
 

Fast Synchronization of Perceptual Grouping in Laminar 

Visual Cortical Circuits 

Arash Yazdanbakhsh1 and Stephen Grossberg2 
 

Department of Cognitive and Neural Systems 

and 

Center for Adaptive Systems 

Boston University 

677 Beacon Street, Boston, MA 02215 

Phone: 617-353-7858 

Fax: 617-353-7755 

Submitted: June 8, 2004 

 
Technical Report CAS/CNS TR 2004-005 

 

All correspondence should be addressed to 

Professor Stephen Grossberg 

Department of Cognitive and Neural Systems 

Boston University 

677 Beacon Street 

Boston, MA 02215 

Phone: 617-353-7858 

Fax: 617-353-7755 

Email:steve@bu.edu 

                                                 
1  Supported in part by the ONR(N00014-01-1-0624)  
 

 
2 Supported in part by the AFOSR (F49620-01-1-0397) and the ONR(N00014-01-1-0624)  
Correspondence concerning this article should be addressed to Stephen Grossberg, Department of Cognitive and 
Neural Systems, Boston University, 677 Beacon St. Boston, MA, 02215, Email: Steve@bu.edu    

 



 1

Abstract 
Perceptual grouping is well-known to be a fundamental process during visual perception, notably 
grouping across scenic regions that do not receive contrastive visual inputs. Illusory contours are 
a classical example of such groupings. Recent psychophysical and neurophysiological evidence 
have shown that the grouping process can facilitate rapid synchronization of the cells that are 
bound together by a grouping, even when the grouping must be completed across regions that 
receive no contrastive inputs. Synchronous grouping can hereby bind together different object 
parts that may have become desynchronized due to a variety of factors, and can enhance the 
efficiency of cortical transmission. Neural models of perceptual grouping have clarified how 
such fast synchronization may occur by using bipole grouping cells, whose predicted properties 
have been supported by psychophysical, anatomical, and neurophysiological experiments. These 
models have not, however, incorporated some of the realistic constraints on which groupings in 
the brain are conditioned, notably the measured spatial extent of long-range interactions in layer 
2/3 of a grouping network, and realistic synaptic and axonal signaling delays within and across 
cells in different cortical layers. This work addresses the question: Can long-range interactions 
that obey the bipole constraint achieve fast synchronization under realistic anatomical and 
neurophysiological constraints that initially desynchronize grouping signals? Can the cells that 
synchronize retain their analog sensitivity to changing input amplitudes? Can the grouping 
process complete and synchronize illusory contours across gaps in bottom-up inputs? Our 
simulations show that the answer to these questions is Yes.   
KEY WORDS: perceptual grouping, binding problem, visual cortex, synchronization, illusory 
contours, bipole cell, horizontal connections, adaptive resonance, LAMINART model 

Introduction: Fast Resynchronization of Desynchronized Cortical Activities 
Neurophysiological recordings from visual cortex show that visual cortex can synchronize the 
activities of spatially separated cells, notably during perceptual grouping (e.g., Bullier, 2001; 
Diesmann et al., 1999; Eckhorn et al., 1988; Gray et al., 1989; Schmidt et al., 1997; Singer, 
1999). Synchrony of firing activity may be within cortical columns, neighboring hypercolumns, 
distant hypercolumns and different cortical areas that represented the same stimulus properties 
like direction and orientation. Synchronized neural activity is also one of the proposed 
mechanisms that may lead to an enhanced, or resonant (Grossberg, 1976, 1980), firing rate 
(Diesmann et al., 1999; Engel et al., 2001; Fries et al., 2001; Hermann et al., 1995; 
Yazdanbakhsh et al., 2002). Gamma frequency synchronization, in particular, is suggested as a 
mechanism to enhance the impact on postsynaptic neurons and is found in visual cortex 
associated with perceptual grouping (Gray et al., 1989; Maldonado et al., 2000). Gamma 
frequency synchronization causes spikes to coincide within 10 ms (Fries et al., 2001). The time 
constant of cell membrane potentials varies within the range of 15± 10 ms, thereby allowing 
efficient temporal summation of spikes within a 10 ms time range, which is consistent with a 
pronounced firing rate if gamma synchronization of neural activity occurs.  
 Perhaps the earliest model to predict synchronous binding of distributed activations 
in visual cortex was that of Grossberg (1976, 1980), which focused on how bottom-up filtering 
and top-down attentional processes could cause fast synchronization through a feedback process 
called adaptive resonance. Since that time, a variety of models have attempted to simulate a 
synchronization property. Some neural models demonstrated synchronization using integrate-
and-fire neurons in a feedforward network (Burkitt and Clark, 1999; Diesmann et al., 1999; 
Hermann et al., 1995; Yazdanbakhsh et al., 2002). They use inter-layer divergent and convergent 
connections to provide a shared or overlapping input to the cells of successive model layers to 
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correlate, and thus synchronize, activity of successive layer cells. These feedforward models do 
not, however, fit a wide variety of perceptual and brain data about the roles of perceptual 
grouping and attention in the cortical synchronization process.  
 Grossberg (1984) and Grossberg and Mingolla (1985a, 1985b) introduced a visual 
cortical model that simulated a wide range of data about perceptual grouping using long-range 
horizontal connections which obey a bipole property. This and subsequent work demonstrated 
how bipole grouping cells could help to complete boundary representations, including illusory 
contours, to form a grouped object representation. Many perceptual and neurobiological data 
about the role of horizontal long-range connections in perceptual grouping, notably cells that 
obey the bipole property, have since been reported. A notable example is the pioneering article 
of von der Heydt, Peterhans, and Baumgartner (1984) that directly demonstrated a bipole 
property through neurophysiological recordings in visual cortex while an animal inspected 
illusory contour stimuli. The anatomical study of Gilbert et al. (1989) reported long-range 
horizontal connections between the same functional units (i.e., tuned to the same orientation) in 
cat visual areas 17 and 18. Gilbert et al. (1989) concluded that a prominent and stereotypical 
feature of striate cortical circuitry is a plexus of long-range horizontal connections, running for 
6-8 mm parallel to the cortical surface, which has a clustered distribution. Field et al. (1993) and 
Shipley and Kellman (1992) described psychophysical evidence of long-range cooperation that 
supported a bipole property. They called these cells and their interactions an association field. 
See Grossberg (1994, 1999), Grossberg, Mingolla, and Ross (1994), and Raizada and Grossberg 
(2003) for reviews of additional supportive data. 
 Long-range interactions are of importance if only because not all object parts are 
always present explicitly on the retinal image. The visual system has to process objects that are 
partially occluded by external barriers like tree branches, or internal ones like retinal vasculature 
and the blind spot. Perceptual grouping is a key process that can bridge these spatially disjoint 
parts of the same object representation, notably via illusory contours. Grossberg (1994) has 
clarified why some of these boundary completions look like visual illusions to us, whereas others 
look “real”. 
 Given the model’s initial success in interpreting perceptual grouping data, the 
question arose whether its neural responses to perceptually grouped inputs can rapidly 
synchronize. Grossberg and Somers (1991) and Grossberg and Grunewald (1997) tested the 
hypothesis that one role of synchronization is to rapidly resynchronize distributed inputs that 
belong to the same object. Such inputs may become desynchronized because different locations 
may process different luminances, contrasts, depths, and colors that may activate cells at 
different rates. In addition, previously processed objects may leave cells in different states of 
habituation (Grossberg, Hwang, & Mingolla, 2002) that can also change their processing rates, 
as is illustrated by the phenomenon of visual persistence (e.g., Francis, Grossberg, and Mingolla, 
1994). In order to process the entire object, without temporal leads and lags that could allow 
some object features to become bound to the wrong object when quickly viewing a series of 
objects through time, it was important to test that a bipole circuit (Figure 1a) could rapidly 
resynchronize desynchronized cell responses. Uncoupled cells that started desynchronized 
remained desynchronized (Figure 1b), but coupling the cells using bipole receptive fields 
enabled them to rapidly synchronize (Figure 1c). These bipole grouping cells were similar to the 
ones used by Grossberg and Mingolla (1985a, 1985b) and had no synaptic and neural conduction 
delays. Somers and Kopell (1993) mathematically analyzed why the circuit of Grossberg and 
Somers (1991) could rapidly resynchronize desynchronized activities. Grossberg and Somers 
(1991) also tested that other cell interactions could rapidly resynchronize desynchronized signals, 
notably through the type of bottom-up and top-down signal exchanges that had been predicted as 
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part of how brain attention is linked to processes of learning, as part of Adaptive Resonance 
Theory, or ART (Carpenter & Grossberg, 1991; Grossberg, 1976, 1980). 

 

 

 
Figure 1. (a) The architecture used by Grossberg and Somers (1991). Fast excitatory 
cells are connected to slow inhibitory cells. This fast versus slow time constant can 
generate oscillations in suitable situations.  (b) If the cells are not connected, then their 
initial out-of-phase activities remain out-of-phase through time with an approximately 
constrain oscillation jitter. (c) The out-of-phase activities rapidly synchronize, within a 
single oscillation cycle. 

  
Since these results were derived, models of visual cortex have developed considerably to better 
understand how cortical circuits control a variety of perceptual functions, leading to a 
LAMINART model whose circuits correspond to identified cells in different cortical layers. This 
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LAMINART model has explained and simulated data about perceptual grouping and attention 
(Grossberg, 1999; Grossberg, Mingolla, and Ross, 1997; Grossberg and Raizada, 2000; Raizada 
and Grossberg, 2001, 2003), stereopsis and 3D surface perception (Fang and Grossberg, 2004; 
Grossberg and Cao, 2004; Grossberg and Howe, 2003; Grossberg and Swaminathan, 2003), 3D 
figure-ground segregation (Grossberg and Yazdanbakhsh, 2003a, b), and cortical development 
(Grossberg and Seitz, 2003; Grossberg and Williamson, 2001).  
 The LAMINART model represents a unification and elaboration of the pre-
attentive perceptual grouping circuit of Grossberg and Mingolla (1985a, 1985b) and the attentive 
ART circuit of Grossberg (1976, 1980). In particular, the circuit that realizes the bipole property 
in the LAMINART model differs from that in the earlier Grossberg and Mingolla model, as do 
details about how the different cortical layers interact to achieve perceptual grouping and 
attention. Having thus been constrained by a variety of perceptual, developmental and cortical 
data, the question remains whether the more realistic LAMINART model can rapidly 
synchronize. This article demonstrates that fast resynchronization still occurs in such a laminar 
cortical circuit when realistic synaptic and axonal delays are included. Aspects of these results 
were briefly reported in Yazdanbakhsh and Grossberg (2003a, 2003b).  
 
A New Way to Compute:  A Synthesis of Feedforward, Feedback, Digital, 
Analog, Synchrony, Grouping, Attention, Learning, Separabability, Choice, 
and Speed  
The LAMINART model brought into focus several new problems and proposed solutions thereof 
about the dynamics of cortical processing. As noted below, key properties of this model depend 
upon the existence of balanced excitatory and inhibitory signals in different cortical layers. In 
particular, a balance between excitation and inhibition is needed in the bipole circuit in layer 2/3 
to ensure that perceptual groupings can form inwardly between pairs or greater numbers of 
inducers, but not outwardly from a single inducer. Likewise, a balance between excitation and 
inhibition is required in the on-center of a circuit from layer 6-to-4 that can provide excitatory 
modulation of cell activities in layer 4, but not fire them fully. This latter circuit plays an 
important role in attention and in the pre-attentive selection of a correct perceptual grouping in 
response to a complicated scene. Grossberg and Williamson (2001) proposed that such balanced 
circuits are needed for the cortex to develop and learn in a stable way, and simulated how such 
balanced connections could grow during cortical development. 
 On the other hand, balanced excitatory and inhibitory connections have also been 
used to explain the observed variability in the number and temporal distribution of spikes emitted 
by cortical neurons. Several model studies have shown how balanced excitation and inhibition 
can produce the highly variable interspike intervals that are found in cortical data (Shadlen and 
Newsome, 1998; van Vreeswijk and Sompolinsky, 1998). Given the LAMINART model 
proposal that such variability may reflect mechanisms that are needed to ensure stable 
development and learning by cortical circuitsthat is, “stability implies variability” the cortex 
is faced with the difficult problem that variable spikes are quite inefficient in driving responses 
from cortical neurons. The present results illustrate how these balanced excitatory and inhibitory 
connections can work together to overcome the inefficiency of intermittent spiking by 
resynchronizing desynchronized signals that belong to the same object, and thereby ensuring that 
the cortex processes them efficiently. 
 The LAMINART model embodies a novel way to compute in several other senses. 
It represents a new type of hybrid between feedforward and feedback computing, and also 
between digital and analog computing (Grossberg, 2004) for processing perceptual groupings as 
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well as other types of distributed data. These properties go beyond the types of Bayesian 
formulations that are so popular today. The LAMINART model predicts that they allow the fast 
but stable self-organization that is characteristic of cortical development and life-long learning.  
 In particular, when an unambiguous scene is processed, the LAMINART model can 
quickly group the scene in a fast feedforward sweep of activation that passes directly through 
layer 4 to 2/3 and then on to layers 4 to 2/3 in subsequent cortical areas. This property clarifies 
how recognition can be so fast in response to unambiguous scenes; e.g., Thorpe et al. (1996). On 
the other hand, if there are multiple possible groupings in a scene, say in response to a complex 
textured scene, then competition among these possibilities due to inhibitory interactions in layers 
4 and 2/3 can cause all cell activities to become smaller. This happens because the competitive 
circuits in the model are self-normalizing; that is, they tend to conserve the total activity of the 
circuit. This self-normalizing property is related to the ability of the shunting on-center off-
surround networks that realize these competitive circuits to process input contrasts over a large 
dynamic range without saturation (Douglas et al., 1995; Grossberg, 1973, 1980; Heeger, 1992). 
In other words, these self-normalizing circuits carry out a type of real-time probability theory in 
which the amplitude of cell activity covaries with the certainty of the network’s selection, or 
decision, about a grouping. Amplitude, in turn, is translated into processing speed. Low 
activation greatly slows down the feedforward processing in the circuit because it takes longer 
for cell activities to exceed output thresholds and to activate subsequent cells above threshold.  
 In the model, network uncertainty is resolved through feedback: Weakly active 
layer 2/3 grouping cells feed back signals to layers 6-then-4-then-2/3 to close a cortical feedback 
loop that rapidly contrast enhances and amplifies the winning grouping. As the winner is 
selected, and weaker groupings are suppressed, its cells become more active, hence can again 
rapidly send the cortical decision to subsequent processing stages. In summary, the LAMINART 
circuit behaves like a real-time probabilistic decision circuit that operates in a fast feedforward 
mode when there is little uncertainty, and automatically switches to a slower feedback mode 
when there is uncertainty. Feedback selects a winning decision that enables the circuit to speed 
up again. In all, activation amplitude and processing speed both increase with certainty. The 
large activation amplitude of a winning grouping is facilitated by the synchronization that occurs 
as the winning grouping is selected. 
 The LAMINART circuit also embodies a novel kind of hybrid computing that 
simultaneously realizes the stability of digital computing and the sensitivity of analog 
computing. This is true because the feedback loop between layers 2/3-6-4/-2/3 that selects or 
confirms a winning grouping has the property of analog coherence (Grossberg, 1999; Grossberg, 
Mingolla, and Ross, 1997; Grossberg and Raizada, 2000); namely, this feedback loop can 
synchronously store a winning grouping without losing analog sensitivity to amplitude 
differences in the input pattern. The coherence that is derived from synchronous storage in the 
feedback loop provides the stability of digital computing, while preserving the sensitivity of 
analog computation. 
 A final property of note in a LAMINART circuit concerns its ability to stabilize 
development and learning using the intracortical feedback loop between layers 2/3-6-4-2/3 by 
selecting cells that fire together to wire together. Thus, the same intracortical decision circuit is 
predicted to help stabilize development in the infant and learning throughout life, as well as to 
select winning groupings in the adult (Grossberg, 1999). Thus, properties of perceptual grouping 
in the adult are predicted to be constrained by the requirements of stable development in the 
infant. This intracortical circuit can work even before intercortical attentional feedback can 
develop to also stabilize cortical development and learning.  
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 An early prediction of ART was that top-down attention can modulate the learning 
process through a competitive matching process (Grossberg, 1976, 1980), and later modeling 
studies refined this prediction to assert that the top-down matching circuit is realized by a 
modulatory on-center off-surround network, as described above. A great deal of perceptual and 
brain data have accumulated in support of this hypothesis; see Grossberg (2004) and Raizada and 
Grossberg (2003) for reviews of these data, including the popular “biased competition” phrase 
for this process.  
 The LAMINART model thus predicts that both pre-attentive grouping and top-
down attention share the same modulatory on-center off-surround decision circuit from layer 6-
to-4. This sharing by grouping and attention of the same decision circuit enables the model to 
explain and simulate data concerning how attention can selectively activate an entire object by 
propagating along its boundary representation (Grossberg and Raizada, 2000; Roelfsema et al., 
1998). This property of the LAMINART model also implies another prediction; namely, 
intracortical feedback ensures that a “pre-attentive grouping is its own attentional prime” and can 
thereby stabilize its own development and learning. This prediction implies that, although 
attention is often needed for efficient learning to occur, learning can also occur without 
conscious attention if a pre-attentive grouping can “resonate,” in particular synchronize, for a 
sufficiently long time using its intracortical 2/3-6-4-2/3 feedback circuit.  Seitz and Watanabe 
(2003) have recently reported data that are consistent with this prediction. 

Cortical Grouping by the LAMINART Model 
This section reviews the basic architecture of LAMINART by describing how it incorporates 
physiologically and anatomically supported connections between layers of visual cortex. Here 
we give just enough detail to make the article self-contained. As Figure 2a shows, the input from 
LGN directly excites layers 4 and 6 of V1. Layer 6 also directly excites layer 4 cells and 
indirectly inhibits them through inhibitory interneurons. Due to the balance between excitation 
and inhibition in the on-center of the circuit from layer 6 to 4, the excitatory effect of layer 6 on 
4 is modulatory (Grossberg, 1999; Grossberg and Raizada, 2000), whereas the off-surround can 
be strongly suppressive (Stratford et al., 1996; Callaway, 1998). This modulatory on-center off-
surround network is part of the pre-attentive and attentive competitive decision circuit that was 
described in the previous section. Due to this modulatory property, input from layer 6 to layer 4, 
by itself, is predicted to be unable to fire the formation of perceptual groupings, such as illusory 
contours, in layer 2/3. The presence of inhibitory interneurons in this circuit (Ahmed et al., 1997; 
Tamas et al., 1998) adds synaptic and conduction delays that can desynchronize neural activity. 
These delays are implemented in the present simulations in addition to the rest of the 
LAMINART grouping circuit to test if their presence prevents synchronization of neural activity.  

As Figure 2b shows, layer 4 cells excite layer 6 cells as well as 2/3 excitatory 
pyramidal cells (Fitzpatrick et al., 1985; Callaway and Wiser, 1996). The intracortical feedback   
between layers 6 and 4 has been predicted to play an important role in models of cortical 
development, notably in the development of the cortical map of interleaved orientation columns 
and ocular dominance columns; e.g., Grossberg and Seitz (2003), Grossberg and Williamson, 
2001), and Olson and Grossberg (1998). The layer 2/3 cells that are activated by layer 4 have 
long-range horizontal axons to integrate perceptual grouping signals along coaxial and co-
oriented receptive field axes (Bosking et al., 1997; Schmidt et al., 1997). These axons also excite 
layer 2/3 short-range inhibitory interneurons (McGuire et al., 1991; Hirsch and Gilbert, 1991), 
which in turn inhibit the excitatory cells of layer 2/3. The balance between horizontal excitation 
and inhibition in this circuit results in the bipole property whereby perceptual groupings can 
form inwardly in response to pairs, or greater numbers, of approximately coaxial and co-oriented  
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Figure 2. Key circuit features of the LAMINART model: (a) LGN excites both layers 6 
and 4. Layer 6 indirectly inhibits layer 4 through the inhibitory interneurons. Therefore, 
the excitation from layer 6 to layer 4 is modulatory (direct excitation approximately 
balanced by indirect inhibition). (b) Layer 4 directly excites layer 6. This combined with 
the 6 4 inhibition can generate oscillations in a suitable parameter range. Layer 4 also 
excites layer 2/3 cells, which have long horizontal axonal connections that also input to 
hort-range inhibitory interneurons. The convergent excitation and inhibition results in the 
bipole property at target layer 2/3 cells. The cells in layer 2/3 send feedback to layer 6, 
which in turn subliminally excites layer 4 in the on-center and can strongly inhibit layer 4 
cells through the off-surround. (c) Attention can also activate layer 6, and thereby have a 
modulatory effect on layer 4 that can help to select which grouping will win. 
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inputs (Tucker and Katz, 2003a, 2003b), but not outwardly in response to individual inputs. 
Layer 2/3 excitatory cells, in turn, excite layer 6 cells (Figure 2b). This is the intracortical 
decision circuit, discussed above, that helps to stabilize cortical development and to select a 
winning grouping.  

 
Finally, Figure 2c indicates that one pathway whereby top-down intercortical 

attention can influence the circuit is also via the 6-to-4 decision circuit. This property indicates 
how attention can influence which perceptual grouping is chosen; in particular, how attention can 
selectively activate an entire object representation. 

Comparison of the Grossberg and Somers (1991) network (Figure 1a) with the 
LAMINART network (Figure 2) shows that, in the former, the loop between bipole cells and fast 
excitatory cells crosses two synapses. However, in the LAMINART circuit, if we consider the 
indirect inhibition from layer 6 to 4, the number of synapses within a loop is four, each with a  
delay. In addition, the positive feedback from layer 6 to 4 is modulatory in the LAMINART 
circuit, but could actively fire cells in the Grossberg and Somers network. Finally, the 
LAMINART model layer 2/3 bipole grouping cells includes multiple delays whereby outwardly 
propagating excitatory signals along long-range horizontal connections excite their neighbors, as 
well as inhibitory interneurons, in order to realize the bipole property; see the Appendix. None of 
these delays were considered by Grossberg and Somers (1991), who simulated an earlier version 
of the bipole cell model with zero delays.  

LAMINART Synchronization without Bipole Grouping  
As in the Grossberg and Somers (1991) methodology, we first test the situation where no bipole 
grouping cells are involved and then add them to evaluate their effect on synchronization. These 
simulations show that, given a constant input pattern from the LGN (Figure 2a), fast 
synchronization occurs even without bipole connections (Figure 3). This is in contrast with the 
decoupled case that was considered by Grossberg and Somers (1991) in Figure 1b, where the 
oscillations remained uncorrelated in time. This novel finding can be interpreted in terms of 
divergence and convergence of axonal branches of layer 6 that excite the inhibitory interneurons 
of layer 4 (Figure 2a). In this regard, some networks with inhibitory connections within their 
circuit have previously been shown to exhibit a synchronizing tendency (Brunel, 2000; Burkitt 
and Clark, 1999; van Vreeswijk et al., 1994; Yazdanbakhsh et al., 2002). However, this result 
cannot be taken for granted, because inhibitory connections within other circuits can also exhibit 
a desynchronizing tendency (Campbell et al., 1999; Grossberg, Pribe, and Cohen, 1997; Pribe, 
Grossberg, and Cohen, 1997). The standard deviation of the oscillation phase slightly increases 
from ~1ms (right after fast synchronization) to ~2 ms (after a few oscillations). This slight 
increase also occurred in the delay-less circuit of Grossberg and Somers (1991).  
  Figure 4 shows that this synchronization is primarily due to inhibitory interactions by 
demonstrating that the effect of an input from layer 6 to layer 4, by itself, can only modulate the 
excitability of layer 4 cells. 

From a functional perspective, the synchronization that occurs without bipole 
grouping may be interpreted as a result of the feedback interactions which enable the cortical 
map and cortical receptive fields to develop, even before eye opening, and before there is a 
significant perceptual role for perceptual grouping to play; cf., Olson and Grossberg (1998). 
 
 



 9

 
 
 
 
Figure 3. Activity of the different layers of the LAMINART circuit with no horizontal 
bipole connections within layer 2/3. Each panel is composed of superimposed oscillatory 
activity of all 40 cells. Layer 4 excitatory, inhibitory, and layer 6 cell activities are 
shown. The initial activity of the all layer units are randomly set (uniform random 
distribution between 0.2 and 0.8) to bring them into different phase relations. This 
random initiation can be seen easily by looking at the ordinate of layer 6 and 4 activity 
panels. Fast resynchronization funnels all of the activities together within a small fraction 
of one oscillation period and afterward they oscillate together. The jitter curve shows that 
the jitter after this funneling-in of curves is on the order of 1-2 milliseconds. There is also 
a slight increase of oscillation standard deviation in time (from ~1ms to ~2ms).  

 
 
What is the Contribution of Bipole Grouping Cells? 
Figure 5 summarizes the fast synchronization that occurs when cells in layer 2/3 start out with 
desynchronized activities and bipole grouping cells are also included within the circuit, but there 
are no bottom-up inputs from LGN. This synchronization is due to recurrent interactions among 
the layer 2/3 cells themselves, since feedback to layer 2/3 via the feedback loop 2/3-6-4-2/3 is 
merely modulatory. This simulation shows that synchronization is not due merely to the erosion 
of initial values in response to a sustained external input, because there is no external input in 
this case. This result differs from that in Grossberg and Somers (1991) in several ways: The 
LAMINART model allows groupings to form in a fast feedfoward sweep within layer 2/3, which  
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Figure 4. This simulation shows that inputs within the on-center of the network from 
layer 6 to layer 4 can only provide excitatory modulation of layer 4 cells, but cannot fire 
these cells strongly. Strong inhibition within the off-surround can also occur. 

 
the earlier grouping model did not, and also allows grouping signals to recurrently propagate 
within layer 2/3, whereas in the earlier grouping model, signals propagated between cortical 
layers.   
 Figure 6a and 6b show that fast synchronization of desynchronized initial activities 
can also occur when bipole grouping cells exist in response to a sustained LGN input, both for 
real and illusory contours, respectively. The result for illusory contours (middle panel of 6b) 
shows that the model can complete boundaries across partially occluded regions of an object. 
Figure 6c shows that illusory contour completion does not occur when there are no bipole cells in 
the circuit. Compared to Figure 3, two quantitative differences can be observed in Figure 6: First, 
the absolute value of the standard deviation of oscillation phase is less; and second, the slope of 
the slight increase through time in the standard deviation is less.  
 Figure 7 shows that the synchronization process preserves analog sensitivity to the 
amplitude of LGN inputs, both for real and illusory contours. In other words, the LAMINART 
model proposes a solution of the binding problem that preserves the property of analog 
coherence (Grossberg, 1999): Its selection process can coherently and synchronously bind 
together spatially distributed activities, indeed can complete across them, without a loss of  
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Figure 5. Here the bipole grouping cells are included, and are connected to layer 6, as 
shown in Figure 2b. The inputs from the LGN are zero, and the cells again start out with 
randomly set initial values. Fast synchronization again occurs, this time via the recurrent 
layer 2/3 long-range connections. 

 
analog sensitivity to input amplitude. The simulations show that these context-sensitive 
representations can be synchronized throughout all the layers of cortex, despite the many 
additional delays that occur across the layers and within the bipole grouping process.     

Summary  
 

This article tests the possibility of fast resynchronization and its stability within laminar visual 
cortical circuits with realistic axonal and synaptic delays. The simulations show that laminar 
organization, even without bipole grouping, can support fast synchronization. This 
synchronization is due to the anatomical divergence and convergence within inter-layer 
inhibitory interactions from layer 6 to 4, and the recurrent feedback between these layers, which 
can generate synchrony on a millisecond time scale. Adding bipole grouping has three effects: 
Completing boundaries between occluded parts of an object, decreasing the absolute value of the 
standard deviation of the oscillation phase, and providing more stability of the fast 
resynchronization process. The result that previously activated bipole grouping cells can support 
fast synchronization without bottom-up inputs shows that synchronization is not just a matter of 
forgetting initial values due to large external inputs. It also raises the question of how groupings 
are shut off. This question has been investigated in terms of properties of visual persistence, 
whose habituative mechanisms are fully consistent with the simulations reported herein (Francis 
and Grossberg, 1996; Francis, Grossberg, and Mingolla, 1994). 
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Figure 6. Here the bipole grouping cells are again included in (a) and (b), and constant 
inputs from the LGN are on. Again the network rapidly synchronizes, even though there 
are no LGN inputs to cells 18-23 of layers 6 and 4 in (b). Comparing the oscillation 
pattern with that in Figure 3 shows that, first, the absolute value of the oscillation jitter is 
less and, second, that the slight increase of the oscillation jitter is less too. (c) When there 
is no bottom-up LGN input to cells 18-23, and no bipole grouping cells, then the initial 
randomized activities of these cells fade away. The lateral cells (1-17 and 24-40), 
however, follow the same pattern of fast synchronized oscillation as in (a) and (b). Thus, 
the bipole grouping cells are needed to complete groupings across occluded image 
regions to form illusory contours.  
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 If there is a rapid change of the stimulus, say as an object moves, there may not be 
enough time for oscillations to develop. In this case, fast resynchronization can still help the 
system to compute coherent data from different aspects of the object without necessarily 
generating a sustained oscillation. This fact shows the importance of fast synchronization of 
spatially disparate object parts. The simulations show that this fast resynchronization can take 
place on the order of a fraction of one oscillation period (consider the fanning-in of the 
uncorrelated oscillations of layer 4 excitatory and layer 6 cells). Therefore, even there is not 
enough time for LAMINART to oscillate, or the network parameters do not generate oscillations, 
fast resynchronization is there to group neural activities in the appropriate time frame. The model 
also clarifies how it can sometimes take much longer for a final grouping to develop when there 
are many possible interpretations of a scene, or the bottom-up inputs are sufficiently sparse and 
ambiguous to require significant boundary completion before object recognition is possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The activities of layer 2/3 cells retain their analog sensitivity to LGN input 
amplitude for both real and illusory contours. In (a), oscillations for different LGN inputs 
are shown. In (b), the solid curve shows the oscillation amplitude versus LGN input in 
the real contour case. The dotted curve shows the same in the illusory contour case.    
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APPENDIX 
In the present simulations, 40 cells per model cortical layer are considered. Cells in layers 6, 4, 
and 2/3 are simulated. These cells are organized in a ring architecture to avoid spurious boundary 
effects; see also Grossberg and Somers (1991). Layers 6 and 4 inhibitory and excitatory cell 
initial activities were drawn from a uniform random distribution to mimic the role of 
desynchronized activity. The LGN input ( iL ) of all cells is constant in time and is equal to 5.   
 Layer 6 cell activities, ),()6( tX i are governed by the following membrane, or 
shunting equation (Grossberg, 1973; Hodgkin and Huxley, 1952): 

  ( ))()())(()(
)( )3/2()4()6()6(

)6(

SyiSyiiii
i dtXdtXLtXBtX
dt

tdX
−+−+−+−= α ,           (1)  

where )()4( tX i  and )()3/2( tX i  are signals from the ith cell of layers  4 and 2/3 at time t, 
respectively. Term )()6( tX i−  on the right hand side of (1) says that activity )()6( tX i decays at rate 
-1. Parameter B = 1 in the shunting term )()6( tXB i− is the upper limit of activation in response to 
the summed input ( ))()( )3/2()4(

SyiSyii dtXdtXL −+−+ α  on the right hand side of (1). Parameter 

Syd  denotes the synaptic delay and is 1ms (Kandel, Schwartz, and Jessell, 1985). Parameter α  
defines the connection strength of the layer 2/3 excitatory cell to the corresponding layer 6 cell 
and equals 7 in the simulation of Figure 6 and zero in Figure 3. By increasing α  from zero to 7, 
the oscillation jitter decreases and the synchrony stabilizes in time. As Figure 2b shows, layer 4 
and 2/3 cells connect corresponding layer 6 cells by crossing one synapse. Therefore in (1), the 
activity of inputs from layer 4, )()4(

Syi dtX − , and from layer 2/3, )()3/2(
Syi dtX − , are one 

synaptic delay, Syd , behind the activity, ),()6( tX i  of the corresponding layer 6 cell in time. 

 The activity, )()4( tYi , of inhibitory interneurons of layer 4 cells obeys: 

∑
+

−=
+ −−−−+−=

M

Mj
SyAxjijiSyii

i ddjtYWtYdtXtY
dt

tdY
)||()()()(

)( )4()4()6()4(
)4(

γ . (2) 

On the right hand side of (2), the activity of layer 6 cells, ),()6(
Syi dtX −  provide the excitatory 

input to layer 4 inhibitory interneurons. Term ∑
+

−=
+ −−−

M

Mj
SyAxjiji ddjtYWtY )||()( )4()4(  on the right-

hand side of (2) implements recurrent shunting inhibition among inhibitory interneurons, 
),||()4(

SyAxji ddjtY −−+  which are connected via a Gaussian kernel jW : 

( )2
2 )/(5.0exp

2
1 σ
πσ

jW j −= .     (3) 

The inhibition ensures that excitation from layer 6 to 4 has a modulatory effect on layer 4, and 
also tends to normalize the total activity of the inhibitory interneuronal population. This equation 
includes two types of delays: synaptic, Syd , and axonal, Axd . All the recurrent interneuron 

inhibitions from layer 4, ),||()4(
SyAxji ddjtY −−+  are lagged by a constant synaptic delay, because 

there is one synaptic distance between layer 4 inhibitory interneurons which inhibit each other. 
Besides this constant synaptic delay, each )||()4(

SyAxji ddjtY −−+  is delayed by axonal delays on 
the right hand side of (2). These axonal delays are scaled by | j |, the number of neighboring cells 
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between the input cell at location (i+j), as in )4(
jiY + , and location (i), where the layer 4 inhibitory 

interneuron, ,4
iY  gets its input. In other words, Axd   is the axonal delay per axon length which 

connects two neighboring units. The axonal parameter Axd  equals 2 ms/(one unit of neighboring 
offset). This axonal delay estimate used the conduction velocity 0.5 m/s of horizontal axonal 
connections (Bullier, 2001). Since one unit of horizontal positional shift, equivalent to one 
hypercolumn in spatial extent, is 1 mm, we find 0.001 m/0.5 = 2 ms. Parameter σ = 4 
and 6.0=γ .  
 Layer 4 cell activities, ),()4( tX i  obey the following membrane equation with the 
same parameter B as in (1):  

.)||()())())((()(
)( )4()4()6()4()4(

)4(

∑
+

−∈
+

− −−−−+−+−=
M

Mj
SyAxjijiSyiiii

i ddjtYWtXdtXLtXBtX
dt

tdX
η  (4) 

The LGN provides the direct excitatory input, ,iL  to the right hand side of (4). The excitatory 
input, )()6(

Syi dtX −+η , from layer 6 to 4 has a modulatory effect on the activity of layer 4 cells, 

)()4( tX i , that is, without, ,iL the balance of excitation from layer 6 and inhibition by inhibitory 
interneurons of layer 4, ),()4(

Syi dtY −  just slightly increase the activity of layer 4 cells ).()4( tX i  

The shunting inhibitory term ∑
+

−∈
+

− −−−
M

Mj
SyAxjiji ddjtYWtX )||()( )4()4(  on the right hand side of (4) 

shows that corresponding layer 4 inhibitory interneurons )||()4(
SyAxji ddjtY −−+  with related 

synaptic and axonal delays ( Syd  and Axd respectively), inhibits the layer 4 cell activity )()4( tX i . 

In (4), the lower limit for the activity of activity of )(4 tX i  is zero (shunting property). Kernel W 
is linearly scaled by 0.67 to yield .−W  Parameter +η = 0.15.  

 The activity of layer 2/3 grouping cells, )()3/2( tX i ,is determined by:  

).)]([)]()([(                     

))]||()[()]())([(()(
)(

),3/2(),3/2()3/2(

)3/2(),2(),2()4()3/2()3/2(
)3/2(

++

+

−=

+
+

+

−+−−

−−++−−+−= ∑

Sy
R

iSy
L

ii

B

Bj
SyAxji

R
j

L
jSyiii

i

dtYdtYtCX

ddjtXQQdtXtXBtX
dt

tdX

(5)  
Each layer 2/3 cell has excitatory connections with its left and right neighboring layer 2/3 cells 
through half-Gaussian kernels, ),2( L

jQ  and ),2( R
jQ . These kernels are defined as in (3) with the 

additional constraint that if j> 0, ),2( L
jQ  equals zero and if j < 0, ),2( R

jQ  equals zero. The standard 
deviation σ  of the half-bipole kernel equals 6, which makes it broader than the inhibitory 
interneuronal kernel in layer 4, which is 4. Similarly these excitatory connections have one 
synaptic delay, Syd , and distance-dependent axonal delays, Axdj || . As in (2), the summed dlay 

is implemented by term SyAx ddj −− || , in +
+ −− )]||()3/2(

SyAxji ddjtX , on the right hand side of 
(5). The shunting inhibition to each cell of layer 2/3 is provided by the summed activity of left 
and right inhibitory interneurons of layer 2/3 ( ),3/2( L

iY and ),3/2( R
iY ). However, this inhibition 

crosses one synapse and faces a synaptic delay, Syd , to affect its target. This is 
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why )(),3/2(
Sy

L
i dtY − and )(),3/2(

Sy
R

i dtY −  are summed on the right hand side of (5). Parameter C 
in (5) equals 1.7.  
 The layer 2/3 inhibitory interneuron activities, )()/,3/2( tY RL

i , are determined by:  

)()()||()(
)( )/,3/2()/,3/2()3/2()/,2()/,3/2(

)/,3/2(

Sy
LR

i
RL

i

M

Mj
SyAxji

RL
j

RL
i

RL
i dtYtDYddjtXQtY

dt
tdY

−−−−+−= ∑
+

−=
+ . 

(6) 
The activity of excitatory cells in layer 2/3, 3/2X , are passed through the same half-Gaussian 

kernels, )/,2( RL
jQ , which are defined as in (5). Depending on the offset index, j, the axonal delay, 

Axdj || , is implemented the same way as in (5), accompanied by the fixed synaptic delay, Syd . 

In the shunting inhibition term, tYtDY LR
i

RL
i ()( /,3/2/,3/2 ), the right/left inhibitory interneuron, 

)(/,3/2
Sy

LR
i dtY − , inhibits the left/right inhibitory interneuron, )(/,3/2 tY RL

i . Because this inhibition 
pass through one synapse, the former lags a Syd behind the latter (t- Syd versus t). Parameter 
D equals 1.2. 
 Numerical integration was performed by the forward Euler method with the time 
step of dt = 0.0002 s. 
 The largest gap at which illusory contours form in V2 is 4.4 degree of visual angle 
(von der Heydt et al., 1984). The center of the stimulus in von der Heydt et al. (1984) was 
located 3 degrees of visual angle from the fixation point. The cortical magnification factor is 

az
K
+

 (Schwartz, 1977), where constant K equals 15 and constant a equals 0.5. Variable z 

represents the eccentricity and hence in our case equals °3 . Therefore, the magnification factor is 
4.3 mm per degree. Hence a 4.4 degree largest gap spans 4.4 degrees times 4.3mm/degree, which 
equals approximately 19 mm across the V1 cortical surface. The width of a hypercolumn in V1 
with both ocularities in macaque is ~1mm (Horton, 1984). However, von der Heydt et al. (1984) 
recorded from V2. Along the iso-polar direction, there is a ~1-to-1 scaling from V1 to V2. Along 
the iso-eccentricity direction, there is a 3-to-1 compression from V1 to V2 (Roe et al., 1995). 
Therefore, the axonal distance within V2 corresponding to that 19 mm in V1 is equal or less than 
19 mm. We consider the maximum value (19 mm) to push the model to the limit to test its 
synchronization property. Using the Horton (1984) data, this ~19 mm is equivalent to ~19 
hypercolumns, therefore, we set the spatial extent of half-Gaussians ),2( L

jQ and ),2( R
jQ  equal to 9 to 

let each layer 2/3 cell get input from 9 cells to its left and right, which totals 19 connected cells 
(9+1+9). 
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