,

TDM d(Ra) (5+|v|q>)
o) o) MER)

In Figure 9¢, ® =0 and Tl—(2—51) at the committed nodg=1, and ®,=0.5 and

T, = (2—251) at the undercommitted noge2. This third design strategy is implemented in

SS ARTMAP, though the full definition oﬂ'j is perturbed to break distance ties and avoid
division by 0.

6.2. Balancing committed and uncommitted featutggd Stage 1 learning

Analysis of Stage 2 learning (Figure 9) supporésdignal function definition:

M- (w\ A Dw, ‘)_G(M_‘Wj‘):w_a‘Rj‘ 9)

1-y o, 1-y o,

where 0< y <1. When a node is committeél)j :O), the signal function (9) reduces to the

ART choice-by-difference signal function (1). Thiefinition is problematic, however, for
Stage 1 Iearning. During Stage 1, where oklyof theM input features are specified,

a if i=1..M
(1 q) if |—(1+ M) (M+M)
otherwise

At uncommitted nodeg all W =1, so‘wj‘ =2M and the degree of undercommitmehjt =1

Thus if j is an uncommitted node, the denominator in eqng89 equals(l—y), which is

typically small. Hence the only way to keep uncomteci nodes from overwhelming the coding
patterny is to require that the signal function numeratogua O when CDJ. =1. For an

uncommitted nodgduring Stage 1,
d(R.a)=|w;|-|a Ow,[=2mM-@M - W)=

This analysis suggests that the Stage 2 signatitumof equation (9) needs to be modified for

Stage 1 to:
M- (w‘ ‘ADW D (M ‘W) M - d(R A) )
1-y o, 1-y &,

For the Stage 1 signal function (105I =aM whenj is an uncommitted node. For nodes



CAS/CNS TR-2009-006 Self-Supervised ARTMAP 25

j=1...C which have been chosen at least once during Staglq = (1— M/M). For these

nodes, the numerator in equation (10) eqt(ﬁls— 5j) and the denominator is a constant that is

independent of. Thus, except for distance ties, this signal fiomcivould choose the category
node for whicha is closest toRJ. in the specified input dimensioriss1..M during Stage 1

training.

The signal function (10) proposed for Stage 1 dmddignal function (9) proposed for Stage 2
are reconciled by noting that

oM —‘A‘— M during Stage 1
M during Stage 2

6.3. The self-supervised ARTMAP signal function

A signal function that realizes the computatiorgjuirements of SS ARTMAP is:

T- Cm -1A)- ([ ij‘)_a(M ~|w,|) (11)

1-y o,

where0< y <1 anda >0. Stage 1 specifies onliyl features of inpu&, so ‘A‘ =2M - M. For
the nodesj =1..C chosen during Stage !D,j = (1— M/M). During Stage 2, which specifies all

M features ofa, ‘A‘ =M and ® J. values slowly decrease toward O at active ngd@sus for

Stage 1 T = M- {W‘ ‘ADW D (M ‘w ) %(Ra) a‘R‘ (12)
Stage 2 . M {W ‘ ‘A vy D (M ‘W ) M- d(R a) a‘R.‘ (13)
1-y @, 1-y @, :

where the denominatgw =1- y(l— M/M) is constant throughout Stage 1. During testlﬁg,

is the same as during Stage 2. For each uncomnmiibei |, TJ. equals the constar@M
throughout Stage 1 and Stage 2 learning, and ¢gestin

7. Self-supervised learning in the medical diagnosis example

The simplified medical diagnosis example (Figuresuggests that Stage 2 learning should favor
confident predictions, where category boxes ofedédht classes do not overlap, and produce
little (if any) weight change on low-confidence giations. Self-supervised ARTMAP
accomplishes this computational goal by reflectimg degree of overlap of category boxes that
contain the inpu. Inputs that are in just one box indicate conftdelass membership and
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produce most of the Stage 2 learning.

Figure 10a illustrates the five category boxesteidy the first 28 inputs of Stage 1 learning on
the specified feature=1 (temperaturg At this stage of learning, test accuracy is aryaptimal

65%. Each boxRj is inverted in the uncommitted featusbock The hypothermicbox R
overlaps thenormal box R., and theseptichox R, overlaps both th@ormal box R, and the

septicbox R,. Continued Stage 1 learning creates three mordl baxes within the regions of
overlap.

During Stage 2 self-supervised learning, distriduaetivation at the coding field, represents
the degree of overlap of category boxes contaithiegnputa. In Figure 10aa = (0.12,0.79 is
contained only inR, clearly indicating the clasisypothermicbased on the low value of the
featuretemperaturealone. During Stage 2, according to the IG CAM Kwhen an input is
inside just one category ba® , y, 1 and otheryj (0. In this case, distributed ART learning
reduces to winner-take-all learning. Weight changesthen limited tow, with the greatest

changes occurring in components of the previoushgommitted featuresi=M +1..M
(Figure 10b).

Input a:(0.28,0.29 is inside bothR and R, indicating ambiguity betweenormal and
hypothermic During Stage 2, the distributed inputé'1 DT5) split the distributed code

(yl ay, DO.S), reducing possible learning iw, and w,. R and R therefore maintain the

balance between their output classes, reflecting tmnfidence in any prediction in this
temperature range (Figure 10c). The distributedamand distributed outstar learning laws
(equations (5) and (6)) prevent strong learningwaak predictions, regardless of how often
unlabeled ambiguous points are presented.
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Figure 10. Self-supervised Stage 1 and Stage 2 learnindCdtegory boxes created by
the first 28 Stage 1 training points on the singdif medical diagnosis problem
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(Figure 1). Boxes are inverted in the uncommiteatdrei=1 (shoch, as indicated by the
dashed edges. (b) When the unlabeled pomt(0.12, 0.75) is presented during Stage 2,
it activates only nodg=1. During learning,R (hypothermig contracts toward the high
shockvalue of this input. (c) When the pomt (0.28, 0.25) is presented during Stage 2,
it activates nodeg=1 andj=5, which share distributed activations, allowirgdatively
small weight updates in this case of ambiguoussgedictions. All parameter values
are as specified in Table 5, except that the Seatgarning rate is uncharacteristically

high @20.5), which speeds up learning so as to make weightggsvisible in this

illustration.

Figure 11 illustrates the result of slow, distrigtitSS ARTMAP learning at the end of Stage 2.
Driven by strong activations on confident prediotioat low temperaturesR (hypothermig

stabilizes at the top afhock Similarly, R, and R, (septig stabilize at the top adhock Test
accuracy has improved to nearly 100% and coding®qgd=1..5 are almost fully committed.

Category boxes do not expand nearly as much aswbald in winner-take-all training. Rather,
inputs outside the boxes produce distributed cofigid activations, so distributed ART learning
inhibits further weight changes. Stage 2 learnihgst converges as the degree of node
undercommitment falls to 0.

A
hypothermic septic
R, R,
septic
3 =
=
3
normal normal
‘RS R3
[ .
| —>
0 temperature 1

Figurell. SS ARTMAP category boxes at the end of Stagathieg on the simplified
medical diagnosis example, with Stage 2 trainingirb@ng with the five category boxes

of Figure 10a. After 10,000 training points andwslearning (E: 0.01), test accuracy is
100%.
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8. The Boston satellite imagery testbed

The two-dimensional medical diagnosis problem Jigudlustrates how SS ARTMAP meets
key challenges presented by self-supervised legrafnunlabeled inputs. Higher-dimensional
problems reveal additional challenges. A self-suged learning benchmark based on the
Boston satellite imagery testbed (Carpenter, Mart&nOgas, 2005) provides such an example
(Figure 12). The problem requires a system to lgbedls as belonging to one of seven classes
(beach, ocean, ice, river, park, residentimldustrial) from satellite data for northeast Boston
and suburbs. The testbed is partitioned into faartical strips (Figure 12a), such that training
and test sets are not only disjoint but drawn frg@ographically separate locations. The first
Boston self-supervised learning benchmark specdidg the five input features related to blue

image data(l\7| :5) during Stage 1 training on three strips, and lalty-eight input features

(M=38) during Stage 2 training and testing on theaiaeig strip. Cross-validation provides the
total measure of benchmark performance by averaggngss four independent simulations, each
using a different strip for Stage 2 training anstitey.

The Boston benchmark presents challenges to agedrvised learning system beyond those of
the two-dimensional example. Because testbed pixale a 1B resolution, many actually
cover multiple classes. Whereas the labeled trgisgt consists primarily of clear exemplars of
each class, unlabeled Stage 2 pixels are typicaiktures. Many pixels, for example, include
both ice and residential patches. Stage 2 vectors thus mix and distorufestfrom multiple
classes, placing many of the unlabeled featureovedar from the distinct class clusters of the
Stage 1 training set. As a result, following Stageaining, winner-take-all ARTMAP would, for
example, overpredictesidential on the self-supervised Boston benchmark by anroode
magnitude. As in Figure 10, distributed Stage dvatibn minimizes the influence of mixed
pixels, so that most learning occurs only on ungumbiis cases, despite the fact that the
unlabeled pixels provide no external indices ofslambiguity.

8.1. Boston benchmark self-supervised learning

Each Boston benchmark simulation follows a standadd image cross-validation protocol
(Parsons & Carpenter, 2003). With one strip reskrfee testing, up to 250 labeled pixels per
class are selected at random for Stage 1 traidithgnixels of the remaining strip are presented
in random order without labels during Stage 2. ihgstalculates the accuracy for each class on
this strip, with the overall accuracy set equaht® average of these class-wise percentages. This
performance measure is, like the c-index, indepeindethe particular class mixture in a given
test set. Each simulation result is the averagi®findependent accuracies across the four test
strips. This procedure is repeated 500 times, wéitha different random Stage 1 pixel selection
and Stage 2 ordering.

The first set of Boston benchmark simulations tdideStage 1 feature vector to be the five input
components related to blue. Self-supervised StdgarBing dramatically improves performance
on the Boston benchmark (Figure 13). On every dnie 500 individual simulations, Stage 2

learning improved test accuracy, as unlabeled fodlgtured inputs consistently expanded
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knowledge from Stage 1 training. Following Stag@ldrk bars, Figure 13a), the class-based test
accuracy was between 50% and 58% across the 500lasibms. Stage 2 self-supervised
learning, with all 38 features specified, improwvacturacy on each simulation to above 70%,
with a mean of 90% (light bars). Figure 13b displagst accuracy on each class for a typical
SS ARTMAP trial. Note, for example, that Stage arfeng improves accuracy afe ground-
truth pixels from 0% (Stage 1) to 99%.

(b) Ground truth
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Figure 12. The satellite image and labeled ground-truth piXelsthe Boston testbed
(http://techlab.bu.edu/classer/data rednly 28,735 of the 216,000 pixels are labeldd, o
which only 6,634 represent classes other theean (a) Cross-validation divides the
testbed into four vertical strips. (b) Class dttions vary substantially across strips.
For example, the right-hand strip contains maodganpixels (dark), while the left-hand
strip contains neithevceannorbeachpixels.
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(a) Test accuracy %
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Figure13. ARTMAP performance on the Boston self-superviseatimg benchmark.
Stage 1 training specifies class labels and fiue{pélated features in three strips. Stage 2
training specifies all 38 input features but nessl&abels for pixels in the remaining strip.
Testing evaluates the performance of the systeiulgnfeatured inputs from the fourth
strip. (a) Performance histograms for 500 randothtzials. (b) For one trial, the fraction
of pixels labeled as belonging to a class that weeeicted as in that class. Compared to
Stage 1, per-class performance in Stage 2 decbnédin classes that had been over-
predicted in Stage 2dsidentia) industrial).
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Confusion matrices for one of the Boston simulaxamples further illustrate the pattern of
Stage 2 performance improvements. Following Sta¢gaining (Figure 14a), SS ARTMAP’s
per-class test accuracy was high fesidential and industrial pixels but low for others. For
example, albeachandice pixels were misclassified asdustrial. If the system were to learn on
unlabeled pixels as if its own winner-take-all slgwedictions were ground-truth labels—the
“self-training” of Chapelle et al. (2006, p. 3)—t@kes on classes likee would degrade correct
prior knowledge. Instead, distributed activation 3% ARTMAP focuses Stage 2 learning on
confident predictions and novel features, fixingug all the incorrectndustrial predictions on
thebeachandice pixels while maintainingndustrial accuracy (Figure 14b).

(a) SS ARTMAP — Stage 1: 35.7%
Predicted class %
beach ocean ice river park residential | industrial
beach 0 67 0.0
ocean 294 584 10 14 32.6
ice 0 879 0.0
‘if;::l river 17 306 5.3
park 36 152 19.1
residential 231 18 92.8
industrial 431 100.0
Class-based accuracy 35.7
(b) SS ARTMAP — Stage 2: 91.7%%
Predicted class %
beach ocean ice river park residential | industrial
beach 62 1 4 92.5
ocean 804 98 89.1
ice 1 878 99.9
‘tf:;:l river 3 320 99.1
park 27 161 85.6
residential 18 7 191 33 76.7
industrial 3 3 425 98.6
Class-based accuracy 91.7

Figure14. Confusion matrices for one self-supervised ARTMAiRulation of the
Boston benchmark. (a) After Stage 1 learning oelidbinputs with the five blue-related
feature values. (b) After Stage 2 learning on ispwith all 38 features but no class
labels.
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Table 3 and Figure 15 show SS ARTMAP performancéherBoston benchmark with different
feature subsets selected for Stage 1 trainingttf@Full or Visible subsets, which specify all or
most of the input features, Stage 1 training preducear-perfect test performance, which was
either unchanged (Full) or slightly harmed (Vis)bley Stage 2 self-supervised learning. The
subsets Raw, Blue, and Red-Green specify betw&enafid nine of the input features during
Stage 1 training, where Blue is the feature sulbisetl in Figures 13 and 14. Each of these
training protocols produced Stage 1 test accurda@bout 50%, which improved to about 80-
90% during Stage 2. The remaining two feature dsbsgecified only one (Raw Blue) or two
(Raw Red-Green) Stage 1 features. Although Stagerformance was similar to that of the
Raw, Blue, and Red-Green Subsets, Stage 1 leadnihgot provide a sufficient foundation on
which SS ARTMAP could build useful additional kn@abe during self-supervised Stage 2
learning.

Table3

Self-supervised Boston benchmark feature subsetsfigal during Stage 1 training

Subset Number of
name features M Features
Full 38 All features
Visible 26 All features except those related to
infrared and panchromatic bands
Raw 9 Unprocessed features
Blue (B) 5 Features related to blue
Red-green (RG) 7 Features related to red or greg¢n
Raw blue 1 Blue
Raw red-green 2 Green, red
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Figure15. Boston benchmark class-based accuracy after SSBVIAP Stage 1 (dark
bars) and Stage 2 (light bars) across 50 randommbgen training sets. Stage 1 feature
subsets are specified in Table 3.

9. Experimental studies of self-supervised learning

Research on aging summarized by Healey, Campbmall, Hasher (2008) supports the basic
SS ARTMAP hypothesis that humans increase the nuwibattended input features over their
lifetimes. Experiments comparing the reaction tineés/ounger and older subjects show that
older subjects are more easily distracted by taskevant information. For decades these
observations were interpreted negatively, as impamt of older subjects’ ability to ignore
distractors. Recent experiments (Kim, Hasher, &k&8a®007) suggest, however, that older
subjects make better use of contextual informatidren its task relevance is not specified
priori. Younger subjects show a narrower focus of atentivhich improves their performance
on tasks that require ignoring distractors but img#heir performance on tasks for which
peripheral information was, in fact, relevant.

Li and DiCarlo (2008) suggest that self-superviteatning by neurons in the inferotemporal
cortex (ITC) may underlie view-invariant object ogaition. A subject sees only one view of an
object when it is paired with a label (Stage 1) many views of the same object when the
teaching signal is absent (Stage 2). Single-cabnaings in monkey ITC show increases in
neurons’ object selectivity and tolerance to déferobject orientations and positions as a result
of Stage 2 learning.
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Smith and Minda (2000) summarized thirty experilmenn human pattern learning and
classification. In each experiment, subjects umeara characteristic way exemplars they had
learned to classify perfectly during training. Im#s, Carpenter, Ersoy, and Grossberg (2009),
ARTMAP simulations fit the experimental data andplein how classification patterns are
learned and forgotten in real time. The model tésts competing hypotheses: (a) that the
observed forgetting is the result of an unsupedvisarning process; and (b) that the forgetting is
the result of a corruption of long-term memory (LYWaces by noise. The noise hypothesis (b)
better fits the data and is also consistent with ttrechanisms of self-supervised ARTMAP.
Distributed learning during Stage 2 focuses LTMpdaon on input features whose values were
unspecified during Stage 1. The unsupervised hgstth(a) is equivalent to Stage 2 learning but
with no novel input features specified, and soemaiugh additional learning occurs to model the
data.

10. Related models of self-supervised learning

SS ARTMAP introduces a new definition of self-supged learning: a system trained on
labeled data with limited features continues torean an expanded but unlabeled feature set. As
such, no prior work directly addresses this leaymparadigm. There are, however, many studies
related to this form of self-supervised learning.

Semi-superviselbarning incorporates labeled and unlabeled inpuits supervised training set,
but unlike self-supervised learning, all inputs éake same number of specified feature values.
Without any novel features from which to learn, seapervised learning systems use the
unlabeled data to refine the model parameters el@fusing the labeled data. Reviews of semi-
supervised learning (Chapelle, Schélkopf, & Zief0&, Zhu, 2005) find that its success is
sensitive to underlying data distributions, in matar to whether data cluster or lie on a lower-
dimensional manifold. Typically, models must beefally selected and tuned for each problem
space, using priori knowledge of the domain. Chapelle et al. (2006)ctude that none of the
semi-supervised models they reviewed is robust gmao be considered general purpose, and
that semi-supervised learning remains an open @noblhe main difficulty is that, whenever the
unlabeled data are different enough from the labdbta to merit learning, it is unclear whether
differences are useful, or whether they are theltref noise or other distortions that would
damage the system’s performance.

Another class of models admits inputs with difféeremmbers of features, but in a different
context than self-supervised ARTMAP learning. Thesgthods assume that feature values are
missing randomly and infrequently, and thus carfilked in based on a statistical analysis of
other exemplars in the training set (Little & Rupb2®02). Some applications add missing feature
estimates to neural network architectures suchuzsyfARTMAP (Lim, Leong, & Kuan, 2005)

or multilayer perceptrons (Tresp, Neuneier, & Ahma#95). Whereas feature estimates can
succeed for problems with stationary statistics radindant training data, challenging problems
risk inappropriate learning on filled-in values.rRbis reason, exemplars with missing feature
values are often excluded from the training seibny situations, however, data points for an
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entire cluster, class, or dataset have a commormfsehspecified feature values. Structurally
missing features are either ignored or substitwdad,typical solutions are specific to a particular
model architecture. For example, Chechik, Heitzddtl, Abbeel, and Koller (2008) created a
support vector machine (SVM) that redefines the gimamaximization objective to ignore
unspecified feature values. Ishibuchi, Miyazaki,dwand Tanaka (1993) modified a multilayer
perceptron such that hidden layer nodes track ffeatalue intervals rather than scalar values,
representing a missing feature value as the int¢dyH.

11. Conclusion

Self-supervised ARTMAP defines a novel problem spHtat may be tested on almost any
existing dataset designed for supervised learriihg. system learns during an initial “textbook”
supervised learning phase that is followed by al“vorld” unsupervised learning phase. The
novel aspect of the SS ARTMAP learning protocathiat inputs of the second, self-supervised
phase specify more features than did the labelgdtsnof the first phase. The expanded feature
set provides to a learning system the capacitgdoh the network important new information, so
that accuracy may improve dramatically comparedhtd of the initial trained system, while
avoiding performance deterioration from unlabelegtad New problem domains include
applications in which a trained system performsanel contexts, such as an image recognition
problem in which an initial set of sensor dataaiet augmented on-line with unlabeled data from
a new sensor.
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Appendix A
Self-supervised ARTMAP algorithm

Figure 16 and Table 4 summarize self-supervised MRF notation, and Table 5 lists default

parameter values.
actual
output
class k=K
mapping

field fub

y reset if
p‘A‘ - lxl >0

coding
field F2

input
field F,

feature
vector

Figure 16. Self-Supervised ARTMAP network.
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Table4

Self-Supervised ARTMAP Notation

Notation | Description
[ input component index
] coding node index
k output class index
M number of input features specified during Stagea?riing and testing
M number of features specified during Stagel learnMgs M
a featurevecto(al), 0<ac<l,i=1,...M
A complement coded input vectak), i = 1,...,2V
K actual output class for an input
K' predicted output class
J chosen coding node (winner-take-all)
C number of activated coding nodes
NN coding node index subsets
T signal from input field to coding nodge
y coding field activation patterry;j
g signal from coding field to match field node
O, signal from coding field to output nodte
i F, - F, bottom-up weights from input nodéo coding nod¢
w, F, - F, top-down weights from coding nogléo match field node

41
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®, degree of undercommitment of coding npde
K, output class associated with coding npde
Y vigilance variable
[] component-wise minimum (fuzzy intersectior(}s Dq)i =min{ p, q}
C component-wise maximum (fuzzy union(p Dq). = max{ P, g }
| vector size (;-norm): |p|=>" |p|
[d" | rectification:[ p]* =max{ p, 0}

42
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Table5

Self-Supervised ARTMAP

Self-supervised ARTMAP parameters

43

Name Para- | Range | Default| Valuefor | Notes
meter value Boston
benchmark

signal rule parameter| a (0,9) 0.01 0.01 a =0" maximizes
code compressio

Stage 1 B (o, 1.0 1.0 B =1 implements

learning fraction fas! learninc

Stage2 g [0.]] 0.01 0.01

learning fraction

signal rule Settingy < (1-a)

undercommitment y (0,1— a] 1-a 1-a ensures that, < m for

factor the IG CAM Rule

match tracking £ (_1, 1) 001 001 £ <0 (MT-) codes

parameter inconsistent cases

baseline vigilance P [0.1] 0.0 0.0 p =0 maximizes
code compressio
IG CAM Rule converges

CAM rule power .

Stage 2 & testing p (O,oo] 2 2 to winner-take-all
asp - o

# Stage 1 training E 51 1 1 E =1 simulates

epochs on-line learning

# Stage 2 training E >1 1 2

epochs a

# voting systems Vv >1 5 5

# cross-validation = >1 4 4

strips a

maximum # Stage 1

training points per P >1 250 250

class
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A.l. Self-supervised learning — Stage 1
Each inputa = (al...ag...aM) is associated with an output cldssFeature values, (I =1...|\7I)
are specified. Coding field activation is winnekeaall.

A.1.1. Initialize the system
All coding nodeg are uncommitted.
1. Set the initial number of coding nodes that Hasen activated one or more timé&s= 0

2. Set weights to their initial valuesz,\gj =1
3. Set the initial coding field signals to all cnginodes:Tj =aM
4

Set the initial degree of undercommitment oficgdhodes: ? =1

A.1.2. Stage 1 learning

Repeat the following loofE times, whereE is the number of Stage 1 training epochs.
1. Choose a new training par- K

2. Set vigilance at its baseline valug:= p

3. Complement code thel specified features af
Fori=1,...,M A=a, A,,=1-a
Fori=M+1..M A=A, =1
A|=2M - M
4. Calculate the coding field signaT§ :
_ M) (-l ow))) _
T = —a M-ﬂww for j=1..C
J l_ y QJJ J
5. Define the initial index seA of candidate nodes:

A ={j T > aM}D f1..c}

If A is empty, choose an uncommitted node: Go to $tep
If A is not empty, choose a candidate node:

N

Choose coding field winned = arg ma>{Tj}, breaking ties randomly
jOA

Activate the coding field (winner-take-all)y, =1, all other y; = 0
|AOw,|
A
Resetl: Removel from A

Continue search: Go to Step 6
If k=K, Jpredicts the correct class. Learning:

Supervised learning of weights i, -~ F, (bottom-up) paths andF, - F

If < p, Jfails to meet the matching criterion:
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(top-down) paths:w, =w, = w>* —,E’[vvi‘j'd - AT fori=1,..., 2\

With fast Iearning(,@zl), w, =wy = A Owd?.
Update the degree of undercommitment of nbde

o = %Z’:‘[WU B (I'_ W“'V"J)T

Continue to the next training pair: Go to Step
If kK3#K, J predicts an incorrect class. Match tracking anétres
_|ADw,|
Al
Resetl: Removel from A
Continue search: Go to Step 6

8. Activate a new node:
Add 1 to the activated node coudt

we=A (i=1..,2M) k. =K
Continue to next training pair: Go to Step 1

Match track: p +e

A.2. Self-supervised learning — Stage 2
All feature valuesa are specified(i :1..M). Coding field activation is distributed, and

learning is slow. No output classes are specifidek vigilance parametep=0 during Stage 2
and during testing, so weight updates in top-doattways are not computed in the algorithm.

Repeat the following loofE times, whereE is the number of Stage 2 training epochs.
1. Choose a new inpat

2. Reset coding field activatiory. =0

3. Complement code all featuresaof

Fori=1..M: A=a,A,,=1-4
Al=M
4. Calculate coding field inputs foy=1..C:
T= (2m -[a)- (Wj‘_‘A DW]D_U(M _‘W'D
1-y o, J

5. Define index subsets d¢f, nodes:

Nodes with input above inputs to uncommitted nodés= {j :TJ. > aM}

Point box nodes WitI”Rj identical toa: A' = {j ‘W= A}
6. If A is empty, goto Step 1 (no learning).
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7. Activate the distributed codeat the fieldF,

If A'is not empty, activation is distributed evenly atles whose point boxes equal the
inputa:

= for j ON

i = ‘A‘
0 otherwise

If A"is empty, F, activationy is distributed:

-p
[M_T‘} for j OA

Yi = Z[M _T/‘]-p

0 otherwise

If ais in one or more boxes , activatiqq is distributed among the corresponding nodes,

with Y largest where the boxe§j are smallest. Ifa is not in any box,yj is distributed
according tod(F%,a), with Y largest whera is closest toRj.
8. Self-supervised distributed instar learning:
w, = wp —,Z’[yj - (1— w;J?'d)— AT for i=1..,2M, j OA
9. Update the degree of undercommitment for nodes\ :

P, zﬁé[wn B (1_ WHMJ‘)T

10. Continue to the next input: Go to Step 1

A.3. Testing
All feature valuesa, are specified. Coding field activation is distfiéd. No learning occurs.

1. Choose a new test inpat
2. Complement code all featuresaof

Fori=1,.M: A=a,A,,=1-a
Al=m

3. Reset coding field activatiory. =0

4. Calculate coding field inputs fgr=1..C::

2M -|A —(W.—ADW.)
Tj:( ‘ ‘?L—qujj ‘ J‘ —O’(M—‘ij

5. Define index subsets d¢f, nodes:

Nodes with input above inputs to uncommitted nodés= {j :TJ. > aM}
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Point box nodes WitI”Rj identical toa: A' = {j W= A}

6. If A is empty, goto Step 1 (no prediction).
7. Activate the distributed codeat the fieldF,

If A'is not empty, activation is distributed evenly atlas whose point boxes equal the
inputa:
- for jON
i = ‘A‘

0 otherwise

If A’is empty, F, activationy is distributed:

(M- ]
J — for j OA
Yi = ZI:M_T/J
ACA
0 otherwise

8. Activate the mapping fieldo, = z Y;
jOA: K =k}
9. Make an output class predictiork’ = argmaXo,} , breaking ties randomly
k

10. If the ground-truth labé is available, record prediction accuracy
11. Continue to the next test input: Go to Step 1

A.4. Voting

1. Apply self-supervised learning Stages 1 and ¥ ARTMAP systems, each with a different
sampling or ordering of inputs

2. During testing:
Generate a class prediction for each voter
Predict the class with the most votes

A.5. Cross-validation of image dataset (Bostonbeed)
Given a dataset of labeled and unlabeled inpubvectlivided intd= disjoint strips.
For each strip :

A.5.1. Stage 1 training
Create a training data source by concatenatingldd inputs from the othdf —1 strips
(all except forf). If a fully featured dataset is being used foaleation (e.g., the
Boston testbed), identify a feature subset to nsétage 1. Remove all other feature
values from each Stage 1 training input.
Train (Stage 1Y ARTMAP voters on a random selection of at m@stputs per class.
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A.5.2. Stage 2 training

Train (Stage 2) each voter on a random orderinglldfully featured) inputs in strif,
including labeled and unlabeled inputs.

A.5.3. Testing

Generate ensemble class predictions on thefedityired, labeled inputs fn
Record per-class and average class accuracy.



