
 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 1

Abstract—Default ARTMAP combines winner-take-all
category node activation during training, distributed activation
during testing, and a set of default parameter values that define
a ready-to-use, general-purpose neural network system for
supervised learning and recognition. Winner-take-all
ARTMAP learning is designed so that each input would make a
correct prediction if re-presented immediately after its training
presentation, passing the “next-input test.” Distributed
activation has been shown to improve test set prediction on
many examples, but an input that made a correct winner-take-
all prediction during training could make a different prediction
with distributed activation. Default ARTMAP 2 introduces a
distributed next-input test during training. On a number of
benchmarks, this additional feature of the default system
increases accuracy without significantly decreasing code
compression. This paper includes a self-contained default
ARTMAP 2 algorithm for implementation.

I. INTRODUCTION: ART AND ARTMAP SYSTEMS
DAPTIVE Resonance Theory (ART) neural networks
model real-time prediction, search, learning, and

recognition. ART networks function both as models of
human cognitive information processing [1]−[4] and as
neural systems for technology transfer [5], [6]. A neural
computation central to both the scientific and the
technological analyses is the ART matching rule [7], which
models the interaction between top-down expectation and
bottom-up input, thereby creating a focus of attention which,
in turn, determines the nature of coded memories.

Design principles derived from scientific analyses and
design constraints imposed by targeted applications have
jointly guided the development of many variants of the basic
networks, including fuzzy ARTMAP [8], ART-EMAP [9],
ARTMAP-IC [10], Gaussian ARTMAP [11], and distributed
ARTMAP [3], [12]. Comparative analysis of these systems
led to the identification of the default ARTMAP network,
which features robust performance in many application
domains [5], [13]. Default ARTMAP 2 adds the principled
feature of distributed next-input-test training while retaining
the essential characteristics of design simplicity and
complete parameter specification.

This work was supported in part by grants from the Air Force Office of
Scientific Research (AFOSR F49620-01-1-0423), the National Science
Foundation (NSF SBE-0354378), the Office of Naval Research (ONR
N00014-01-1-0624), and the National Geospatial-Intelligence Agency
(NMA201-01-1-2016).

The authors are with the Department of Cognitive and Neural Systems,
Boston University, Boston, MA 02215 USA (phone: 617-353-9481; fax:
617-353-7755; e-mail: [gamis,gail]@cns.bu.edu).

Technical Report CAS/CNS TR-2007-003, Boston, MA: Boston
University.

Web: http://cns.bu.edu/~gail/Default_ARTMAP2_2007_.pdf

II. DEFAULT ARTMAP
The character of their code representations, distributed vs.

winner-take-all, is a primary factor differentiating various
ARTMAP networks. The original models [8], [14] employ
winner-take-all coding during training and testing, as do
many subsequent variations and the majority of ART
systems that have been transferred to technology. Default
ARTMAP codes a training input as a winner-take-all
activation pattern, but codes a test input as a distributed
activation pattern. For distributed coding, the transformation
of the filtered bottom-up input to an activation pattern across
a field of nodes is defined by the increased-gradient CAM
rule [12]. The default network also implements the MT–
search algorithm [10] and sets the baseline vigilance
parameter ρ equal to zero, for maximal code compression.
Other design choices for default ARTMAP include fast
learning, whereby weights converge to asymptote on each
learning trial; single-epoch training, which emulates on-line
learning; a choice-by-difference signal function [15] from
the input field to the coding field; and four-fold cross-
validation.

ARTMAP’s capacity for fast learning implies that the
system can incorporate information from examples that are
important but infrequent and can be trained incrementally.
Fast learning also causes each network’s memory to vary
with the order of input presentation during training. Voting
across several networks trained with different orderings of a
given input set takes advantage of this feature, typically
improving performance and reducing variability as well as
providing a measure of confidence in each prediction [8].
While the number of voting systems is, in general, a free
parameter, five voters have proven to be sufficient for many
applications. Default ARTMAP thus trains five voting
networks for each training set combination.

III. DEFAULT ARTMAP 2:
PASSING THE DISTRIBUTED NEXT-INPUT TEST

When trained using winner-take-all activation, ARTMAP
is guaranteed to pass the next-input test: immediately
following training on a given input-class pair (a, K), the
system correctly predicts class K when presented with input
a. There is no guarantee, however, that a would predict K if
activation were distributed. Default ARTMAP 2
incorporates a distributed next-input test, in order to allow
the system to learn as much as possible from each training
input a. When presented with a, default ARTMAP 2 first

Default ARTMAP 2
Gregory P. Amis and Gail A. Carpenter

A

 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 2

learns in winner-take-all mode. The network then switches
to distributed activation to confirm that a now predicts the
correct class. If not, the system reverts to winner-take-all
mode to learn more from a, just as if the winner-take-all
prediction had been incorrect. Default ARTMAP 2 hereby
improves accuracy on test sets, while maintaining code
compression comparable to the original default ARTMAP 1.

IV. ARTMAP GEOMETRY
A geometric interpretation of default ARTMAP

represents each category as a box in M-dimensional space,
where M is the number of components of input a. Consider
an input set that consists of 2-dimensional vectors a. With
complement coding,
 A = (a, ac) = (a1, a2, 1 − a1, 1 − a2). (1)

Each category j then has a geometric representation as a
rectangle Rj (Fig. 1). Following (1), a complement-coded
weight vector wj takes the form:
 wj = (uj, vj

c), (2)
where uj and vj are 2-dimensional vectors. Vector uj defines
the lower left corner of a category rectangle Rj, and vj
defines the upper right corner. The size of Rj is:
 |Rj| ≡ | vj − uj |, (3)
which is equal to the height plus the width of Rj. In fact,
|Rj| = M − |wj|.

In a fast-learn default ARTMAP system, wJ
(new) = A =

(a, ac) when J is an uncommitted node. The corners of
RJ

(new) are then a and (ac)c = a. Hence RJ
(new) is just the point

a. Learning increases the size of RJ, which grows as the size
of wJ shrinks. Vigilance ρ determines the maximum box
size, with |Rj| ≤ 2(1 − ρ). During each fast-learning trial, RJ
expands to RJ

(old) ⊕ a, the minimum rectangle containing
RJ

(old) and a. However, before RJ can expand to include a,
reset chooses another category if |RJ

(old) ⊕ a| is too large.
With fast learning, Rj is the smallest rectangle that encloses
all points a that have chosen category j without reset.

Input to a coding node is governed by the choice-by-
difference function:

 ()()jjj MT wwA −−+∧= α1 (4)

Geometrically, Tj may be written as a function of the input
dimension (M), the city-block distance d(Rj,a) between Rj
and a, and the size of Rj:
 () jjj RRdMT α−−= a, . (5)

Thus, the input to category node j is maximal when a ∈ Rj
(d(Rj, a)=0), and smaller category boxes are favored over
larger ones.
Fig. 1 illustrates how default ARTMAP 2 may differ from
default ARTMAP 1. The original algorithm (Fig. 1a−c)
would incorrectly place point 7 in class A during distributed
testing. With the distributed next-input test, default
ARTMAP 2 (Fig. 1d−e) anticipates and corrects this error.
Default ARTMAP 2 tests the distributed prediction
following each learning cycle. If the prediction is incorrect,

vigilance is raised, and the system learns again from the
current input.

V. BENCHMARK PERFORMANCE
On a variety of benchmark problems, default ARTMAP 2

improves classification accuracy without requiring
significantly more coding nodes than the original system.

The circle-in-the-square (CIS) benchmark requires a
system to identify those points in a unit square that lie within
a circle placed at the center of the square and occupying half
the area. The Boston benchmark is derived from satellite
imagery of northeast Boston and suburbs and requires a
system to classify pixels as having the label ocean, park,
residential, industrial, etc., based on 41 features extracted
from satellite data [4]. The Frey-Slate letter recognition
benchmark requires a system to identify an input exemplar
as one of 26 capital letters A−Z based on 16 numerical
features extracted from black-and-white pixel images [16].
These data sets are available from http://cns.bu.edu/techlab.

R2
B

R1
A

R3
B

1

2

3

4

5

6
7

(a)

A

B

(b)

A

B

B

(c)

R2
B

R1
A

R3
B

1

2

3

4

5

6
7

(d)

A

B

(e)

A B

B

(f)

R4
A

A

Fig. 1. Training points 1, 2, and 7 are associated with class A; and
points 3−6 are associated with class B. (a) Default ARTMAP 1
category boxes after training on points 1…7. R1 is associated with
class A; R2 and R3 are associated with class B; and |R1| < |R2| = |R3|. (b)
Test set decision boundary with winner-take-all coding. (c) Test set
decision boundary with distributed coding. Training point 7 is
incorrectly placed in class B. (d−f) Default ARTMAP 2 creates the
category box R4, and correctly predicts class A for point 7 during
testing.

 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 3

Tables I and II and Fig. 2 summarize the new system’s
performance on these benchmarks compared to default
ARTMAP 1. Each simulation uses default parameters
(Table IV), with the exception of the number of voters V,
and the number of training epochs E. In simulations without
voting and with a single training epoch, default ARTMAP 2
improves the classification accuracy of the original default
ARTMAP, from 1.8% for circle-in-the-square (using 100
training points) to 3.5% for Frey-Slate, while using 4−10%
more coding nodes. Using five voters and two training
epochs improves the testing accuracy of both versions of
default ARTMAP, though default ARTMAP 2 still shows
better classification accuracy, from 0.5% (CIS 100) to 1.6%
(Boston).

VI. DEFAULT ARTMAP 2 ALGORITHM
Fig. 3 and Table III summarize default ARTMAP

notation, and Table IV lists default parameter values. A user
who wishes to explore network variations might begin by
varying the baseline vigilance, ρ . In some cases, higher
values of ρ increase predictive accuracy but may decrease
code compression.

A. Classification Methodology

This section outlines a canonical classification procedure
for training and evaluating supervised learning systems,
including ARTMAP.

A.1 List output classes for the supervised learning

problem.
A.2 If possible, estimate an a priori distribution of output

classes.
A.3 If not provided, create a ground truth set for each

class by assigning output labels to a designated set of
input vectors.

A.4 Divide the ground truth set into F disjoint subsets.
A.5 In each of the F subsets, designate either all ground

TABLE II
BENCHMARK PERFORMANCE (FIVE VOTERS, TWO TRAINING EPOCHS)

 PERCENT CORRECT

DATA SET
DEFAULT

ARTMAP 1
DEFAULT

ARTMAP 2 DIFFERENCE

CIS 100 90.7% ± 2.5 91.3% ± 2.1 0.5% ± 1.1

CIS 1,000 95.8% ± 1.4 97.0% ± 0.5 1.2% ± 1.4

Boston 92.2% ± 1.6 93.8% ± 1.2 1.6% ± 0.8

Frey-Slate 91.3% ± 0.5 92.6% ± 0.2 1.3% ± 0.5

100 500 1000 2500
84

86

88

90

92

94

96

Number of Training Points

P
er

ce
nt

 C
or

re
ct

Fuzzy ARTMAP
Default ARTMAP 1
Default ARTMAP 2

100 500 1000 2500
5

10

15

20

25

30

35

Number of Training Points

N
um

be
r o

f C
od

in
g

N
od

es

Fig. 2: Performance of ARTMAP on the circle-in-square benchmark
for different training set sizes.

TABLE Ia
BENCHMARK PERFORMANCE (NO VOTING, ONE TRAINING EPOCH)

 PERCENT CORRECTb NUMBER OF CODING NODES

DATA SET
DEFAULT

ARTMAP 1
DEFAULT

ARTMAP 2 DIFFERENCEc
DEFAULT

ARTMAP 1
DEFAULT

ARTMAP 2 DIFFERENCE

CIS (100 train pts) 86.0% ± 6.9 87.8% ± 5.1 1.8% ± 4.6 6.6 ± 2.3 7.0 ± 2.3 0.3 ± 0.7

CIS (1,000 train pts) 91.2% ± 4.9 94.3% ± 1.4 3.1% ± 4.6 16.3 ± 2.9 20.1 ± 3.2 3.8 ± 2.9

Boston 91.5% ± 2.8 93.5% ± 2.1 2.0% ± 1.8 13.2 ± 1.6 14.1 ± 1.5 1.0 ± 0.8

Frey-Slate 84.7% ± 1.2 88.2% ± 0.5 3.5% ± 1.2 562 ± 16 618 ± 19 57 ± 18

a The values presented are the mean ± the standard deviation over trials of different training points (CIS) or different training point presentation order
(Boston and Frey-Slate).

b Because the Boston data set does not have an equal number of test points for each class, the percent correct values presented here are normalized to
control for the mixture of classes. Both CIS and Frey-Slate have an equal number of test points for each class.

c Difference values are not simply a subtraction of the default ARTMAP 1 mean from the default ARTMAP 2 mean. Rather, for each training set
order, performance of the two systems was calculated. The values here represent mean per-trial differences.

 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 4

 truth inputs in that set; or P randomly chosen labeled

inputs for each output class (or all inputs in a given
class if fewer than P have been labeled). Fix random
orderings of designated inputs in each subset.

A.6 Choose one subset for validation, one for testing, and
the rest for training.

A.7 Train V systems (voters), each with E presentations of
input vectors from one of the ordered training sets
(Section VI.B).

A.8. For each voter, choose parameters by validation (if
parameter choice is required).

A.9. Present to each voter all test set inputs. Produce an
output class prediction σk for each test input (Section
VI.C).

A.10. Sum the distributed output class predictions across
the V voters.

A.11. Label inputs by one of three methods (breaking ties
by random choice):

 A.11.a. Baseline: Assign the input to the output
class k with the largest summed prediction.

 A.11.b. Prior probabilities: Select an output class at
random according to the estimated a priori
distribution in the data set. Assign that class label to

the still-unlabeled input with the largest summed
prediction for this class.

 A.11.c. Validation: Bias the summed output class
distribution, evaluating performance on the validation
set. One such method [5] selects decision thresholds
for each output class, with an upper bound of 10% set
for each false alarm rate. Alternatively, the distributed
prediction of each voter (or of the sum) could be
weighted by a steepest descent algorithm. Use the
biased summed distribution to label the input by the
baseline or prior probabilities method.

A.12. Post-training output class adjustments:
 A.12.a. Standard post-processing methods: Mapping

tasks, for example, may benefit from local image
smoothing. Post-processing for speckle removal may
be implemented as a simple voting filter which
assigns to each pixel the label originally assigned to a
majority of its eight neighbors plus three copies of
itself.

 A.12.b. Class distribution adjustment: Starting with
the output class predictions produced by any method
(Step A.11), target distribution percentages may be
adjusted up or down (e.g., based on inspection of
resulting classes), and class labels recomputed by the
prior probabilities method.

 A.12.c. False alarm rate adjustment: A decision
threshold for an over-represented class may be
increased to reduce the validation set false alarm rate.

A.13. Classifier evaluation: Compute average performance
statistics across all combinations of training subsets
(each with V voters). Classifier evaluation measures
include test set output class distributions, hit and false
alarm rates for each class, overall accuracy on the test
set, performance variability between tasks, product
appearance (e.g., for mapping, overall and by
overlays for each class), and degree of improvement
by post-processing.

B. Default ARTMAP 2 Training, with Distributed Next-
Input Test

B.1. Complement code M-dimensional training set feature
vectors a to produce 2M-dimensional input vectors A:

 A ≡ (a, ac) and |A| = M
B.2. Set initial values: wij = 1, Wjk = 0, C = 1
B.3. Select the first input vector A, with associated actual

output class K
B.4. Set initial weights for the newly committed coding

node j = C:
 wC = A
 WCK = 1
B.5. Set vigilance ρ to its baseline value:
 ρρ =

i
complement
coded
input A

wij

a

(a1…ai…aM)feature
vector a

ac

matched pattern
A ∧ wJ

code reset if
|A ∧ wJ| < ρM

ρρ ≥

code y

net
signal

net
signal

output
classes

actual
output
class k = K

j

k

Tj

Wjk
s k

ii
complement
coded
input A

wij

a

(a1…ai…aM)feature
vector a

ac

matched pattern
A ∧ wJ

code reset if
|A ∧ wJ| < ρM

ρρ ≥ ρρ ≥

code y

net
signal

net
signal

output
classes

actual
output
class k = K

jj

kk

Tj

Wjk
s k

Fig. 3: Default ARTMAP notation.

 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 5

 and reset the code:
 y = 0
B.6. Select the next input vector A, with associated actual

output class K (until the last input of the last training
epoch)

B.7. Calculate signals to committed coding nodes
j = 1…C:

 ()()jjj MT wwA −−+∧= α1

B.8. Search order: Sort the committed coding nodes with
Tj > αM in order of Tj values (max to min)

B.9. Search for a coding node J that meets the matching
criterion and predicts the correct output class K, as
follows:

 B.9.a. Code: For the next sorted coding node
(j = J) that meets the matching criterion

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≥

∧
ρ

M
JwA

, set yJ = 1 (WTA)

 B.9.b. Output class prediction:

 Jk

C

j
jjkk WyW == ∑

=1
σ

 B.9.c. Correct prediction: If the active code J
predicts the actual output class K (σK = WJK = 1), go
to Step B.11 (learning)

 B.9.d Match tracking: If the active code J fails to
predict the correct output class (σK = 0), raise
vigilance:

 ερ +
∧

=
M

JwA

 Return to Step B.9.a (continue search)
B.10. After unsuccessfully searching the sorted list,

increase C by 1 (add a committed node)
 Return to Step B.4
B.11. Learning: Update coding weights:

 () () old
J

old
J

new
J wwAw ββ −+∧= 1

B.12. Distributed next-input test: Verify that the input
makes the correct prediction with distributed coding.

 B.12.a Make prediction: Generate an output class
prediction K' for the current training input A using
distributed activation, as prescribed for testing
(Section VI.C)

TABLE IV
DEFAULT PARAMETER VALUES

NAME PARA-
METER

RANGE DEFAULT
VALUE

NOTES

signal rule
parameter α (0,∞)

(0,1) 0.01 α = 0+ maximizes
code compression

learning
fraction β [0,1] 1.0 β = 1 implements

fast learning

match
tracking ε (-1,1) – 0.001 ε < 0 (MT–) codes

inconsistent cases

baseline
vigilance

ρ [0,1] 0.0
0=ρ maximizes

code compression

CAM rule
power p (0,∞] 1.0

Increased Gradient (IG)
CAM rule converges to
WTA as p→∞

training
epochs E ≥ 1 1 E = 1 simulates

on-line learning

data
subsets F ≥ 3 4 F-fold cross-validation

voting
systems V ≥ 1 5

TABLE III
DEFAULT ARTMAP NOTATION

NOTATION DESCRIPTION

i input component index

j coding node index

k output class index

M number of input features

a feature vector (ai), 0 ≤ ai ≤ 1

A complement coded input vector: A ≡ (a, ac)

K actual output class of training input

y coding field activation pattern (CAM): (yj)

J chosen coding node (winner-take-all)

C number of committed coding nodes

Λ, Λ' committed node subsets

Tj signal from input field to coding node j

σk signal from coding field to output node k

wj coding node weight vector j: (wij)

Wk output class weight vector k: (Wjk)

ρ vigilance variable

∧
component-wise minimum (fuzzy intersection):
(p ∧ q)i = min(pi, qi)

⋅ vector size (L1-norm): ∑≡ i ipp

pc vector complement: (pc)i ≡ 1 − pi

 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 6

 K' = arg maxk σk
 B.12.b. Correct prediction: If distributed activation

predicts class K, return to Step B.5 (next input).
 B.12.c. Match tracking: If distributed activation

fails to predict the correct output class (K' ≠ K), raise
vigilance:

 ερ +
∧

=
M

JwA

 Return to Step B.9.a (continue search)

C. Default ARTMAP Testing (Distributed Code)

C.1. Complement code M-dimensional test set feature
vectors a to produce 2M-dimensional input vectors A

C.2. Select the next input vector A, with associated actual
output class K

C.3. Reset the code: y = 0
C.4. Calculate signals to committed coding nodes

j = 1…C:

 ()()jjj MT wwA −−+∧= α1

C.5. Let Λ = { λ = 1…C: Tλ > αM } and
 Λ' = { λ = 1…C: Tλ = M } = { λ = 1…C: wj = A }
C.6. Increased Gradient (IG) CAM Rule:
 C.6.a. Point box case: If Λ' ≠ φ (i.e., wj = A for

some j), set
Λ′

=
1

jy for each j ∈ Λ'

 C.6.b. If Λ' = φ, set

∑
∈

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
=

Λλ λ

p

p

j
j

TM

TM
y

1

1

 for each j ∈ Λ

C.7. Calculate distributed output class predictions:

 ∑
=

=
C

j
jjkk yW

1
σ

C.8. Until the last test input, return to Step C.2
C.9. Predict output classes from σk values, according to the

chosen labeling method (see Step A.11)

REFERENCES

[1] S. Grossberg, “The link between brain, learning, attention, and
consciousness,” Consciousness and Cognition, vol. 8, pp. 1−44, 1999.
Available: http://cns.bu.edu/Profiles/Grossberg/Gro1999ConCog.pdf

[2] S. Grossberg, “How does the cerebral cortex work? Development,
learning, attention, and 3D vision by laminar circuits of visual cortex,”
Behavioral and Cognitive Neuroscience Reviews, vol. 2, pp. 47−76,
2003. Available:
http://cns.bu.edu/Profiles/Grossberg/Gro2003BCNR.pdf

[3] G. A. Carpenter, “Distributed learning, recognition, and prediction by
ART and ARTMAP neural networks,” Neural Networks, vol. 10, pp.
1473−1494, 1997. Available:
 http://cns.bu.edu/~gail/115_dART_NN_1997_.pdf

[4] G. A. Carpenter, S. Martens, and O. J. Ogas, “Self-organizing
information fusion and hierarchical knowledge discovery: a new
framework using ARTMAP neural networks,” Neural Networks, vol.
18, pp. 287−295, 2005. Available:
 http://cns.bu.edu/techlab/Docs/CarpenterMartensOgas2005.pdf

[5] O. Parsons and G. A. Carpenter, “ARTMAP neural networks for
information fusion and data mining: map production and target
recognition methodologies,” Neural Networks, vol. 16, pp.
1075−1089, 2003. Available:
http://cns.bu.edu/~gail/aARTMAP_map_2003_.pdf

[6] P. Lisboa, “Industrial use of safety-related artificial neural networks,”
Contract Research Report 327/2001, Liverpool John Moores
University, 2001. Available:
http://www.hse.gov.uk/research/crr_pdf/2001/crr01327.pdf

[7] G. A. Carpenter and S. Grossberg, “A massively parallel architecture
for a self-organizing neural pattern recognition machine,” Computer
Vision, Graphics, and Image Processing, vol. 37, pp. 54−115, 1987.
Available: http://cns.bu.edu/techlab/Docs/Carpenter1987.pdf

[8] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D.
B. Rosen, “Fuzzy ARTMAP: A neural network architecture for
incremental supervised learning of analog multidimensional maps,”
IEEE Transactions on Neural Networks, vol. 3, pp. 698−713, 1992.
Available: http://cns.bu.edu/~gail/070_Fuzzy_ARTMAP_1992_.pdf

[9] G. A. Carpenter and W. D. Ross, “ART-EMAP: A neural network
architecture for object recognition by evidence accumulation,” IEEE
Transactions on Neural Networks, vol. 6, pp. 805−818, 1995.
Available: http://cns.bu.edu/~gail/097_ART-EMAP_1995_.pdf

[10] G. A. Carpenter and N. Markuzon, “ARTMAP-IC and medical
diagnosis: Instance counting and inconsistent cases,” Neural
Networks, vol. 11, pp. 323−336, 1998. Available:
http://cns.bu.edu/~gail/117_ARTMAP-IC_1998_.pdf

[11] J. R. Williamson, “Gaussian ARTMAP: A neural network for fast
incremental learning of noisy multidimensional maps,” Neural
Networks, vol. 9, pp. 881−897, 1998. Available:
http://cns.bu.edu/~gail/G-ART_Williamson_1998_.pdf

[12] G. A. Carpenter, B. L. Milenova, and B. W. Noeske, “Distributed
ARTMAP: a neural network for fast distributed supervised learning,”
Neural Networks, vol. 11, pp. 793−813, 1998. Available:
http://cns.bu.edu/~gail/120_dARTMAP_1998_.pdf

[13] G.A. Carpenter, “Default ARTMAP,” Proceedings of the
International Joint Conference on Neural Networks (IJCNN'03),
Portland, Oregon, pp. 1396−1401, 2003. Available:
http://cns.bu.edu/~gail/Default_ARTMAP_2003_.pdf

[14] G.A. Carpenter, S. Grossberg, and J.H. Reynolds, “ARTMAP:
Supervised real-time learning and classification of nonstationary data
by a self-organizing neural network,” Neural Networks, vol. 4, pp.
565−588, 1991. Available:
http://cns.bu.edu/~gail/054_ARTMAP_1991_.pdf

[15] G. A. Carpenter and M. N. Gjaja, “Fuzzy ART choice functions,”
Proceedings of the World Congress on Neural Networks (WCNN-94),
Hillsdale, NJ: Lawrence Erlbaum Associates, vol. 1, pp. 713−722,
1994.

[16] P. W. Frey and D. J. Slate, “Letter recognition using Holland-style
adaptive classifiers,” Machine Learning, vol. 6, pp. 161−182, 1991.

