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Abstract  
Making use of very detailed neurophysiological, anatomical, and behavioral data to build 
biologically-realistic computational models of animal behavior is often a difficult task. Until 
recently, many software packages have tried to resolve this mismatched granularity with 
different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation 
Software environment, as an alternative solution to bridge the gap between data and model 
behavior.  This open source neural simulation software package provides an expandable 
framework incorporating features such as ease of use, scalability, an XML based schema, and 
multiple levels of granularity within a modern object oriented programming design.  KInNeSS is 
best suited to simulate networks of hundreds to thousands of branched multi-compartmental 
neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated 
channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the 
mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity.  
KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and 
current source densities, as well as visualization of the behavior of a simulated agent.  An 
explanation of the modeling philosophy and plug-in development is also presented. Further 
development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that 
will help researchers across different disciplines to effectively collaborate using a modern neural 
simulation platform.  
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1. Introduction 
Advances in functional, anatomical, and behavioral neuroscience techniques have led to an 
increase in the data available for modeling complex dynamics of biologically inspired neural 
networks at many levels of abstraction, from in-depth descriptions and analyses of individual 
membrane channels to large-scale investigations of whole brain activity.  This wealth of data is 
essential for creating realistic neural models and increases our understanding of animal and 
human behavior.  Furthermore, it has pushed the modeling community towards the design of 
increasingly complex models, incorporating unprecedented amount of biophysical and 
anatomical constraints.  These large-scale neural models are often non-linear dynamical systems 
which can be analytically intractable and require numerical simulation to gain insight into their 
behavior.  Emergent properties of large-scale neural networks often remain unnoticed until the 
whole system is simulated and components are allowed to interact (Cannon et al., 2002). 

An additional level of complexity is finding a neural simulator and simulation 
environment that would enable the large variety of researchers from neurophysiology, 
psychology and computational modeling to share data and work collaboratively (an excellent 
review can be found in Brette et al., 2007).  Most available software packages are specialized in 
different applications.  For example, CSIM (Maass et al., 2002; Natschläger et al., 2002) and 
NEST (Gewaltig and Diesmann, 2007) make use of single compartmental models whereas 
KInNeSS, NEURON (Hines, 1989, 1993; Hines and Carnevale, 1994; Carnevale and Hines, 
2006), GENESIS (Bower and Beeman, 1998), and SPLIT (Hammarlund and Ekeberg, 1998) also 
include functionality for creating multi-compartmental models.  Other software, such as 
XPPAUT (Ermentrout, 2002), focus primarily on dynamical systems analysis. 

An attempt to integrate this diverse set of neural simulators has led to the development of 
NeuroML1 (Neuron Markup Language; Crook et al., 2007), which seeks to provide a common 
schema for unifying network descriptions and building a database of neural models.  While 
developing such a standard format is a necessary step towards the interoperability of various 
existing software approaches to neural simulations, it is barely sufficient and far from achieving 
this goal (Brette et al., 2007; Goddard et al., 2001; Cannon et al., 2007).  

The open source2 KDE Integrated NeuroSimulation Software environment (KInNeSS3) 
follows an XML schema similar to NeuroML and represents a step towards the development of 
an interdisciplinary, modular neural network software environment.  The main goal of KInNeSS 
is to allow modelers to quickly design, test, and tune their neural models and study their 
behavior, which can either be the behavior of a simulated agent or the more abstract behavior of 
a target neural population.  For this purpose, KInNeSS users can design simple integrate-and-fire 
neurons as well as branched structures with complex conduction based models obeying Hodgkin-
Huxley dynamics (Hodgkin and Huxley, 1952).  

KInNeSS is built using C++ modern programming techniques such as Object-Oriented 
Programming (OOP), polymorphism, multithreading, and functional objects.  KInNeSS users 
with different levels of expertise can quickly and effectively design, run, and analyze simulations 
at many levels of granularity, from single compartment and single cells to large-scale dynamics 
recorded in the form of local field potentials (LFP) and current source densities (CSD), and 
eventually link them to the behavior of the simulated agent.  Users without programming skills 
can take advantage of the simple and intuitive interface and experienced programmers can add 

                                                 
1 http://www.neuroml.org 
2 KInNeSS is licensed under the GNU general public license; © Anatoli Gorchetchnikov. 
3 http://www.kinness.net 
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features and components to the system without waiting for software updates.  Finally, 
KInNeSS’s modular design allows for integration of different simulation projects within the 
same interface. 

The following section gives a general overview of the KInNeSS software and its 
computational engine, SANNDRA4 (Synchronous Artificial Neural Networks Distributed 
Runtime Algorithm).  The third section describes the XML schema adapted for KInNeSS and the 
fourth section gives an overview of the modeling philosophy used in KInNeSS including a 
description of the equations used in spiking neural modeling architectures.  The fifth section 
illustrates plug-in development that advanced users can employ to expand KInNeSS 
functionality to their needs.  The sixth section presents KInNeSS performance on two benchmark 
networks and a coarse comparison to other neural simulators.  Finally, future developments and 
conclusions are presented. 

 
2. KInNeSS overview 
KInNeSS was originally developed to be a simulation environment for modeling of neural 
systems and neurons whose characteristics are closely linked to experimental data and whose 
explanatory power encompasses behavioral data.  KInNeSS is capable of simulating both 
conductance based models of cells obeying Hodgkin-Huxley dynamics and simpler systems 
based on integrate-and-fire models of neurons.  KInNeSS is best suited to simulate networks of 
branched neurons containing approximately 1-4 compartments per branch and biophysical 
properties such as: membrane potential, voltage-gated or ligand-gated channels, gap junctions or 
ionic diffusion, neuromodulation channel gating, habituative or depressive synapses, axonal 
delays, and synaptic plasticity.  KInNeSS records the voltage of individual compartments, as 
well as aggregate cell recordings such as local field potentials (LFP) and current source densities 
(CSD).  Typical simulations that have been performed by KInNeSS include models of 
hippocampal neurons and spatial navigation (Gorchetchnikov and Hasselmo, 2005), models of 
thalamo-cortical learning (Grossberg and Versace, 2008; Leveille et al., 2008), and models of 
interactions between electric field and cell activity (Berzhanskaya et al., 2007). 

KInNeSS can be used independently of any specific programming skills.  A friendly 
point-and-click interface allows the modeler to set all the necessary parameters.  The interface 
also contains functionality for loading projects, which can be written separately from KInNeSS.  
The project environment contains the tools needed to simulate the environmental and behavioral 
components of the model.  Furthermore, KInNeSS makes use of an XML schema for both import 
and export of model specifications.  

The current KInNeSS 0.3.4 release contains a project environment for modeling spatial 
navigation tasks, a generic project where an input pattern is provided for the network without 
specifying how it was created, and a dummy instructional project that illustrates the necessary 
interactions between the project environment and the core shell for programmers who wish to 
create new projects.  The model interface is implemented as a set of plug-ins, so that the same 
model can be used in different project environments and different models can be used within the 
same environment. 

Two plug-ins are contained in the current release of KInNeSS: one for creating and 
editing the network, and the other for running the simulations.  The simulation plug-in allows the 
user to set global simulation parameters and to control the time course of the simulation.  The 
interface allows interruptions at any point in time of the simulation, correcting parameters, and 
                                                 
4 http://www.kinness.net/Docs/SANNDRA/html/index.html 
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restarting the simulation from the point of interruption or from the original starting point.  
Additional plug-ins can be created and loaded by the user; see Section 5. 
2.1 Computing with SANNDRA 
The computational engine behind KInNeSS is SANNDRA (Synchronous Artificial Neural 
Networks Distributed Runtime Algorithm).  SANNDRA was originally designed under the name 
of SiMeON (Simulation of Memory based On Natural principles) in 1997–1999 and developed 
using SIMD architecture on the MasPar MP1 parallel computer.  It was ported for Linux as a 
partial SIMD emulation in 2000 (Gorchetchnikov, 2000).  Initially, SANNDRA was intended to 
run a long iterative loop through relatively simple computations done in parallel on many similar 
elements.  Due to the SIMD paradigm, it was a synchronous time driven rather than event-driven 
algorithm from the start.  Later design relaxed the SIMD requirements on the similarity of 
computational elements, but these elements are still synchronized for data exchange.  On a 
sequential computer this leads to an unavoidable performance loss due to synchronization, but 
ensures that these elements receive the correct input signals.  

Each element in SANNDRA can have access to the output of any other element.  This 
design makes SANNDRA capable of numerical integration of large systems of non-
homogeneous differential equations and it can be put into much simpler uses like iterative 
solving of systems of algebraic equations or image processing.  For differential equations 
SANNDRA uses the fourth order Runge-Kutta integration method. 

SANNDRA is currently a separately distributed open source5 library while its main use 
and testing is done in the KInNeSS project.  SANNDRA extensively uses polymorphism to 
achieve an optimal combination of flexibility and performance.  Polymorphism is a key concept 
of object-oriented design where object-specific individual implementations of methods can be 
called through a pointer to a virtual method declared in the common base of these objects.  The 
system of equations is combined together from objects derived in the user code from SANNDRA 
basic objects.  In the case of KInNeSS, this user code is part of the package that links the 
graphical user interface (GUI) and the computational engine.  A set of standard building blocks 
is provided by the library, and the advanced user can always derive the additional blocks from 
those that are provided.  Once combined, the system can be solved independently of its actual 
structure.  There is a slight computational overhead in polymorphism, because a direct function 
call is faster than a virtual call.  For a homogeneous system, when the function for such a direct 
call can be determined at compilation time, using polymorphism would be disadvantageous.  
Since SANNDRA is designed to use non-homogeneous systems, the appropriate direct call 
cannot be determined during compilation, and the choice is between polymorphism and some 
other kind of run-time detection of the right method to call.  In this case polymorphism clearly is 
the best choice, since it is a part of the C++ language itself. 
  
2.2 Interface quick start 
One of the best ways to appreciate the usability of KInNeSS is to experience it in action.  In a 
few simple steps the user can design a neural network, create the input, run the model, and save 
the results for further analysis.  These steps for running a sample network, 
receptor_example.nml6 , are found in Figure 1.  

 
                                                 
5 SANNDRA is licensed under the GNU general public license; © Anatoli Gorchetchnikov. 
6 http://kinness.net/Docs/KInNeSS/examples/Example_Receptor_Kinness.rar 
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Figure 1. Setting up and running a simulation in KInNeSS is easy. After selecting the environment (a), 
the user defines the input either by point-and-click in the input grid or by loading one or more .png files.  
In the example, the user loads lena_small.png. (b) After loading the network receptor_example.nml, the 
user can start the simulation and monitor in real time (c) the input in the main interface (left) and the 
membrane potential of the neural population(s) (right), where bright green colors represent high 
membrane potentials, and dark green represent low membrane potentials. Finally, the results can be 
analyzed by the favorite plotting and data analysis software (e.g., MATLAB®). Panel (d) shows a plot 
(right) of the membrane potential of six neurons that correspond to six different spatial locations (left) in 
the receptor population. The right plot highlights the spike timing of neurons 1 and 3.     
 
When the user starts KInNeSS for the first time, the interface looks similar to the screenshot in 
Figure 1a.  The number of buttons in the Project Toolbar varies depending on the number of 
installed project environments.  The main interface contains the following functionalities: 

• File Menu: loads and saves environments and other project-specific operations. 
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• Settings Menu: toggles the visibility of the main toolbar and status bar, and contains a 
dialog window to configure shortcuts, the main toolbar, project toolbar buttons, and the 
KInNeSS preferences. 

• Help Menu: accesses the KInNeSS manual, about dialogs, context help, and dialog for 
bug report submission. 

• Main Toolbar: accesses all commands in the three menus listed above and in the Project 
Menu. 

• Status Bar: visualizes the progress of the simulation. 
• Projects Menu and Toolbar: contains the list of project environments available to 

KInNeSS.  The current release includes: 
• Navigation: creates mazes, places rewards in the mazes, and a virtual animal to 

run through the maze; 
• Generic: provides four input channels to the network symbolized by red, green, 

blue, and yellow colors; and 
• Vision: shows the example of the necessary skeleton to implement a new 

environment. 
For more in-depth information and installation instruction see the KInNeSS user manual online7.  
A web-based tutorial that covers the basics of setting up a small network, running it, and 
collecting the simulation results is also available online8. 
 
 
 
2.3 Behavioral simulations 
One of the unique components of KInNeSS is its link between empirical model simulations and 
the resulting behaviors.  KInNeSS was originally designed to create large scale dynamical neural 
network models embedded in a perception-action loop so that the user can input realistic stimuli 
(e.g. images) and visualize the resulting actions of a simulated agent exposed to these stimuli.  
The behavioral level and the network level interact through both the input and output of the 
network.  The user is able to control which network population drives the behavior of the 
simulated agent.  KInNeSS contains three predesigned project environments for visualizing 
behavioral results of the simulations.  These environments are the Navigation Project, the 
Generic Project, and the example Vision Project. Additional project environments can be 
designed by advanced users based upon the skeleton provided in the Vision Project. 
 
2.3.1 The Navigation project environment 
This environment is designed to create and run projects in which a simulated agent (for example, 
a rat) navigates in a simulated environment. This project has been extensively used for "rat in the 
maze" simulations (Gorchetchnikov and Hasselmo, 2002; 2005).  Users can create simple mazes 
of variable dimensions, specify the location of the animal with the rat tool, and edit the 
environment by adding obstacles with the shovel tool, and rewards of variable salience with the 
cheese tool.  After the animal is placed in the environment, the Network Editor plug-in (see 
Section 2.4) is enabled and allows the user to load or create the neural network that controls the 
animal’s interaction with the environment.  Editing of the environment is possible at any time, 
even during the simulation run. 
                                                 
7 http://www.kinness.net/Docs/KInNeSS/manual/index.html 
8 http://www.kinness.net/kinness_tutorial.wmv 
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 Figure 2 illustrates an example of a model that makes use of the Navigation project 
environment.  The model describes a cortico-hippocampal circuit used by a simulated rat to 
flexibly navigate toward any arbitrary goal or multiple goals that change on a trial-by-trial basis 
(Gorchetchnikov and Hasselmo, 2005). 

 
Figure 2. (a) Structure of the model describing the cortico-hippocampal circuit used by a simulated rat to 
flexibly navigate toward any arbitrary goal or multiple goals that change on a trial-by-trial basis.  PPC, 
posterior parietal cortex; PFC, prefrontal cortex; ATN, anterior thalamic nucleus, which relays the output 
to the cingulate motor area, shown to control reward-driven movements.  Another possibility is to control 
the animal by output through deep layers of EC. Split arrowheads represent diffuse projections.  The 
model includes 1333 neurons with 2180 compartments.  Reprinted with permission from Gorchetchnikov 
and Hasselmo, 2005. (b) The Navigation Project Environment allows setting up environments where 
simulated agents can navigate and obtain rewards (c). The trajectory of the simulated animal in the open 
field simulations. S designates the starting location of the simulated animal and G stands for goal location 
with the size of letter representing salience. (I) Simulation set 1: selection of the closest goal.  The initial 
vertical segment does not show a strong preference towards the closer goal to the left.  When the 
difference in distances towards both goals gets big enough, the trajectory starts to bear left. (II) 
Simulation set 2: selection of the most salient goal.  Initial bearing to the left does not show a strong 
preference towards a more salient goal.  When the difference in distances towards both goals becomes big 
enough to affect the behaviour, the trajectory bends further left. (III) Results for the simulation of a single 
salient goal versus multiple less salient goals.  Reprinted with permission from Gorchetchnikov and 
Hasselmo, 2005. 
 
2.3.2 The Generic project environment 
This environment is appropriate for simulations that involve arbitrary external inputs.  After the 
user selects this project through the Project Menu, additional menu options appear in the 
interface and the related preferences pages appear in the KInNeSS preferences dialog. Selecting 
File→New opens the dialog that sets the dimensions of the new environment and the number of 
input time frames to load (optional).  A point-and-click interface allows the user to edit the 
spatial input pattern in order to test different spatial-temporal configurations of inputs to the 
neural network.  It is also possible to load input patterns from any graphics file in a format 
supported by the Qt library. 
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2.4 Network Editor 
Flexibility in network editing is essential to neural network modeling.  Network setup and 
manipulations are implemented in KInNeSS within a plug-in accessible through the Network 
Menu or the buttons embedded in the Project Environment Toolbar.  The Network Editor 
handles the network structure.  In addition to the standard functionality of loading and saving the 
networks, this plug-in has an easy to use point-and-click interface that provides an intuitive 
framework for quickly designing and testing large-scale networks with complex connectivity 
patterns.  

The Network Editor uses a tree-like representation of the network; see Figure 3. The Add 
Population Button will open the Population Editor, where the user can manually set the size of 
the population.  Alternatively, the size of the population can be set to depend on the size of the 
input, which would allow the user to run the same network with different input structures. 
 

 
Figure 3. The Network Editor is one of the key features that enable KInNeSS users to explore different 
modeling choices including creation of networks (a), populations (b), compartments (c), and channels (d) 
in an easy to use interface.  
 
To facilitate creating large-scale neural networks, KInNeSS can clone whole populations of cells 
with their respective input and output projections.  The user manual provides additional 
information on how the connectivity is managed when populations are cloned. 
 
3. XML Support 
KInNeSS stores the primary representation of a network as a single XML (Extensible Markup 
Language; Bray et al., 2006) file.  Synaptic weights, conduction delays and input stimuli may 
also be represented in separate XML files.  The advantages of using a declarative format such as 
XML are discussed in Goddard et al. (2001).  

KInNeSS supports XML for both import and export of neural network architectures; see 
Figure 4.  KInNeSS is used both to load and save a network from and to its description in a XML 
file, respectively.  This same XML file is directly accessed by the KBrain plug-in which 
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interfaces with SANNDRA; see Figure 4b.  Thus, once a network representation in XML is 
available, it is possible to bypass the KInNeSS GUI and access the network directly from 
KBrain.  This might be useful, for example, to run batch simulations of the same network with 
different parameters, a feature currently under development. 

 
Figure 4.  Relationship between KInNeSS, SANNDRA, and the XML file.  (a) In KInNeSS, populations, 
cell characteristics and projections are stored as part of a hierarchical subtree. (b) KInNeSS accesses and 
saves the network and related structures in XML format.  Network instantiation is then carried out via the 
KBrain plug-in which interfaces with SANNDRA.  (c) In NeuroML, populations, cell characteristics, and 
projections are stored as separate subtrees. 

The XML network files follow an XML schema.  This schema is similar to NeuroML standards 
for such aspects as network topology (NetworkML), biophysical cell properties (ChannelML and 
Biophysics) and cell shape (MorphML).  Figure 4 highlights some of the differences between the 
KInNeSS (a) and NeuroML (c) schemas.  Both formats encode populations of neurons and 
projections between them. KInNeSS network files are laid out in a purely hierarchical form 
where each population contains the set of projections it receives.  NeuroML files, on the other 
hand, encode the sets of populations and projections as siblings.  Also, the population’s cell 
characteristics in KInNeSS are described in the OrientedSubStructure element where it is a child 
of that population element.  These are separately described in NeuroML in the Cells element. 
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Since networks are implemented as XML files, it is in principle possible to translate at 
least some network architectures from other simulation packages to a format admissible by 
KInNeSS (via XSL transformations9).  However, XML standards are not quite sufficient for full 
interoperability between simulators because they require an additional layer between the 
standard and the user (Cannon et al., 2007).  NeuroML represents a key step in standardizing this 
layer.  Planned KInNeSS improvements include altering the network XML schemas to render it 
fully compatible with the latest NeuroML version. 
 
4. Spiking neurons in KInNeSS: Basic modeling principles 
KInNeSS relies on the compartmental modeling approach in which a neuron is implemented as a 
set of compartments representing sections of the neuron's dendritic tree and soma (Bower and 
Beeman, 1998) where each compartment is in turn implemented as an equivalent electrical 
circuit (Rall, 1964).  KInNeSS requires knowledge of the different elements of computational 
modeling and how to exploit them.  This section provides a concise description of the neural 
formalism adopted in KInNeSS. 

Neurons are implemented as branched multi-compartmental structures.  The first 
compartment always defaults to the cell soma and its activity can be visualized during 
simulations.  Up to four dendritic branches can be added to the soma and each dendritic 
compartment can have up to two child branches.  Whereas dendritic compartments are optional, 
it is necessary to have a somatic compartment.  Compartmental dimensions are set in the 
Network Editor interface.  When more than one compartment is introduced, an additional 
parameter must be assigned to determine the resistances between neighboring compartments. 

The compartmental membrane potential V (mV) is based on the following Equation10: 

∑−=
i

im I
dt
dVC , Equation 1 

where Cm is the membrane capacitance (μF) and iI  is the i-th current. For convenience, both 
sides of Equation 1 are divided by the area of the membrane πdl and thus converted to: 

∑−=
i

iM J
dt
dVC , Equation 2 

where CM is the specific membrane capacitance (μF/cm2) and iJ  is the density of the i-th current 
(μA/cm2).  While the area of the membrane πdl factor is hidden within the conductance density 
in many of the currents described below, it appears explicitly in the intercompartmental current 
equations because the axial conductance is independent of the membrane area. 

In KInNeSS, all currents are modeled according to Equation 3: 
)( Eq

i
p

ipii VVggJ −= ∏ , Equation 3 

where ig  stands for the maximum conductance density (ms/cm2) of the current (or current 
channels) when all the gating variables gip in that current are fully open (∏

p
ipg =1).  The 

equilibrium potential of the current is denoted Eq
iV (mV).  A dimensionless gating variable gip 

                                                 
9 http://www.w3.org/TR/xslt.html  
10 The equations in Section 3 follow sign conventions found in the literature.  Note that in the KInNeSS interface, 
this convention is reversed. 
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refers to any of a number of model cell membrane mechanisms that may dynamically influence 
the conductance of a current density iJ . 

Each compartment may receive an arbitrary number of currents in which the user can set 
through the Add Channel Button.  Each current channel has four settings: name, number of 
gating variables, reverse or threshold potential (disabled for some currents), and maximal 
conductance (disabled for injected currents).  These settings apply to all gating variables 

ijg acting on the relevant current channel.  KInNeSS provides a set of default values for current 
channel parameters obtained from the literature, but a user may choose to set parameters to 
arbitrary values.  

The existence of the various types of gating variables ijg  gives the user freedom in 
defining currents with Equation 3.  The user selects the number and nature of the gating 
variables. KInNeSS requires at least one gating variable per current but allows no more than 
three.  All gating variables can be raised to arbitrary integer power. For example, the typical 

+Na  current as defined by (Hodgkin and Huxley, 1952): 
)(3 Eq

NaNaNa VVhmgI −= , Equation 4 

has a total of two gating variables (m3 and h).  Here m is the fraction of the activation gates being 
open, and h is the fraction of the inactivation gates being open. 

Obviously, the gating variables in a single current definition modulate each other’s effect.  
Table 1 lists the types of gating variables implemented in KInNeSS.  Each gate is described in 
the following paragraphs.  
 

Gating variable Specific use in KInNeSS 

 
Injection 
 

 
Current injection 
 

Input Voltage input that drives compartment towards a certain voltage. In 
the case of infinite conductance it turns into a perfect voltage clamp. 
 

Gap Gap junctions 
 

Voltage Classical voltage gates:  
  Exponential 
  Sigmoid 
  Linoid, 
Generalized version that incorporates all three of the above: 
  Parameterized 
And two gates for g∞ /τ form of representation 
  Simple Tau 
  Thalamic Reticular Tau 
 

Ligand Synaptic Currents 
 

Voltage block Voltage dependent blocking of a channel (e.g. Mg2+ for NMDA) 
 

Modulation Neuromodulatory effect on a current  
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AHP/ADP After-hyperpolarization or after-depolarization current 
 

Reduced Pseudo current with quadratic integrate-and-fire to replace a set of 
Hodgkin-Huxley currents 
 

 
Table 1. Gating variables. A channel is obtained by combining up to three of the gating variables listed 
here. 
 
4.1 Injection and input 
The injection and input gating variables are used when a cell compartment is current-injected or 
voltage-driven, respectively, as is commonly done in experimental studies and modeling 
applications.  These are used to provide external input stimuli to the neural network. 

There are four external input channel sources in KInNeSS, allowing the user to 
simultaneously apply four independent inputs to the network. Input channel sources are color-
coded as Red, Green, Blue, and Yellow.  The strength of each input source at a given location is 
noted colorV  in Equation 6 and must be within [0 255].  This strength is indicated by the 
luminance of the corresponding colored square in the Generic Project Environment11.  The use of 
four color-coded sources as the external input makes it easy to import image files where each 
pixel is defined by a four (or less) dimensional vector. 
 In the case of an input gating variable, the current density (Equation 3) simplifies to: 

)( Eq
iii VVgJ −= , Equation 5 

where the driving potential, Eq
iV ,  is determined by the input stimulus as in: 

alpha
i
alphablue

i
bluegreen

i
greenred

i
red

Eq
i VsVsVsVsVV ++++= * , Equation 6 

where the sensitivity variables i
reds , i

greens , i
blues and i

alphas are constants set by the user.  Voltage *V  
corresponds to the resting potential of the compartment.  Thus, in the absence of any input it acts 
as an extra leakage. In the case of an injection gating variable, the current density reduces to: 

alpha
i
alphablue

i
bluegreen

i
greenred

i
redi JsJsJsJsJ +++= . Equation 7 

where the strength of each injection source is denoted Jcolor, and must be within [0 255]. Note the 
absence of a maximum conductance factor ( ig ) in Equation 7. 

Equations 6 and 7 show the magnitude of contribution of a given input source is 
determined by its associated sensitivity setting.  For example, in the case of an injection gate, if 
the value of an input source were 122 units and its associated sensitivity i

colors =10pA/cm2, then 
the resulting contributed current would be 1.22nA/cm2.  Given built-in lower and upper bounds 
on the sensitivity parameters, input currents in KInNeSS can range over multiple orders of 
magnitude.  
 
4.2 Inter-compartmental currents 
Gap junction gates and inter-compartmental currents can also be modeled with Equation 3 in 
which Eq

iV  represents the membrane potential of the neighboring gap-connected or contiguous 
compartments.  However, inter-compartmental gating variables are neither combined with other 

                                                 
11 When loading spatial input patterns from a .png file, the yellow channel represents the alpha channel. 
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gating variables nor varied with time.  Thus, the simplification used in Equation 5 also applies 
here. 

For currents from compartment k+1 to k, the conductance is derived based on the 
Equation 3.3 in Segev and Burke (1998) which states that intercompartmental current kkI ,1+  is: 

( ) 2/1

1
,1

kk

kk
kk RR

VV
I

+
−

=
+

+
+ , Equation 8a 

Converting axial resistances Rk and Rk+1 to specific axial resistances RA using Equation 5.6 in 
Bower and Beeman (1998) yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

+

+

+
+

22
1

1
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and since Equation 1 for compartment k was divided on both sides by πdklk , the “conductance 
density” term ig  for the intercompartmental current in Equation 5 is given by: 
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Equation 9 

where dk and lk stand for the diameter and length of a compartment k and A
iR  is the specific axial 

resistance along the branch, defined for  each pair of connected compartments. The values of dk, 
lk and A

iR are set by the user in the Compartment Editor.  Although kkI ,1+  is symmetric, its effect 
on the voltage in Equation 2 will be different for compartments k+1 and k, depending on their 
respective sizes.  The ratio in Equation 9 places a soft upper bound on the number of 
compartments with realistic parameters that can be used to represent a dendritic segment.  If 
more compartments are desired, less realistic parameters which seek to decrease the ratio in 
Equation 9, or a shorter integration step, will need to be used.  However, this is not a major 
problem given that KInNeSS is designed for network simulations that do not involve such highly 
detailed representations of the dendritic structure.  In the case of a branching intersection, each 
dendritic branch and the trunk is explicitly coupled to a branching point via current densities: 
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, Equation 10 

where VB is the potential of the branching point: 
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where summation is done over all compartments s connected by the branching point. 
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Figure 5.  Equivalent circuit representation of branching neuron. VB is the potential at the branching point 

(Equation 11). Note that 2

2
2 k

A
kkk

d
RlR

π
= corresponds to the actual resistance for branch k in a branching 

intersection (Equation 8a). When two compartments are connected by a non-branching intersection (e.g. 
compartments V3 and V4), specific axial resistance A

kR is the same for both compartments (i.e. 
AA RR 43 = ). 

 
4.2 Gap junctions and passive leak currents 
Gap junction currents also follow Equation 5 with the gating variable calculated: 

kk

J
i

i ld
g

g
π

= . Equation 12 

where J
ig  is a conductance set in the interface and the denominator derives from the division of 

Equation 1 by the membrane area.  Each compartment has one passive leak current, whose 
conductance density and reverse potential are manipulated in the Compartment Editor. 
 
4.3 Voltage-gated channels 
Voltage-gated channels are approximated using the Hodgkin-Huxley formalism (Hodgkin and 
Huxley, 1952), which makes use of voltage-dependent rate variables (α(V) and β(V)). KInNeSS 
provides six function definitions for these rates, summarized in Table 2.  The user also has the 
option to define the behavior of the voltage gates through τj(V) and gj

∞ instead of using the rates 
α(V) and β(V).  According to this notation, τj(V) represents the voltage-dependent activation time 
constant and gj

∞ is the voltage-dependent steady-state. 
 
4.4 Ligand-gated channels 
Ligand-gated channels are normally closed and open only when the neurotransmitter from the 
pre-synaptic cell binds to the receptor and opens the channel.  The conductance change triggered 
by the pre-synaptic spike can cause either an excitatory post-synaptic potential (EPSP) or an 
inhibitory post-synaptic potential (IPSP).  KInNeSS uses a dual exponential approximation of the  
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Dependency type Equation form (α(V) = or β(V) = or τ(V)=) 
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Table 2. Six types of voltage dependence. In Hodgkin and Huxley (1952) rate variables α(V) and β(V) 
were fit to variants of the sigmoid, linoid, and exponential forms respectively. Letters A to F stand for 
parameters that can be set manually, and V is the membrane voltage potential. These functions can be 
adjusted to account for many types of voltage-dependent conductances.  The Exponential, Sigmoid and 
Linoid dependency types are adapted from Hodgkin and Huxley (1952). 
 
conductance change (Bower and Beeman, 1998).  Let st  represent the arrival time of a pre-
synaptic spike from unit i to the synaptic terminal from j to i.  Then, according to the convention 
in Equation 2, the contribution of that spike to the conductance density ijg  at time t of ligand 
gating variable is defined as: 
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where p is a normalizing constant, and τr and τf are manually set rise and fall time constants, 
respectively.  The normalizing constant is governed by Equation 14: 
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In practice p ensures that )(tgij can span the interval [0, 1] due to the action of a single pre-
synaptic spike. In the case of a pre-synaptic spike train, Equation 13 is summed over the last two 
spikes using: 

2121)( ijijijijij ggggtg −+= . Equation 15 

This ensures that both spikes have appropriate contribution to the conductance, but the total 
)(tgij  remains within [0, 1]. Note that these are two spikes of exactly the same presynaptic cell, 

and even if it fires with 100Hz rate, the synapse tracks the last 20 msec.  Almost all biological 
synapses have raise time constants that would bring conductance changes caused by these two 
spikes to domination over conductance changes caused by all previous spikes.  Thus, 
SANNDRA does not keep track of a long series of spikes, which would significantly increase the 
computational load (Köhn and Wörgötter, 1998).  Taking into account the number of receptors 
Nij per membrane area, the resulting ligand-gated current density for synaptic current from j to i 
would be: 

)( Eq
jijijiij VVzNggJ −= , Equation 16 

where EqV is the reversal potential for the chemical channel (e.g. for connection via AMPA 

channels, mVV Eq
i 0≈ ) and zj is the amount of neurotransmitter available in the synapse j at a 

given time. zj equals 1 unless specified by the user in the case of a habituative (or depressive) 
synapse (see below).  The term ijN  in the interface is set using synaptic weight setting. While 

ig is constant across all pre-synaptic projections to cell i for a particular synaptic current iJ  , the 
weight coefficients ijN  are specific for each cell j which corresponds to the traditional weight 
kernel.  

The neurotransmitter released by the pre-synaptic terminal can mediate, or scale, the 
conductance change triggered at the post-synaptic site (Grossberg, 1980; Tsodyks and Markram, 
1987; Abbott et al., 1997).  The accumulation and depletion (or habituation) of neurotransmitter 
zj at the synapse is described by: 

j
jj zt

zB
dt

dz
)(

)(
εδ

τ
−

−
= , Equation 17 

where B=1 is the target level of neurotransmitter at rest, 0 < ε < 1 is the depletion coefficient that 
can scale the amount of neurotransmitter released at every spike, and 0.1 < τ < 2500 is the 
recovery rate (in msec) regulating the rate of neurotransmitter accumulation.  A spike )(tδ  is 
defined for Hodgkin-Huxley spike generation as: 

⎩
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⎧ >Δ−<

=
otherwise

VttVandtVif
t

0
)(0)(1

)( θδ , Equation 18 

where V(t) is the soma membrane voltage at time t, Vθ is the voltage threshold that is invariably 
crossed during spikes (-20 mV),  V(t-Δt) is the soma membrane voltage at time t-Δt that precedes 
the soma voltage crossing 0 mV.  In Equation 17, the neurotransmitter zj accumulates towards 
B=1 at a rate inversely proportional to the recovery rate τ, and habituates (or depletes), by jzε−  
every time a spike occurs.  Neurotransmitter depletion allows the conductance change to be 
multiplicatively gated by the amount of neurotransmitter available, while still ensuring that 0 < 
gijzj < 1.  
 

 



 18

4.5 Voltage block 
Certain synaptic channels are normally closed due to the presence of a blocker.  This is the case 
for NMDA (N-Methyl-D-Aspartic Acid) receptor-channels which are blocked by magnesium 
(Mg2+) ions. As the Mg2+ ions are removed from the channel opening by increasing the cell’s 
potential, they leave way for a slow, depolarizing calcium (Ca2+) current (Zador et al., 1990).  A 
slightly generalized model of this type of blocking mechanism is implemented in KInNeSS 
which takes into account the rate of binding of the blocker to the receptor site: 
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e
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, 
Equation 19 

where η is the concentration of the blocking ion in the extracellular medium.  When the voltage 
blocked gating variable is combined with a typical synaptic gating variable, this results in a 
synaptic current of the form: 
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where index j from Equation 2 was dropped for simplicity.  Parameters A, B and C in Equations 
19 and 20 allow for better control over the binding mechanism of the blocker.  

The formalism for the above-mentioned gates is fairly standard (Bower and Beeman, 
1998).  In addition to these, KInNeSS incorporates a number of additional gating variables not 
readily found in most simulation packages.  These include fast approximations of current 
modulation, after-hyperpolarization and after-depolarization currents (AHP/ADP), and a 
quadratic integrate-and-fire equation that can be used to replace a set of voltage gated channels.  
 
4.6 Current modulation gating variable 
The modulation gating variable can be used to model the effect of a neuromodulator on neuronal 
excitability, synaptic conduction, and synaptic modification (Hasselmo, 1995).   The 
conductance of this gating variable is defined by:  

)(1)( tgtg ijm −= , Equation 21 

where gij(t) is driven by the activity of the modulating cell and is defined by Equation 15.  The 
modulation gating variable can be used in conjunction with a ligand gating variable, which 
results in a neuromodulated synapse.  An example is given by the AMPA (Amino-3-hydroxy-5-
Methylisoxazole-4-Propionic Acid) current suppression with simultaneous learning enhancement 
mediated by medial septum theta-bound input in models of hippocampal area CA3 
(Gorchetchnikov and Hasselmo, 2005).  If used by itself, this gating variable works as a leak 
channel that can be closed by modulation. 
 
4.7 Afterhyperpolarization (AHP) / afterdepolarization (ADP) gating variable 
Some potassium currents cause a smooth reduction in excitability and have been modeled using 
AHP currents (e.g. Prescott et al., 2006).  The AHP/ADP gate implemented in KInNeSS allows 
for such control over a cell's membrane potential following a spike. Moreover, the gating 
variable has a manually set reverse potential.  If this potential is greater than the cell's resting 
potential, the gating variable is an ADP; otherwise, it is an AHP.  The Equations governing the 
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AHP/ADP variable are the same that apply for ligand gating variables (Equations 13-15) except 
that the spikes that govern the gating variable are the ones of the same cell rather than from a 
pre-synaptic cell. 
 
4.8 Quadratic integrate-and-fire model 
Ermentrout and Kopell (1986) reduced the Hodgkin-Huxley equations to a simple equation with 
one variable in the quadratic Integrate-and-Fire model.  The use of this model can speed up the 
simulation significantly when compared to the original Hodgkin-Huxley model, and its extended 
version has been found to be a good approximation for a variety of spiking patterns (Izhikevich, 
2004). The KInNeSS interface enables modulation of the spiking threshold and the source of 
modulation controlling the cell’s excitability.  Originally, the current is given by: 

rqVI −= 2 , Equation 22 

where q is a scaling constant and r is a threshold. In order to make the model compatible with the 
current framework, it is instead implemented in terms of Equation 5 (for derivation see 
Gorchetchnikov and Hasselmo, 2005): 
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where Vθ is the spiking threshold, which is constant for non-modulated cell and given by: 
)()( * tgVVVV ijθθθθ −−= , Equation 24 

for a modulated cell, where θV  and *
θV  are boundaries of threshold change and gij(t) is defined by 

Equation 15. 
 
4.9 Connectivity 
 The user can choose the pre-synaptic cells (through their population) and the type of projection 
(all to one, many to one, and one to one) in the projection source subpanel of the user interface.  
The synaptic weight for the many to one type is calculated according to a Gaussian curve that is 
centered at the coordinates of the selected cell and has variances set by Spread X and Spread Y 
parameters.  The Border Effect box allows to Extend, Expand, or Wrap connectivity between 
cells at the borders of the population. Synaptic connections can be fixed or plastic, with 
modifiable projections allowing the user to implement spike-timing-dependent plasticity (STDP) 
according to four variations of STDP learning: Hebbian, pre-synaptically, post-synaptically, or 
double-gated (Gorchetchnikov et al., 2005).  It is also possible to specify axonal conduction 
delays for synaptic connections.  
 
4.10 Weight modification and learning rules 
STDP is supported by empirical evidence (Levy and Steward, 1983; Markram et al., 1997; Bi 
and Poo, 2001) and is a central focus in biophysically inspired neural network modeling (e.g. 
Kitajima and Hara, 2000; Abarbanel et al., 2002; Gorchetchnikov et al., 2005; Grossberg and 
Versace, 2008).  STDP is defined as the synaptic changes that depend on the precise temporal 
relationship between the pre-synaptic and post-synaptic spikes.  In the most common case, if the 
pre-synaptic spike precedes the post-synaptic spike, the synapse is potentiated.  On the other 
hand, if the pre-synaptic spike follows the post-synaptic spike, the synapse is depressed. 
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KInNeSS implements a STDP-based learning rule (see Gorchetchnikov et al., 2005, for 
analytical derivation of the rule) that uses only local spatial and temporal information; the 
synaptic modification computations depend on the quantities present at the synapse being 
modified and at the current time step.  In the case of spiking neurons, the temporal component of 
the pattern is the specific time difference between the presynaptic spike and the postsynaptic 
spike.  This spike time difference is reliably mapped in synaptic weight magnitude as described 
by the STDP rule:  

))(( 0 wwwwXX
dt
dw

postpre −+−= ()λ , Equation 25 

where λ is a learning rate and Xpre, Xpost are the pre- and post-synaptic contributions to the weight 
change.  The part wwww −+− 0)( ()  is used to limit the admissible weight values to the interval 
[ ww )( , ].  The variable w0 is the baseline weight obtained when there is no correlation between 
pre-synaptic and post-synaptic cells.  The learning rate λ can be either held constant or 
dependent on the time since the last spike of a modulatory cell when learning is modulated: 

)(tg ijλλ = , Equation 26 

where gij(t) is defined by Equation 15. The post-synaptic component is also time dependent and 
defined by the following expression: 
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where A<0, C>0, and -1<D<0 are parameters described by Gorchetchnikov et al. (2005).  The 

user sets w)  and Transition Time through the interface. KInNeSS automatically sets D as
w
w
)

0− , C 

as -0.04D, w( =0, and A as a negative reciprocal of Transition Time. Equation 25 can be extended 
by adding various gating terms to limit the unbounded growth of the synaptic weights 
(Grossberg, 1980): 

)()( postpreGpostpre XXfWXX
dt
dw

⋅= λ , Equation 28 
 

where wwww −+− 0)( ()  is denoted W for succinctness.  The factor )( postpreG XXf  gates the 
learning signals which can be implemented using different equations to capture variations in 
gating (Gorchetchnikov et al., 2005; applied in Grossberg and Versace, 2008; Berzhanskaya et 
al., 2007; Gorchetchnikov and Grossberg, 2007).  KInNeSS implements five such variations, as 
shown in Table 3. 

 
4.11 Data analysis 
KInNeSS outputs neuronal data in a variety of formats easily loaded into software packages, 
such as MATLAB®, for later analysis.  When a detailed analysis of cell biophysics is needed,  
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Gating rule )( postpreG XXf  
  
No gate constant 
  
Pre-synaptically 

preX  
  
Post-synaptically 2

postX  
  
Dual AND 2

postpre XX  
  
Dual OR 2

postpre XX +  
  

 
Table 3. Five types of gating functions. 
 
KInNeSS can store the instantaneous membrane potential12 for all cells in any cell population of 
a given model (see Equation 1).  If instead only a functional analysis of the network is desired, 
KInNeSS can store the spike times for all cells.  The advantage of the latter approach is a 
significant reduction in the disk space necessary to store the results as well as in the time it takes 
to write these results to disk, which results in a consistent speedup in simulation time as shown in 
Section 6. 

One distinguishing feature of KInNeSS is its ability to obtain local field potential (LFP) 
and current source density (CSD) data by simulating the presence of extracellular electrodes in 
the neural network (Grossberg and Versace, 2008).  Both types of measurements are stored in 
external files for analysis and both LFPs and CSDs can be directly visualized in KInNeSS; see 
Figure 6: 

The potential created by a combination of transmembrane currents of multiple neurons in 
a certain volume of tissue is referred to as the local field potential.  The movement of ions across 
the cellular membrane causes the appearance of current sources (locations where current appears 
to flow out of the cells) and current sinks (locations where the current appears to flow into the 
cells). If +

kI and −
jI  are the intensities of current source k and of current sink j, respectively, and 

+
kr  and −

jr  are the distance of an extracellular electrode from the sink and source, respectively, 
then the potential recorded from the tip of an extracellular electrode is (Humphrey, 1979): 
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Here σ is the bulk conductivity of the extracellular medium, set in KInNeSS to a constant value 
of 15 msec/cm.  The calculation of the various transmembrane currents +

kI and −
jI  for each 

compartment is simplified by Kirchoff’s law; the sum of inter-compartmental currents that do  
 
                                                 
12 The membrane potential outputted by KInNeSS is shifted by an amount equal to the leak potential of the 
compartment.  For example, when the user sets the compartmental leakage reverse potential to -60 mV, a value of 
zero in the output file corresponds to a membrane potential of -60 mV. 
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Figure 6. Local Field Potentials (LFP) and Current Source Densities (CSD) of 3-compartment layer 2/3 
cells of a simulated laminar cortical circuit in a 1 sec simulation (Grossberg and Versace, 2008).  The 
display on top right show the somatic membrane voltage of the 9x9 neural sheet, with light gray 
representing depolarized states and dark gray representing hyperpolarized states.  The bottom panels plot 
the CSD and LFP measured with a 24-tip electrode of the selected central cell in the 9x9 sheet.  Lighter 
and darker gray stands for source/sink and depolarization/hyperpolarization in CSD and LFP, 
respectively.    
 
not flow across membrane is equal to the sum of transmembrane currents.  This is particularly 
convenient because inter-compartmental currents are easier to sum due to their limited number.  

Each simulated electrode is composed of a number of electrode tips. Both the 
approximate placement of the electrode and the number of tips are determined by the user. 
KInNeSS allows for 2-51 electrode tips.  The orientation of the electrode is always perpendicular 
to the population sheet of cells being monitored and parallel to each of the cells in a population.  
The distance from the cell at the location selected by the user and the electrode is determined 
probabilistically within the interval [10-200] μm. The distance of the electrode to all other cells 
in the population is similarly determined within the interval [10-1000] μm. This merely 
emphasizes the contribution of the selected cell to the LFP. The spacing between the electrode 
tips is determined from the cell length and the number of tips. First and last tips are positioned 
across from the ends of cells; intermediate tips are evenly spaced between them. 
 The CSD is calculated from the recorded extracellular potentials by approximating the 
second spatial derivative of the recorded voltage.  Let Δx be the distance between neighboring 
electrode tips, then: 
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5. Plug-in development 
KInNeSS users can benefit from various plug-ins which extend its basic functionality.  Users 
with programming skills can create their own plug-ins and incorporate them into the framework.  
The plug-in toolsets allow for the addition of buttons and tabs in the menu or toolbar to give 
accessibility to global functions.  The plug-in feature is ideal for generic commands or tools that 
are desired for multiple models.  An example use of the plug-in toolset is to add a feature of 
loading specialized scripts or a graphing toolset. 

KInNeSS is a KDE13 application that utilizes the KDE KParts functionality which allows 
creating and linking extensions to existing KParts software14.  Developers can dynamically load 
components and actions to merge the plug-in graphical user interface (GUI) with the 
application’s GUI in KParts-based applications.  The KParts plug-in implementation process 
requires four basic steps: implementing a plug-in class, implementing a factory class, adding a 
GUI and adding the functionality.  The plug-in is an extension of an appropriate KPart and 
cannot be run on its own.  Using XML and a KDE defined class KActions, KDE automatically 
integrates the new plug-in with the host application to add or change the behavior. 

Designing plug-ins for KInNeSS requires moderate to advance programming knowledge.  
The classes defined by KDE are well documented and can be implemented with a relatively 
small learning curve.  The challenge of implementing plug-ins is due to the integration process 
between the plug-in and host program KInNeSS that makes use of a complex Makefile.  A 
detailed explanation of how to implement a Makefile and plug-ins specific to KInNeSS can be 
found on the KInNeSS website15.  Familiarity with Makefiles and object oriented programming 
is recommended for implementing a plug-in class. 
 
6. KInNeSS performance 
Many existing software solutions have been developed to match the growing demands of the 
modeling community.  These different simulators and simulation environments are not 
interoperable and vary based on the types of simulation strategies and algorithms employed, the 
level of neural granularity, operating system, XML schemas, and analysis tools (Cannon et al., 
2007).  A comprehensive review of these different simulators is provided in Brette et al. (2007).  
Table 4 was reproduced based on Brette et al. (2007) and shows several key features where 
KInNeSS differentiates itself from the other simulators.   

KInNeSS is the only software that currently allows for both XML import and export.  
Although KInNeSS does not strictly adhere to the NeuroML schema (however future 
development will focus on this issue), this is a key design feature of KInNeSS that will allow for 
easier testing and integration of model designs across various neural simulators.  To the best of 
our knowledge, KInNeSS is one of the few software simulators, along with Catacomb2 (Cannon 
et al., 2002), when compared to the ones evaluated by Brette et al. (2007), that allows a 
simulated agent to be controlled by a neural model (Gorchetchnikov and Hasselmo, 2002; 2005).  
This is important for simulations that aim to link behavioral data with neural modeling. 
                                                 
13 http://www.kde.org 
14 KDE always list native KDE classes with K in the front.  All names that start with K and are followed by a capital 
letter are inherited from KDE native classes. 
15 http://kinness.net/ 
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 KInNeSS NEURON GENESIS NEST CSIM SPLIT 
Operating System  Linux 

Unix 
(KDE) 

Windows 
Linux 
Mac-OS 

Windows 
Linux 
Mac-OS 

Windows 
Linux 
Mac-OS 

Windows 
Linux 
 

Linux 

XML import Yes No** No  No** No No 
XML export Yes Yes No** No** No No 
GUI  Yes Yes Yes No, can use 

Matlab 
No, can use 
Matlab 

No 

Simple Analysis Yes Yes Yes Yes No No 
Complex Analysis No Yes Yes No No No 
Multi-Threading  
 

Yes Yes Yes Yes No** Yes 

Event-Based No Yes No Yes No No 
Clock-Based Yes Yes Yes Yes Yes Yes 
Hodgkin-Huxley 
Model 

Yes Yes Yes Yes Yes Yes 

Integrate-and-
Fire Models 

Quadratic 
Izhikevich** 

Leaky 
Izhikevich 

 
Izhikevich 

Leaky 
Izhikevich 

Leaky 
Izhikevich  

No** 

Cable Equations 
 

No** Yes Yes No No Yes 

Short-Term 
plasticity 

Yes Yes Yes Yes Yes Yes 

Long-Term 
plasticity 

Yes Yes Yes Yes Yes No** 

Conductance-
Based Synaptic 
Interactions 

Yes Yes Yes Yes Yes Yes 

Behavioral 
Environment  
 

Yes No No No No No 

 
Table 4: Feature based comparison of neural network software simulators and simulation environments, 
adapted from Brette et al. (2007) Yes implies that it is either a built-in feature or it can easily be 
implemented with a few minutes of programming.  No implies that this feature was unavailable at the 
time this paper was submitted for publication. ** implies that the feature is planned to be developed for a 
future version.  XML import means that model specifications can be inputted in an XML format.  XML 
export means that the model specifications can be exported in an XML format.  Simple analysis and 
complex analysis imply that the GUI includes tools for i.e. spike counts, correlations, etc, parameter 
fitting, FFT, matrix operations, etc, respectively.  Cable equations means that the software can implement 
compartmental models with dendrites.  Short-term plasticity includes modeling of facilitation and 
depression.  Long-term plasticity includes modeling LTP, LTD, and STDP.  
  
In order to take a closer look at the performance of KInNeSS with respect to these software 
packages, one of the benchmarks listed in the appendix of Brette et al. (2007) was simulated 
using KInNeSS.  These simulations were ran on a 2x AMD OpteronTM Processor 248, 2.2 GHz, 
cache size 1024 making use of only one of the two cores and 2 GB of RAM running  SuSE 
Linux 10 with custom 2.6.18.1 kernel, gcc 4.0.2 20050901 (pre-release) and KDE 3.5.7.  These 
simulations were run on a network of 3,200 excitatory and 800 inhibitory neurons.  The 
excitatory to inhibitory kernel was 6x6 and the inhibitory to excitatory kernel was 8x8.  As a 
result of applying these kernels, a total of 100 projections were created for each excitatory cell 
and thus 320,000 total projections were in the network.   Thus, 2% of the possible 16 million 
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projections were simulated.  An injection current was provided to the excitatory cells to drive the 
network.  This current was randomly generated but remained fixed through the simulation time 
and across simulations.  The simulations were run for 500 msec of simulation time.  Code and 
data from the benchmark is found online16. 

Benchmark 3 in Brette et al. (2007) was described as a conductance-based Hodgkin-
Huxley network.  Consistent with Brette et al. (2007), this network implementation was based on 
voltage gate equations (cf Table 2 and Section 4.3) and parameters from Traub and Miles (1991).  
Results of KInNeSS simulations performed on this benchmark are depicted in Figures 7c.  The 
running time for 500 msec of simulated time was 392 sec.  When the spike and voltage outputs 
of all cells with 20 kHz frequency were saved onto the disk, the running time increased to 496 
sec.  When Benchmark 3 was implemented using NEURON, the simulation time was 234 sec.  
Brette et al. (2007) reported a runtime of 256 sec for 1 sec of simulated time on a single CPU of 
a Beowulf cluster consisting of 6 nodes, dual CPU, 64-bit 3.2 GHz Intel Xeon with 1024 KB 
cache.  In Brette et al. (2007), five simulators, NEURON, GENESIS, NEST, CSIM, and SPLIT 
measured performance on Benchmark 3.  Both GENESIS and CSIM did not report the running 
time of the simulations.  NEST reported 125 sec running time when spikes are suppressed by 
removing initial stimulation and for a simulated time of 1 sec.  NEST used a Sun Fire V40z 
equipped with four dual core AMD Opteron 875 processors at 2.2 GHz and 32 Gbytes RAM 
running Ubuntu 6.06.1 LTS with kernel 2.6.15-26-amd64-server.   SPLIT reported 386 sec of 
running time for 5 sec if simulated time on a 2 GHz Pentium M machine (Dell D810).  Because 
each of these simulations makes use of significantly different hardware, computations being 
performed on differing numbers of CPU cores, and different or unknown simulated times, it is 
very difficult to compare the running time of these simulations. 
 Benchmark 1 in Brette et al. (2007) was described as a conductance-based leaky 
integrate-and-fire network based on Vogels and Abbot (2005) and was indirectly simulated with 
a different version of integrate and fire in KInNeSS.  The simulation setup for these simulations 
was the same as in the simulations of Benchmark 3 and the code is also found online16.  
KInNeSS makes use of the quadratic integrate-and-fire model (Ermentrout and Kopell, 1986) 
explained in Section 4.8.1 rather than the leaky integrate-and-fire model because it is a 
biophysically more realistic model.  Leaky integrate-and-fire models rely on a threshold crossing 
for spikes to fire and thus this equation is not concerned with how fast this threshold is crossed.  
This means that these models only consider the dynamics of the system under threshold.  On the 
other hand, the quadratic integrate-and-fire model uses a dynamical equation to determine when 
a spike would fire and thus these models rely also on super-threshold dynamics.  This means that 
when the threshold is crossed slowly, the spike develops slowly and when the threshold is 
crossed quickly, the spike develops more quickly.  Results of the KInNeSS simulations on the 
quadratic integrate-and-fire model are depicted in Figures 7a, 7b.  

The running time for 500 msec of simulated time was 252 sec.  When saving on disk of 
spike and voltage outputs of all cells with the 20 kHz frequency was included, the running time 
increased to 320 sec.  In Brette et al. (2007), three simulators, NEURON, NEST, and CSIM, 
measured performance on Benchmark 1.  All three simulators made use of the more simplistic 
leaky integrate-and-fire model.  NEURON reported approximately 256 sec running time. NEST 
reported approximately 27 sec of running time when spikes are suppressed by removing initial 
stimulation and for a simulated time of 1 sec.   
                                                 
16 See either ModelDB (https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=113939)  or the 
documentation section of http://www.kinness.net for the code and data.   
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Figure 7. KInNeSS benchmark simulation results. (a) Soma membrane potential plot of excitatory 
neurons 230-240 in the quadratic integrate-and-fire (Benchmark 1) simulation for 500 msec of simulation 
time.  (b) Spike raster of 3200 excitatory neurons in the quadratic integrate-and-fire (Benchmark 1) 
simulation.  (c) Soma membrane potential plot of excitatory neurons 230-240 in the Hodgkin-Huxley 
(Benchmark 3) simulation.   
 
Although KInNeSS performance and running time has been reported on one of the benchmarks 
from Brette et al. (2007) and an indirect comparison to a second benchmark, it is difficult to 
make a comparison to the other simulators (Cannon et al., 2007).  A good comparison needs to 
take into account both running time of simulations as well precision (Rudolph and Destexhe, 
2007).  Furthermore, as was pointed out by Brette et al. (2007), in order for this comparison to be 
undertaken, there must be a common language or framework for these simulation environments 
by making use of XML-based specifications.  KInNeSS has taken a step in this direction by 
including both XML import and export functionality.  In the future, this will be expanded by 
adapting XML schemas that more closely adhere to NeuroML. 
 
7. Future directions 
KInNeSS is an ongoing research effort.  The developers are constantly updating the software and 
developing new modules.  There are currently several projects aimed at improving the 
functionality of the software.  KInNeSS supports the endeavor of creating a common framework 
across neural simulators.  Therefore, KInNeSS will be changing its underlying XML schema to 
be compatible with the NeuroML schema.  This mainly consists of changing the hierarchical 
layout to encode sets of populations and projections as siblings.  In addition, future KInNeSS 
development will look at adding different integration techniques.  A C++ adaptation of the open 
source version of the CVODE17 method previously implemented in XPP is currently being 

                                                 
17 https://computation.llnl.gov/casc/sundials/main.html 
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tested.  It was designed to handle stiff systems of differential equations and will remove the 
limitation on the number of compartments with realistic parameters. 

The Izhikevich neuron model (Izhikevich, 2003) will be added to the list of available 
currents. The inclusion of this model will allow for significant speed-up of simulations presently 
using Hodgkin-Huxley channels.  Two other additions are also being considered for the future.  
First is the enhancement of online data visualization which will allow the user to plot 
compartments membrane voltage over time.  At the present, this can only be done offline using 
third party software applications.  Also, recent modeling work has used KInNeSS to analyze 
LFP/CSD data from the entire depth of a simulated 6-layered cortical structure (Grossberg and 
Versace, 2008).  Currently, the analysis and visualization of LFP/CSD data from neural 
structures with several populations at different depth is done in third party software 
(MATLAB®), but future plans include implementing this capability in KInNeSS. 

Ongoing developments of KInNeSS will lead to new releases available for download.  
KInNeSS users are strongly encouraged to submit suggestions for future developments as well as 
submit changes to the code that can provide enhancements beneficial to the KInNeSS users’ 
community. 

 
8. Conclusions 
The KDE Integrated Neurosimulation Software (KInNeSS) environment contains a wide variety 
of software features that are needed by neurophysiologists, cognitive scientists and modelers in a 
neural simulation environment.  The main focus of the software is to allow the modeler to relate 
fine-grained computational models to simulated behavior.  This task is facilitated by an intuitive 
graphical user interface which speeds up both the initial learning process and continued 
application.  Importantly, KInNeSS offers expandability by providing a base framework for 
software developers to create and incorporate plug-ins into the system and also allow for 
networks to be shared between applications by supporting both import and export of XML based 
model specifications.   

KInNeSS allows the modeler to analyze the network dynamics at different levels of 
granularity, from single compartment and single cells to large-scale dynamics recorded in the 
form of local field potentials and current source densities.  This enables the KInNeSS user to 
compare the simulation results to a growing repertoire of studies that make use of aggregate cell 
recordings to investigate the link between behavior, cognition, and brain activity.  All these 
features combined make KInNeSS a useful tool for a multi-disciplinary software platform that 
would allow closer collaborations to emerge between researchers that gather biophysical data, 
and modelers that use these data to build computational models of animal and human behavior. 
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