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Abstract—Default ARTMAP combines winner-take-all 
category node activation during training, distributed activation 
during testing, and a set of default parameter values that define 
a ready-to-use, general-purpose neural network system for 
supervised learning and recognition. Winner-take-all 
ARTMAP learning is designed so that each input would make a 
correct prediction if re-presented immediately after its training 
presentation, passing the “next-input test.” Distributed 
activation has been shown to improve test set prediction on 
many examples, but an input that made a correct winner-take-
all prediction during training could make a different prediction 
with distributed activation. Default ARTMAP 2 introduces a 
distributed next-input test during training. On a number of 
benchmarks, this additional feature of the default system 
increases accuracy without significantly decreasing code 
compression. This paper includes a self-contained default 
ARTMAP 2 algorithm for implementation. 

I. INTRODUCTION: ART AND ARTMAP SYSTEMS 
DAPTIVE Resonance Theory (ART) neural networks 
model real-time prediction, search, learning, and 

recognition. ART networks function both as models of 
human cognitive information processing [1]−[4] and as 
neural systems for technology transfer [5], [6]. A neural 
computation central to both the scientific and the 
technological analyses is the ART matching rule [7], which 
models the interaction between top-down expectation and 
bottom-up input, thereby creating a focus of attention which, 
in turn, determines the nature of coded memories. 

Design principles derived from scientific analyses and 
design constraints imposed by targeted applications have 
jointly guided the development of many variants of the basic 
networks, including fuzzy ARTMAP [8], ART-EMAP [9], 
ARTMAP-IC [10], Gaussian ARTMAP [11], and distributed 
ARTMAP [3], [12]. Comparative analysis of these systems 
led to the identification of the default ARTMAP network, 
which features robust performance in many application 
domains [5], [13]. Default ARTMAP 2 adds the principled 
feature of distributed next-input-test training while retaining 
the essential characteristics of design simplicity and 
complete parameter specification.   
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II. DEFAULT ARTMAP 
The character of their code representations, distributed vs. 

winner-take-all, is a primary factor differentiating various 
ARTMAP networks. The original models [8], [14] employ 
winner-take-all coding during training and testing, as do 
many subsequent variations and the majority of ART 
systems that have been transferred to technology. Default 
ARTMAP codes a training input as a winner-take-all 
activation pattern, but codes a test input as a distributed 
activation pattern. For distributed coding, the transformation 
of the filtered bottom-up input to an activation pattern across 
a field of nodes is defined by the increased-gradient CAM 
rule [12]. The default network also implements the MT– 
search algorithm [10] and sets the baseline vigilance 
parameter ρ  equal to zero, for maximal code compression. 
Other design choices for default ARTMAP include fast 
learning, whereby weights converge to asymptote on each 
learning trial; single-epoch training, which emulates on-line 
learning; a choice-by-difference signal function [15] from 
the input field to the coding field; and four-fold cross-
validation. 

ARTMAP’s capacity for fast learning implies that the 
system can incorporate information from examples that are 
important but infrequent and can be trained incrementally. 
Fast learning also causes each network’s memory to vary 
with the order of input presentation during training. Voting 
across several networks trained with different orderings of a 
given input set takes advantage of this feature, typically 
improving performance and reducing variability as well as 
providing a measure of confidence in each prediction [8]. 
While the number of voting systems is, in general, a free 
parameter, five voters have proven to be sufficient for many 
applications. Default ARTMAP thus trains five voting 
networks for each training set combination. 

III. DEFAULT ARTMAP 2:  
PASSING THE DISTRIBUTED NEXT-INPUT TEST 

When trained using winner-take-all activation, ARTMAP 
is guaranteed to pass the next-input test: immediately 
following training on a given input-class pair (a, K), the 
system correctly predicts class K when presented with input 
a. There is no guarantee, however, that a would predict K if 
activation were distributed. Default ARTMAP 2 
incorporates a distributed next-input test, in order to allow 
the system to learn as much as possible from each training 
input a. When presented with a, default ARTMAP 2 first 
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learns in winner-take-all mode. The network then switches 
to distributed activation to confirm that a now predicts the 
correct class. If not, the system reverts to winner-take-all 
mode to learn more from a, just as if the winner-take-all 
prediction had been incorrect. Default ARTMAP 2 hereby 
improves accuracy on test sets, while maintaining code 
compression comparable to the original default ARTMAP 1. 

IV. ARTMAP GEOMETRY 
A geometric interpretation of default ARTMAP 

represents each category as a box in M-dimensional space, 
where M is the number of components of input a. Consider 
an input set that consists of 2-dimensional vectors a. With 
complement coding, 
 A = ( a, ac ) = ( a1, a2, 1 − a1, 1 − a2 ). (1) 

Each category j then has a geometric representation as a 
rectangle Rj (Fig. 1). Following (1), a complement-coded 
weight vector wj takes the form: 
 wj = ( uj, vj

c ), (2) 
where uj and vj are 2-dimensional vectors. Vector uj defines 
the lower left corner of a category rectangle Rj, and vj 
defines the upper right corner. The size of Rj is: 
 |Rj| ≡ | vj − uj |, (3) 
which is equal to the height plus the width of Rj. In fact, 
|Rj| = M − |wj|. 

In a fast-learn default ARTMAP system, wJ
(new) = A = 

( a, ac ) when J is an uncommitted node. The corners of 
RJ

(new) are then a and (ac)c = a. Hence RJ
(new) is just the point 

a. Learning increases the size of RJ, which grows as the size 
of wJ shrinks. Vigilance ρ determines the maximum box 
size, with |Rj| ≤ 2(1 − ρ). During each fast-learning trial, RJ 
expands to RJ

(old) ⊕ a, the minimum rectangle containing 
RJ

(old) and a. However, before RJ can expand to include a, 
reset chooses another category if |RJ

(old) ⊕ a| is too large. 
With fast learning, Rj is the smallest rectangle that encloses 
all points a that have chosen category j without reset. 

Input to a coding node is governed by the choice-by-
difference function: 

 ( )( )jjj MT wwA −−+∧= α1  (4) 

Geometrically, Tj may be written as a function of the input 
dimension (M), the city-block distance d(Rj,a) between Rj 
and a, and the size of Rj: 
 ( ) jjj RRdMT α−−= a, . (5) 

Thus, the input to category node j is maximal when a ∈ Rj 
(d(Rj, a)=0), and smaller category boxes are favored over 
larger ones. 
Fig. 1 illustrates how default ARTMAP 2 may differ from 
default ARTMAP 1. The original algorithm (Fig. 1a−c) 
would incorrectly place point 7 in class A during distributed 
testing. With the distributed next-input test, default 
ARTMAP 2 (Fig. 1d−e) anticipates and corrects this error. 
Default ARTMAP 2 tests the distributed prediction 
following each learning cycle. If the prediction is incorrect, 

 
vigilance is raised, and the system learns again from the 
current input. 

V. BENCHMARK PERFORMANCE 
On a variety of benchmark problems, default ARTMAP 2 

improves classification accuracy without requiring 
significantly more coding nodes than the original system. 
 

The circle-in-the-square (CIS) benchmark requires a 
system to identify those points in a unit square that lie within 
a circle placed at the center of the square and occupying half 
the area. The Boston benchmark is derived from satellite 
imagery of northeast Boston and suburbs and requires a 
system to classify pixels as having the label ocean, park, 
residential, industrial, etc., based on 41 features extracted 
from satellite data [4]. The Frey-Slate letter recognition 
benchmark requires a system to identify an input exemplar 
as one of 26 capital letters A−Z based on 16 numerical 
features extracted from black-and-white pixel images [16]. 
These data sets are available from http://cns.bu.edu/techlab. 
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Fig. 1. Training points 1, 2, and 7 are associated with class A; and 
points 3−6 are associated with class B. (a) Default ARTMAP 1 
category boxes after training on points 1…7. R1 is associated with 
class A; R2 and R3 are associated with class B; and |R1| < |R2| = |R3|. (b) 
Test set decision boundary with winner-take-all coding. (c) Test set 
decision boundary with distributed coding. Training point 7 is 
incorrectly placed in class B. (d−f) Default ARTMAP 2 creates the 
category box R4, and correctly predicts class A for point 7 during 
testing. 
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Tables I and II and Fig. 2 summarize the new system’s 
performance on these benchmarks compared to default 
ARTMAP 1. Each simulation uses default parameters 
(Table IV), with the exception of the number of voters V, 
and the number of training epochs E. In simulations without 
voting and with a single training epoch, default ARTMAP 2 
improves the classification accuracy of the original default 
ARTMAP, from 1.8% for circle-in-the-square (using 100 
training points) to 3.5% for Frey-Slate, while using 4−10% 
more coding nodes. Using five voters and two training 
epochs improves the testing accuracy of both versions of 
default ARTMAP, though default ARTMAP 2 still shows 
better classification accuracy, from 0.5% (CIS 100) to 1.6% 
(Boston). 

VI. DEFAULT ARTMAP 2 ALGORITHM 
Fig. 3 and Table III summarize default ARTMAP 

notation, and Table IV lists default parameter values. A user 
who wishes to explore network variations might begin by 
varying the baseline vigilance, ρ . In some cases, higher 
values of ρ  increase predictive accuracy but may decrease 
code compression. 

A. Classification Methodology 

This section outlines a canonical classification procedure 
for training and evaluating supervised learning systems, 
including ARTMAP.  

 
A.1 List output classes for the supervised learning 

problem. 
A.2 If possible, estimate an a priori distribution of output 

classes. 
A.3 If not provided, create a ground truth set for each 

class by assigning output labels to a designated set of 
input vectors. 

A.4 Divide the ground truth set into F disjoint subsets. 
A.5 In each of the F subsets, designate either all ground 

 

 

TABLE II 
BENCHMARK PERFORMANCE (FIVE VOTERS, TWO TRAINING EPOCHS) 

 PERCENT CORRECT 

DATA SET 
DEFAULT 

ARTMAP 1 
DEFAULT 

ARTMAP 2 DIFFERENCE 

CIS 100 90.7% ± 2.5 91.3% ± 2.1 0.5% ± 1.1 

CIS 1,000 95.8% ± 1.4 97.0% ± 0.5 1.2% ± 1.4 

Boston 92.2% ± 1.6 93.8% ± 1.2 1.6% ± 0.8 

Frey-Slate  91.3% ± 0.5 92.6% ± 0.2 1.3% ± 0.5 
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Fig. 2: Performance of ARTMAP on the circle-in-square benchmark 
for different training set sizes. 

TABLE Ia 
BENCHMARK PERFORMANCE (NO VOTING, ONE TRAINING EPOCH) 

 PERCENT CORRECTb NUMBER OF CODING NODES 

DATA SET 
DEFAULT 

ARTMAP 1 
DEFAULT 

ARTMAP 2 DIFFERENCEc 
DEFAULT 

ARTMAP 1 
DEFAULT 

ARTMAP 2 DIFFERENCE 

CIS (100 train pts) 86.0% ± 6.9 87.8% ± 5.1 1.8% ± 4.6 6.6 ± 2.3 7.0 ± 2.3 0.3 ± 0.7 

CIS (1,000 train pts) 91.2% ± 4.9 94.3% ± 1.4 3.1% ± 4.6 16.3 ± 2.9 20.1 ± 3.2 3.8 ± 2.9 

Boston  91.5% ± 2.8 93.5% ± 2.1 2.0% ± 1.8 13.2 ± 1.6 14.1 ± 1.5 1.0 ± 0.8 

Frey-Slate  84.7% ± 1.2 88.2% ± 0.5 3.5% ± 1.2 562 ± 16 618 ± 19 57 ± 18 

a The values presented are the mean ± the standard deviation over trials of different training points (CIS) or different training point presentation order 
(Boston and Frey-Slate). 

b Because the Boston data set does not have an equal number of test points for each class, the percent correct values presented here are normalized to 
control for the mixture of classes. Both CIS and Frey-Slate have an equal number of test points for each class. 

c Difference values are not simply a subtraction of the default ARTMAP 1 mean from the default ARTMAP 2 mean. Rather, for each training set 
order, performance of the two systems was calculated. The values here represent mean per-trial differences. 
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 truth inputs in that set; or P randomly chosen labeled 

inputs for each output class (or all inputs in a given 
class if fewer than P have been labeled). Fix random 
orderings of designated inputs in each subset. 

A.6 Choose one subset for validation, one for testing, and 
the rest for training. 

A.7 Train V systems (voters), each with E presentations of 
input vectors from one of the ordered training sets 
(Section VI.B). 

A.8. For each voter, choose parameters by validation (if 
parameter choice is required). 

A.9. Present to each voter all test set inputs. Produce an 
output class prediction σk for each test input (Section  
VI.C). 

A.10. Sum the distributed output class predictions across 
the V voters. 

A.11. Label inputs by one of three methods (breaking ties 
by random choice): 

 A.11.a. Baseline:  Assign the input to the output 
class k with the largest summed prediction.  

 A.11.b. Prior probabilities:  Select an output class at 
random according to the estimated a priori 
distribution in the data set. Assign that class label to 

the still-unlabeled input with the largest summed 
prediction for this class.  

 A.11.c. Validation:  Bias the summed output class 
distribution, evaluating performance on the validation 
set. One such method [5] selects decision thresholds 
for each output class, with an upper bound of 10% set 
for each false alarm rate. Alternatively, the distributed 
prediction of each voter (or of the sum) could be 
weighted by a steepest descent algorithm. Use the 
biased summed distribution to label the input by the 
baseline or prior probabilities method.  

A.12. Post-training output class adjustments: 
 A.12.a.  Standard post-processing methods:  Mapping 

tasks, for example, may benefit from local image 
smoothing. Post-processing for speckle removal may 
be implemented as a simple voting filter which 
assigns to each pixel the label originally assigned to a 
majority of its eight neighbors plus three copies of 
itself.  

 A.12.b.  Class distribution adjustment:  Starting with 
the output class predictions produced by any method 
(Step A.11), target distribution percentages may be 
adjusted up or down (e.g., based on inspection of 
resulting classes), and class labels recomputed by the 
prior probabilities method. 

 A.12.c.  False alarm rate adjustment:  A decision 
threshold for an over-represented class may be 
increased to reduce the validation set false alarm rate.  

A.13. Classifier evaluation:  Compute average performance 
statistics across all combinations of training subsets 
(each with V voters). Classifier evaluation measures 
include test set output class distributions, hit and false 
alarm rates for each class, overall accuracy on the test 
set, performance variability between tasks, product 
appearance (e.g., for mapping, overall and by 
overlays for each class), and degree of improvement 
by post-processing. 

B. Default ARTMAP 2 Training, with Distributed Next-
Input Test 

B.1. Complement code M-dimensional training set feature 
vectors a to produce 2M-dimensional input vectors A: 

  A ≡ ( a, ac ) and |A| = M 
B.2. Set initial values:  wij = 1, Wjk = 0, C = 1 
B.3. Select the first input vector A, with associated actual 

output class K 
B.4. Set initial weights for the newly committed coding 

node j = C: 
  wC = A 
  WCK = 1 
B.5. Set vigilance ρ to its baseline value: 
  ρρ =  

i
complement 
coded 
input A

wij

a

(a1…ai…aM)feature 
vector a

ac

matched pattern
A ∧ wJ

code reset if 
|A ∧ wJ| < ρM

ρρ ≥

code y

net
signal

net
signal

output
classes

actual
output
class k = K

j

k

Tj

Wjk
s k

ii
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input A
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Fig. 3: Default ARTMAP notation. 
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 and reset the code: 
  y = 0 
B.6. Select the next input vector A, with associated actual 

output class K (until the last input of the last training 
epoch) 

B.7. Calculate signals to committed coding nodes 
j = 1…C: 

  ( )( )jjj MT wwA −−+∧= α1  

B.8. Search order:  Sort the committed coding nodes with 
Tj > αM in order of Tj values (max to min) 

B.9. Search for a coding node J that meets the matching 
criterion and predicts the correct output class K, as 
follows: 

 B.9.a. Code:  For the next sorted coding node 
(j = J) that meets the matching criterion  

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≥

∧
ρ

M
JwA

, set yJ = 1 (WTA) 

 B.9.b. Output class prediction: 

  Jk

C

j
jjkk WyW == ∑

=1
σ  

 B.9.c. Correct prediction:  If the active code J 
predicts the actual output class K (σK = WJK = 1), go 
to Step B.11 (learning) 

 B.9.d Match tracking:  If the active code J fails to 
predict the correct output class (σK = 0), raise 
vigilance: 

  ερ +
∧

=
M

JwA
 

 Return to Step B.9.a (continue search) 
B.10. After unsuccessfully searching the sorted list, 

increase C by 1 (add a committed node) 
 Return to Step B.4 
B.11. Learning: Update coding weights:  

  ( ) ( ) old
J

old
J

new
J wwAw ββ −+∧= 1  

B.12. Distributed next-input test:  Verify that the input 
makes the correct prediction with distributed coding. 

 B.12.a Make prediction:  Generate an output class 
prediction K' for the current training input A using 
distributed activation, as prescribed for testing 
(Section VI.C) 

TABLE IV 
DEFAULT PARAMETER VALUES 

NAME PARA-
METER 

RANGE DEFAULT 
VALUE 

NOTES 

signal rule 
parameter α (0,∞) 

(0,1)  0.01 α = 0+  maximizes  
code compression 

learning 
fraction β [0,1]  1.0 β = 1 implements  

fast learning 

match 
tracking ε (-1,1)  – 0.001 ε < 0 (MT–) codes 

inconsistent cases 

baseline 
vigilance 

ρ  [0,1]  0.0 
0=ρ  maximizes  

code compression 

CAM rule 
power p (0,∞]  1.0 

Increased Gradient (IG) 
CAM rule converges to 
WTA as p→∞  

# training 
epochs E ≥ 1 1 E = 1 simulates  

on-line learning 

# data 
subsets F ≥ 3 4 F-fold cross-validation 

# voting 
systems V ≥ 1 5  

TABLE III 
DEFAULT ARTMAP NOTATION 

NOTATION DESCRIPTION 

i input component index 

j coding node index 

k output class index 

M number of input features 

a feature vector  (ai), 0 ≤ ai ≤ 1 

A complement coded input vector: A ≡ ( a, ac ) 

K actual output class of training input 

y coding field activation pattern (CAM): (yj) 

J chosen coding node (winner-take-all) 

C number of committed coding nodes 

Λ, Λ' committed node subsets 

Tj signal from input field to coding node j 

σk signal from coding field to output node k 

wj coding node weight vector j:   (wij)  

Wk output class weight vector k:   (Wjk)  

ρ vigilance variable 

∧ 
component-wise minimum (fuzzy intersection):  
(p ∧ q)i  = min( pi, qi )  

⋅  vector size (L1-norm):  ∑≡ i ipp  

pc vector complement: (pc)i ≡ 1 − pi   



 IJCNN’07, Orlando CAS/CNS Technical Report TR-2007-003 6 
 

 

 

  K' = arg maxk σk 
 B.12.b. Correct prediction:  If distributed activation 

predicts class K, return to Step B.5 (next input). 
 B.12.c. Match tracking:  If distributed activation 

fails to predict the correct output class (K' ≠ K), raise 
vigilance: 

  ερ +
∧

=
M

JwA
 

 Return to Step B.9.a (continue search) 

C. Default ARTMAP Testing (Distributed Code) 

C.1. Complement code M-dimensional test set feature 
vectors a to produce 2M-dimensional input vectors A 

C.2. Select the next input vector A, with associated actual 
output class K 

C.3. Reset the code:  y = 0 
C.4. Calculate signals to committed coding nodes 

j = 1…C:  

  ( )( )jjj MT wwA −−+∧= α1  

C.5. Let Λ = { λ = 1…C: Tλ > αM } and 
 Λ' = { λ = 1…C: Tλ = M } = { λ = 1…C: wj = A } 
C.6. Increased Gradient (IG) CAM Rule: 
 C.6.a. Point box case:  If Λ' ≠ φ (i.e., wj = A for 

some j), set 
Λ′

=
1

jy  for each j ∈ Λ' 

 C.6.b. If Λ' = φ, set 

  

∑
∈

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
=

Λλ λ

p

p

j
j

TM

TM
y

1

1

 for each j ∈ Λ 

C.7. Calculate distributed output class predictions: 

  ∑
=

=
C

j
jjkk yW

1
σ  

C.8. Until the last test input, return to Step C.2 
C.9. Predict output classes from σk values, according to the 

chosen labeling method (see Step A.11) 
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