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This tutorial is available for download at:

http://cns.bu.edu/techlab/
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Why bother to learn about a model?

A model can

explain data by linking brain to perception,

link experiments to

underlying mechanisms

in surprising ways,

!

Adapted from 

and suggest exciting new experiments.
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A possible worry

How many principles and mechanisms do we need to know?

“In fact, as many kinds of mathematics seem to be

applied to perception as there are problems in perception.

I believe this multiplicity of theories without a reduction to a

common core is inherent in the nature of psychology . . . ,

and we should not expect the situation to change.

The moral, alas, is that we need many different models to

deal with the many different aspects of perception.

Sperling, 1981

Claim: A few principles and mechanisms explain a lot!
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Styles of explanation

Some think: 

“The brain is a bag of tricks.”

Others think: 

Studying statistics of the 

visual world suffices.

Who needs [to study] brains?!
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25 years of modeling suggest . . .

A real theory can be had

A small number of mechanisms 

short-term memory

long-term memory

habituation

adaptive gain control -- normalization

local circuits with feedback -- bottom up, top down, 

and lateral connections

A somewhat larger number of functional modules

filters of various kinds

center-surround networks

gated dipoles -- “nature’s flip-flops”

A still larger number of architectures

specialized combinations of mechanisms and modules

for cognition, audition, vision, …
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LAMINART Architecture

How does the cerebral cortex work?

How do cortical layers support intelligence?

Quantitative simulations of 

electrophysiologically identified cells in 

anatomically supported networks

produce laminar circuit dynamics whose emergent properties

mimic percepts.

Grossberg/Mingolla
VSS'05 Part 1: 8

Is this just “more of the same . . .”?

New principles and new computational paradigms

generate basic questions that are easy to state.

These turn an impenetrable mystery into a 

workable hard problem.

Today:

Use experiments to introduce models.

Use models to explain data.

Show how models suggest new experiments.
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Why do we see?

Possible answer: Seeing       helps to recognize objects

Counterexample: Amodal percepts

Bregman, 1981

Kanizsa, 1979

surface color

boundary

completion
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Seeing vs. knowing

We can know a form without seeing it.

Glass pattern     offset grating

boundary completion



Grossberg/Mingolla
VSS'05 Part 1: 11

Why are some boundaries amodal?

Prediction: G & M, 1985

All boundaries are amodal (within the boundary stream)

objects in textured scenes
Kanizsa
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Complex cells pool opposite contrast polarities

[ ]
+

[ ]
+

simple cells

complex cell [ ]
+

denotes

half-wave

rectification

Both achromatic and chromatic

Complex cells as amodal boundary detectors not obvious . . . 

Thorell, DeValois, and, Albrecht, 1984:

Complex cells “must surely be considered color

cells in the broadest sense” because they pool

inputs from multiple achromatic and chromatic cells.
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boundary & surface 

!  orientation & color

Livingstone and Hubel, 1987

V1 4B

V2 Thick

MT

V3

Parietal
 Areas

V2

V1

InterstripeV2Thin

V1 InterblobBlob

V4

Inferotemporal
        Areas

    WHAT                          WHERE

 LGN Parvo   LGN Magno

Retina

DeYoe and van Essen, 1988

Interacting 

BOUNDARY 

and 

SURFACE 

Streams
in “WHAT” pathway
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If boundaries are amodal, how do we see?

How can we see properties that are not “in the stimulus”?

When do we see?

     Ehrenstein, 1941      Varin, 1971  

filling-in of surface color
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Boundary and Surface Interaction

Single line:

SUBthreshold

brightness
need:

emergent
region

Boundary completion

Filling-in

What signals are you filling in?

Kennedy, 1979
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Craik-O’Brien-Cornsweet Effect, A

Todorovic, 1987
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Craik-O’Brien-Cornsweet Effect, B

Todorovic, 1987
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Craik-O’Brien-Cornsweet Effect, C

Todorovic, 1987é

percept

stimulus

Todorovic, 1987
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Craik-O’Brien-Cornsweet Effect, D

Todorovic, 1987é

percept

stimulus

e.g.  COCE

percept

stimulus

Todorovic, 1987

Boundary completion

defines

filling-in compartments.

Filling-in determines

what we see

in each compartment.

Why filling-in?
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red

green

blue

Land -- McCann 

“Mondrians” 1971

FIRST EXPERIMENT:

Red illuminant intensity increases

Colors look “much the same”

We factor away the “extra” red

Discounting the illuminant

Helmholtz
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Gradients of illumination

create same spectrum patches

with different reflectances

Different  colors seen from 

the same  spectrum

. . . similar to those 

seen in white light

E E

Land -- McCann Mondrians

E

“discount the illuminant”
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position

position

illumination

reflectance in
wavelength

I

image

position

R

IR  

 

How are illuminants discounted?
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“Retinex” Strategy

1. Recover relative reflectances (ratios) 

near image edges.

a

b

c

d

a                   c

b                   d

2. Suppress information from slowly

varying region interiors.

    position

image

IR  
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How are boundary and surface

computations related?

How are perceptual boundaries formed?

How does surface filling-in occur?

Are these independent modules?

No! 

The answer is more interesting.
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Boundary Contour System Feature Contour System

BCS: Completion  FCS: Filling-in

Boundary and surface computations

are COMPLEMENTARY

oriented unoriented

inward outward

insensitive to sensitive to

   direction-of-contrast    direction-of-contrast
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 Complementary Boundary & Surface Streams

V1 4B

V2 Thick

MT

V3

Parietal
 Areas

V2

V1

InterstripeV2Thin

V1 InterblobBlob

V4

Inferotemporal
        Areas

    WHAT                          WHERE

 LGN Parvo   LGN Magno

Retina

DeYoe and van Essen, 1988

Boundaries

   interblob stream

Surfaces

   blob stream
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How does the brain compute ratios and filling-in?

http://retina.umh.es/Webvision/sretina.html

Kolb, Fernandez & Anderson
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Center-Surround Receptive Fields

lateral

geniculate

nucleus

primary

visual

cortex

retina

Happens everywhere,

starting in the retina

Kuffler, 1953
brainconnection.com adapted from

blindeyemedia.com
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Center-Surround Receptive Fields
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How does the brain process ratios?

Use a THOUGHT EXPERIMENT to clarify basic issues.

Simple algebra naturally expresses these issues.

In general, math makes understanding simpler!
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How can center-surround networks compute ratios?

Two parts to this question:

1. What is a neuron, 

computationally speaking?

   a maximum and a minimum number 

of excitable sites that turn on or off

   Infinity does not exist in biology.

2. Why do neurons compete?

input

output

=

Key

unexcited site

excited site

off

on
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Pattern Processing by Cell Networks, A

input sources
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Pattern Processing by Cell Networks, B

input sources

Total size of inputs to each cell varies wildly through time.

How do cells maintain sensitivity to varying input patterns?
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Computing in a Bounded Activity Domain

B     excitable sites  (a constant)

xi(t) excited sites   Inhibitory inputs affect only   xi(t)

B - xi(t) unexcited sites    Excitatory inputs affect only B - xi(t)

V
1

Vi V
n

Activity x  (t)1 x  (t)i x  (t)n

I  (t)1 I  (t)i I  (t)n

B - xi(t) B - xn(t)B - x1(t)

xi(t)x1(t) xn(t)
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The Noise-Saturation Dilemma

x1

x 2

xn-1

xn

x3
output range

Grossberg, 1973

If xi’s are sensitive to small inputs, why don't

they saturate in response to large inputs?

If xi’s are sensitive to large inputs, why don't

small inputs get lost in endogenous noise? 

Fixed output range

Fixed output signal functions

fluctuating inputs
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Graphical convention

network cell xi

a
c

ti
v

it
y
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Noise-Saturation Dilemma

i i

Ii

i

x i

i

pattern
registeredmoderate energy

Ii xilow energy noise

Ii

i

x i

i

high energy saturation

input pattern  activation pattern

Problem:

remain sensitive to

input ratios

as total input
 

!
i
=

I
i

I
j

j

"

 

I = I
j

j

! "#

Solution: 

Shunting ON-center, OFF-surround networks possess 

automatic gain control that can generate an 

wide dynamic range for effective pattern processing 

under variable input loads
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Shunting Saturation

  

d

dt
x

i
= !Ax

i
+ (B ! x

i
)I

i no interactions

(a) Spontaneous decay of activity xi  to equilibrium

Inadequate response to a spatial pattern of inputs:

 
!

i
relative intensity (cf., reflectance)

I(t)

I
i
(t) =!

i
I(t)

(a) (b)

total intensity (cf., luminance)

(b) Turn on unexcited sites B - xi  by inputs Ii (mass action)

I
i
(t)

 
x

iB - x1(t)

x1(t)

A, B are constants
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Shunting Saturation

  
0 =

d

dt
x

i
= !Ax

i
+ (B ! x

i
)I

i

At equilibrium:

  

I
i
= !

i
I  I = I

j
j

"

x
i
=

BI
i

A + I
i

=
B!

i
I

A +!
i
I
" B as I"#

I large: saturatesI small: lost in noise

1 2 3 i 1 2 3 i

Sensitivity loss to relative intensity as total intensity increases
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Computing with Patterns

How to compute the pattern-sensitive variable:

  

!
i
=

I
i

I
kk=1

n

"

Need interactions! What type?

?

 

!
i
=

I
i

I
i
+ I

k

k" i

#

excitationI
i
!"#

i
!

inhibitionI
k
!"#

i
$

I
i

x
i

the ratio of one input

to the sum of all inputs
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unexcited sites are “switched ON” by mass action

from “their” (excitatory) inputs, and

 

excited sites are “switched OFF” by mass action 

from “other” (inhibitory) inputs:

Shunting Dynamics

dx
i

dt
= !Ax

i
+ B ! x

i( ) Ii ! xi I
k

k"i

#

B - x1(t)

x1(t)

before          new
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Effects of Shunting Inhibition

x
i
= !

i

BI

A + I

x
i
!"

i
as I !#

Input to a node:         Ii or Ii(t)                  for i = 1, . . . n

Total input:

Normalized input:
!
i
=
I
i

I

I = I
j

j

! ratio sensitivity

over a wide dynamic range:

automatic gain control

                      

           PATTERN     ENERGY

 “factorization”

At equilibrium:

Ratios require ON-center OFF-surround anatomies!
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And moreover . . .

x

x = x
k

k

! =
BI

A + I
 " B, since #

k
= 1

k

!

Total network activity is bounded for all inputs.

     Normalization!   . . . limited capacity

B

x

I
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Shunting Networks

      excitatory             inhibitory              passive

Na+ channel             K+ channel          Cl- channel
    
C
!V

!t
= (V +

- V )g+
+(V -

- V )g -
+(V P

- V )gP

are consistent with membrane equations of physiology 

  

V +

C

V -

V P

gP

g+

g -

    

! B

! 1

! C

! 0

! A

! Ii

! Ik

k " i

#

� 

dx
i

dt
= !Ax

i
+ B! x

i( )Ii ! x
i

+C( ) I
k

k"i

#

hyperpolarization constant 

a link between dynamics and anatomy

Shunting ON-center, Off-surround networks

Hodgkin and Huxley, 1952

Grossberg, 1968 

Carpenter, 1981
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a) Relative figure-to-ground !
i

b) Weber-Fechner     I

 A + J

c)  No hyperpolarization

SHUNT: Silent inhibition

d) Shift property:

I J

R

B

ELECTRODE

ADAPTATION: sensitivity SHIFTS for different backgrounds

NO COMPRESSION

K = ln(I)

xi(K,J)

Mudpuppy Retina Neurophysiology

Werblin, 1970

I center

J background
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Weber Law, Adaptation, and Shift Property

   

K = ln I
i

( ) , I
i
= e

K , J = I
k

k! i

"

x
i
(K , J) =

Be
K

A + e
K
+ J

x(K + S, J
1
) # x(K , J

2
), S = ln

A + J
1

A + J
2

$

%&
'

()

 
K = ln I

i
( )

  
x

i
(K , J)

  
J

1
J

2

Convert to logarithmic coordinates:

Grossberg, 1981

size of 

SHIFT

S
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Excitatory weights

Inhibitory weights

+
_ _

C

Eki

ki

Generalize to Multiple Spatial Channels:

Distance-Dependent Kernels

    to neuron  vi

    from input Ik

1-D cross-section

of kernel to

code unoriented

(radially symmetric)

connections
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Note: both subtractive and shunting terms.

Shunting Network with Distance-Dependent Terms

dx
i

dt
= !Ax

i
+ B ! x

i( ) I
k

k=1

n

" C
ki
! x

i
+ D

i( ) I
k
E
ki

k=1

n

"

C
ki
= C exp !µ k ! i( )

2"
#

$
%

E
ki
= E exp !& k ! i( )

2"
#

$
%
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Equilibrium of Distance-Dependent Network

Set      and recall that

Numerator:     DoG
  difference of Gaussians

Denominator:  SoG
  sum of Gaussians

scaled against A

dx
i

dt
= 0 I

k
= I!

k

x
i
=

I !
k

k=1

n

" BC
ki
# DE

ki( )

A + I !
k

k=1

n

" C
ki
+ E

ki( )

Grossberg, 1973

Heeger, 1992

Douglas et al. 1995
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Downloadable from

http://cns.bu.edu/techlab/
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 Next:  Boundary & Surface Streams

V1 4B

V2 Thick

MT

V3

Parietal
 Areas

V2

V1

InterstripeV2Thin

V1 InterblobBlob

V4

Inferotemporal
        Areas

    WHAT                          WHERE

 LGN Parvo   LGN Magno

Retina

DeYoe and van Essen, 1988

Boundaries

   interblob stream

Surfaces

   blob stream
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Combine shunting network,

boundaries, and surface filling-in, A

Boundary peaks are spatially narrower than featural peaks

Grossberg and

Todorovic, 1988

OUTPUT

BOUNDARY (B)

STIMULUS (S)

FEATURE (F)

Veridical!

Stimulus

Bounday          Feature
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Combine shunting network, boundaries,

and surface filling-in, B

Boundary peaks are spatially narrower than featural peaks

Grossberg and

Todorovic, 1988

OUTPUT

BOUNDARY (B)

STIMULUS (S)

FEATURE (F)

Note spatial registration of 

boundary (red highlight)

and feature signals
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Brightness Constancy

ratio-sensitive edges in FCS

OUTPUT

BOUNDARY (B)

STIMULUS (S)

FEATURE (F)

Not veridical,

but useful!

S

B         F
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Brightness Contrast: Small regions

different output from

same input

OUTPUT

BOUNDARY

STIMULUS

FEATURE
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Brightness Contrast, Large Targets

different output at 
A”, B”, and C” from

same FCS signal 
at A’, B’, and C’

. . . and

samesame input at B and C

OUTPUT

BOUNDARY

STIMULUS

FEATURE

Requires filling-in to understand

A” B”
C”

A’       B’                           C’

A        B                             C
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Grossberg and Todorovic 1988 Macrocircuit

Pooling over

orientations

and contrast polarity

oriented filtering

for boundary

detection
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Craik-O’Brien-Cornsweet Effect

Boundary completion

defines

filling-in compartments.

Filling-in determines

what we see

in each compartment.

Why BCS/FCS?

We need variable-sized

compartments. 
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COCE:  Closure and Filling-in

Note the crucial role of 

closed compartments
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COCE: Unbounded Filling-in

No outer boundaries 

         no illusion.

Not just 

“attenuation of low

spatial frequencies”
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MANY experiments on filling-in!

Paradiso and Nakayama, 1991 

Catching filling-in “in the act!”

Grossberg/Mingolla
VSS'05 Part 1: 62

Cortical Loci of Boundary Completion and Filling-in

Sasaki and Watanabe, 2004

Boundary: V1, V2, V3/VP, V4v

Neon filling-in: V1 only
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Oriented filtering is not enough

Need: 

grouping

boundary completion 

3-D figure/ground        [Part 2 today]

to get the right perceptual compartments for filling-in:

Gillam, 1987
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How Thin Is “Thin”?

For a given receptive field size:

Inputs of two thicknesses:

For a thin line

no detector 

perpendicular to line end

can respond “enough”

. . . based on bottom-up

input alone.
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End Cuts

Visual system 

must synthesize 

a line end.
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If No End Cuts . . .

A PERCEPTUAL DISASTER

in the Feature Contour System

line boundary

feature contour

Color flows from line end!

BCS FCS

MP
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Graphical Notation

Orientation hypercolumn

More active cells have lighter shading
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Endcut simulation

2/3 of G & M 85

weak output endcut
filter size?
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BCS: Short-Range Competition

* Not just between perpendiculars

End cuts (via 1985 mechanism)

across  location        same   location

same    orientation       across orientation 
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Endcut = endstopped plus . . .

response:

  weak

  moderate

  strong

  very weak

Complex and (even) “simple” cells may be endstopped.

How can you tell?

c
e

ll 
re

s
p

o
n

s
e

line length

inhibition
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Endstopping: The First Competitive Stage

Grossberg/Mingolla
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In other words . . .

_
_

_

_

_
_

_

_

“Lateral inhibition” among neighboring

cells with similarly oriented

receptive fields can generate endstopping.

(Overlapping: ellipses are 10 times illustrated size.)
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Variations on Shunting Network Equations

 Shunting competition: 
within orientations, k

across positions, pq to ij

 

d

dt
w

ijk
=!w

ijk
+ I + f J

ijk( )!wijk
J
pqk
A

pqij
( p,q )

"

Just a variation of “center-surround” equation,

. . . but with additional indices for

2-D position and orientation
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Second Competitive Stage

Begin with: push-pull 

opponent process

 

where orientation  k 

is perpendicular  to 
orientation  K

     followed by . . . 

 
xijk = wijk!wijK
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Normalization in cross-orientation inhibition

normalization across orientations

at each position (dashed boxes)

Grossberg, 1973

Heeger, 1993

_ different icons;

same structure

Oijk =O(xijk ) = C wijk ! wijk
"# $%

+

                         

d

dt
yijk = !Dyijk + E ! yijk( )Oijk ! yijk Oijm

m&k

'     

yijk =
EOijk

D +Oij

                                                      

where   Oij = Oijm

m

'                                         

At equilibrium:
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Boundary completion in the real world?

Need: long-range oriented cooperation -- feedback!
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Cooperative-Competitive Nonlinear Feedback

1985: 

Use cooperative-competitive 

nonlinear feedback 

CC Loop

to complete and sharpen 

boundaries.

Long-range cooperation 

    can win over locally preferred orientations 

     

Kennedy, 1979

Recall: Perpendicular induction 

at line ends:
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Boundary Grouping

Each line end induces a “fuzzy band” 

of “almost perpendicular” 

candidate directions for grouping

When aligned across perceptual space, 

cooperative completion of boundaries
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Why do we not always perceive fuzzy illusory contours?

Hierarchical resolution of uncertainty:
1)  Need fuzziness to initiate grouping.

2)  Risk loss of acuity.

From Fuzzy to Sharp

after choice
(“equilibrium”)

before choice
(transient)

CHOOSE:  the contextually best orientation -- cooperation!

SUPPRESS:  other local orientations -- competition!

CC LOOP is a decision process.
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Variables Affecting Contour Completion

proximity r of center of “inducing unit”  

to center of “receiving unit” 

alignment ! angle formed by inducing unit’s center

 relative to preferred axis of receiving unit

orientation " difference in preferred orientation of inducing 

and receiving units
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The Bipole Property

A B

“Completable” perceptual gap bridged in one or two cycles

completion via long-range cooperative units

fuzzy “AND” gate

Grossberg/Mingolla
VSS'05 Part 1: 82

Bipoles Through the Ages

Grossberg & Mingolla, 1985 Field, Hayes, & Hess, 1993

Heitger & von der Heydt, 1993 Williams and Jacobs, 1997

Cf. “relatability”  -- geometric constraints on which contours

get to group with which -- Kellman & Shipley, 1991

     Also, Ullman, Zucker, Mumford, Guy & Medione “tensor voting”

“association field”
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Long-Range Boundary Completion

Stimulus:

Probe location:

Cells in V2

Response?

YES

NO

NO

YES

NO

YES

Evidence for receptive field:

(more
 contrast)

Peterhans & 

von der Heydt, 1988

von der Heydt, 

Peterhans, & 

Baumgartner, 1984
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More Data

Horizontally
   tuned cells:

Probe location:

Stimulus V1 response V2 response

Strong Strong

None

Weak, with
orientationally
FUZZY
receptive field

None

(same cell as
 above)

Stronger, with
orientationally
SHARPER
receptive field

Evidence for:

1) orientationally fuzzy

end cuts

2) oriented, long-range

cooperation.

Peterhans & 

von der Heydt, 1988

von der Heydt, 

Peterhans, & 

Baumgartner, 1984
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Cortical BCS Stages

Long-range cooperation

Short-range competition

across position

across orientation

Oriented boundary detection 

simple and complex cells

+
-

-
+“Top view”

CC Loop

+ +

_
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Parallel Studies

Kapadia, Ito, Gilbert, 

and Westheimer  1995 

Psychophysics Physiology
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Horizontal Connections in Striate Cortex

Bosking, et al., 1997

tree shrew
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Do these ideas work on hard problems?

Mingolla et al., 1999

input feature

boundary filling-in

Synthetic aperture radar

signal: 5 orders of magnitude

multiplicative noise

sparse high-intensity pixels

Application:

Image Enhancement
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   Scale: small medium    large

boundaries

before 

completion

boundaries

after 

completion

filling-in

large

scale

bipole:
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Design Themes

Theorems: A foundation for designing more realistic networks

Role of nonlinear signal functions in choosing

strongest groupings.

Role of competition in self-normalizing networking activity

Role of short-term memory in storing winning grouping and

providing coherence

-- same issues in cognitive information processing
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To join grouping with coherent binding, we need:

spatial and orientational kernels (e.g. bipole)

multiple nested layers with feedback loops 

Recurrent Shunting Networks in Vision

Earlier analysis of feedforward shunting

ON-center, OFF-surround network is not enough! 
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Grouping: Combining Cooperation and Competition

Need: FEEDBACK NETWORKS

Classify: information processing and storage abilities

New property: Coherent binding

The grouping is the emergent unit.        Grossberg, 1973+

Bottom up: The competition influences the cooperation.

But the strongest cooperation also biases the competition:

COOPERATION

COMPETITION
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I
i+1

+

+

Noise-Saturation Dilemma --  Again!

Need: ON-center, OFF-surround with FEEDBACK

vi

+ __ _

I
i

+

_

More complicated situation

Greater need for mathematical analysis to clarify . . . 
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Feedback Shunting Networks

Given a network’s anatomy, it signal functions, parameter

restrictions, and initial conditions, ask:

STABILITY: Is there storage of a pattern (short-term memory)?

PATTERN TRANSFORMATION:

What happens to initial activity pattern?

Is it preserved, destroyed, smoothed, contrast-enhanced, …?
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Properties of Recurrent Competitive Networks

Grossberg, 1973:

What happens to x (total  network  activity) as  (time)  t      !?

         Possibilities:

x       !    network “blows up”

 x         0       “collapse” of all activity

x         constant  (stability)

x         one of finitely many values

x         one of infinitely many
    (finite) values

 x          oscillates

x          is chaotic   (not in 1973!)

Key result:

Network anatomies

(patterns of connections) 

and signal functions

constrain outcomes.

storage!
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Recurrent Network Analysis

Let inputs              be “on” (i.e., positive in value) during

some time interval, [-T,0].

This generates an initial pattern of activities, xi(0), i =1, 2, … n.

Study “reverberations,”                with inputs shut off.

 

dxi

dt
=!Axi + B! xi( ) f (xi )+ Ii

+"
#

$
%
! xi f (xi )

k&i

' + Ii
!

"

#

(
(

$

%

)
)

 Ii
+
, I

i

!

 
lim
t!"

x
i

feedback feedback
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Method of proof: Change variables to:

  
x = x

k
k=1

n

!
 

X
i
=

x
i

x

  
g(w) =

f (w)

w

Factorize Pattern and Total Activity

pattern: total activity:

feedback signal: f(w)

Why g(w)?

“How nonlinear IS it?”
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g(w) =

f (w)

w

Shape of Nonlinear Feedback

feedback signal: f(w)

linear      slower than linear        faster than linear

x
no advantage

across size of x 

x
relatively 

stronger for 

large  x

x
relatively 

stronger for 

small  x

f(w) = Cw
  
f (w) =

w

a + w
f(w) = w2

g(w) = C
  
g(w) =

1

a + w
g(w) = w

e.g.,
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Grossberg, 1973, Studies in Applied Math

f
  

X
i
(!) =

x
i
(!)

"
j
x

j
(!)   

x(!) = "
j
x

j
(!)

Nonlinear

Perfect storage of

any pattern ($)

Amplifies noise

(or no storage)

Amplifies noise

Chooses max 

Winner-take-all

?

Linear

Slower-

than-linear

Faster-

than-linear

Suppresses

Normalizes 
noise

total activity

xi(0)

iInitial pattern

Saturates
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d

dt
X

i
= BX

i
X

k
k=1

n

! g(X
i
x) " g(X

k
x)#$ %&

Factorize Pattern and Total Activity

Pattern variable equation:

  

d

dt
x = x !A + (B ! x) X

k
k=1

n

" g(X
k
x)#

$%
&
'(

Total activity equation:

Who wins the competition?

Is my network stable?

How does it treat noise?
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Linear f perfectly stores any pattern

  
f (w) = Cw,  g(w) = C ,  

dX
i

dx
= 0

Pattern Transformation

  

d

dt
X

i
= BX

i
X

k
k=1

n

! g(X
i
x) " g(X

k
x)#$ %&

Pattern variable equation:

xi(0)

iinitial pattern

xi(!)

ifinal pattern
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Pattern Transformation

  

d

dt
X

i
= BX

i
X

k
k=1

n

! g(X
i
x) " g(X

k
x)#$ %&

Faster-than-linear f makes a choice

  
X

i
(0) > X

k
(0), k ! i "

  
e.g.,  f (w) = w

2 ,  g w( ) = w 

First network with

WINNER-TAKE-ALL!

Moral of the story: Keep track of signs of derivatives!

Pattern variable equation:

largest GROWS; the rest CRASH  

  

dX
i

dt
(t) > 0,

dX
k

dt
(t) < 0, k ! i

initial

Xi

final

Xi
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where

weighted average of g(Xkx)’s

  

d

dt
x = x(B ! x) G !

A

B ! x

"
#$

%
&'

  

d

dt
x = x !A + (B ! x) X

k
k=1

n

" g(X
k
x)#

$%
&
'(

  
G = X

k
k=1

n

! g(X
k
x)

When is activity stored in short-term memory?

x           0      no storage

x           finite constant -- storage

What happens to total activity x through time?
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d

dt
x = x(B ! x) G !

A

B ! x

"
#$

%
&'

 

d

dt
x

 

G !
A

B ! x

Sign of                is the sign of:

Short Term Memory : 

Noise Suppression or Quantized Storage

x

G

B

A
B

A
B - x

x
B

A
B

A
B - x

G

x
B

A
B

A
B - x

G

linear      slower than linear        faster than linear

noise suppression
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Biological Realism

x

f(x)

Faster-than-linear feedback

signal function

supports noise suppression

But, as x ! $, f(x) ! $
. . . not realistic

Winner-take-all noise suppression is too severe

Network only stores one feature

x

f(x)
sigmoid!

One change solves both problems:
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Distributed Processing and Noise Suppression

The faster-than-linear part suppresses noise and starts

to contrast-enhance the pattern

Preserves pattern and normalizes

Approximately linear

Sigmoid Signal Function

Noise suppression and contrast-enhancement

Faster-than-linear

Saturates pattern

Slower-than-linear

As total activity normalizes, the approximately linear

range is reached and tends to store the partially

contrast-enhanced pattern

 HYBRID SIGNAL:
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Distributed processing and noise suppression

xi(0)

i

Quenching Threshold  (QT)

f
  X i

(!)   x(!)

Sigmoid

Tunable filter

Suppresses noise

The QT can be dynamically tuned; e.g., pay attention better

after unexpected event; choose max…

Sigmoid Signal Function
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 f

One stable equilibrium point

Total activity normalization

 

A

B ! w

Cf. “bubbles” in

self-organizing

feature maps --

Kohonen, 1984

G

x
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CC Loop of BCS Built on Preceding Theorems

Feedback exists between cortical streams

boundary grouping, completion, and filling-in

Visual processing is not conducted by:

independent modules

intrinsic images

feature maps

Boundary strength is not the same as lightness or color

Next: Early model analysis of such issues
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Neon Grid

Redies & Spillmann, 1981

Visible evidence for how groupings form and 

contain color filling-in
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Reality vs Illusion

“Real” contours of small cross cannot enclose red featural quality;

“Illusory” contours of Ehrenstein figure do! 

BCS/FCS theory explains how:

a red cross      placed inside an Ehrenstein figure 

Redies & Spillman, (1981)

produces color spreading.

+ =

produces color spreading

Redies and Spillmann, 1981
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Why Does Color Spread?

MP

BCS FCS

BCS: inhibition
lower-contrast
boundary signals
are weakened

FCS: no inhibition
feature signals
survive and disperse

BCS: inhibition

lower-contrast

boundary signals

are weakened

FCS: no inhibition

feature signals

survive and disperse
+              +
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Relative Contrast with Background

BCS's First Competitive Stage: shunting inhibition

Divisive inhibition at A and B is balanced.

C inhibits D more due to higher contrast with background.

Strength of neon effect varies with amount of contrast.

      van Tuijl & de Weert, 1979;  Redies & Spillmann, 1981

If boundary of black line inhibits

the boundary of the red,

why doesn’t the black boundary

self-annihilate?

A

B

C

D
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Trapping the Escaping Color

1st and 2nd competitive stages

same orientation,

across position inhibition

then

across orientation, 

same position inhibition

to generate end cuts

enhanced horizontal boundary
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Emergent Boundary Formation

The cooperative-competitive loop (CC Loop)

long-range cooperation and short-range inhibition

     choose coherent boundaries and suppress alternatives

Grossberg/Mingolla
VSS'05 Part 1:116

Transition to 3-D figure/ground

BCS/FCS theory was good for its time, but . . .

Neon color spreading and related phenomena raise issues of

transparency

3-D surface organization

figure/ground perception

and more . . .
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THREE THEMES

How does the visual cortex carry out 3D vision?

How is grouping organized in the visual cortex?

A larger issue: How do the LAMINAR CIRCUITS

of visual cortex enable us to see?

stereopsis

planar 3D surface perception

curved and slanted 3D surface perception

bistable percepts and binocular rivalry

anchoring of surface lightness and color

How does the visual cortex separate figure from ground?

completion and recognition of partially occluded objects

transparency

3D neon color spreading

White!s effect

Benary cross

Kanizsa stratification

Bregman-Kanizsa f-g separation
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HOW IS GROUPING ORGANIZED IN THE VISUAL CORTEX?

Grouping is not a separate process

Study it as part of a larger issue:

HOW DOES THE CEREBRAL CORTEX WORK?

It interacts with several other processes in the brain!s

architecture for seeing
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It supports the highest levels of

biological intelligence in all modalities

VISION, SPEECH, COGNITION, ACTION

Why does the cortex have LAYERS?

2. How does visual cortex GROUP distributed information?

3. How does top-down ATTENTION bias visual processing?

1. How does visual cortex stably  DEVELOP and LEARN to

optimize its structure to process different environments?

A recent breakthrough shows  how 1 implies 2 and 3!

HOW DOES THE CEREBRAL CORTEX WORK?

How does LAMINAR COMPUTING

give rise to biological intelligence?

Grossberg/Mingolla
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A New Paradigm

Proposes how the cerebral cortex achieves:

Stable development

A synthesis of: Bottom-up adaptive filtering

Horizontal associative grouping

Top-down hypothesis testing and attention

in ALL of its processing stages

Stable learning throughout life

ANALOG COHERENCE

   Coherently group distributed information

   without a loss of analog sensitivity (binding problem)

Hybid of digital and analog computing

Pay attention to important events
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How does it compare with earlier BCS?

Uses similar combination of mechanisms:

   properties and problems of old BCS forced

   discovery of laminar model

A much more ingenious, parsimonious, and beautiful

   circuit

Can explain a MUCH larger data base!

unifies development

             learning

             grouping

             attention

             figure-ground perception…

Grossberg/Mingolla
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PERCEPTUAL GROUPING
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+
-
-

+
Problems with old bipole:

1. Inward selectivity of bipole

vs. outward horizontal

signals in (e.g.) layer 2/3:

2. Hard to get groupings

with analog sensitivity

Grossberg & Mingolla, 1985
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Input on just one side

ONE-AGAINST-ONE:

Balanced Excitation and Inhibition

Cell is not excited

Grossberg, Mingolla & Ross, 1997

LAMINAR BIPOLE  PROPERTY

Long-range horizontal excitatory

connections

Shorter-range disynaptic inhibitory

connections
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Collinear input on both sides

+
-
-

+

Excitatory inputs summate

Inhibitory inputs normalize

TWO-AGAINST-ONE

Cell is excited

Shunting inhibition!

vs.

Grossberg/Mingolla
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KAPADIA, ITO, GILBERT & WESTHEIMER (1995)

Psychophysics Neurophysiology
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HOW ARE BIPOLE CELLS ACTIVATED?

Strong bottom-up

LGN input to layer 4

Stratford et al. (1996)

Chung & Ferster (1998)

LGN

V1

layer 4

DIRECT  BOTTOM-UP ACTIVATION  OF  LAYER  4

Grossberg/Mingolla
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ANOTHER BOTTOM-UP INPUT TO LAYER 4: WHY?

LAYER  6-TO-4  ON-CENTER  OFF-SURROUND

LGN

6

4
 LGN projects to layers 6 and 4

 Layer 6 excites spiny stellates
in column above it

 Medium-range connections
onto inhibitory interneurons

 6-to-4 path acts as
 on-center off-surround

 Grieve & Sillito, 1991, 1995
Ahmed et al., 1994, 1997
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LGN

6

4

BOTTOM-UP  CONTRAST  NORMALIZATION

Together, direct LGN-to-4
path and 6-to-4 on-center
off-surround provide
contrast normalization

Grossberg, 1973
Heeger, 1992

Douglas et al., 1995

SHUNTING
on-center off-surround

Do not discuss oriented RFs; discuss new circuit ideas

Spatial competition: cf. old BCS 
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MODULATION  OR  PRIMING BY  6-TO-4  ON-CENTER
On-center 6-to-4 excitation is

inhibited down to being modulatory

(priming, subthreshold)

Stratford et. al, 1996

Callaway, 1998

LGN

6

4

Plays key role in stable

development and learning

On-center 6-to-4 excitation

cannot activate layer 4 on its

own

Need direct LGN-to-4 path to

drive cortical activation
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Long-range horizontal excitation

links collinear, coaxial receptive

fields

Gilbert & Wiesel, 1989

Bosking et al., 1997

Schmidt et al, 1997

Short-range disynaptic inhibition of

target pyramidal via pool of

interneurons

Hirsch & Gilbert, 1991

GROUPING  STARTS  IN  LAYER 2/3

LGN

6

4

2/3

Bipole Property!

Unambiguous groupings can form and

generate feedforward outputs quickly

Thorpe et al, 1996 

Difference with old BCS:

Orientational competition: cf. old BCS
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HOW  IS  THE  FINAL  GROUPING  SELECTED?

FOLDED  FEEDBACK

LGN

6

4

2/3 Groupings in layer 2/3 feed back

Inputs to weaker groupings

suppressed by off-surround

Interlaminar feedback

creates functional columns

Can also go via layer 5

Blasdel et al., 1985

Kisvarday et al., 1989

Strongest grouping

enhanced by its on-center

into 6-to-4 on-center off-surround

An application of theorems about recurrent

shunting on-center off-surround networks!
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LGN

6

4

2/3

Rapid feedforward processing

when data are unambiguous

Activities of conflicting groupings

are reduced by

self-normalizing inhibition:

Ambiguous processing slows down

 Real-time Decision Making under Uncertainty

A Hybrid of Feedforward and Feedback Processing

A Self-Organizing System that Trades Certainty Against Speed

Self-normalizing inhibition creates

real-time normalized activity

distributions  (“probabilities”)

that reflect system uncertainty

Intracortical feedback selects and

contrast-enhances a winning grouping

Large activity speeds up processing of

unambigous winning grouping

When can correct answer catch up to ambigous one? cf. speed/accuracy tradeoff

Grossberg/Mingolla
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ANALOG-SENSITIVE BOUNDARY COMPLETION

 

Increases with “support ratio”

Shipley and Kellman, 1992

Inverted-U

Lesher and Mingolla, 1993

cf. Soriano, Spillmann and

Bach, 1994 (shifted gratings)
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few lines, 

wide spacing

more lines

overcome slight

inhibition from 

neighbors

crowding lowers

overall effective

input to cooperation

Grossberg/Mingolla
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Proximity:  cooperation strengthens horizontal grouping

         competition breaks vertical grouping
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Good Continuation: competition breaks vertical groupings

GESTALT GROUPING SIMULATION

Grossberg/Mingolla
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Inputs

Simulated V1 cell

responses

Simulated V2 cell

responses

GROUPING SIMULATIONS: V1 AND V2

Von der Heydt et
al. (1984)

Kapadia et al.
(1995)

Grosof et al.

(1993)
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HOW  DOES  TOP-DOWN  ATTENTION  FIT  IN?

FOLDED  FEEDBACK AGAIN

5

1
1
4

6

LGN

V2  6

5

Attentional signals also feed back

into 6-to-4 on-center off-surround

1-to-5-to-6 feedback path

Macaque: Lund & Boothe, 1975

Cat: Gilbert & Wiesel, 1979

DATA: V2-to-V1 feedback is

!on-center off-surround

!and affects layer 6 of V1 the most 

!Bullier et al., 1996 

!Sandell & Schiller, 1982

 Attended stimuli enhanced

 Ignored stimuli suppressed

Attention acts via a TOP-DOWN

MODULATORY ON-CENTER OFF-SURROUND

NETWORK
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LAMINART = LAMINAR ART

ART = ADAPTIVE RESONANCE THEORY

WHY IS THE MODEL CALLED LAMINART?

 Grossberg (1976, 1980), Carpenter and Grossberg (1987),…

ART predicted in the 1980!s that attention is

realized by a top-down modulatory on-center

off-surround network!

ART is a perceptual and cognitive theory that proposes

how stable development and learning occur throughout

life using top-down attention

Such a network helps to dynamically stabilize learning
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SUPPORT FOR ART PREDICTIONS

ATTENTION HAS AN ON-CENTER OFF-SURROUND
                          Bullier, Jupe, James, and Girard, 1996

Caputo and Guerra, 1998

Downing, 1988

Mounts, 2000

Reynolds, Chelazzi, and Desimone, 1999

Smith, Singh, and Greenlee, 2000

Somers, Dale, Seiffert, and Tootell, 1999

Sillito, Jones, Gerstein, and West, 1994

Steinman, Steinman, and Lehmkuhne, 1995

Vanduffell, Tootell, and Orban, 2000

“BIASED COMPETITION”
Desimone, 1998

Kastner and Ungerleider, 2001
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SUPPORT FOR ART PREDICTIONS

ATTENTION CAN FACILITATE MATCHED

 BOTTOM-UP SIGNALS

Hupe, James, Girard, and Bullier,  1997

Luck, Chellazi, Hillyard, and Desimone, 1997

Roelfsema, Lamme, and Spekreijse, 1998

Sillito, Jones, Gerstein, and West, 1994

     and many more…

         INCONSISTENT WITH MODELS WHERE TOP-DOWN

MATCH IS SUPPRESSIVE

   Mumford, 1992

   Rao and Ballard, 1999: Bayesian Explaining Away
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SUPPORT FOR ART PREDICTIONS

LINK BETWEEN ATTENTION AND LEARNING

                   VISUAL PERCEPTUAL LEARNING

     Ahissar and Hochstein, 1993

                   AUDITORY LEARNING

                Gao and Suga, 1998

        SOMATOSENSORY LEARNING

     Krupa, Ghazanfar, and Nicolelis, 1999

                Parker and Dostrovsky, 1999

Also clarifies Watanabe et al (2002+) data on perceptual

learning without attention (use intracortical feedback)
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Intercortical

attention

Intracortical feedback

from groupings

2/3

4

6

GROUPING AND ATTENTION SHARE DECISION CIRCUIT

Why so many debates

about pre-attentive and

attentive processing?

They share a decision

circuit! 

Attention acts via a
TOP-DOWN

MODULATORY ON-CENTER

OFF-SURROUND NETWORK

The preattentive grouping is its own “attentional” prime!
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V2 layer 2/3 horizontal axons 

longer-range than in V1

Amir et al. (1993)

Therefore, longer-range 

groupings can form in V2

V1
4

LGN

6

2/3

V2

4

6

2/3

V2  REPEATS  V1  CIRCUITRY  AT LARGER  SPATIAL  SCALE

Von der Heydt et al. (1984)
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WHAT IS THE RELATIONSHIP BETWEEN

GROUPING AND ATTENTION?

Attention and perceptual grouping coexist
in the same cortical areas

Both processes have many shared properties

But they obey seemingly contradictory constraints
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SHARED  PROPERTIES  OF ATTENTION

AND  GROUPING

ENHANCEMENT of weak, near-threshold stimuli

Attention: Reynolds et al., 1996; Hupe et al., 1998

Grouping: Kapadia et al., 1995; Polat et al., 1998

SUPPRESSION of competing stimuli / rival groupings

Attention: Luck et al., 1994; Caputo & Guerra, 1998

Grouping: van Lier et al., 1997; Kubovy et al., 1998
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HOW CAN ATTENTION SELECT A WHOLE OBJECT?

Attention and grouping share a decision circuit!
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ATTENTION  FLOWS  ALONG  CURVES:
ROELFSEMA  ET  AL.  (1998):  MACAQUE  V1

Fixation
(300ms)

Stimulus
(600ms)

Saccade

Target curve

DistractorRF

Crossed-curve condition:

Attention flows across junction
between smoothly connected
curve segments
(Good Continuation)

Grossberg/Mingolla
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0 200 400 600
0

0.05

0.1

0.15

0.2
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2
/3
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c
ti
v
it
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Time

DATA SIMULATION

Attention directed only to far end of curve

Propagates along active layer 2/3 grouping

to distal neurons

Target
Distractor

Grossberg and Raizada (2000, Vision Research)

SIMULATION OF ROELFSEMA  ET  AL.  (1998)
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EXPLANATION: GROUPING  AND  ATTENTION  SHARE

THE  SAME  MODULATORY DECISION  CIRCUIT

Intercortical attention

Intracortical feedback

from groupings

2/3

4

6

Both act via a MODULATORY

ON-CENTER OFF-SURROUND

decision circuit

Grossberg/Mingolla
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TARGET: Variable-contrast Gabor in neuron!s Classical RF

FLANKERS: Constant-contrast collinear Gabors outside RF

POLAT  ET  AL.  (1998):  CAT  AREA  17  (V1) 

CONTRAST-SENSITIVE  GROUPING

Collinear flankers ENHANCE response to near-threshold target

Flankers SUPPRESS response to high contrast target



Grossberg/Mingolla

VSS'05 Part 2: 37
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DATA SIMULATION
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0

0.05

0.1

0.15

0.2
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Suppression

Target contrast (%)
L

a
y
e
r 

4
 a
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Target alone

Target + flankers
Flankers alone

SIMULATION  OF  POLAT  ET  AL. (1998)

Depends on Shunting Inhibition of Layer 6
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SEEMINGLY  CONTRADICTORY CONSTRAINTS  ON

ATTENTION AND  GROUPING RESOLVED
Attention cannot produce above-threshold activity

where there is no bottom-up visual input

Grouping can produce above-threshold activity

where there is no bottom-up visual input

Illusory contour seen here, but

no bottom-up contrastive input

Prime to see a yellow ball         

Do not hallucinate seeing a yellow ball

Modulatory on-center

Groupings can form in layer 2/3

Needs the layers; not in old BCS!
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WHAT DOES LAMINAR COMPUTING ACHIEVE?

1. SELF-STABILIZING DEVELOPMENT AND LEARNING

2. Seamless fusion of

PRE-ATTENTIVE AUTOMATIC

BOTTOM-UP PROCESSING

    and

ATTENTIVE TASK-SELECTIVE

TOP-DOWN PROCESSING

3. ANALOG COHERENCE: Solution of the BINDING

PROBLEM without a loss of analog sensitivity

Even the earliest cortical stages carry out active

adaptive information processing: 

LEARNING, GROUPING, ATTENTION

2/3

4

6

Grossberg/Mingolla
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LAMINAR COMPUTING: A NEW WAY TO COMPUTE

1. FEEDFORWARD AND FEEDBACK

Rapid feedforward processing when

data are unambiguous

Feedback chooses among

ambiguous alternatives:

       self-normalizing competition

2. ANALOG AND DIGITAL

ANALOG COHERENCE combines the stability

of digital with the sensitivity of analog

A self-organizing system that

trades certainty against speed

3. PRE-ATTENTIVE AND ATTENTIVE LEARNING
A pre-attentive grouping is its own “attentional” prime!

cf., Bayesian models
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3D VISION AND FIGURE-GROUND PERCEPTION
How are

3D BOUNDARIES

and

3D SURFACES

formed?

Form

Color

And

DEpth theory

And

Grossberg (1987, 1994, 1997)

How the world

looks so real

without assuming

naïve realism

Prediction: Visible figure-ground-separated Form-And-Color-And-DEpth

       are represented in cortical area V4

Grossberg/Mingolla
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From filling-in of surface

LIGHTNESS and COLOR

to filling-in of surface

DEPTH

Can a change in brightness cause a change in depth? YES!

             e.g., proximity-luminance covariance

Egusa (1983), Schwartz & Sperling (1983)

Why is depth not more unstable when lighting changes?

Prediction: Discounting the illuminant limits variability

surfacesboundaries

near

far

Prediction: Depth-selective boundary-gated filling-in

                    defines the 3D surfaces that we see

.

.

.

Prediction: A single process fills-in lightness, color, and depth 
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Left input Right input

Far plane Fixation plane Near plane

STEREOGRAM SIMULATION:

SURFACE LIGHTNESSES ARE SEGREGATED IN DEPTH

Cf. algorithms that just compute disparity matches and let computer

code build the surface; e.g., Marr & Poggio (1974) et al

Fang & Grossberg (2004, 2005; see poster #577 on Saturday)
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AND AMODAL COMPLETION

FIgure 4

Why are 2D pictures often perceived as

3D representations of occluding and

occluded surfaces?

Easy! ALL boundaries are invisible!

Hard: Why we see only unoccluded parts of partially occluded

opaque surfaces

Hard because this is not always true: cf., transparent surfaces

Amodal boundary completion helps to

recognize partially occluded objects

Why is completion of the horizontal boundary amodal?
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FIGURE-GROUND SEPARATION

Black occluder helps to recognize gray B’s because

shared black/gray boundaries “belong” to black occluder:

Nakayama, Shimojo,

and Silverman (1988)

Extrinsic vs. intrinsic boundaries

Grossberg/Mingolla
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INTERACTION OF GEOMETRY AND CONTRAST

Depth perception can depend on contrast

A B C D

Opaque Surfaces

Vertical near Horizontal near

The same geometry in all cases
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INTERACTION OF GEOMETRY AND CONTRAST

Unique transparency

Bistable transparency

No transparency

The same geometry in all cases

Transparent Surfaces 

Grossberg/Mingolla
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HOW SMART IS BRAIN EVOLUTION?

How can evolution discover a process as subtle as

figure-ground perception of occluding and occluded

objects? …of opaque vs. transparent objects?

Prediction:

Solution of simpler problems imply figure-ground

         properties
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 CONSISTENCY IMPLIES FIGURE-GROUND SEPARATION!

I. BOUNDARY-SURFACE COMPLEMENTARITY

           versus

BOUNDARY-SURFACE CONSISTENCY

The same process handles both I and II!

Why do not all OCCLUDING objects look TRANSPARENT?

How do we RECOGNIZE a partially OCCLUDED object?

II. FIGURE-GROUND RECOGNITION

versus

VISIBLE SURFACE PERCEPTION

We SEE one unified percept!

 

Why do we NOT SEE partially OCCLUDED object parts 

     when the occluder is OPAQUE?

Grossberg/Mingolla

VSS'05 Part 2: 50

INTERSTREAM FEEDBACK ENSURES CONSISTENCY

DeYoe and Van Essen, 1988, 

Trends in Neurosciences, 11, 219-226

BlobV1

InterstripeV2V2 Thin

Retina

V1 4B

V2 Thick

MT

V3

Parietal 
Areas

LGN Magno

V1 Interblob

V4

Inferotemporal
Areas

LGN Parvo

Prediction:

Feedback between V2

boundary and surface

streams ensures

consistency and initiates

figure-ground separation

What sort of feedback?!
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HOW DOES THE CORTEX DO

BINOCULAR VISION?

Most models consider only V1 stereopsis

e.g., disparity energy model

Most models do not include CORTICAL LAYERS

Can the LAMINART model be self-consistently extended?

     YES!

Most models do not explain 3D SURFACE PERCEPTS 

Grossberg/Mingolla
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Unifies and further develops

LAMINART model of development, learning, grouping,

and attention
Grossberg, Mingolla, Raizada, Ross, Sietz, Williamson

FACADE model of 3D vision and figure-ground perception
Grossberg, Grunewald, Kelly, McLoughlin, Pessoa

It shows how interactions between V1, V2, and V4 can
explain many data about 3D vision

Grossberg and Howe (2003); Grossberg and Swaminathan (2004);

 Cao and Grossberg (2005): Grossberg and Yazdanbakhsh (2005)
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Contrast variations of dichoptic masking (McKee et al., 1994)

Correspondence Problem (Smallman & Mckee, 1995)

Panum's limiting case (Gillam et al., 1995; McKee et al., 1995)

Venetian blind illusion ( Howard & Rogers, 1995)

Stereopsis with polarity-reversed stereograms (Nakayama & Shimojo, 1990)

Venetian blind illusion (Howard & Rogers, 1995)

Da Vinci stereopsis (Nakayama & Shimojo, 1990; Gillam et al., 1999)

Craik-O'Brian-Cornsweet lightness illusion (Todorovic, 1987)

The effect of interocular contrast differences on stereothresholds (Schor & Heckman, 1989)

Closure relationships and variations of Da Vinci stereopsis (Cao & Grossberg, 2004, 2005)

3D surface percepts of dense and sparse stereograms (Fang & Grossberg, 2005; VSS

poster #577 on Saturday at 2-7 PM)

3D perception of slanted and curved surfaces and bistable Necker cube (Grossberg &

Swaminathan, 2004)

Simulate properties of:

3D transparency, neon color spreading, and stratification (Grossberg & Yazdanbakhsh, 2005)

Binocular rivalry (Yazdanbakhsh & Grossberg, 2005; VSS talk on Wednesday at 8:30 AM)

Grossberg/Mingolla
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HOW TO UNIFY CONTRAST-SPECIFIC BINOCULAR FUSION

WITH CONTRAST-INVARIANT BOUNDARY PERCEPTION?

Contrast-invariant boundary perception

L eye view R eye view

Binocular fusion

Binocular fusion

No binocular fusion

Contrast-specific binocular fusion

Contrast polarity along the gray      

square edge reverses

Opposite polarities are pooled to

form object boundary
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Contrast-specific stereoscopic fusion by disparity-selective

simple cells

Contrast-invariant boundaries by pooling opposite polarity

binocular simple cells at complex cells in layer 2/3A

      Ohzawa et al,. 1990; Grossberg & McLoughlin, 1997

Complex cells

Simple cells

2/3A

3B

4

L eye R eye

V1

Simple cells

MODEL UNIFIES CONTRAST-SPECIFIC BINOCULAR FUSION

WITH CONTRAST-INVARIANT BOUNDARY PERCEPTION

Grossberg/Mingolla
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Fusion only occurs between bars of similar contrast

McKee et al., 1994

L EYE VIEW R EYE VIEW

FIXATION

PLANE

b)

L EYE VIEW R EYE VIEW

FIXATION

PLANE

a)

CONTRAST CONSTRAINT ON BINOCULAR FUSION

Percept changes when one contrast is different:

Left and right input from same object has similar contrast



Grossberg/Mingolla

VSS'05 Part 2: 57

Inhibitory cells (red) ensure that fusion occurs when

contrasts in left and right eye are approximately equal 

(cf. “obligate” cells Poggio, 1991).

Complex

Cells

Simple

Cells

Simple

Cells

2/3A

3B

4

L eye R eye

Inhibitory cells

V1

MODEL IMPLEMENTS CONTRAST

CONSTRAINT ON BINOCULAR FUSION

An Ecological Constraint on Cortical Development

Grossberg/Mingolla
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RATIO CONSTRAINT ON BINOCULAR FUSION

Smallman and McKee (1995)

Simulation: + and o  are model simulations

Data:          line of best fit has a slope of 1
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HOW TO SOLVE THE CORRESPONDENCE PROBLEM?

L EYE VIEW R EYE VIEW

a)

b)

Which squares in the two retinal images must be fused to

form the correct percept?

Stimulus

Multiple possible

binocular matches

How does the brain inhibit false matches?

 Contrast constraint is not enough

Grossberg/Mingolla
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False matches (black) suppressed by

line-of-sight inhibition (green lines) and

cyclopean inhibition (red lines)

L EYE VIEW R EYE VIEW

MODEL V2 DISPARITY FILTER

SOLVES THE CORRESPONDENCE PROBLEM

An Ecological Constraint on Cortical Development

“Cells that fire together wire together”
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HOW DOES MONOCULAR INFORMATION

CONTRIBUTE TO DEPTH PERCEPTION?

Only by utilizing monocular information can visual

system create correct depth percept (Gillam et al,. 1999)

L eye view R eye view

DaVinci Stereopis

Grossberg/Mingolla
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MODEL UTILIZES MONOCULAR INFORMATION

In V2, monocular inputs add to binocular inputs and 

contribute to depth perception

Inhibitory

cells

Complex

Cells

Simple

Cells

Simple

Cells

2/3A

3B

4

L eye R eye

4

V1

V2 Complex

Cells

Black = Monocular cells

Blue = Binocular cells
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HOW TO FORM SURFACE PERCEPTS?

b) Why then do we see entire surfaces, not

just edges?

L EYE VIEW R EYE VIEW

a) Neurons accomplish disparity sensitivity

by matching edges

e.g. Cumming & DeAngelis, 2001

PERCEPT

3D boundary-gated

surface filling-in

Grossberg/Mingolla
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VISIBLE SURFACE REGIONS

Illuminant-discounted surface
input

3D
BoundaryBefore Filling-

in

After Filling-
in

GapNo Gap

Cf. role of closed 2D boundaries in explaining COCE

Grossberg & Todorovic (1988)
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V1 LEFT MONOCULAR

V1 RIGHT MONOCULAR

V1

BINOCULAR

V2

BOUNDARY

V2

SURFACE

DEPTH 1

DEPTH 2

Prediction: Monocular boundaries are added to ALL

binocular boundaries

3D BOUNDARY-GATED SURFACE FILLING-IN

Regions that are surrounded by a CLOSED boundary can

depth-selectively contain filling-in of lightness and color signals 
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Helps to explain lots of data

3D neon color spreading

Stereopsis and 3D surface perception

3D figure-ground separation

Transparency

Experimental test of this prediction:

e.g., Yazdanbakhsh and Watanabe, 2004

CONNECTED VS BROKEN BOUNDARIES

Confirmed asymmetric interaction of horizontal

      boundaries and depth-selective vertical boundaries
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V2 PALE

STRIPE

2/3A

3B

4
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V1 INTERBLOB

L EYE R EYE

COMPLEX CELL

INHIBITORY CELL

SIMPLE CELL

ON-CENTER,

OFF-SURROUND

GROSSBERG & HOWE (2003) 3D LAMINART MODEL

Polarity-sensitive simple

cells: Monocular, binocular

Polarity-pooling complex

cells: Monocular, binocular

Pool binocular and

monocular cells

Inhibit false matches

Fill-in visible 3D surface

within connected boundaries

Discount illuminant

Polarity-sensitive

monocular simple cells

Grossberg/Mingolla
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LGN: Has circularly symmetric receptive fields (Kandel et al, 2000),

parvocellular, but not magnocellular component, critical for fine stereopsis

(Shiller et al 1990a,b)

V1 in general: V1 interblob regions more concerned with orientation (i.e.

form) information whereas V1 blob regions more concerned with color

(Livingstone & Hubel, 1984). V1 contains “obligate” cells that respond to

binocular, but not to monocular, simulation (Poggio 1991)

V1 Layer 4: Major recipient of the LGN parvocellular input, mainly monocular,

outputs to layer 3B, but not to layer 2/3A (Callaway, 1998), contains simple

cells (Hubel & Wiesel, 1968; Schiller et al., 1976)

V1 Layer 3B: Contains simple cells (Dow, 1974), monocular and binocular

cells (Hubel & Wiesel, 1968; Poggio, 1972), inputs independent of ocular

dominance (Katz et al., 1989), projects to 2/3A (Callaway, 1998)

V1 Layer 2/3A: Contains monocular and binocular cells (Poggio, 1972), many

complex cells (Hubel & Wiesel, 1968; Poggio, 1972)

SUPPORTING ANATOMICAL AND PHYSIOLOGICAL DATA
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V2 in general: Binocular (Hubel & Livingstone, 1987; Mausell & Newsome,

1987; Roe & Ts’o, 1997), disparity-sensitive (Poggio and Fischer, 1977; von

der Heydt et al., 2000), fewer false matches in V2 than in V1 (Bakin et al, 2000)

V2 Pale stripes: Receives projections from V1 interblob but few from V1 blob

regions (Livingstone & Hubel, 1984; Roe & Ts’o, 1997),  particularly into layer

4 (Rockland & Virga, 1990), orientation selective (Peterhans, 1997; Roe & Ts’o,

1997), contains complex cells (Hubel & Livingstone, 1987), layer 2/3A projects

to V4 (Xiao et al., 1999), contains a complete map of visual space (Roe & Ts’o,

1995), highly sensitive to orientation information (Peterhans, 1997)

V2 Thin stripes: Receives input from V1 blob but little from V1 interblob

regions (Livingstone & Hubel, 1984; Roe & Ts’o, 1997), highly sensitive to

color information (Peterhans, 1997), contains a complete map of visual space

(Roe & Ts’o, 1995)

V4: Receives input from V2 pale stripes (Xiao et al., 1999) and V2 thin stripes

(Mausell & Newsome, 1987; Xiao et al., 1999), and is disparity selective

(Ghose  & Ts'o, 1997)

SUPPORTING ANATOMICAL AND PHYSIOLOGICAL DATA
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22 SIMULATIONS WITH ONE SET OF PARAMETERS

Contrast variations of dichoptic masking (McKee et al., 1994)

Correspondence Problem (Smallman & Mckee, 1995)

Panum's limiting case (Gillam et al., 1995; McKee et al., 1995)

Venetian blind illusion ( Howard & Rogers, 1995)

Stereopsis with polarity-reversed stereograms (Nakayama & Shimojo,

1990)

Venetian blind illusion (Howard & Rogers, 1995)

Da Vinci stereopsis (Nakayama & Shimojo, 1990; Gillam et al., 1999)

Craik-O'Brian-Cornsweet lightness illusion (Todorovic, 1987)

Effect of interocular contrast differences on stereothresholds 

(Schor & Heckman, 1989)

Grossberg and Howe (2003)

Illustrate model by explaining some DaVinci stereopsis percepts 
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N & S CLAIM: Visual systems interpret

unpaired image points (DaVinci stereopsis) in

terms of previous experiences with

OCCLUSION RELATIONSHIPS

Nakayama & Shimojo (1990)

Cf. claim that visual

STATISTICS influence what

we see; e.g., Bayesian

approaches to vision

ECOLOGICAL OPTICS COUNTEREXAMPLES:

Simulate key DaVinci stereopsis percepts without explicit knowledge of

occlusion relationships. However, line-of-sight inhibition and disparity-

tuned complex cells develop with guidance from visual statistics

Image statistics clearly influence

development of cortical maps and RFs; e.g., Wiesel and Hubel et al. 

L eye view R eye view
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DA VINCI STEREOPSIS

Nakayama and Shimojo (1990)

Very Near       Near    Fixation Plane    Far         Very Far

Left eye

input

Right eye

input

Left

monocular
boundary

Right

monocular
boundary

Binocular match:

boundaries of

thick bar

Binocular match:

Right edge of thin

and thick bars

Add monocular

boundaries along

lines-of-sight

Strongest boundaries:

binocular and monocular

boundaries add

Line-of-sight

inhibition kills

weaker vertical

boundaries

Vertical boundaries from

monocular left edge of

thin bar survive

Filling-in contained

by connected

boundaries

An emergent property of the previous simple mechanisms working together

3D surface percept

Not just disparity 

match!
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POLARITY-REVERSED DA VINCI STEREOPSIS
Nakayama and Shimojo (1990)

Very Near             Near           Fixation Plane            Far               Very Far

Same Explanation!
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DA VINCI STEREOPSIS
Gillam, Blackburn, and Nakayama (1999)

Very Near             Near           Fixation Plane            Far                 Very Far

Same Explanation!



Grossberg/Mingolla

VSS'05 Part 2: 75DA VINCI STEREOPSIS
Gillam, Blackburn, and Nakayama (1999)

Very Near             Near           Fixation Plane            Far                 Very Far

Same Explanation!

Grossberg/Mingolla
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Can the model simulate other surface percepts? e.g., surface brightness

The 2D surface with the image on it is viewed at a very near depth

Very Near             Near           Fixation Plane            Far                 Very Far

Same Explanation!

Adapts Grossberg & Todorovic (1988) to 3D
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How to generalize bipole grouping to 3D vision?

ROLE OF PERCEPTUAL GROUPING IN 3D PERCEPTS

 How to group

3D planar, textured, slanted, and curved boundaries?

Grossberg & Swaminathan (2004); Cao and Grossberg (2004, 2005);

Fang & Grossberg (2004, 2005; )
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ROLE OF PERCEPTUAL GROUPING IN 3D PERCEPTS

2/3A

4

    1 against 1

Bottom-up input from

only one side

Bottom-up inputs

from both two sides

2 against 1

How to generalize bipole grouping to 3D vision?

      Complex cell

      

Inhibitory

interneuron

      

Inactive cell

In stages: stereopsis, 3D figure-ground, slanted and curved surfaces
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3D GROUPINGS DETERMINE PERCEIVED DEPTH
 

Vertical illusory contours are at different disparities than those

of bounding squares

Illusory square is seen in depth

Vertical illusory contours are binocularly fused and determine the

perceived depth of the square

Thin oblique lines, being perpendicular, are rivalrous:

        simultaneous fusion and rivalry

Kaufman stereogram (1974)

 R L
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Model Hypothesis:

3D GROUPINGS DETERMINE PERCEIVED DEPTH

 

Ramachandran and Nelson (1976). Global grouping overrides

point-to-point disparities. Perception, 5, 125-128

Wilde (1950); Tausch (1953);

How do 3D groupings win over local disparities?

Disparity filter for eliminating “false matches” and

3D grouping process for eliminating “weak and

incorrect groupings” are unified in V2 layer 2/3A

Eliminate all “false matches” through the 3D

grouping process

Cao & Grossberg (2004, 2005)
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4

2/3

Depth 2

Depth 1

           

GROUPING AND DISPARITY FILTER BOTH IN V2 LAYER 2/3

           

Bipole long-range horizontal connection

Bipole short-range inhibitory connection

 Line-of-sight inhibition

           Cyclopean inhibition (gone!)
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Boundaries and surfaces obey complementary rules

SURFACE-TO-BOUNDARY FEEDBACK

Surface-to-boundary feedback assures a consistent percept

Eliminates “extra boundaries” that hurt object recognition

It also initiates figure-ground separation!

Feedback Between V2 Thin and Pale stripes

Why are there “extra boundaries”?
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MULTIPLE-SCALE DEPTH-SELECTIVE GROUPINGS

DETERMINE PERCEIVED DEPTH

Does a big scale (RF) always signal NEAR? NO!

Far Near

Far

Far

Near

Near

Reversible!

Brown & Weisstein (1988)

The same scale can signal either near or far 

Some scales fuse more than one disparity

As an object approaches, it gets bigger on the retina
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 AND SIZE-DISPARITY CORRELATION

Depth-selective cooperation and competition among multiple

scales determines perceived depth

BOUNDARY PRUNING: Surface-to-boundary feedback from the

nearest surface that is surrounded by a connected boundary eliminates

redundant boundaries at the same position and further depths

Simultaneous fusion and rivalryLarger scales fuse more depths
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DEPTH 1

DEPTH 2

V2 Thin StripeV2 Pale StripeV1

DEPTH 1

DEPTH 2

Before feedback

After feedback

Object Recognition

SURFACE TO BOUNDARY FEEDBACK

SUPPRESSES REDUNDANT V2 BOUNDARIES

Contrast-

sensitive

inhibition
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V2 PALE

STRIPE

2/3A

3B

4
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V1 INTERBLOB

L EYE R EYE

COMPLEX CELL

INHIBITORY CELL

SIMPLE CELL

ON-CENTER,

OFF-SURROUND

DF

3D LAMINART MODEL
Cao & Grossberg (2004, 2005)

3D grouping

Surface-to-boundary

feedback
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27 SIMULATIONS WITH ONE SET OF PARAMETERS
This 3D LAMINART model is an extension of Grossberg and Howe (2003)

Contrast variations of dichoptic masking (McKee et al., 1994)

Correspondence Problem (Smallman & Mckee, 1995)

Panum's limiting case (Gillam et al., 1995; McKee et al., 1995)

Venetian blind illusion ( Howard & Rogers, 1995)

Stereopsis with polarity-reversed stereograms (Nakayama & Shimojo, 1990)

Venetian blind illusion (Howard & Rogers, 1995)

Da Vinci stereopsis (Nakayama & Shimojo, 1990; Gillam et al., 1999)

Craik-O'Brian-Cornsweet lightness illusion (Todorovic, 1987)

Effect of interocular contrast differences on stereothresholds (Schor & Heckman, 1989)

Closure relationships and variations of daVinci stereopsis (Cao & Grossberg)

Other data that have been simulated using variants of this model:
3D slanted and curved surfaces (Grossberg & Swaminathan, 2004)

Bistable Necker cube (Grossberg & Swaminathan, 2004)

3D transparency, neon color spreading, stratification (Grossberg & Yazdanbakhsh, 2005)

Dense and sparse stereograms (Fang & Grossberg, 2005)

Binocular rivalry (Yazdanbakhsh & Grossberg, 2005). Hear his talk at 8:30 AM on Friday

Bregman-Kanizsa figure-ground separation, Kanizsa stratification, Muncker-White illusion,

Benary cross, checkerboard percepts (Kelly & Grossberg, 2000)

Grossberg/Mingolla
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Left input Right input

Far plane Fixation plane Near plane

STEREOGRAM SIMULATION:

SURFACE LIGHTNESSES ARE SEGREGATED IN DEPTH

Cf. algorithms that just compute disparity matches and let computer

code build the surface; e.g., Marr & Poggio (1974) et al

Fang & Grossberg (2004, 2005; see poster #577 on Saturday)



Grossberg/Mingolla

VSS'05 Part 2: 89

Far plane Fixation plane

Near plane

STEREOGRAM SIMULATION

(V2 INITIAL BOUNDARIES BEFORE S-TO-B FEEDBACK)

Grossberg/Mingolla

VSS'05 Part 2: 90
STEREOGRAM SIMULATION

(V2 OUTPUT BOUNDARIES AFTER S-TO-B FEEDBACK)

Far

plane

Fixation

plane

Near plane
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FIGURE-GROUND SEPARATION

Black occluder helps to recognize gray B’s because

shared black/gray boundaries “belong” to black occluder:

Nakayama, Shimojo,

and Silverman (1988)

Extrinsic vs. intrinsic boundaries

Grossberg/Mingolla
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DOES THE BRAIN USE T-JUNCTION OPERATORS IN

FIGURE-GROUND SEPARATION?

What about the interaction of geometry and contrast?

A contrast change can reverse the answer without

changing the T-junction geometry!
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Prediction:

 The bipole grouping property plays a key role in

 figure-ground separation

BIPOLE CELLS IN FIGURE-GROUND SEPARATION!  

The bipole property is sensitive to both 

     geometry and contrast

Figure-ground separation as a property of

3D boundary and surface formation

Grossberg/Mingolla
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BIPOLE CELLS INITIATE FIGURE-GROUND SEPARATION

T-junction sensitivity without T-junction detectors

LONG-RANGE

COOPERATION

SHORT-RANGE

COMPETITION

IMAGE BOUNDARY with END CUT

Prediction: 3D boundary end cuts influence depth perception

-
++ -

--
+

+ -

T top - NEAR depth

T stem - FAR depth

A weird idea! Do they exist? How to test?
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BISTABLE TRANSPARENCY: ATTENTION AND BRIGHTNESS

Tse, P. (2005) Attention modulates the brightness of of overlapping

transparent surfaces. Vision Research, in press
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BISTABLE TRANSPARENCY: ATTENTION AND BRIGHTNESS

BOUNDARY ATTENTION

Attention strengthens

boundary and can flow

along boundary

Other boundary breaks

Darker brightness can leak

through boundary end gap

SURFACE ATTENTION

Attended surface is

closer, as predicted

in Grossberg (1994)

Filling-in across gap changes brightness

attention

If boundary breaks, why

do we not SEE the break?
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PSYCHOPHYSICAL TEST OF BIPOLES IN FIGURE-GROUND

SEPARATION: GEOMETRY VS. CONTRAST

Dresp, Durand & Grossberg 

(2002, Spatial Vision, 15, 255-276)

Judge if H or V looks

closer as function of

Michelson contrast

Results consistent with geometrical

advantage of horizontal bipoles at

occlusion T-junction, and of balanced

geometrical competition at X-junctions,

with increasing contrast offsetting the

balance

Signed Michelson contrast ((L
min

 - L
max

)/(L
min

+ L
max

))

-0,8 -0,6 -0,4 -0,2

Probability of "near"
0,0

0,2

0,4

0,6

0,8

1,0 with partial occlusion cues

without partial occlusion cues

pure contrast effect hypothesis

Michelson contrast ((L
max

 - L
min

)/(L
max

+L
min

))

0,2 0,4 0,6 0,8

Probability of "near"

0,0

0,2

0,4

0,6

0,8

1,0

with partial occlusion cues

without partial occlusion cues

pure contrast effect hypothesis
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BIPOLES RULE!



Grossberg/Mingolla

VSS'05 Part 2: 99

 CONSISTENCY IMPLIES FIGURE-GROUND SEPARATION!

I. BOUNDARY-SURFACE COMPLEMENTARITY

           versus

BOUNDARY-SURFACE CONSISTENCY

The same process handles both I and II!

Why do not all OCCLUDING objects look TRANSPARENT?

How do we RECOGNIZE a partially OCCLUDED object?

II. FIGURE-GROUND RECOGNITION

versus

VISIBLE SURFACE PERCEPTION

We SEE one unified percept!

 

Why do we NOT SEE partially OCCLUDED object parts 

     when the occluder is OPAQUE?

Grossberg/Mingolla
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Boundary Attachment

Bipole

Cooperation

and 

Competition

End gaps Filling-In; cf., neon color spreading

--
+

+

Claim: This step initiates figure-ground separation



Grossberg/Mingolla

VSS'05 Part 2:101SEPARATED V2 BOUNDARIES

NEAR FAR

Amodal Boundary Completion

SEPARATED V2 SURFACES

Amodal Filling-In

Grossberg/Mingolla
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AMODAL COMPLETION AND RECOGNITION

OF PARTIALLY OCCLUDED OBJECTS

Enables RECOGNITION of partially occluded

objects:

Prediction:

Direct recognition pathway for recognizing

amodal boundaries and surfaces without

seeing them

If filling-in at this stage was modal, or visible, 

all occluding objects would look transparent! 

PFC

 

  IT

 

  V2
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VSS'05 Part 2:103VISIBLE SURFACE PERCEPTION
Boundary Enrichment
near far

Cannot use 

these boundaries 

for occluded 

object 

recognition

V4

V2

Asymmetry

between

near and far

cf., 3D neon

color

spreading

Visible Surface Filling-In

Visible percept 

of unoccluded 

surface

Use 

these boundaries 

for occluded 

object 

recognition
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Left Monocular
Preprocessing

Right Monocular
Preprocessing

Left Monocular
Boundaries

Right Monocular
Boundaries

Binocular Fusion

Binocular 
Boundaries Right Monocular

Surface Capture 
and Filling-In

Amodal Percept

 Left Monocular
Surface Capture 
and Filling-In

Amodal Percept

Binocular Surface
Matching and Filling-In

Modal Percept

             V2

Amodal completion

Recognition of

occluded objects

            V4

See unoccluded

   surface parts 

See transparent

   surfaces



Grossberg/Mingolla

VSS'05 Part 2:105

BREGMAN-KANIZSA SIMULATION

INPUT STIMULUS

Grossberg/Mingolla
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Kelly & Grossberg (2000, Perception & Psychophysics, 62, 1596-1619)

BEFORE surface-to-boundary feedback

BOUNDARIES

with end gaps at

multiple depths due

to size-disparity

correlation

SURFACES

fill-in selectively within

connected boundaries

FarNear

S-to-B 
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BOUNDARIES

complete occluded

boundary

AFTER surface-to-boundary feedback

SURFACES

amodally fill-in

occluding and

occluded surfaces

Why amodal? Otherwise all occluders would look transparent!

There must be another stage where unoccluded surfaces are visible!

Grossberg/Mingolla
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Prediction:

How to prevent all occluders

from looking transparent?

V4 boundary enrichment

and modal filling-in:

Add near boundaries to

far boundaries

V4 surface pruning:

Inhibit redundant surface

inputs from farther depths

ASYMMETRY BETWEEN

NEAR AND FAR
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3-D PARSING OF OCCLUDED SURFACES

How does the laminar circuitry in areas V1 and V2 generate

3-D percepts of

STRATIFICATION

TRANSPARENCY

NEON COLOR SPREADING

In response to 2-D pictures and 3-D scenes?

Grossberg/Mingolla
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KANIZSA STRATIFICATION

A B

C D
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Petter, 1956

A B

C

Support ratio favors

collinear bipole grouping

of the cross

Grossberg/Mingolla
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Kelly & Grossberg, 2000, 

Perception and Psychophysics, 62, 1596-1619

Endgaps and filling-in

at near and far depths

NEAR            FAR
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BENARY CROSS SIMULATION
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Grossberg/Mingolla
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WHITE’S EFFECT SIMULATION
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HOW TO EXPLAIN TRANSPARENCY

AND 3D NEON COLOR SPREADING?

Explanation already implicit in the model if we include

cortical development work of

Grossberg and Williamson (2001)

But we did not realize this!

Grossberg and Yazdanbakhsh 

Vision Research, 45, 1725-1743

As in any real theory, hard data start falling out of the wash

The theory starts to get smarter than its creators…

Grossberg/Mingolla

VSS'05 Part 2:118CONTRAST RELATIONSHIP IN

TRANSPARENCY

Unique transparency

Bistable transparency

No transparency

The same geometry
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CONTRAST RELATION IN TRANSPARENCY

Adelson, 2000; Anderson, 1997; Beck, 1984;

Metelli 1974; Watanabe and Cavanagh, 1992, 1993

Single polarity reversal

No polarity reversal

Double polarity reversal

How does polarity alignment influence transparency

Unique transparency

Bistable transparency

No transparency

Grossberg/Mingolla
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CONTRAST RELATIONS CAN INDUCE

NEON SPREADING

Percept

Over

This contrast relation

supports neon spreading
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CONTRAST RELATIONS CAN BLOCK

NEON SPREADING

  No neon 

  spreading

Geometry 

  is the same as 

the neon case

Grossberg/Mingolla
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Polarity reversing T-junction

T

T

Polarity preserving T-junction

The laminar architecture should treat contrast

relations in a way to let it overcome the absolute

values of contrast

Non-

Neon

Neon
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POLARITY ALIGNMENT INFLUENCES

TRANSPARENCY

AND NEON SPREADING

How early does this polarity

sensitivity occur?

Claim: It occurs at layer 4 in V1

Why?

Grossberg/Mingolla
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Takeichi, Shimojo and Watanabe, 1992 

Different ocularity of contrast can block neon

The contrast polarity constraint is MONOCULAR

Same ocularity of contrast can induce neon

L R

L R



Grossberg/Mingolla

VSS'05 Part 2:125LAMINART CIRCUIT

Prediction 1: The polarity-specific

monocular process is in layer 4 of V1

Complex

Cells

Simple

Cells

2/3A

3B

4

L eye R eye

Inhibitory

cells

V1 V1

Grossberg and Howe (2003, 43, 801-829) 

Binocular fusion occurs in layer 3B of V1

Prediction 2: This process is

monocular polarity-specific competition

Grossberg/Mingolla

VSS'05 Part 2:126
3-D LAMINART CIRCUIT

Disparity Filter

3B

4

4

3B

V1

2/3

2/3

V2

6

V2 grouping pools opposite polarities
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SUGGESTS NEW EXPERIMENTS

Preference for like-polarity inhibition in layer 4 of V1 is

proposed to develop from normal visual statistics

Grossberg and Williamson (2001, Cerebral Cortex, 37-58)

What happens to this preference when animals are

raised in abnormal visual environments?

e.g., opposite polarity textures?

Grossberg/Mingolla
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Multiple predicted roles:

Selection and analog coherence of groupings

Contrast gain control of BU inputs from LGN

Influences transparency percepts

Target of top-down attention

Suggests totally new kinds of experiments

Who will run with this opportunity?!

SELF-NORMALIZING INHIBITION FROM V1 6-TO-4
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VSS'05 Part 2:129HOW ARE BOUNDARY GAPS

CREATED AND COMPLETED?

Bipole grouping cells can do both

Collinear

cooperation and

orientational

competition

+

-

-

+

+
-

-
+ -

+
-

+
-
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SAME PROBLEM IN NEON SPREADING

B

Boundary AC wins even

when contrast D> A

A

C

D

Boundaries

Like-polarity competition between B and D

allows boundary AC to win.
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B D

Boundary BD wins even

when contrast A> D

A

Non-neon

Opposite-polarity B and D

contrasts do NOT compete.

Boundaries
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CONTRAST CAN INDUCE NEON

Takeichi, Shimojo and Watanabe, 1992 

Explanation: In the No Neon case, different

ocularity inputs bypass the monocular

polarity-specific competition in V1

Neon Spreading

No Neon Spreading

L R

L R
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ILLUSORY CONTOUR FORMATION

IS BINOCULARLY DRIVEN

 Takeichi, Shimojo and Watanabe, 1992

Formation of illusory contours does not

need inducers to have the same ocularity

Layer 2/3 bipole grouping cells in V2 are binocular

L R

2/3V2
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BOUNDARY STRONGER

4

6

Before

attention

After

attention

Attentional

feedback activates

layer 6 of V1
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Either

Attentional

feedback
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NON-TRANSPARENT SIMULATION

Far depth

Stimulus

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Stimulus

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Near depth

Contrast-
   sensitive
feedback
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Near depth Far depth Bipole completion

Contrast-sensitive

feedback

Filled-in surfaces

after feedback

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
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10 20 30 40 50 60 70 80 90 100

10
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Far depth

F
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n

g
-
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Stimulus

10 20 30 40 50 60 70 80 90 100
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Near depth

Contrast-
sensitive
feedback
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NEON SPLIT INDUCERS SIMULATION

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Bipole
cooperation in V2

10 20 30 40 50 60 70 80 90 100
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80
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In V1,
monocular

contrasts
generate

endgaps
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L R
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RL

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Different ocularity

bypasses gap

formation in V1

Long range bipole cooperation blocked
by orientation competition in layer 2/3 of V2

NON-NEON CASE, SPLIT CONTRAST SIMULATION
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Transparency and neon color spreading data uncover
some constraints on depth stratification

Monocular same-polarity competition explains the
contrast relation role in depth stratification

This same-polarity competition is implemented in layer
6-to-4 connections of V1,  where cells are mostly
monocularly driven

Implementation of monocular same-polarity
competition unifies

STRATIFICATION
TRANSPARENCY
NEON COLOR SPREADING

phenomena
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 CONCLUSIONS

Monocular same-polarity competition is consistent with

model of inhibitory layer 4 development by Grossberg

and Williamson (2001, Cerebral Cortex)

Question: What happens to layer 4 inhibition if animals

are reared in opposite polarity textures?
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HOW DOES THE CORTEX HANDLE

SLANTED AND CURVED

3D SURFACES?

Previous model only handles

PLANAR 3D surfaces

Can the model be self-consistently extended?

YES!

Grossberg and Swaminathan 

(2004, Vision Research, 44, 1147-1187)
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3D REPRESENTATION OF 2D IMAGES

Monocular cues (e.g angles) can interact together to yield
3D interpretation

Monocular cues by themselves are often ambiguous

FAR

NEAR

NEAR

FAR

How do these ambiguous cues contextually define a 3D
representation?

SAME ANGLES AND SHAPES, DIFFERENT SURFACE SLANTS

Grossberg/Mingolla
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Tse (1999)
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3D GROUPING

Tse (1999)
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A straight edge can represent a

FLAT

NEAR-TO-FAR

FAR-TO-NEAR

object contour in different figures

Spatial combinations of

ANGLES and EDGES

can disambiguate depth direction
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3D GROUPING LAWS AND NECKER CUBE

The LAMINART model clarifies how horizontal

connections can grow during development to create

the

BIPOLE GROUPING property

The SAME MECHANISMS can explain development of

ANGLE cells and DISPARITY GRADIENT cells which

contextually represent SLANTED 3D SURFACES

Simulates BISTABLE 3D NECKER CUBE percepts! 
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Four key additions:

Angle cells

(non-colinear bipole cells)

cells tuned to various angles

Disparity-gradient cells

cells tuned to disparity-gradients in the image

Weights from angle cells to disparity-gradient cells

learned while viewing 3D image

Boundary grouping between disparity-gradient cells

disambiguates ambiguous groupings

SURFACE REPRESENTATION

ANGLE

CELLS

DISPARITY

-
GRADIENT

CELLS

COLINEAR

BIPOLE
CELLS

ANGLE

CELLS

ON AND

OFF CELLS

V2

V4

V1

LGN



Grossberg/Mingolla

VSS'05 Part 2:149

D1 D1

D2

D3

D1

D1

D1

D1

D1D1

V2 LAYER 2/3A

V1 LAYER 2/3A
COLINEAR 

BIPOLE CELL

NON-COLINEAR

BIPOLE CELL

ZERO DISPARITY-GRADIENT

                         BIPOLE CELL

POSITIVE

DISPARITY-GRADIENT

BIPOLE CELL

3D GROUPING CIRCUIT
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WHERE TO FIND MODELING ARTICLES WITH

FURTHER DETAILS?

http://www.cns.bu.edu/Profiles/Grossberg


