
Predicting the exchange traded fund DIA with a combination

of genetic algorithms and neural networks

Massimiliano Versace*, Rushi Bhatt1, Oliver Hinds2, Mark Shiffer3

Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA

Abstract

We evaluate the performance of a heterogeneous mixture of neural network algorithms for predicting the exchange-traded fund DIA. A

genetic algorithm is utilized to find the best mixture of neural networks, the topology of individual networks in the ensemble, and to

determine the features set. The genetic algorithm also determines the window size of the input time-series supplied to the individual

classifiers in the mixture of experts. The mixtures of neural network experts consist of recurrent back-propagation networks, and radial basis

function networks. The application of genetic algorithm on the heterogeneous mixture of powerful neural network architectures shows

promise for prediction of stock market time series. These highly non-linear, stochastic and highly non-stationary time series have been found

to be notoriously difficult to predict using conventional linear statistical methods. In this paper, we propose a biologically inspired

methodology to tackle such hard problem using a multi-faceted solution.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Time series prediction; Financial forecasting; Genetic algorithms; Neural networks

1. Introduction

During the last few years, financial institutions as well as

individual investors have found a wide range of uses for

Artificial Intelligence (AI) technologies such as expert

systems, artificial neural networks (ANNs), genetic algor-

ithms (GAs), and fuzzy logic. Financial engineering has

therefore become the natural theatre where pattern classi-

fication algorithms can be contrasted and tested on highly

demanding grounds. The main rationale motivating the use

of these techniques is to identify and exploit the regularity

that is hidden in the apparently chaotic price trend of a given

security. Parallel to the development if AI technologies, the

last decade has also witnessed the development of several

nonlinear time series models (Granger & Anderson, 1978,

Tong & Lim, 1980, Engle, 1982). These nonlinear models,

although not suffering from a priori assumption of a linear

relationship between data and time series, are limited by the

fact that an a priori assumption of the nature of the nonlinear

relationship must be formulated, the latter task being even

more demanding than the linear case.

Within the wider field of AI, ANNs have been

demonstrated to be a natural solution to problems where

an explicit description of the nature of the data is not

available due to their capability to generate data-driven

hypotheses. Historically, the development of these algor-

ithms was inspired by investigations into the functioning of

the nervous system. ANNs have subsequently been found to

have sound theoretical basis from the perspective of

statistical learning theory, and they usually yield good

performance when used for real-world data analysis or in

predicting nonlinear dynamical systems (Lapedes & Farber,

1987, 1988; Haykin, 1999; Duda, Hart, & Stork, 2000).

ANNs have good generalization capabilities and are usually

robust against noisy or missing data, all of which are highly

desirable properties time series prediction. Importantly, this

class of unsupervised neural networks can operate a much

richer family of functions compared to linear regression

based techniques. Therefore, unsupervised neural networks

have the capability of discovering associations between

features that may not have been expected or looked for.

There is an extensive literature on financial applications of

ANNs (Trippi & Turban, 1993; Azoff, 1994; Refenes, 1995;

Gately, 1996; Odom & Sharda, 1990; Coleman, Graettinger,

& Lawrence 1991; Salchenkerger, Vinar, & Lash, 1992;

0957-4174/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2004.05.018

Expert Systems with Applications 27 (2004) 417–425

www.elsevier.com/locate/eswa

1 Tel.: þ617-353-5235; fax: þ617-353-7755.
2 Tel.: þ617-353-6426; fax: þ617-353-7755.
3 Tel.: þ617-353-6181; fax: þ617-353-7755.

* Corresponding author. Tel.: þ617-353-6426; fax: þ617-353-7755.

E-mail addresses: vsrsace@cns.bu.edu (M. Versace), rushi@bu.edu (R.

Bhatt), oph@bu.edu (O. Hinds), mshiffer@cns.edu (M. Shiffer).

http://www.elsevier.com/locate/eswa


Tam & Kiang, 1992; Wilson & Sharda, 1994, Weigend,

Rumelhart, & Hubermann, 1992; Zhang, 1998, for a review).

Although encouraging results have been reported in which

ANNs-based systems outperformed widely-used well-estab-

lished statistical methods, many inconsistent reports have

been undermining the robustness of these findings. Among

the reasons of these discrepancies are well-known problems

that characterize ANNs, in particular:

(1) Different network type (linear filters, multilayer percep-

trons, radial basis functions networks, or RBF, and self-

organizing maps, among others) can lead to different

results when trained and tested on the same database.

This is mainly due to the different classes of decision

boundaries that different ANN types prefer;

(2) For a given network type, ANNs are sensitive to the

choice of topology and size for a given data set;

(3) ANNs are prone to overfitting, unless great care is taken

in choosing the size and connectivity of the network;

(4) The highly variable nature of financial time series can

prevent a single ANN from producing accurate fore-

casts for an extended trading period, even thought it can

perform well above chance in a given testing set.

Combining classifiers and boosting methods often lead to

improvement in performance over single neural networks.

Several studies (Pelikan, de Groot, & Wurtz, 1992;

Ginzburg & Horn, 1994; Zhang, 1994; Chu & Widjaja,

1994) have shown improvement of performance in

combining different ANNs or training similar ANNs on

different features of the input data and then recombining

their output in a later stage. Our usage of a mixture of

experts is motivated by the hypothesis that a particularly

difficult problem can be broken into smaller sub-problems

which are easier to solve with a single classifier. This divide

et impera principle, so common in computer science, is

particularly suited for difficult problems, like modelling of

financial time series. The mixture of experts’ framework

specifies that a prediction is made up of a series of

predictions from separate experts, or networks. In general,

the final output is decided by a function that combines

individual classification outputs:

O ¼ f ð~yÞ ð1Þ

where ~y is a vector of individual classifier output, and O

is the output of the mixture of experts. A common

implementation of a mixture of expert uses a weighted

combination of yi :

ŷ ¼
Xm
i¼1

giŷi ð2Þ

where m is the number of experts in the model, ŷi is the

prediction of the expert i and gi is the weighting on expert i:

This weighting can itself be the prediction of another model,

known as the gate, or can simply be set to 1 for each

classifier. The results of the application of mixture of

experts are encouraging, with these systems often out-

performing standard statistical techniques and other classi-

fication methods, although it is difficult to say in general in

what kind of tasks mixtures-of-experts or any other kind of

model will perform well on any given dataset (Kang & Oh,

1997, 2000; Jordan & Jacobs, 1994; Jordan & Xu, 1995;

Waterhouse, 2002).

In the ANNs literature, inappropriate topology selection

and weight training are frequently blamed for poor

performance. Increasing the number of hidden layer neurons

helps improving network performance, yet many problems

could be solved with very few neurons if only the network

took its optimal configuration. Due to the large size of the

hypothesis space that these ANNs are capable of generating,

it is difficult to guarantee that an ANN will converge to a

globally optimal hypothesis for the distribution of the

underlying the given dataset.

The inherent nonlinearity of ANNs results in the

existence of many sub-optimal networks, and the great

majority of training algorithms converge to these sub-

optimal configurations (local minima). Solutions to local

minima problems often imply methods that are probabilistic

in their nature. The methods can in fact find the globally

optimal solution with a certain probability, which usually

depends on the number of iterations of the algorithm. At the

same time, the danger of overfitting is always present,

rendering the problem of the solution of an optimal network

configuration very difficult.

To summarize, there are multiple factors that influence

the choice of a given system of networks, and within a given

network type there are multiple combinations of parameters,

network architecture, activation and learning functions,

input selection and preprocessing that produce a combina-

torial explosion of possible systems.

A natural solution for searching this very large space of

system configuration is provided by GAs. GAs are a class of

probabilistic search techniques that has been developed in

the past decades as a general-purpose optimization tool

(Holland, 1975; Goldberg, 1989). GAs mimic biological

evolution by using a massively parallel search mechanism

that involves (a) the initialization of a random population of

systems (or candidate solutions) (b) ordering the systems

based on a measure of success in approximating the desired

solution (fitness) (c) a reproduction stage, in which the best

exemplars of the last generation have the chance to produce

an offspring through the application of some GA operators,

namely crossover and mutation. GAs are suited for

particularly hard problems when little or no knowledge of

the optimal function is given and the search space is very

large. GAs are thus an ideal tool for solving the problem if

discovering appropriate parameterizations for ANNs, and

good results have been obtained in combining GAs and

ANNs in hybrid systems (Belew, McInnernay, & Schrau-

dolph, 1990; Montana & Davis, 1989; Shaffer, Whitely, &

Eshelman, 1990; Chang & Lippmann, 1991; Harp & Samad,

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425418



1991; Miller, Todd, & Hedge, 1989; Whitley, 1989;

Kingdon, 1997; Venkatesan & Kumar, 2002).

This paper presents an application of such a hybrid

system that uses GAs for selecting an appropriate

combination of networks, parameters and training regimen

for predicting the direction of variation of the closing price

of an exchange traded fund, DIA. The ‘Diamonds’ (AMEX

ticker: DIA) is an exchange traded fund tracking the 30

corporations of the Dow Jones Industrial Average. The price

of DIA, which is worth about 1/100th of the Dow Jones’

value, faithfully tracks the fluctuations in the Industrial

Average. We have decided to concentrate on this stock

because DIA is a readily available instrument for trading on

the Dow Jones Industrial Average, a canonical financial

index.

Section 2 of this paper presents a description of the data

set employed to predict the daily direction of variation of the

DIA closing price. In Section 3 we describe the prediction

model, which embodies a combination of GA and ANNs. In

Section 4 we analyze the performance of the model on 63

test trading days on which the ANNs of the model have not

been trained. Finally, in Section 5 we make some

concluding remarks.

2. The input data

2.1. Data collection

Data selection and preprocessing constitute a crucial step

in any modeling effort. The phases of data preparation can

be broadly classified into three distinct areas: variable

selection and collection, data inspection, and data pre-

processing. Since our goal was to trade DIA frequently, we

were able to narrow the list of choices to those variables

relevant to the time frame. The data were obtained using a

java-based query interface into a database of historical stock

data available freely from Yahoo! (http://finance.yahoo.

com).

A list of the variables employed in this study is shown in

Table 1. The data were collected over the period from 11th

November 2001 through 12th February 2003 (320 total

trading days). All data were crosschecked to ensure

accuracy. We have selected this data in order to provide a

predictor model with a diversified database on which the

ANNs can learn to extract input-output dependencies. We

have decided to incorporate some of the major stock indices,

as well as currency, bonds and gold prices, leaving the

‘decision’ of which indicators (or which non-linear

combination of them) is predictive of the direction of

variation of DIA to the model.

2.2. Data inspection

Even though the data were obtained from a reliable

source, significant errors and missing data were present in

the database. The validity of the input data was checked

both visually and statistically. Missing data (holidays) were

filled-in with the last trading day available. This filling-in

has negligible consequences on the final performance of the

system, since the data are pre-processed in the form of a

normalized difference between the actual value and its

Table 1

The raw data loaded from Yahoo! database

Type Name Ticker (yahoo!) Data structure

Stock DIA (to be predicted) dia Open-High-Low-Close-Volume

Index Nasdaq ^IXIC Open-High-Low-Close-Volume

S.Poor 500 ^GSPC Open-High-Low-Close-Volume

Dow Jones Ind ^DJI Open-High-Low-Close-Volume

Dow Jones Trasp ^DJT Open-High-Low-Close-Volume

Dow Jones Util ^DJU Open-High-Low-Close-Volume

Dow Jones Compos ^DJA Open-High-Low-Close-Volume

Nikkei ^N225 Open-High-Low-Close

Bovespa ^BVSP Open-High-Low-Close

Dax ^GDAX Open-High-Low-Close

Ftse 100 ^FTSE Open-High-Low-Close

Currency Dollar/yen ^CJJ Open-High-Low-Close

Dollar/Swiss Frank USDCHF ¼ X Open-High-Low-Close

Bonds T-Bond 30 years ^TYX Open-High-Low-Close

T-Bond 10 years ^TNX Open-High-Low-Close

T-Bond 5 years ^FVX Open-High-Low-Close

T-Bond 13 years ^IRX Open-High-Low-Close

Eurobond EUROD Open-High-Low-Close-Volume

Commodities Gold ^XAU Open-High-Low-Close-Volume

The to-be-predicted stock, DIA, is loaded along with other historical values of indices, currencies, bonds and commodities. The sampling interval is from

the 11th of November 2001 trough the 12th of February 2003 (320 total trading days). The raw input matrix consists of 85 indicators and 320 data points.

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425 419

http://finance.yahoo.com)
http://finance.yahoo.com)


moving average. This pre-processing allows normalizing

the indicator, therefore eliminating the bias given by its

absolute magnitude in favor of a measure of its relative

variation. This procedure allows using relatively long time

series without the risk of overweighting the data with the

higher absolute value.

2.3. Data pre-processing

In order to transform the data into a format acceptable by

the prediction algorithms, derive a measure of the statistical

fluctuations in the feature vectors used therein, and render

the feature vectors independently of the absolute value

assumed by the underlying indices from which the data are

derived, two preprocessing operators were applied to the

data. The renormalization operator (RNO) is used in some

cases to extract daily changes in indicators that are

independent of the absolute magniture of the indicator

over time and to transform the fluctuations into percentages

at others. The RNO operator is specified by

ðx 2 yÞ

y
100 ð3Þ

where x and y and take values specific to the indicator

operated on. The Fluctuation Sensitive Function (FSF) is

used when the absolute magnitude of an indicator should be

retained for the prediction algorithms. This operator is

simply specified by x 2 y:

After the raw data listed in Table 1 were loaded and

crosschecked for accuracy, each field of this dataset, called

dataset A; was independently normalized using the RNO

operator. The data in the dataset A were further pre-

processed and saved in a second dataset called dataset B; in

order to reduce the learning load of the system and allowing

the learning algorithms to concentrate the more predictive

portions of the input (Table 2). This procedure spares the

networks from extracting knowledge that can be provided

directly in the input pattern, thereby allowing the system to

extract higher-order relationships between these complex

variables. The values indicated in Table 1 were prepro-

cessed and re-arranged in the final input matrix, consisting

of 64 data types and 320 data points. The pre-processing

performed on the raw data is described in Tables 2 and 3. In

general, the to-be-predicted stock data was extensively

preprocessed, adopting a percentage measure of the

difference between the indicator (Open, High, Low, Close,

Volume) and its moving average (10 days), among other

measurements of variation like Rate of Change (ROC),

percentage difference between Open and Close, etc. Some

widely used Technical Analysis indicators were also

employed, namely Moving Average Convergence/Diver-

gence (MACD), Relative Strength Index (RSI), Chainkin

Volatility and MOMENTUM (Table 2). For the other

indicators a measure of the variation given by Open, High,

Low, and Close indicators and a Moving Average was used.

More details on the nature of the pre-processing are reported

in Tables 2 and 3. This new input matrix was further

independently normalized for each field, resulting in each

column assuming a value between 0 and 1. At the end of

pre-processing, the absolute magnitude of all data was

discarded, allowing the usage of an arbitrarily long

dataset although the absolute values of the indicators part

of the dataset might substantially vary over time. The two

datasets A and B differ by the extensive preprocessing that

characterizes the database B: Before being fed to the

component networks of the prediction model, an additional

preprocessing step called complement coding was applied.

This is a normalization procedure in which a given input

vector x is coded along with its complement xc ¼ ð1 2 xÞ:

As a result, the input vector and the number of input nodes

double in size, allowing automatic normalization of the

input vector and, more importantly, an improvement of the

pattern classification capabilities of the network (Carpenter,

Grossberg, & Rosen, 1991). Complement coding allows a

higher-order hidden node to be associated to both the

presence and the absence of a given feature.

Finally, an additional preprocessing stage consists in

the application of Principal Component Analysis (PCA).

The input vector can therefore be substituted by a vector

with the nth Principal Component of the original one.

Which dataset the network will be trained on, as well as

the application of complement coding and PCA, are

determined by the chromosome (further details in Section 3).

3. The model

The GA employed in this study is used to estimate

appropriate parameters for m mixtures of networks (MON)

used to predict the closing price of a security. The

chromosome used by this GA has 11 ‘genes’, which directly

define the important parameters of the network, as well as

the type of network and the input data type (database A or B;

Table 3 for details). Every ith MON is composed of j

networks to be selected from one of two types: Recurrent

Backpropagation (Elman, 1991) or RBF networks (Duda

et al., 2000). Elman networks are particularly suited for data

when the temporal order of the data plays a crucial role

(Elman, 1991), as it does in financial time series. RBF

networks provide a highly compact representation for the

underlying data distribution in cases where the bases

accurately reflect the distribution. Each jth network is

initialized by the chromosome and it is trained on the

section of data defined, again, by the chromosome (Fig. 1).

The chromosome defines network type, the architecture, the

training set, and the most important parameters of the

network as shown in Table 3.

Every network belonging to the ith MON is then tested

on a blind data set, and single network responses are then

conveyed into a voting procedure. Here a majority voting

scheme chooses the prediction of the ith MON over the

blind testing data, and assesses the fitness of the ith MON.

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425420



The majority vote is simply given by:

sign
Xn

j¼1

yj=n

2
4

3
5 ð4Þ

where yj is the output of a component network, and n is the

number of networks in a given MON.

In this study, the fitness of a MON is given by the

percentage of correct responses over the blind data set. Note

that a different measure of performance, namely the net

return of the system over time, could have been employed.

A correct response is defined as a match between

the predicted and the actual direction of variation of the

closing price of DIA in the following trading day.

It follows from this choice that the best MON in the

population is not necessarily the one that has the lowest MSE

on the training set, or the best jth network on the blind data set,

but the one that expresses the highest number of correct voting

predictions. This fitness function allows the dissociation of

the performance on the training set for any single network to

the actual generalization capabilities due to selection based

on the collective voting measure, and on a blind data set that

the component networks have not been trained on.

This choice follows the assumption that a single network

cannot perform well on an extensive blind testing data set,

Table 2

This table summarizes the preprocessing stages applied to the raw data

Security Operators Equation

DIA % ROC Close ½ðCloset 2 Closet21Þ=Closet21�100

DIA % Diff. Open-Close ½ðOpen 2 CloseÞ=Open�100

DIA % Diff. High-Low ½ðHigh 2 LowÞ=Low�100

DIA % Diff. Open and Mob. Avg. 10 dd ½ðOpen 2 Mavg10 ddÞ=Mavg10 dd�100

DIA % Diff. High and Mob. Avg. 10 dd ½ðHigh 2 Mavg10 ddÞ=Mavg10 dd�100

DIA % Diff. Low and Mob. Avg. 10 dd ½ðLow 2 Mavg10 ddÞ=Mavg10 dd�100

DIA % Diff. Close and Mob. Avg. 10 dd ½ðClose 2 Mavg10 ddÞ=Mavg10 dd�100

DIA % Diff. Volume and Mob. Avg. 10 dd ½ðVolume 2 Mavg10 ddÞ=Mavg10 dd�100

DIA Chaikin Volatility
H 2 L Average ¼ Exponential moving average ofðHigh 2 LowÞ

H 2 L AverageÞ2 ðH 2 L Average n 2 periods ago

H 2 L Average n 2 periods ago

� �
100

DIA MACD MACDt ¼ EMavg1 2 EMavg2

DIA MOMENTUM Momentum ¼ Closet 2 Closet2n

DIA RSI RS ¼ ðAvg: price change on up days 2 Avg: Price change on down daysÞ

RSI ¼ 100 2 ð100=1 þ RSÞ

Nasdaq % Diff. Open and Mob. Avg. 10 dd ½ðOpen 2 Mavg10 ddÞ=Mavg10 dd�100

S.Poor 500 % Diff. High and Mob. Avg. 10 dd ½ðHigh 2 Mavg10 ddÞ=Mavg10 dd�100

Dow Jones Ind % Diff. Low and Mob. Avg. 10 dd ½ðLow 2 Mavg10 ddÞ=Mavg10 dd�100

Dow Jones Trasp % Diff. Close and Mob. Avg. 10 dd ½ðClose 2 Mavg10 ddÞ=Mavg10 dd�100

Dow Jones Util

Dow Jones Comp

Nikkei Bovespa

Dax

Ftse 100

Dollar/yen

Dollar/Swiss Frank

T-Bond 30 years

T-Bond 10 years

T-Bond 5 years

T-Bond 13 weeks

Eurobond % Diff. Open and Mob. Avg. 10 dd % ½ðOpen 2 Mavg10 ddÞ=Mavg10 dd�100

Gold Diff. High and Mob. Avg. 10 dd ½ðHigh 2 Mavg10 ddÞ=Mavg10 dd� £ 100

% Diff. Low and Mob. Avg. 10 dd ½ðLow 2 Mavg10 ddÞ=Mavg10 dd� £ 100

% Diff. Close and Mob. Avg. 10 dd ½ðClose 2 Mavg10 ddÞ=Mavg10 dd� £ 100

% Diff. Volume and Mob. Avg. 10 dd ½ðVolume 2 Mavg10 ddÞ=Mavg10 dd� £ 100

DJIA and T

Bond 30 years

% Diff. between Normalized DJIA and Normalized

T Bond

Norm. DJIA-Norm. Tbond

On the left column, the securities for which each operator is calculated are listed. The second column contains the name of the operator and the

third column contains the equation by which the operator is calculated. ROC, rate of change; Diff., difference; MAvg, mobile average; EMAvg,

exponential mobile average. Normalization: if minðxÞ . 0; xnorm ¼ ½ðx_max 2 x_minÞ·ðx 2 minðxÞÞ�=½ðmaxðxÞ2 minðxÞ�; where x_max and x_min are

the maximum and minimum value of the required mapping, respectively. If minðxÞ # 0;minðxÞ ¼ 2lmaxðxÞl; xnorm ¼ ½ðx_max 2 x_minÞ·ðx 2 minðxÞÞ�=

½ðmaxðxÞ2 minðxÞ�:

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425 421



but a family of networks trained on different time

intervals could achieve better results. In this study a

simple voting procedure was used. More sophisticated

techniques could include super-ordinate networks that learn

a nonlinear combination of the output of the component

networks.

After fitness is calculated, a new set of MON is

created using an even number of high-fitness populations

of the past generation as a basis. In this simulation, the

best four populations were selected for reproduction.

The chromosomes specifying the networks of two of the

winning populations are coupled with the corresponding

chromosomes of another winning population, and crossover

and mutation take place.

After crossover is performed between the n chromo-

somes of the component networks, the GA operator of

mutation was applied (probability of mutation ¼ 0.05).

The system was run for 100 generations, with 10 MON

composed of 10 networks each (Elman and RBF). The four

best MON were selected on the basis of their fitness, and

were allowed to generate offspring (Figs. 2 and 3).

4. Results

In this simulation, 257 trading days of DIA are used for

training and 63 trading days for testing. The final score is

73.4% correct up/down predictions over the blind data set,

Table 3

The chromosome has 12 ‘genes’ coding different parameters of the networks

Gene # Expressing these parameters For this network type Param. range (min–max)

0 Network type RBF or ELMAN 0 or 1

1 Training epochs E LMAN 20–1000

2 Learning rate ELMAN 0.1–0.3

3 Type of input data (Database A or B) RBF and ELMAN 0 or 1

4 Number of training data-upper bound RBF and ELMAN 2

5 Number of training data-lower bound RBF and ELMAN n (where n ¼ max # of data)

6 Complement coding RBF and ELMAN 0 or 1

7 # of PCA component RBF and ELMAN 0–100

8 SSE Goal RBF 0–10

9 Gaussian spread RBF 0.1–10

10 Number of hidden layers-first layer ELMAN 3–200

11 Number of hidden layers-second layer ELMAN 3–200

The genes are differentially expressed depending on the type of network phenotype created by the chromosome [RBF or Recurrent Backprop (Elman)]. The

parameter range for this simulation is shown on the right. For the genes at position 0, 3 and 6, a binary code (1 ¼ on, 0 ¼ off) was adopted.

Fig. 1. (a) Every generation contains a population of MON which in turn contains n networks (Experts). (b) Each MON is composed of n networks (or experts),

which are defined by a chromosome that specifies the architecture and parameters of the network.

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425422



whereas the best population scored 75.2% on the 63rd

generation. A plot of the fitness of the best population across

epochs is shown in Fig. 4.

In order to verify that the classifiers trained with the above

data and tested using the blind datasets were not deviating

significantly from the overall distributions of up and down

days in the test dataset, we performed two tests. First, we

performed a x2 test on the number of actual up/down days

versus the number of up/down days predicted by the

classifier. The hypothesis that the distribution of up/down

predictions was the same as the observed distribution of

up/down days in the test dataset could not be rejected ðx2 ¼

0:0353; critical value for confidence level of 0.05 for 1

DOF ¼ 3.84). In order to analyze the bias of the classifier, we

also performed a two-tailed pair wise t-test on the vectors

signifying the up/down days (1 for up, 21 for down) for the

test dataset and the classifier predictions. The hypothesis that

the two vectors had different means could not be rejected

either ðp ¼ 0:5992; two-tailed pair wise Student’s t-test).

The above two tests strongly suggest that the classifiers

trained using the methods described previously in this paper

have a very low bias of prediction, if any.

Fig. 2. The typical GA cycle. A chromosome defines the architecture of a network (in our study, a mixture of networks), which are then selected based on a

measure of their fitness. The winning exemplars are then allowed to generate offspring, which is defined again trough a new chromosome.

Fig. 3. The GUI realized in MATLAB controls the main parameters of the GA, namely: training and testing intervals, number of populations, number of

networks per population and number of winners per epoch.

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425 423



As can be seen in Fig. 4, the fitness of the best population

of each epoch increases steeply in the first 20 epochs,

reaches a peak on the 63rd generation, and oscillates

between 66–74% in the following generations. These

results are particularly good, and well above chance as

shown by the x 2 and t-test results.

5. Conclusions

The use of ANNs in financial applications has gained

increasing popularity in the past decades. Nevertheless, a

rigorous methodology on how to properly design a network

or a system of networks that is able to successfully

generalize from training to testing performance on a given

time series is still lacking. This task is particularly difficult

for large systems, especially when a combinatorial

explosion of parameters is unavoidable due to the complex-

ity and the magnitude of the system.

In this paper, we discuss a solution to the above problem

employing a combination of ANNs and GAs that perform

relatively well at predicting the closing price of a security.

Whereas learning in ANNs can be considered homologous

to ontogenetic learning, namely the adaptation of an

organism to its environment throughout its lifespan,

learning in GAs can be considered homologous to

phylogenetic learning, which corresponds to the adaptive

process running across generations through the selection of

the best exemplars within a population. A system designed

to model a complex problem such as financial forecasting

should exploit the advantages and the differences of this two

learning schemes. To conclude, this contribution shows that

a combination of ANNs with GAs offer promise as a good

technique for forecasting stochastic time series like those

seen in stock market data.

References

Azoff, E. M. (1994). Neural Network Time Series Forecasting of Financial

Markets. Chicester: John Wiley and Sons.

Below, R. K., McInnernay, J., & Schraudolph, N. (1990). Evolving

networks: using GAs with connectioninst learning. Technical Report

CS90-174, Computer science and Engineering Department, University

of California, San Diego.

Carpenter, G. A., Grossberg, S., Rosen, D. B., & Fuzzy, A. R. T.:. (1991).

An adaptive resonance algorithm for rapid, stable classification of

analog patterns. Proceedings of the International Joint Conference on

Neural Networks (IJCNN-91), Piscataway, NJ: IEEE Service Center,

II-411-416. Technical Report CAS/CNS-TR-91-006, Boston, MA:

Boston University.

Chang, E. J., & Lippmann, R. P. (1991). Using genetic algorithms to

improve pattern classification performance. Advances in Neural

Information Processing, 3, 797–903.

Chu, C. H., & Widjaja, D. (1994). Neural network system for forecasting

method selection. Decision Support Systems, 12, 13–24.

Coleman, K. G., Graettinger, T. J., & Lawrence, W. F. (1991). Neural

networks for bankruptcy prediction: The power to solve financial

problems. AI Review, 5, 48–50.

Duda, R. O., Hart, P. E., & Stork, D. E. (2000). Pattern Classification (2nd

ed.). New York: Wiley-Interscience.

Elman, J. L. (1991). Distributed representations, simple recurrent networks,

and grammatical structure. Machine Learning, 3, 195–225.

Engle, R. F. (1982). Autoregressive conditional to select inputs with

estimates of the variance of UK inflation. Econometrica, 50, 987–1008.

Fig. 4. The fitness of the best population across epochs shows a steep increase in the first 20 generations.

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425424



Ginzburg, I., & Horn, D. (1994). Combined neural networks for time series

analysis. Advances in Neural Information Processing Systems Sci-

Systems, 6, 224–231.

Goldberg, D. E. (1989). Genetic algorithms in Search, Optimization and

Machine learning. Reading, MA: Addison Wesley.

Granger, C. W. J., & Anderson, A. P. (1978). An Introduction to Bilinear

Time Series Models. Gottingen: Vandenhoeck and Ruprecht.

Harp, S. A., & Samad, T. (1991). Genetic synthesis of neural network

architecture. In L. David (Ed.), In Handbook of Genetic Algorithms.

New York: Van Nostrand Reinold.

Haykin, S. (1999). Neural networks: a comprehensive foundation. IIIE.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann

Arbor: University of Michigan Press.

Jordan, M., & Jacobs, R. (1994). Hsierarchical mixtures of experts and the

EM algorithm. Neural Computation Computation, 6(2), 181–214.

Jordan, M., & Xu, L. (1995). Convergence results for the EM approach to

mixtures of experts architectures. Neural Networks, 8(9), 1409–1431.

Kang, K., & Oh, J. (1997). Statistical mechanics of the mixture of experts.

In M. Mozer (Ed.), (vol. 9) (pp. 183–189). Advances in Neural

Information Processing Systems.

Kingdon, J. (1997). Intelligent Systems and Financial Forecasting.

London: Springer Verlag.

Lapedes, A., Farber, R., (1987). Nonlinear signal processing using neural

networks: prediction and system modeling. Technical Report LA-UR-

87-2662, Los Alamos National Laboratory, Los Alamos, NM.

Lapedes, A., & Farber, R. (1988). How neural nets work. In D. Z. Anderson

(Ed.), Neural Information Processing Systems (pp. 442–456). New

York: American Institute of Physics.

Miller, G. F., Todd, P. M., & Hedge, S. U. (1989). Designing neural

networks using genetic algorithms. In Proceedings of the Third

International Conference on Genetic Algorithms, 379–384.

Montana, D. J., & Davis, L. (1989). Training feed-forward neural Networks

using genetic algorithms. In Proceedings of the International Joint

Conference on Artificial Intelligence, 746–767.

Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy

prediction (vol. 2). In: Proceedings of the IEEE International Joint

Conference on Neural Networks. San Diego, CA, pp. 163–168.

Pelikan, E., de Groot, C., & Wurtz, D. (1992). Power consumption in West-

Bohemia: Improved forecasts with decorrelating connectionist net-

works. Neural Network World, 2(6), 701–712.

Refenes, A. N. (1995). Neural Networks in the Capital Markets. Chicester:

Wiley.

Salchenkerger, L. M., Cinar, E. M., & Lash, N. A. (1992). Neural networks:

A new tool for predicting thrift failures. Decision Science, 23(4),

899–916.

Shaffer, J. D., Whitely, D., & Eshelman, L. J. (1990). On crossover os

an evolutionary viable strategy. In R. K. Belew, & L. B. Booker

(Eds.), In Proceedings of the fourt International Conference on

Genetic Algorithms (pp. 61 – 68). San Mateo, CA: Morgan

Kaufmann.

Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural

networks: The case of bank failure predictions. Management Science,

38(7), 926–947.

Trippi, R. R., & Turban, E. (1993). Neural Networks in Finance and

Investment: Using Artificial Intelligence to Improve Real-world

Performance. Chicago: Probus.

Tong, H., & Lim, K. S. (1980). Threshold autoregressive, limit cycles and

cyclical data. Journal of the Royal Statistical Society Series B, 42(3),

245–292.

Venkatesan, R., & Kumar, V. (2002). A genetic algorithms approach to

growth phase forecasting of wireless subscribers. International Journal

of Forecasting, 18(2002), 625–646.

Waterhouse, S.R (2002). Classification and Regression Using Mixtures of

Experts, Jesus College, Cambridge, and Department of Engineering,

University of Cambridge, Dissertation submitted to the University of

Cambridge for the degree of Doctor of Philosophy.

Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1991).

Generalization by weight-elimination with application to

forecasting. Advances in Neural Information Processing Systems, 3,

875–882.

Whiteley, D. (1989). The GENITOR algorithms and selection pressure:

why rank-based allocation of reproductive trials is the best. In J. D.

Shaffer (Ed.), In Proceedings of the International Joint Conference on

Genetic Algorithms. San Mateo, CA: Morgan Kaufmann.

Wilson, R., & Sharda, R. (1994). Bankruptcy prediction using neural

networks. Decision Support Systems, 11, 545–557.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial

neural networks: The state of the art. International Journal of

Forecasting, 14, 35–62.

M. Versace et al. / Expert Systems with Applications 27 (2004) 417–425 425


	Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks
	Introduction
	The input data
	Data collection
	Data inspection
	Data pre-processing

	The model
	Results
	Conclusions
	References


