
 1

KInNeSS: A modular framework for computational neuroscience

Massimiliano Versace, Heather Ames, Jasmin Léveillé, Bret Fortenberry, and Anatoli

Gorchetchnikov

Department of Cognitive and Neural Systems

and
Center of Excellence for Learning In Education, Science, and Technology

Boston University

Running title: KInNeSS

Keywords: Behavioral modeling, compartmental modeling, object oriented design, spiking
neurons, software framework

Submission Date: June 12, 2007

This Revision: May 25, 2008

CAS/CNS-TR-07-025

All correspondence should be addressed to
Massimiliano Versace

Department of Cognitive and Neural Systems
Boston University
677 Beacon Street
Boston, MA 02215

Phone: 617-353-6174
Fax: 617-353-7755

Email:versace@cns.bu.edu

 2

Abstract
Making use of very detailed neurophysiological, anatomical, and behavioral data to build
biologically-realistic computational models of animal behavior is often a difficult task. Until
recently, many software packages have tried to resolve this mismatched granularity with
different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation
Software environment, as an alternative solution to bridge the gap between data and model
behavior. This open source neural simulation software package provides an expandable
framework incorporating features such as ease of use, scalability, an XML based schema, and
multiple levels of granularity within a modern object oriented programming design. KInNeSS is
best suited to simulate networks of hundreds to thousands of branched multi-compartmental
neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated
channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the
mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity.
KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and
current source densities, as well as visualization of the behavior of a simulated agent. An
explanation of the modeling philosophy and plug-in development is also presented. Further
development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that
will help researchers across different disciplines to effectively collaborate using a modern neural
simulation platform.

 3

1. Introduction
Advances in functional, anatomical, and behavioral neuroscience techniques have led to an
increase in the data available for modeling complex dynamics of biologically inspired neural
networks at many levels of abstraction, from in-depth descriptions and analyses of individual
membrane channels to large-scale investigations of whole brain activity. This wealth of data is
essential for creating realistic neural models and increases our understanding of animal and
human behavior. Furthermore, it has pushed the modeling community towards the design of
increasingly complex models, incorporating unprecedented amount of biophysical and
anatomical constraints. These large-scale neural models are often non-linear dynamical systems
which can be analytically intractable and require numerical simulation to gain insight into their
behavior. Emergent properties of large-scale neural networks often remain unnoticed until the
whole system is simulated and components are allowed to interact (Cannon et al., 2002).

An additional level of complexity is finding a neural simulator and simulation
environment that would enable the large variety of researchers from neurophysiology,
psychology and computational modeling to share data and work collaboratively (an excellent
review can be found in Brette et al., 2007). Most available software packages are specialized in
different applications. For example, CSIM (Maass et al., 2002; Natschläger et al., 2002) and
NEST (Gewaltig and Diesmann, 2007) make use of single compartmental models whereas
KInNeSS, NEURON (Hines, 1989, 1993; Hines and Carnevale, 1994; Carnevale and Hines,
2006), GENESIS (Bower and Beeman, 1998), and SPLIT (Hammarlund and Ekeberg, 1998) also
include functionality for creating multi-compartmental models. Other software, such as
XPPAUT (Ermentrout, 2002), focus primarily on dynamical systems analysis.

An attempt to integrate this diverse set of neural simulators has led to the development of
NeuroML1 (Neuron Markup Language; Crook et al., 2007), which seeks to provide a common
schema for unifying network descriptions and building a database of neural models. While
developing such a standard format is a necessary step towards the interoperability of various
existing software approaches to neural simulations, it is barely sufficient and far from achieving
this goal (Brette et al., 2007; Goddard et al., 2001; Cannon et al., 2007).

The open source2 KDE Integrated NeuroSimulation Software environment (KInNeSS3)
follows an XML schema similar to NeuroML and represents a step towards the development of
an interdisciplinary, modular neural network software environment. The main goal of KInNeSS
is to allow modelers to quickly design, test, and tune their neural models and study their
behavior, which can either be the behavior of a simulated agent or the more abstract behavior of
a target neural population. For this purpose, KInNeSS users can design simple integrate-and-fire
neurons as well as branched structures with complex conduction based models obeying Hodgkin-
Huxley dynamics (Hodgkin and Huxley, 1952).

KInNeSS is built using C++ modern programming techniques such as Object-Oriented
Programming (OOP), polymorphism, multithreading, and functional objects. KInNeSS users
with different levels of expertise can quickly and effectively design, run, and analyze simulations
at many levels of granularity, from single compartment and single cells to large-scale dynamics
recorded in the form of local field potentials (LFP) and current source densities (CSD), and
eventually link them to the behavior of the simulated agent. Users without programming skills
can take advantage of the simple and intuitive interface and experienced programmers can add

1 http://www.neuroml.org
2 KInNeSS is licensed under the GNU general public license; © Anatoli Gorchetchnikov.
3 http://www.kinness.net

 4

features and components to the system without waiting for software updates. Finally,
KInNeSS’s modular design allows for integration of different simulation projects within the
same interface.

The following section gives a general overview of the KInNeSS software and its
computational engine, SANNDRA4 (Synchronous Artificial Neural Networks Distributed
Runtime Algorithm). The third section describes the XML schema adapted for KInNeSS and the
fourth section gives an overview of the modeling philosophy used in KInNeSS including a
description of the equations used in spiking neural modeling architectures. The fifth section
illustrates plug-in development that advanced users can employ to expand KInNeSS
functionality to their needs. The sixth section presents KInNeSS performance on two benchmark
networks and a coarse comparison to other neural simulators. Finally, future developments and
conclusions are presented.

2. KInNeSS overview
KInNeSS was originally developed to be a simulation environment for modeling of neural
systems and neurons whose characteristics are closely linked to experimental data and whose
explanatory power encompasses behavioral data. KInNeSS is capable of simulating both
conductance based models of cells obeying Hodgkin-Huxley dynamics and simpler systems
based on integrate-and-fire models of neurons. KInNeSS is best suited to simulate networks of
branched neurons containing approximately 1-4 compartments per branch and biophysical
properties such as: membrane potential, voltage-gated or ligand-gated channels, gap junctions or
ionic diffusion, neuromodulation channel gating, habituative or depressive synapses, axonal
delays, and synaptic plasticity. KInNeSS records the voltage of individual compartments, as
well as aggregate cell recordings such as local field potentials (LFP) and current source densities
(CSD). Typical simulations that have been performed by KInNeSS include models of
hippocampal neurons and spatial navigation (Gorchetchnikov and Hasselmo, 2005), models of
thalamo-cortical learning (Grossberg and Versace, 2008; Leveille et al., 2008), and models of
interactions between electric field and cell activity (Berzhanskaya et al., 2007).

KInNeSS can be used independently of any specific programming skills. A friendly
point-and-click interface allows the modeler to set all the necessary parameters. The interface
also contains functionality for loading projects, which can be written separately from KInNeSS.
The project environment contains the tools needed to simulate the environmental and behavioral
components of the model. Furthermore, KInNeSS makes use of an XML schema for both import
and export of model specifications.

The current KInNeSS 0.3.4 release contains a project environment for modeling spatial
navigation tasks, a generic project where an input pattern is provided for the network without
specifying how it was created, and a dummy instructional project that illustrates the necessary
interactions between the project environment and the core shell for programmers who wish to
create new projects. The model interface is implemented as a set of plug-ins, so that the same
model can be used in different project environments and different models can be used within the
same environment.

Two plug-ins are contained in the current release of KInNeSS: one for creating and
editing the network, and the other for running the simulations. The simulation plug-in allows the
user to set global simulation parameters and to control the time course of the simulation. The
interface allows interruptions at any point in time of the simulation, correcting parameters, and

4 http://www.kinness.net/Docs/SANNDRA/html/index.html

 5

restarting the simulation from the point of interruption or from the original starting point.
Additional plug-ins can be created and loaded by the user; see Section 5.
2.1 Computing with SANNDRA
The computational engine behind KInNeSS is SANNDRA (Synchronous Artificial Neural
Networks Distributed Runtime Algorithm). SANNDRA was originally designed under the name
of SiMeON (Simulation of Memory based On Natural principles) in 1997–1999 and developed
using SIMD architecture on the MasPar MP1 parallel computer. It was ported for Linux as a
partial SIMD emulation in 2000 (Gorchetchnikov, 2000). Initially, SANNDRA was intended to
run a long iterative loop through relatively simple computations done in parallel on many similar
elements. Due to the SIMD paradigm, it was a synchronous time driven rather than event-driven
algorithm from the start. Later design relaxed the SIMD requirements on the similarity of
computational elements, but these elements are still synchronized for data exchange. On a
sequential computer this leads to an unavoidable performance loss due to synchronization, but
ensures that these elements receive the correct input signals.

Each element in SANNDRA can have access to the output of any other element. This
design makes SANNDRA capable of numerical integration of large systems of non-
homogeneous differential equations and it can be put into much simpler uses like iterative
solving of systems of algebraic equations or image processing. For differential equations
SANNDRA uses the fourth order Runge-Kutta integration method.

SANNDRA is currently a separately distributed open source5 library while its main use
and testing is done in the KInNeSS project. SANNDRA extensively uses polymorphism to
achieve an optimal combination of flexibility and performance. Polymorphism is a key concept
of object-oriented design where object-specific individual implementations of methods can be
called through a pointer to a virtual method declared in the common base of these objects. The
system of equations is combined together from objects derived in the user code from SANNDRA
basic objects. In the case of KInNeSS, this user code is part of the package that links the
graphical user interface (GUI) and the computational engine. A set of standard building blocks
is provided by the library, and the advanced user can always derive the additional blocks from
those that are provided. Once combined, the system can be solved independently of its actual
structure. There is a slight computational overhead in polymorphism, because a direct function
call is faster than a virtual call. For a homogeneous system, when the function for such a direct
call can be determined at compilation time, using polymorphism would be disadvantageous.
Since SANNDRA is designed to use non-homogeneous systems, the appropriate direct call
cannot be determined during compilation, and the choice is between polymorphism and some
other kind of run-time detection of the right method to call. In this case polymorphism clearly is
the best choice, since it is a part of the C++ language itself.

2.2 Interface quick start
One of the best ways to appreciate the usability of KInNeSS is to experience it in action. In a
few simple steps the user can design a neural network, create the input, run the model, and save
the results for further analysis. These steps for running a sample network,
receptor_example.nml6 , are found in Figure 1.

5 SANNDRA is licensed under the GNU general public license; © Anatoli Gorchetchnikov.
6 http://kinness.net/Docs/KInNeSS/examples/Example_Receptor_Kinness.rar

 6

Figure 1. Setting up and running a simulation in KInNeSS is easy. After selecting the environment (a),
the user defines the input either by point-and-click in the input grid or by loading one or more .png files.
In the example, the user loads lena_small.png. (b) After loading the network receptor_example.nml, the
user can start the simulation and monitor in real time (c) the input in the main interface (left) and the
membrane potential of the neural population(s) (right), where bright green colors represent high
membrane potentials, and dark green represent low membrane potentials. Finally, the results can be
analyzed by the favorite plotting and data analysis software (e.g., MATLAB®). Panel (d) shows a plot
(right) of the membrane potential of six neurons that correspond to six different spatial locations (left) in
the receptor population. The right plot highlights the spike timing of neurons 1 and 3.

When the user starts KInNeSS for the first time, the interface looks similar to the screenshot in
Figure 1a. The number of buttons in the Project Toolbar varies depending on the number of
installed project environments. The main interface contains the following functionalities:

• File Menu: loads and saves environments and other project-specific operations.

 7

• Settings Menu: toggles the visibility of the main toolbar and status bar, and contains a
dialog window to configure shortcuts, the main toolbar, project toolbar buttons, and the
KInNeSS preferences.

• Help Menu: accesses the KInNeSS manual, about dialogs, context help, and dialog for
bug report submission.

• Main Toolbar: accesses all commands in the three menus listed above and in the Project
Menu.

• Status Bar: visualizes the progress of the simulation.
• Projects Menu and Toolbar: contains the list of project environments available to

KInNeSS. The current release includes:
• Navigation: creates mazes, places rewards in the mazes, and a virtual animal to

run through the maze;
• Generic: provides four input channels to the network symbolized by red, green,

blue, and yellow colors; and
• Vision: shows the example of the necessary skeleton to implement a new

environment.
For more in-depth information and installation instruction see the KInNeSS user manual online7.
A web-based tutorial that covers the basics of setting up a small network, running it, and
collecting the simulation results is also available online8.

2.3 Behavioral simulations
One of the unique components of KInNeSS is its link between empirical model simulations and
the resulting behaviors. KInNeSS was originally designed to create large scale dynamical neural
network models embedded in a perception-action loop so that the user can input realistic stimuli
(e.g. images) and visualize the resulting actions of a simulated agent exposed to these stimuli.
The behavioral level and the network level interact through both the input and output of the
network. The user is able to control which network population drives the behavior of the
simulated agent. KInNeSS contains three predesigned project environments for visualizing
behavioral results of the simulations. These environments are the Navigation Project, the
Generic Project, and the example Vision Project. Additional project environments can be
designed by advanced users based upon the skeleton provided in the Vision Project.

2.3.1 The Navigation project environment
This environment is designed to create and run projects in which a simulated agent (for example,
a rat) navigates in a simulated environment. This project has been extensively used for "rat in the
maze" simulations (Gorchetchnikov and Hasselmo, 2002; 2005). Users can create simple mazes
of variable dimensions, specify the location of the animal with the rat tool, and edit the
environment by adding obstacles with the shovel tool, and rewards of variable salience with the
cheese tool. After the animal is placed in the environment, the Network Editor plug-in (see
Section 2.4) is enabled and allows the user to load or create the neural network that controls the
animal’s interaction with the environment. Editing of the environment is possible at any time,
even during the simulation run.

7 http://www.kinness.net/Docs/KInNeSS/manual/index.html
8 http://www.kinness.net/kinness_tutorial.wmv

 8

 Figure 2 illustrates an example of a model that makes use of the Navigation project
environment. The model describes a cortico-hippocampal circuit used by a simulated rat to
flexibly navigate toward any arbitrary goal or multiple goals that change on a trial-by-trial basis
(Gorchetchnikov and Hasselmo, 2005).

Figure 2. (a) Structure of the model describing the cortico-hippocampal circuit used by a simulated rat to
flexibly navigate toward any arbitrary goal or multiple goals that change on a trial-by-trial basis. PPC,
posterior parietal cortex; PFC, prefrontal cortex; ATN, anterior thalamic nucleus, which relays the output
to the cingulate motor area, shown to control reward-driven movements. Another possibility is to control
the animal by output through deep layers of EC. Split arrowheads represent diffuse projections. The
model includes 1333 neurons with 2180 compartments. Reprinted with permission from Gorchetchnikov
and Hasselmo, 2005. (b) The Navigation Project Environment allows setting up environments where
simulated agents can navigate and obtain rewards (c). The trajectory of the simulated animal in the open
field simulations. S designates the starting location of the simulated animal and G stands for goal location
with the size of letter representing salience. (I) Simulation set 1: selection of the closest goal. The initial
vertical segment does not show a strong preference towards the closer goal to the left. When the
difference in distances towards both goals gets big enough, the trajectory starts to bear left. (II)
Simulation set 2: selection of the most salient goal. Initial bearing to the left does not show a strong
preference towards a more salient goal. When the difference in distances towards both goals becomes big
enough to affect the behaviour, the trajectory bends further left. (III) Results for the simulation of a single
salient goal versus multiple less salient goals. Reprinted with permission from Gorchetchnikov and
Hasselmo, 2005.

2.3.2 The Generic project environment
This environment is appropriate for simulations that involve arbitrary external inputs. After the
user selects this project through the Project Menu, additional menu options appear in the
interface and the related preferences pages appear in the KInNeSS preferences dialog. Selecting
File→New opens the dialog that sets the dimensions of the new environment and the number of
input time frames to load (optional). A point-and-click interface allows the user to edit the
spatial input pattern in order to test different spatial-temporal configurations of inputs to the
neural network. It is also possible to load input patterns from any graphics file in a format
supported by the Qt library.

 9

2.4 Network Editor
Flexibility in network editing is essential to neural network modeling. Network setup and
manipulations are implemented in KInNeSS within a plug-in accessible through the Network
Menu or the buttons embedded in the Project Environment Toolbar. The Network Editor
handles the network structure. In addition to the standard functionality of loading and saving the
networks, this plug-in has an easy to use point-and-click interface that provides an intuitive
framework for quickly designing and testing large-scale networks with complex connectivity
patterns.

The Network Editor uses a tree-like representation of the network; see Figure 3. The Add
Population Button will open the Population Editor, where the user can manually set the size of
the population. Alternatively, the size of the population can be set to depend on the size of the
input, which would allow the user to run the same network with different input structures.

Figure 3. The Network Editor is one of the key features that enable KInNeSS users to explore different
modeling choices including creation of networks (a), populations (b), compartments (c), and channels (d)
in an easy to use interface.

To facilitate creating large-scale neural networks, KInNeSS can clone whole populations of cells
with their respective input and output projections. The user manual provides additional
information on how the connectivity is managed when populations are cloned.

3. XML Support
KInNeSS stores the primary representation of a network as a single XML (Extensible Markup
Language; Bray et al., 2006) file. Synaptic weights, conduction delays and input stimuli may
also be represented in separate XML files. The advantages of using a declarative format such as
XML are discussed in Goddard et al. (2001).

KInNeSS supports XML for both import and export of neural network architectures; see
Figure 4. KInNeSS is used both to load and save a network from and to its description in a XML
file, respectively. This same XML file is directly accessed by the KBrain plug-in which

 10

interfaces with SANNDRA; see Figure 4b. Thus, once a network representation in XML is
available, it is possible to bypass the KInNeSS GUI and access the network directly from
KBrain. This might be useful, for example, to run batch simulations of the same network with
different parameters, a feature currently under development.

Figure 4. Relationship between KInNeSS, SANNDRA, and the XML file. (a) In KInNeSS, populations,
cell characteristics and projections are stored as part of a hierarchical subtree. (b) KInNeSS accesses and
saves the network and related structures in XML format. Network instantiation is then carried out via the
KBrain plug-in which interfaces with SANNDRA. (c) In NeuroML, populations, cell characteristics, and
projections are stored as separate subtrees.

The XML network files follow an XML schema. This schema is similar to NeuroML standards
for such aspects as network topology (NetworkML), biophysical cell properties (ChannelML and
Biophysics) and cell shape (MorphML). Figure 4 highlights some of the differences between the
KInNeSS (a) and NeuroML (c) schemas. Both formats encode populations of neurons and
projections between them. KInNeSS network files are laid out in a purely hierarchical form
where each population contains the set of projections it receives. NeuroML files, on the other
hand, encode the sets of populations and projections as siblings. Also, the population’s cell
characteristics in KInNeSS are described in the OrientedSubStructure element where it is a child
of that population element. These are separately described in NeuroML in the Cells element.

 11

Since networks are implemented as XML files, it is in principle possible to translate at
least some network architectures from other simulation packages to a format admissible by
KInNeSS (via XSL transformations9). However, XML standards are not quite sufficient for full
interoperability between simulators because they require an additional layer between the
standard and the user (Cannon et al., 2007). NeuroML represents a key step in standardizing this
layer. Planned KInNeSS improvements include altering the network XML schemas to render it
fully compatible with the latest NeuroML version.

4. Spiking neurons in KInNeSS: Basic modeling principles
KInNeSS relies on the compartmental modeling approach in which a neuron is implemented as a
set of compartments representing sections of the neuron's dendritic tree and soma (Bower and
Beeman, 1998) where each compartment is in turn implemented as an equivalent electrical
circuit (Rall, 1964). KInNeSS requires knowledge of the different elements of computational
modeling and how to exploit them. This section provides a concise description of the neural
formalism adopted in KInNeSS.

Neurons are implemented as branched multi-compartmental structures. The first
compartment always defaults to the cell soma and its activity can be visualized during
simulations. Up to four dendritic branches can be added to the soma and each dendritic
compartment can have up to two child branches. Whereas dendritic compartments are optional,
it is necessary to have a somatic compartment. Compartmental dimensions are set in the
Network Editor interface. When more than one compartment is introduced, an additional
parameter must be assigned to determine the resistances between neighboring compartments.

The compartmental membrane potential V (mV) is based on the following Equation10:

∑−=
i

im I
dt
dVC , Equation 1

where Cm is the membrane capacitance (μF) and iI is the i-th current. For convenience, both
sides of Equation 1 are divided by the area of the membrane πdl and thus converted to:

∑−=
i

iM J
dt
dVC , Equation 2

where CM is the specific membrane capacitance (μF/cm2) and iJ is the density of the i-th current
(μA/cm2). While the area of the membrane πdl factor is hidden within the conductance density
in many of the currents described below, it appears explicitly in the intercompartmental current
equations because the axial conductance is independent of the membrane area.

In KInNeSS, all currents are modeled according to Equation 3:
)(Eq

i
p

ipii VVggJ −= ∏ , Equation 3

where ig stands for the maximum conductance density (ms/cm2) of the current (or current
channels) when all the gating variables gip in that current are fully open (∏

p
ipg =1). The

equilibrium potential of the current is denoted Eq
iV (mV). A dimensionless gating variable gip

9 http://www.w3.org/TR/xslt.html
10 The equations in Section 3 follow sign conventions found in the literature. Note that in the KInNeSS interface,
this convention is reversed.

 12

refers to any of a number of model cell membrane mechanisms that may dynamically influence
the conductance of a current density iJ .

Each compartment may receive an arbitrary number of currents in which the user can set
through the Add Channel Button. Each current channel has four settings: name, number of
gating variables, reverse or threshold potential (disabled for some currents), and maximal
conductance (disabled for injected currents). These settings apply to all gating variables

ijg acting on the relevant current channel. KInNeSS provides a set of default values for current
channel parameters obtained from the literature, but a user may choose to set parameters to
arbitrary values.

The existence of the various types of gating variables ijg gives the user freedom in
defining currents with Equation 3. The user selects the number and nature of the gating
variables. KInNeSS requires at least one gating variable per current but allows no more than
three. All gating variables can be raised to arbitrary integer power. For example, the typical

+Na current as defined by (Hodgkin and Huxley, 1952):
)(3 Eq

NaNaNa VVhmgI −= , Equation 4

has a total of two gating variables (m3 and h). Here m is the fraction of the activation gates being
open, and h is the fraction of the inactivation gates being open.

Obviously, the gating variables in a single current definition modulate each other’s effect.
Table 1 lists the types of gating variables implemented in KInNeSS. Each gate is described in
the following paragraphs.

Gating variable Specific use in KInNeSS

Injection

Current injection

Input Voltage input that drives compartment towards a certain voltage. In
the case of infinite conductance it turns into a perfect voltage clamp.

Gap Gap junctions

Voltage Classical voltage gates:
 Exponential
 Sigmoid
 Linoid,
Generalized version that incorporates all three of the above:
 Parameterized
And two gates for g∞ /τ form of representation
 Simple Tau
 Thalamic Reticular Tau

Ligand Synaptic Currents

Voltage block Voltage dependent blocking of a channel (e.g. Mg2+ for NMDA)

Modulation Neuromodulatory effect on a current

 13

AHP/ADP After-hyperpolarization or after-depolarization current

Reduced Pseudo current with quadratic integrate-and-fire to replace a set of
Hodgkin-Huxley currents

Table 1. Gating variables. A channel is obtained by combining up to three of the gating variables listed
here.

4.1 Injection and input
The injection and input gating variables are used when a cell compartment is current-injected or
voltage-driven, respectively, as is commonly done in experimental studies and modeling
applications. These are used to provide external input stimuli to the neural network.

There are four external input channel sources in KInNeSS, allowing the user to
simultaneously apply four independent inputs to the network. Input channel sources are color-
coded as Red, Green, Blue, and Yellow. The strength of each input source at a given location is
noted colorV in Equation 6 and must be within [0 255]. This strength is indicated by the
luminance of the corresponding colored square in the Generic Project Environment11. The use of
four color-coded sources as the external input makes it easy to import image files where each
pixel is defined by a four (or less) dimensional vector.
 In the case of an input gating variable, the current density (Equation 3) simplifies to:

)(Eq
iii VVgJ −= , Equation 5

where the driving potential, Eq
iV , is determined by the input stimulus as in:

alpha
i
alphablue

i
bluegreen

i
greenred

i
red

Eq
i VsVsVsVsVV ++++= * , Equation 6

where the sensitivity variables i
reds , i

greens , i
blues and i

alphas are constants set by the user. Voltage *V
corresponds to the resting potential of the compartment. Thus, in the absence of any input it acts
as an extra leakage. In the case of an injection gating variable, the current density reduces to:

alpha
i
alphablue

i
bluegreen

i
greenred

i
redi JsJsJsJsJ +++= . Equation 7

where the strength of each injection source is denoted Jcolor, and must be within [0 255]. Note the
absence of a maximum conductance factor (ig) in Equation 7.

Equations 6 and 7 show the magnitude of contribution of a given input source is
determined by its associated sensitivity setting. For example, in the case of an injection gate, if
the value of an input source were 122 units and its associated sensitivity i

colors =10pA/cm2, then
the resulting contributed current would be 1.22nA/cm2. Given built-in lower and upper bounds
on the sensitivity parameters, input currents in KInNeSS can range over multiple orders of
magnitude.

4.2 Inter-compartmental currents
Gap junction gates and inter-compartmental currents can also be modeled with Equation 3 in
which Eq

iV represents the membrane potential of the neighboring gap-connected or contiguous
compartments. However, inter-compartmental gating variables are neither combined with other

11 When loading spatial input patterns from a .png file, the yellow channel represents the alpha channel.

 14

gating variables nor varied with time. Thus, the simplification used in Equation 5 also applies
here.

For currents from compartment k+1 to k, the conductance is derived based on the
Equation 3.3 in Segev and Burke (1998) which states that intercompartmental current kkI ,1+ is:

() 2/1

1
,1

kk

kk
kk RR

VV
I

+
−

=
+

+
+ , Equation 8a

Converting axial resistances Rk and Rk+1 to specific axial resistances RA using Equation 5.6 in
Bower and Beeman (1998) yields:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

+

+

+
+

22
1

1

1
,1 2

k

k

k

k

kk

A
kk

d
l

d
l

VV
R

I π ,
Equation 8b

and since Equation 1 for compartment k was divided on both sides by πdklk , the “conductance
density” term ig for the intercompartmental current in Equation 5 is given by:

2
1

2
1

2

1

1
2

+

++
⋅=

kk

kkk
A

i

k
i

dl
dllR

d
g ,

Equation 9

where dk and lk stand for the diameter and length of a compartment k and A
iR is the specific axial

resistance along the branch, defined for each pair of connected compartments. The values of dk,
lk and A

iR are set by the user in the Compartment Editor. Although kkI ,1+ is symmetric, its effect
on the voltage in Equation 2 will be different for compartments k+1 and k, depending on their
respective sizes. The ratio in Equation 9 places a soft upper bound on the number of
compartments with realistic parameters that can be used to represent a dendritic segment. If
more compartments are desired, less realistic parameters which seek to decrease the ratio in
Equation 9, or a shorter integration step, will need to be used. However, this is not a major
problem given that KInNeSS is designed for network simulations that do not involve such highly
detailed representations of the dendritic structure. In the case of a branching intersection, each
dendritic branch and the trunk is explicitly coupled to a branching point via current densities:

()kB
k

A
k

k
kB VV

lR
d

J −= 2, 2
, Equation 10

where VB is the potential of the branching point:

∑

∑
=

s s
A
s

s

s
s

s
A
s

s

B

lR
d

V
lR

d

V 2

2

, Equation 11

where summation is done over all compartments s connected by the branching point.

 15

Figure 5. Equivalent circuit representation of branching neuron. VB is the potential at the branching point

(Equation 11). Note that 2

2
2 k

A
kkk

d
RlR

π
= corresponds to the actual resistance for branch k in a branching

intersection (Equation 8a). When two compartments are connected by a non-branching intersection (e.g.
compartments V3 and V4), specific axial resistance A

kR is the same for both compartments (i.e.
AA RR 43 =).

4.2 Gap junctions and passive leak currents
Gap junction currents also follow Equation 5 with the gating variable calculated:

kk

J
i

i ld
g

g
π

= . Equation 12

where J
ig is a conductance set in the interface and the denominator derives from the division of

Equation 1 by the membrane area. Each compartment has one passive leak current, whose
conductance density and reverse potential are manipulated in the Compartment Editor.

4.3 Voltage-gated channels
Voltage-gated channels are approximated using the Hodgkin-Huxley formalism (Hodgkin and
Huxley, 1952), which makes use of voltage-dependent rate variables (α(V) and β(V)). KInNeSS
provides six function definitions for these rates, summarized in Table 2. The user also has the
option to define the behavior of the voltage gates through τj(V) and gj

∞ instead of using the rates
α(V) and β(V). According to this notation, τj(V) represents the voltage-dependent activation time
constant and gj

∞ is the voltage-dependent steady-state.

4.4 Ligand-gated channels
Ligand-gated channels are normally closed and open only when the neurotransmitter from the
pre-synaptic cell binds to the receptor and opens the channel. The conductance change triggered
by the pre-synaptic spike can cause either an excitatory post-synaptic potential (EPSP) or an
inhibitory post-synaptic potential (IPSP). KInNeSS uses a dual exponential approximation of the

 16

Dependency type Equation form (α(V) = or β(V) = or τ(V)=)

Exponential ⎟

⎠
⎞

⎜
⎝
⎛ −

C
VB

Ae

Sigmoid

1+
⎟
⎠
⎞

⎜
⎝
⎛ −

C
VB

e

A

Linoid

1

)(

−

−
⎟
⎠
⎞

⎜
⎝
⎛ −

D
VB

e

VBA

Parameterized

⎟
⎠
⎞

⎜
⎝
⎛ +

+

+

F
EV

DeC

BVA

Simple tau)10(2 2

10 VCeBA ⋅⋅− −

⋅⋅+

Reticular tau 1−

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

++ F
VE

D
VC

eBeA

Table 2. Six types of voltage dependence. In Hodgkin and Huxley (1952) rate variables α(V) and β(V)
were fit to variants of the sigmoid, linoid, and exponential forms respectively. Letters A to F stand for
parameters that can be set manually, and V is the membrane voltage potential. These functions can be
adjusted to account for many types of voltage-dependent conductances. The Exponential, Sigmoid and
Linoid dependency types are adapted from Hodgkin and Huxley (1952).

conductance change (Bower and Beeman, 1998). Let st represent the arrival time of a pre-
synaptic spike from unit i to the synaptic terminal from j to i. Then, according to the convention
in Equation 2, the contribution of that spike to the conductance density ijg at time t of ligand
gating variable is defined as:

⎪
⎪

⎩

⎪
⎪

⎨

⎧
≠−

−
= −

−

−
−

−
−

otherwiseet

ifeep

tg
f

s

r

s

f

s

tt

f

rf

tttt

rf
ij

τ

ττ

τ

ττ
ττ

1

)(
)(, Equation 13

where p is a normalizing constant, and τr and τf are manually set rise and fall time constants,
respectively. The normalizing constant is governed by Equation 14:

1max =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−
−

−
−

r

s

f

s tttt

rf

eep ττ

ττ
. Equation 14

 17

In practice p ensures that)(tgij can span the interval [0, 1] due to the action of a single pre-
synaptic spike. In the case of a pre-synaptic spike train, Equation 13 is summed over the last two
spikes using:

2121)(ijijijijij ggggtg −+= . Equation 15

This ensures that both spikes have appropriate contribution to the conductance, but the total
)(tgij remains within [0, 1]. Note that these are two spikes of exactly the same presynaptic cell,

and even if it fires with 100Hz rate, the synapse tracks the last 20 msec. Almost all biological
synapses have raise time constants that would bring conductance changes caused by these two
spikes to domination over conductance changes caused by all previous spikes. Thus,
SANNDRA does not keep track of a long series of spikes, which would significantly increase the
computational load (Köhn and Wörgötter, 1998). Taking into account the number of receptors
Nij per membrane area, the resulting ligand-gated current density for synaptic current from j to i
would be:

)(Eq
jijijiij VVzNggJ −= , Equation 16

where EqV is the reversal potential for the chemical channel (e.g. for connection via AMPA

channels, mVV Eq
i 0≈) and zj is the amount of neurotransmitter available in the synapse j at a

given time. zj equals 1 unless specified by the user in the case of a habituative (or depressive)
synapse (see below). The term ijN in the interface is set using synaptic weight setting. While

ig is constant across all pre-synaptic projections to cell i for a particular synaptic current iJ , the
weight coefficients ijN are specific for each cell j which corresponds to the traditional weight
kernel.

The neurotransmitter released by the pre-synaptic terminal can mediate, or scale, the
conductance change triggered at the post-synaptic site (Grossberg, 1980; Tsodyks and Markram,
1987; Abbott et al., 1997). The accumulation and depletion (or habituation) of neurotransmitter
zj at the synapse is described by:

j
jj zt

zB
dt

dz
)(

)(
εδ

τ
−

−
= , Equation 17

where B=1 is the target level of neurotransmitter at rest, 0 < ε < 1 is the depletion coefficient that
can scale the amount of neurotransmitter released at every spike, and 0.1 < τ < 2500 is the
recovery rate (in msec) regulating the rate of neurotransmitter accumulation. A spike)(tδ is
defined for Hodgkin-Huxley spike generation as:

⎩
⎨
⎧ >Δ−<

=
otherwise

VttVandtVif
t

0
)(0)(1

)(θδ , Equation 18

where V(t) is the soma membrane voltage at time t, Vθ is the voltage threshold that is invariably
crossed during spikes (-20 mV), V(t-Δt) is the soma membrane voltage at time t-Δt that precedes
the soma voltage crossing 0 mV. In Equation 17, the neurotransmitter zj accumulates towards
B=1 at a rate inversely proportional to the recovery rate τ, and habituates (or depletes), by jzε−
every time a spike occurs. Neurotransmitter depletion allows the conductance change to be
multiplicatively gated by the amount of neurotransmitter available, while still ensuring that 0 <
gijzj < 1.

 18

4.5 Voltage block
Certain synaptic channels are normally closed due to the presence of a blocker. This is the case
for NMDA (N-Methyl-D-Aspartic Acid) receptor-channels which are blocked by magnesium
(Mg2+) ions. As the Mg2+ ions are removed from the channel opening by increasing the cell’s
potential, they leave way for a slow, depolarizing calcium (Ca2+) current (Zador et al., 1990). A
slightly generalized model of this type of blocking mechanism is implemented in KInNeSS
which takes into account the rate of binding of the blocker to the receptor site:

1+⋅

=
⎟
⎠
⎞

⎜
⎝
⎛ −

B
VC

e

AbindingofRate

η

,
Equation 19

where η is the concentration of the blocking ion in the extracellular medium. When the voltage
blocked gating variable is combined with a typical synaptic gating variable, this results in a
synaptic current of the form:

)(

1

)(Eq

B
VC

tt

iiii VV

e

eeA

NgztJ

rf

−

+⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=
⎟
⎠
⎞

⎜
⎝
⎛ −

−−

η

ττ

, Equation 20

where index j from Equation 2 was dropped for simplicity. Parameters A, B and C in Equations
19 and 20 allow for better control over the binding mechanism of the blocker.

The formalism for the above-mentioned gates is fairly standard (Bower and Beeman,
1998). In addition to these, KInNeSS incorporates a number of additional gating variables not
readily found in most simulation packages. These include fast approximations of current
modulation, after-hyperpolarization and after-depolarization currents (AHP/ADP), and a
quadratic integrate-and-fire equation that can be used to replace a set of voltage gated channels.

4.6 Current modulation gating variable
The modulation gating variable can be used to model the effect of a neuromodulator on neuronal
excitability, synaptic conduction, and synaptic modification (Hasselmo, 1995). The
conductance of this gating variable is defined by:

)(1)(tgtg ijm −= , Equation 21

where gij(t) is driven by the activity of the modulating cell and is defined by Equation 15. The
modulation gating variable can be used in conjunction with a ligand gating variable, which
results in a neuromodulated synapse. An example is given by the AMPA (Amino-3-hydroxy-5-
Methylisoxazole-4-Propionic Acid) current suppression with simultaneous learning enhancement
mediated by medial septum theta-bound input in models of hippocampal area CA3
(Gorchetchnikov and Hasselmo, 2005). If used by itself, this gating variable works as a leak
channel that can be closed by modulation.

4.7 Afterhyperpolarization (AHP) / afterdepolarization (ADP) gating variable
Some potassium currents cause a smooth reduction in excitability and have been modeled using
AHP currents (e.g. Prescott et al., 2006). The AHP/ADP gate implemented in KInNeSS allows
for such control over a cell's membrane potential following a spike. Moreover, the gating
variable has a manually set reverse potential. If this potential is greater than the cell's resting
potential, the gating variable is an ADP; otherwise, it is an AHP. The Equations governing the

 19

AHP/ADP variable are the same that apply for ligand gating variables (Equations 13-15) except
that the spikes that govern the gating variable are the ones of the same cell rather than from a
pre-synaptic cell.

4.8 Quadratic integrate-and-fire model
Ermentrout and Kopell (1986) reduced the Hodgkin-Huxley equations to a simple equation with
one variable in the quadratic Integrate-and-Fire model. The use of this model can speed up the
simulation significantly when compared to the original Hodgkin-Huxley model, and its extended
version has been found to be a good approximation for a variety of spiking patterns (Izhikevich,
2004). The KInNeSS interface enables modulation of the spiking threshold and the source of
modulation controlling the cell’s excitability. Originally, the current is given by:

rqVI −= 2 , Equation 22

where q is a scaling constant and r is a threshold. In order to make the model compatible with the
current framework, it is instead implemented in terms of Equation 5 (for derivation see
Gorchetchnikov and Hasselmo, 2005):

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅−

=≥⋅−
= otherwiseVVVVg

VVifVVVg
J

i

resti

i

2

0)(
2

2

2

θ
θ

θθ

, Equation 23

where Vθ is the spiking threshold, which is constant for non-modulated cell and given by:
)()(* tgVVVV ijθθθθ −−= , Equation 24

for a modulated cell, where θV and *
θV are boundaries of threshold change and gij(t) is defined by

Equation 15.

4.9 Connectivity
 The user can choose the pre-synaptic cells (through their population) and the type of projection
(all to one, many to one, and one to one) in the projection source subpanel of the user interface.
The synaptic weight for the many to one type is calculated according to a Gaussian curve that is
centered at the coordinates of the selected cell and has variances set by Spread X and Spread Y
parameters. The Border Effect box allows to Extend, Expand, or Wrap connectivity between
cells at the borders of the population. Synaptic connections can be fixed or plastic, with
modifiable projections allowing the user to implement spike-timing-dependent plasticity (STDP)
according to four variations of STDP learning: Hebbian, pre-synaptically, post-synaptically, or
double-gated (Gorchetchnikov et al., 2005). It is also possible to specify axonal conduction
delays for synaptic connections.

4.10 Weight modification and learning rules
STDP is supported by empirical evidence (Levy and Steward, 1983; Markram et al., 1997; Bi
and Poo, 2001) and is a central focus in biophysically inspired neural network modeling (e.g.
Kitajima and Hara, 2000; Abarbanel et al., 2002; Gorchetchnikov et al., 2005; Grossberg and
Versace, 2008). STDP is defined as the synaptic changes that depend on the precise temporal
relationship between the pre-synaptic and post-synaptic spikes. In the most common case, if the
pre-synaptic spike precedes the post-synaptic spike, the synapse is potentiated. On the other
hand, if the pre-synaptic spike follows the post-synaptic spike, the synapse is depressed.

 20

KInNeSS implements a STDP-based learning rule (see Gorchetchnikov et al., 2005, for
analytical derivation of the rule) that uses only local spatial and temporal information; the
synaptic modification computations depend on the quantities present at the synapse being
modified and at the current time step. In the case of spiking neurons, the temporal component of
the pattern is the specific time difference between the presynaptic spike and the postsynaptic
spike. This spike time difference is reliably mapped in synaptic weight magnitude as described
by the STDP rule:

))((0 wwwwXX
dt
dw

postpre −+−= ()λ , Equation 25

where λ is a learning rate and Xpre, Xpost are the pre- and post-synaptic contributions to the weight
change. The part wwww −+− 0)(() is used to limit the admissible weight values to the interval
[ww)(,]. The variable w0 is the baseline weight obtained when there is no correlation between
pre-synaptic and post-synaptic cells. The learning rate λ can be either held constant or
dependent on the time since the last spike of a modulatory cell when learning is modulated:

)(tg ijλλ = , Equation 26

where gij(t) is defined by Equation 15. The post-synaptic component is also time dependent and
defined by the following expression:

()

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−<≤−+⎟
⎠
⎞

⎜
⎝
⎛ +−

−<<++−

≥+

=

otherwise0
AC

D s t
A

 sifD
A

stC

A
 s t s if Ds)A(t

 V VifD

Vf

i
S

i

S
iN 111

11

1 θ

, Equation 27

where A<0, C>0, and -1<D<0 are parameters described by Gorchetchnikov et al. (2005). The

user sets w) and Transition Time through the interface. KInNeSS automatically sets D as
w
w
)

0− , C

as -0.04D, w(=0, and A as a negative reciprocal of Transition Time. Equation 25 can be extended
by adding various gating terms to limit the unbounded growth of the synaptic weights
(Grossberg, 1980):

)()(postpreGpostpre XXfWXX
dt
dw

⋅= λ , Equation 28

where wwww −+− 0)(() is denoted W for succinctness. The factor)(postpreG XXf gates the
learning signals which can be implemented using different equations to capture variations in
gating (Gorchetchnikov et al., 2005; applied in Grossberg and Versace, 2008; Berzhanskaya et
al., 2007; Gorchetchnikov and Grossberg, 2007). KInNeSS implements five such variations, as
shown in Table 3.

4.11 Data analysis
KInNeSS outputs neuronal data in a variety of formats easily loaded into software packages,
such as MATLAB®, for later analysis. When a detailed analysis of cell biophysics is needed,

 21

Gating rule)(postpreG XXf

No gate constant

Pre-synaptically

preX

Post-synaptically 2

postX

Dual AND 2

postpre XX

Dual OR 2

postpre XX +

Table 3. Five types of gating functions.

KInNeSS can store the instantaneous membrane potential12 for all cells in any cell population of
a given model (see Equation 1). If instead only a functional analysis of the network is desired,
KInNeSS can store the spike times for all cells. The advantage of the latter approach is a
significant reduction in the disk space necessary to store the results as well as in the time it takes
to write these results to disk, which results in a consistent speedup in simulation time as shown in
Section 6.

One distinguishing feature of KInNeSS is its ability to obtain local field potential (LFP)
and current source density (CSD) data by simulating the presence of extracellular electrodes in
the neural network (Grossberg and Versace, 2008). Both types of measurements are stored in
external files for analysis and both LFPs and CSDs can be directly visualized in KInNeSS; see
Figure 6:

The potential created by a combination of transmembrane currents of multiple neurons in
a certain volume of tissue is referred to as the local field potential. The movement of ions across
the cellular membrane causes the appearance of current sources (locations where current appears
to flow out of the cells) and current sinks (locations where the current appears to flow into the
cells). If +

kI and −
jI are the intensities of current source k and of current sink j, respectively, and

+
kr and −

jr are the distance of an extracellular electrode from the sink and source, respectively,
then the potential recorded from the tip of an extracellular electrode is (Humphrey, 1979):

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑∑ −

−

+

+

j j

j

k k

k
e r

I
r
I

V
πσ4
1 . Equation 29

Here σ is the bulk conductivity of the extracellular medium, set in KInNeSS to a constant value
of 15 msec/cm. The calculation of the various transmembrane currents +

kI and −
jI for each

compartment is simplified by Kirchoff’s law; the sum of inter-compartmental currents that do

12 The membrane potential outputted by KInNeSS is shifted by an amount equal to the leak potential of the
compartment. For example, when the user sets the compartmental leakage reverse potential to -60 mV, a value of
zero in the output file corresponds to a membrane potential of -60 mV.

 22

Figure 6. Local Field Potentials (LFP) and Current Source Densities (CSD) of 3-compartment layer 2/3
cells of a simulated laminar cortical circuit in a 1 sec simulation (Grossberg and Versace, 2008). The
display on top right show the somatic membrane voltage of the 9x9 neural sheet, with light gray
representing depolarized states and dark gray representing hyperpolarized states. The bottom panels plot
the CSD and LFP measured with a 24-tip electrode of the selected central cell in the 9x9 sheet. Lighter
and darker gray stands for source/sink and depolarization/hyperpolarization in CSD and LFP,
respectively.

not flow across membrane is equal to the sum of transmembrane currents. This is particularly
convenient because inter-compartmental currents are easier to sum due to their limited number.

Each simulated electrode is composed of a number of electrode tips. Both the
approximate placement of the electrode and the number of tips are determined by the user.
KInNeSS allows for 2-51 electrode tips. The orientation of the electrode is always perpendicular
to the population sheet of cells being monitored and parallel to each of the cells in a population.
The distance from the cell at the location selected by the user and the electrode is determined
probabilistically within the interval [10-200] μm. The distance of the electrode to all other cells
in the population is similarly determined within the interval [10-1000] μm. This merely
emphasizes the contribution of the selected cell to the LFP. The spacing between the electrode
tips is determined from the cell length and the number of tips. First and last tips are positioned
across from the ends of cells; intermediate tips are evenly spaced between them.
 The CSD is calculated from the recorded extracellular potentials by approximating the
second spatial derivative of the recorded voltage. Let Δx be the distance between neighboring
electrode tips, then:

 23

x
VVV

CSD eee

Δ
−+

= −+ 211 . Equation 30

5. Plug-in development
KInNeSS users can benefit from various plug-ins which extend its basic functionality. Users
with programming skills can create their own plug-ins and incorporate them into the framework.
The plug-in toolsets allow for the addition of buttons and tabs in the menu or toolbar to give
accessibility to global functions. The plug-in feature is ideal for generic commands or tools that
are desired for multiple models. An example use of the plug-in toolset is to add a feature of
loading specialized scripts or a graphing toolset.

KInNeSS is a KDE13 application that utilizes the KDE KParts functionality which allows
creating and linking extensions to existing KParts software14. Developers can dynamically load
components and actions to merge the plug-in graphical user interface (GUI) with the
application’s GUI in KParts-based applications. The KParts plug-in implementation process
requires four basic steps: implementing a plug-in class, implementing a factory class, adding a
GUI and adding the functionality. The plug-in is an extension of an appropriate KPart and
cannot be run on its own. Using XML and a KDE defined class KActions, KDE automatically
integrates the new plug-in with the host application to add or change the behavior.

Designing plug-ins for KInNeSS requires moderate to advance programming knowledge.
The classes defined by KDE are well documented and can be implemented with a relatively
small learning curve. The challenge of implementing plug-ins is due to the integration process
between the plug-in and host program KInNeSS that makes use of a complex Makefile. A
detailed explanation of how to implement a Makefile and plug-ins specific to KInNeSS can be
found on the KInNeSS website15. Familiarity with Makefiles and object oriented programming
is recommended for implementing a plug-in class.

6. KInNeSS performance
Many existing software solutions have been developed to match the growing demands of the
modeling community. These different simulators and simulation environments are not
interoperable and vary based on the types of simulation strategies and algorithms employed, the
level of neural granularity, operating system, XML schemas, and analysis tools (Cannon et al.,
2007). A comprehensive review of these different simulators is provided in Brette et al. (2007).
Table 4 was reproduced based on Brette et al. (2007) and shows several key features where
KInNeSS differentiates itself from the other simulators.

KInNeSS is the only software that currently allows for both XML import and export.
Although KInNeSS does not strictly adhere to the NeuroML schema (however future
development will focus on this issue), this is a key design feature of KInNeSS that will allow for
easier testing and integration of model designs across various neural simulators. To the best of
our knowledge, KInNeSS is one of the few software simulators, along with Catacomb2 (Cannon
et al., 2002), when compared to the ones evaluated by Brette et al. (2007), that allows a
simulated agent to be controlled by a neural model (Gorchetchnikov and Hasselmo, 2002; 2005).
This is important for simulations that aim to link behavioral data with neural modeling.

13 http://www.kde.org
14 KDE always list native KDE classes with K in the front. All names that start with K and are followed by a capital
letter are inherited from KDE native classes.
15 http://kinness.net/

 24

 KInNeSS NEURON GENESIS NEST CSIM SPLIT
Operating System Linux

Unix
(KDE)

Windows
Linux
Mac-OS

Windows
Linux
Mac-OS

Windows
Linux
Mac-OS

Windows
Linux

Linux

XML import Yes No** No No** No No
XML export Yes Yes No** No** No No
GUI Yes Yes Yes No, can use

Matlab
No, can use
Matlab

No

Simple Analysis Yes Yes Yes Yes No No
Complex Analysis No Yes Yes No No No
Multi-Threading

Yes Yes Yes Yes No** Yes

Event-Based No Yes No Yes No No
Clock-Based Yes Yes Yes Yes Yes Yes
Hodgkin-Huxley
Model

Yes Yes Yes Yes Yes Yes

Integrate-and-
Fire Models

Quadratic
Izhikevich**

Leaky
Izhikevich

Izhikevich

Leaky
Izhikevich

Leaky
Izhikevich

No**

Cable Equations

No** Yes Yes No No Yes

Short-Term
plasticity

Yes Yes Yes Yes Yes Yes

Long-Term
plasticity

Yes Yes Yes Yes Yes No**

Conductance-
Based Synaptic
Interactions

Yes Yes Yes Yes Yes Yes

Behavioral
Environment

Yes No No No No No

Table 4: Feature based comparison of neural network software simulators and simulation environments,
adapted from Brette et al. (2007) Yes implies that it is either a built-in feature or it can easily be
implemented with a few minutes of programming. No implies that this feature was unavailable at the
time this paper was submitted for publication. ** implies that the feature is planned to be developed for a
future version. XML import means that model specifications can be inputted in an XML format. XML
export means that the model specifications can be exported in an XML format. Simple analysis and
complex analysis imply that the GUI includes tools for i.e. spike counts, correlations, etc, parameter
fitting, FFT, matrix operations, etc, respectively. Cable equations means that the software can implement
compartmental models with dendrites. Short-term plasticity includes modeling of facilitation and
depression. Long-term plasticity includes modeling LTP, LTD, and STDP.

In order to take a closer look at the performance of KInNeSS with respect to these software
packages, one of the benchmarks listed in the appendix of Brette et al. (2007) was simulated
using KInNeSS. These simulations were ran on a 2x AMD OpteronTM Processor 248, 2.2 GHz,
cache size 1024 making use of only one of the two cores and 2 GB of RAM running SuSE
Linux 10 with custom 2.6.18.1 kernel, gcc 4.0.2 20050901 (pre-release) and KDE 3.5.7. These
simulations were run on a network of 3,200 excitatory and 800 inhibitory neurons. The
excitatory to inhibitory kernel was 6x6 and the inhibitory to excitatory kernel was 8x8. As a
result of applying these kernels, a total of 100 projections were created for each excitatory cell
and thus 320,000 total projections were in the network. Thus, 2% of the possible 16 million

 25

projections were simulated. An injection current was provided to the excitatory cells to drive the
network. This current was randomly generated but remained fixed through the simulation time
and across simulations. The simulations were run for 500 msec of simulation time. Code and
data from the benchmark is found online16.

Benchmark 3 in Brette et al. (2007) was described as a conductance-based Hodgkin-
Huxley network. Consistent with Brette et al. (2007), this network implementation was based on
voltage gate equations (cf Table 2 and Section 4.3) and parameters from Traub and Miles (1991).
Results of KInNeSS simulations performed on this benchmark are depicted in Figures 7c. The
running time for 500 msec of simulated time was 392 sec. When the spike and voltage outputs
of all cells with 20 kHz frequency were saved onto the disk, the running time increased to 496
sec. When Benchmark 3 was implemented using NEURON, the simulation time was 234 sec.
Brette et al. (2007) reported a runtime of 256 sec for 1 sec of simulated time on a single CPU of
a Beowulf cluster consisting of 6 nodes, dual CPU, 64-bit 3.2 GHz Intel Xeon with 1024 KB
cache. In Brette et al. (2007), five simulators, NEURON, GENESIS, NEST, CSIM, and SPLIT
measured performance on Benchmark 3. Both GENESIS and CSIM did not report the running
time of the simulations. NEST reported 125 sec running time when spikes are suppressed by
removing initial stimulation and for a simulated time of 1 sec. NEST used a Sun Fire V40z
equipped with four dual core AMD Opteron 875 processors at 2.2 GHz and 32 Gbytes RAM
running Ubuntu 6.06.1 LTS with kernel 2.6.15-26-amd64-server. SPLIT reported 386 sec of
running time for 5 sec if simulated time on a 2 GHz Pentium M machine (Dell D810). Because
each of these simulations makes use of significantly different hardware, computations being
performed on differing numbers of CPU cores, and different or unknown simulated times, it is
very difficult to compare the running time of these simulations.
 Benchmark 1 in Brette et al. (2007) was described as a conductance-based leaky
integrate-and-fire network based on Vogels and Abbot (2005) and was indirectly simulated with
a different version of integrate and fire in KInNeSS. The simulation setup for these simulations
was the same as in the simulations of Benchmark 3 and the code is also found online16.
KInNeSS makes use of the quadratic integrate-and-fire model (Ermentrout and Kopell, 1986)
explained in Section 4.8.1 rather than the leaky integrate-and-fire model because it is a
biophysically more realistic model. Leaky integrate-and-fire models rely on a threshold crossing
for spikes to fire and thus this equation is not concerned with how fast this threshold is crossed.
This means that these models only consider the dynamics of the system under threshold. On the
other hand, the quadratic integrate-and-fire model uses a dynamical equation to determine when
a spike would fire and thus these models rely also on super-threshold dynamics. This means that
when the threshold is crossed slowly, the spike develops slowly and when the threshold is
crossed quickly, the spike develops more quickly. Results of the KInNeSS simulations on the
quadratic integrate-and-fire model are depicted in Figures 7a, 7b.

The running time for 500 msec of simulated time was 252 sec. When saving on disk of
spike and voltage outputs of all cells with the 20 kHz frequency was included, the running time
increased to 320 sec. In Brette et al. (2007), three simulators, NEURON, NEST, and CSIM,
measured performance on Benchmark 1. All three simulators made use of the more simplistic
leaky integrate-and-fire model. NEURON reported approximately 256 sec running time. NEST
reported approximately 27 sec of running time when spikes are suppressed by removing initial
stimulation and for a simulated time of 1 sec.

16 See either ModelDB (https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=113939) or the
documentation section of http://www.kinness.net for the code and data.

 26

Figure 7. KInNeSS benchmark simulation results. (a) Soma membrane potential plot of excitatory
neurons 230-240 in the quadratic integrate-and-fire (Benchmark 1) simulation for 500 msec of simulation
time. (b) Spike raster of 3200 excitatory neurons in the quadratic integrate-and-fire (Benchmark 1)
simulation. (c) Soma membrane potential plot of excitatory neurons 230-240 in the Hodgkin-Huxley
(Benchmark 3) simulation.

Although KInNeSS performance and running time has been reported on one of the benchmarks
from Brette et al. (2007) and an indirect comparison to a second benchmark, it is difficult to
make a comparison to the other simulators (Cannon et al., 2007). A good comparison needs to
take into account both running time of simulations as well precision (Rudolph and Destexhe,
2007). Furthermore, as was pointed out by Brette et al. (2007), in order for this comparison to be
undertaken, there must be a common language or framework for these simulation environments
by making use of XML-based specifications. KInNeSS has taken a step in this direction by
including both XML import and export functionality. In the future, this will be expanded by
adapting XML schemas that more closely adhere to NeuroML.

7. Future directions
KInNeSS is an ongoing research effort. The developers are constantly updating the software and
developing new modules. There are currently several projects aimed at improving the
functionality of the software. KInNeSS supports the endeavor of creating a common framework
across neural simulators. Therefore, KInNeSS will be changing its underlying XML schema to
be compatible with the NeuroML schema. This mainly consists of changing the hierarchical
layout to encode sets of populations and projections as siblings. In addition, future KInNeSS
development will look at adding different integration techniques. A C++ adaptation of the open
source version of the CVODE17 method previously implemented in XPP is currently being

17 https://computation.llnl.gov/casc/sundials/main.html

 27

tested. It was designed to handle stiff systems of differential equations and will remove the
limitation on the number of compartments with realistic parameters.

The Izhikevich neuron model (Izhikevich, 2003) will be added to the list of available
currents. The inclusion of this model will allow for significant speed-up of simulations presently
using Hodgkin-Huxley channels. Two other additions are also being considered for the future.
First is the enhancement of online data visualization which will allow the user to plot
compartments membrane voltage over time. At the present, this can only be done offline using
third party software applications. Also, recent modeling work has used KInNeSS to analyze
LFP/CSD data from the entire depth of a simulated 6-layered cortical structure (Grossberg and
Versace, 2008). Currently, the analysis and visualization of LFP/CSD data from neural
structures with several populations at different depth is done in third party software
(MATLAB®), but future plans include implementing this capability in KInNeSS.

Ongoing developments of KInNeSS will lead to new releases available for download.
KInNeSS users are strongly encouraged to submit suggestions for future developments as well as
submit changes to the code that can provide enhancements beneficial to the KInNeSS users’
community.

8. Conclusions
The KDE Integrated Neurosimulation Software (KInNeSS) environment contains a wide variety
of software features that are needed by neurophysiologists, cognitive scientists and modelers in a
neural simulation environment. The main focus of the software is to allow the modeler to relate
fine-grained computational models to simulated behavior. This task is facilitated by an intuitive
graphical user interface which speeds up both the initial learning process and continued
application. Importantly, KInNeSS offers expandability by providing a base framework for
software developers to create and incorporate plug-ins into the system and also allow for
networks to be shared between applications by supporting both import and export of XML based
model specifications.

KInNeSS allows the modeler to analyze the network dynamics at different levels of
granularity, from single compartment and single cells to large-scale dynamics recorded in the
form of local field potentials and current source densities. This enables the KInNeSS user to
compare the simulation results to a growing repertoire of studies that make use of aggregate cell
recordings to investigate the link between behavior, cognition, and brain activity. All these
features combined make KInNeSS a useful tool for a multi-disciplinary software platform that
would allow closer collaborations to emerge between researchers that gather biophysical data,
and modelers that use these data to build computational models of animal and human behavior.

Acknowledgements
This work was supported by the Center of Excellence for Learning in Education, Science and
Technology (NSF SBE-0354378). Massimiliano Versace was supported in part by the Air Force
Office of Scientific Research (AFOSR F49620-01-1-0397), the National Science Foundation
(NSF SBE-0354378), and the Office of Naval Research (ONR N00014-01-1-0624). Heather
Ames, and Jasmin Léveillé were supported in part by the National Science Foundation (NSF
SBE-0354378) and the Office of Naval Research (ONR N00014-01-1-0624). Bret Fortenberry
and Anatoli Gorchetchnikov were supported in part by the National Science Foundation (NSF
SBE-0354378). The authors would also like to thank Prof. Steve Grossberg, Himanshu Mhatre,

 28

Prof. Mike Hasselmo, Dash Sai Gaddam, and Jesse Palma for numerous valuable discussions and
suggestions for this paper.

References
Abarbanel H.D.I., Huerta R., and Rabinovich M.I. (2002) Dynamical model of long-term
synaptic plasticity. P. Natl. Acad. Sci. 99, 10132-10137.

Abbott L.F., Sen K., Varela J.A., and Nelson S.B. (1997) Synaptic depression and cortical gain
control. Science 275, 220-222.

Berzhanskaya J., Gorchetchnikov A., and Schiff S.J. (2007) Switching between gamma and
theta: dynamic network control using subthreshold electric fields. Neurocomputing 70(10-12),
2091-2095.

Bi G.Q. and Poo M.M. (2001) Synaptic modification by correlated activity: Hebb’s postulate
revisited. Annu. Rev. Neurosci. 24, 139-166.

Bower J.M. and Beeman D. (1998) The Book of GENESIS: Exploring Realistic Neural Models
with the GEneral NEural SImulation System, 2nd ed., Springer-Verlag, New York.

Bray T., Paoli J., Sperberg-McQueen C.M., Maler E., and Yergeau F. (2006). Extensible Markup
Language (XML) 1.0 (Fourth Edition) http://www.w3.org/TR/2006/REC-xml-20060816/#sec-
origin-goals.

Brette R., Rudolph M., Carnevale T., Hines M., Beeman D., Bower J.M., Diesmann M.,
Morrison A., Goodman P.H., Harris Jr, F.C., Zirpe M., Natschläger T., Pecevski D., Ermentrout
B., Djurfeldt M., Lansner A., Rochel O., Vieville T., Muller E., Davison A.P., El Boustani S.,
and Destexhe A. (2007) Simulation of networks of spiking neurons: A review of tools and
strategies. J. Comp. Neur. 23(3), 349-398.

Cannon R.C., Hasselmo M.E., and Koene R.A. (2002) From biophysics to behavior: Catacomb2
and the design of biologically plausible models for spatial navigation. Neuroinformatics 1(1),
3-42.

Cannon R.C., Gewaltig M.O., Gleeson P., Bhalla U.S., Hines M.L., Howell F.H., Muller E.,
Stiles J.R., Wils S., De Shutter E. (2007) Interoperability of neuroscience modeling software:
current status and future directions. Neuroinformatics 5(2), 127-138.

Carnevale N.T. and Hines M.L. (2006) The Neuron Book, Cambridge University Press,
Cambridge, UK.

Crook S., Gleeson P., Howell F., Svitak J., Silver R.A. (2007) MorphML: level 1 of the
NeuroML standards for neuronal morphology data and model specification. Neuroinformatics
5(2), 96-104.

 29

Ermentrout B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to
XPPAUT for researchers and students. SIAM.

Ermentrout B. and Kopell N. (1986) Parabolic bursting in an excitable system coupled with slow
oscillation. SIAM J. Appl. Math. 46, 233-252.

Gewaltig M.O. and Diesmann M. (2007) NEST. Scholaropedia 2(4), 1430.

Goddard, N.H., Hucka, M., Howell, F., Cornelis, H., Shankar, K. and Beeman, D.
(2001)Towards NeuroML: Model description methods for collaborative modeling in
neuroscience. Philos. T. Roy. Soc. B 356, 1209-1228.

Gorchetchnikov A. (2000) An Approach to a Biologically Realistic Simulation of Natural
Memory, Master Thesis, Middle Tennessee State University, Murfreesboro, TN.

Gorchetchnikov A. and Grossberg S. (2007) Space, time and learning in the hippocampus: How
fine spatial and temporal scales are expanded into population codes for behavioral control,
Neural Networks 20(2), 182-193.

Gorchetchnikov A. and Hasselmo M. E. (2002) A Model of Hippocampal Circuitry Mediating
Goal-Driven Navigation in a Familiar Environment. Neurocomputing 44-46, 424-427.

Gorchetchnikov A. and Hasselmo M. E. (2005) A biophysical implementation of a bidirectional
graph search algorithm to solve multiple goal navigation tasks. Connect. Sci. 17(1-2),
145-166.

Gorchetchnikov A., Versace M., and Hasselmo M.E. (2005) A model of STDP based on spatially
and temporally local information: derivation and combination with gated decay. Neural
Networks 18, 458-466.

Grossberg S. (1980) How does a brain build a cognitive code? Psychol. Rev. 87, 1-51.

Grossberg S. and Versace M. (2008) Spikes, synchrony, and attentive learning by laminar
thalamocortical circuits. Brain Research, in press.

Hammarlund P. and Ekeberg Ö. (1998). Large neural network simulations on multiple hardware
platforms. J. Comp. Neur. 5, 443-459.

Hasselmo M.E. (1995) Neuromodulation and cortical function: Modeling the physiological basis
of behavior. Behav. Brain Res. 67, 1-27.

Hines M. (1989) A program for simulation of nerve equations with branching geometries. Int. J.
Biomed. Comput. 24, 55-68.

Hines M. (1993) NEURON: A program for simulation of nerve equations in Neural Systems:
Analysis and Modeling, Eeckman, F., ed., Kluwer Academic Publishers, pp. 127-136.

 30

Hines M. and Carnevale N.T. (1994) Computer Simulation Methods for Neurons, in The
Handbook of Brain Theory and Neural Networks, Arbib, M., ed., MIT Press, Cambridge, MA.

Hodgkin A.L. and Huxley A.F. (1952) A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117, 500-544.

Humphrey D.R. (1979) Extracellular, single-unit recording methods, in Electrophysiological
techniques, Humphrey, D.R., ed., Society for Neuroscience, Bethesda, MD, pp. 199-259.

Izhikevich E.M. (2003) Simple model of spiking neurons. IEEE Trans. Neural Networks 14,
1569-1572.

Izhikevich E.M. (2004) Which model to use for cortical spiking neurons? IEEE Trans. Neural
Networks 15, 1063-1070.

Kitajima T. and Hara K. (2000) Generalized Hebbian rule for activity-dependent synaptic
modifications. Neural Networks 13, 445-454.

Köhn, J. and Wörgötter, F. (1998) Employing the Z-transform to optimize the calculation of the
synaptic conductance of NMDA and other synaptic channels in network simulations. Neural
Comput. 10, 1639-1651.

Leveille J., Grossberg S., Mingolla E., and Versace M. (2008) Collinear facilitation and visual
grouping in the spiking LAMINART model. Vision Science Society Abstract (accepted for VSS
2008) Naples, FL.

Levy W. B. and Steward O. (1983) Temporal contiguity requirements for long-term associative
potentiation/depression in the hippocampus. Neuroscience 8(4), 791-797.

Maass W., Natschläger T., and Markram H. (2002) Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531-
2560.

Markram H., Lubke J., Frotscher M., and Sakmann B. (1997) Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science 275, 213-215.

Natschläger T., Markram H., and Maass M. (2002) Computer models and analysis tools for
neural microcircuits. In R. Kötter, editor, A Practical Guide to Neuroscience Databases and
Associated Tools, chapter 9. Kluver Academic Publishers, Boston, MA..

Prescott S.A., Ratté S., De Koninck Y., and Sejnowski T.J. (2006) Nonlinear interaction between
shunting and adaptation controls a switch between integration and coincidence detection in
pyramidal neurons. J. Neurosci. 26, 9084-9097.

 31

Rall W. (1964) Theoretical significance of dendritic trees for neuronal input-output relations, in
Neural Theory and Modeling, Reiss, R.F., ed., Stanford University Press, Palo Alto, pp. 73-97.

