
Neural Processing Letters11: 59–78, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

59

Building Adaptive Basis Functions with a
Continuous Self-Organizing Map

MARCOS M. CAMPOS and GAIL A. CARPENTER
Boston University, Center for Adaptive Systems and Department of Cognitive and Neural Systems,
677 Beacon Street, Boston, MA 02215, U.S.A., E-mail: gail@cns.bu.edu

Abstract. This paper introduces CSOM, a continuous version of the Self-Organizing Map (SOM).
The CSOM network generates maps similar to those created with the original SOM algorithm but,
due to the continuous nature of the mapping, CSOM outperforms the SOM on function approxima-
tion tasks. CSOM integrates self-organization and smooth prediction into a single process. This is a
departure from previous work that required two training phases, one to self-organize a map using the
SOM algorithm, and another to learn a smooth approximation of a function. System performance is
illustrated with three examples.

Key words: basis functions, continuous function approximation, competitive learning, interpolation,
neural networks, on-line learning, self-organizing map

1. Introduction

The traditional SOM algorithm (von der Malsburg [13]; Grossberg [9]; Kohonen
[10]) is a competitive learning system that maps inputs to discrete points on a
lattice, where lattice points correspond to coordinates of units that win the com-
petititon. This scheme produces a limited representation for the inputs, since each
input vector is represented by one node in a finite grid. The SOM discrete coding
scheme often yields poor performance when used for function approximation: it
can produce only a piecewise-constant approximation, with precision limiteda
priori by the number of coding nodes. To overcome this limitation, this paper pro-
poses CSOM (ContinuousSelf-OrganizingMap), a four-layer feedforward neural
network (Figure 1). The main innovation of the model is the use of a distributed
SOM to implement a continuous, topology-preserving coordinate transformation
from the input space to a regular lattice (Figure 2). CSOM self-organizes maps in
the same fashion as the traditional SOM. However, the distributed activity in the
CSOM layer creates a more powerful coding scheme and allows improved function
approximation.

60 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Figure 1. The CSOM network. A continuous learned coordinate transformation maps input
A to anS-dimensional lattice of nodes at the CSOM layer, which is in turn mapped to a basis
function (BF) layer. A second learned map transforms a combination of basis functions to the
predicted output̂B.

Figure 2. CSOM creates a one-dimensional map (S= 1) to represent a two-dimensional data
distribution (M = 2) with a single feature. The map formation process can be interpreted as
defining a new variable that represents the data more concisely. In the winner-takes-all case of
the traditional SOM, the new variable takes only integer values along the grid (dark dots along
the line:N = 25). In CSOM, the data points are mapped in a continuous fashion onto the line.
As a result the new feature defined by CSOM is a continuous variable.

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 61

2. The CSOM Algorithm

In CSOM, an interpolation step maps inputs to a new coordinate system in a con-
tinuous fashion. A fixedN×N weight matrixD = (djr) then maps the CSOM layer
onto a basis function (BF) layer. The elements of the matrixD are non-adaptive:
they encode the receptive field of each node in the BF layer. That is, in the network
shown in Figure 1, a node in the BF layer performs a filtering of the distributed
activity at the CSOM layer. This is equivalent to computing the discrete convo-
lution of the CSOM layer’s activity with a weight vectordr for each unit in the
BF layer. In the algorithm the convolution is calculated as follows. The distributed
activation of the CSOM layer is represented by a pointX∗ = (X∗1 . . . X

∗
s . . . X

∗
S)

in a continuousS-dimensional grid. The discrete receptive field of therth BF unit
is approximated by a continuous function9(X∗,Xr , δ), whereXr is the vector of
CSOM grid coordinates of the center of the receptive field of the unit andδ is a vec-
tor of parameters that define the shape of the function9. Using this approximation,
the activitity at the BF layer is computed by a direct function evaluation.

Activation of the CSOM network during training is implemented by the follow-
ing algorithm, with parameters and variables listed in Tables I and II.

CSOM training algorithm

0. Sett = 1, distribute weightswij randomly in[w−, w+], and set all weights
crk = 0

1. Decrease thewij learning rateβ:

β =
{
β0(β1/β0)

t−1
t1−1 if 1 ≤ t < t1

β1 if t ≥ t1
2. Decrease the CSOM neighborhood sizeσ :

σ =
{
σ0(σ1/σ0)

t−1
t1−1 if 1 ≤ t < t1

σ1 if t ≥ t1
3. Get thet th input vectorA and output vectorB
4. Calculate the coordinatesX∗ to which the inputA is mapped in the CSOM grid

(see interpolation step below)
5. Compute the activity of the CSOM layer:
hj = exp(−||Xj − X∗||2/2σ 2)

6. Normalize the CSOM layer activity:
yj = hj/∑N

l=1 hl
7. Compute the activity of the BF layer:
8r = 9(X∗,Xr , δ) = exp(−||X∗ − Xr ||2/2δ2)

8. Normalize BF layer activity:̃8r = 8r/
∑N

l=18l

9. Compute the output:̂Bk =∑N
r=1 crk8̃r

10. Adjustcrk according to:1crk = α8̃r(Bk − B̂k)
11. Adjustwij according to:1wij = βyj (Ai − wij)
12. If t = n then stop. Else add 1 tot and go to step 1

62 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Table I. CSOM parameters.

Parameter Description

α learning rate for weightscjk
β learning rate for weightswij
σ neighborhood size in the CSOM algorithm

δ standard deviation used in9

λ regularization parameter

w− lower bound for initial weightswij
w+ upper bound for initial weightswij
β0 initial value forβ

β1 final value forβ

σ0 initial value forσ

σ1 final value forσ

t1 number of training set inputs needed forβ andσ to decrease toβ1 andσ1

n total number of training or test set inputs

S number of dimensions of the CSOM grid

Ns number of nodes along dimensions of the CSOM grid,N =∏S
s=1Ns

X− vector with the lower bound for each coordinate of the CSOM grid(X−1 . . . X
−
s . . . X

−
S)

X+ vector with the upper bound for each coordinate of the CSOM grid(X+1 . . . X
+
s . . . X

+
S)

Xj position, in the CSOM integer grid coordinate system, of thej th unit in the CSOM layer

Xr position, with respect to the CSOM integer grid coordinate system, of the center of the

receptive field of ther th unit in the BF layer

Table II. CSOM variables.

Variable Description

A input vector(A1 . . . Ai . . . AM)

X∗ position to which the input vectorA is mapped in the CSOM grid coordinate system

h vector of activities of the CSOM layer(h1 . . . hj . . . hN)

y normalized vector of activities of the CSOM layer(y1 . . . yj . . . yN)

8 vector of activities of BF layer(81 . . . 8r . . . 8N)

8̃ vector of normalized activities of BF layer(8̃1 . . . 8̃r . . . 8̃N)

B target output vector(B1 . . . Bk . . . BL)

B̂ actual output(B̂1 . . . B̂k . . . B̂L)

wj weight vector from input layer to thej th unit of the CSOM layer(w1j . . . wij . . . wMj)

ck weight vector from BF layer to thekth unit of the output layer(c1k . . . crk . . . cNk)

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 63

Besides howX∗ is computed (step 4), the key difference between the CSOM
algorithm and the traditional SOM algorithm is the use of a normalized activity
vector (y) to drive the map adaptation (step 11). Normalization of CSOM activation
allows the activity in the CSOM layer to be interpreted as probability. It can also
lead to slow initial adaptation, but small values ofyj are balanced by a large initial
learning rate(1< β0).

During testing the same algorithm is applied, with learning ratesα = β = 0
and output equal tôB for each inputA. If the task is categorial, the maximum̂Bk
value chooses the output class. Settingα = β = 0 makes steps 1, 2, 5, 6, 10, and
11 unnecessary during testing, and thus these steps can be ommitted.

Step 4 in the CSOM algorithm implements a continuous transformation from
the input space to the CSOM layer grid coordinates. In the traditional SOM al-
gorithm the components ofX∗ take on integer values and represent the winning
unit in the CSOM layer. This is equivalent to a piecewise-constant coordinate trans-
formation. In CSOM the coordinate transformation is implemented in a piecewise-
linear fashion. This is accomplished using the following local linear coordinate
transformation, which is based on an algorithm developed by Göppert and Rosen-
stiel [7].

2.1. STEP4: CSOM INTERPOLATION

In this step, the neighbors of the winning node define a local linear systemL that is
used to decompose the input vectorA. The coordinates thus obtained in turn define
coordinates in another local linear system (P), now in the grid space, that specify
the positionX∗ to whichA is mapped in the CSOM grid.

Let s = 1 . . . S be the index of the dimensions on the CSOM layer grid.
(a) Find the winning CSOM unit:J = arg minj ||A − wj ||
(b) Compute the local bases (L andP) for J :

b.1. Sets = 1

b.2. Let�s be the set of indices of the nearest neighbors ofJ along the map

dimensions

b.3. Compute the projectionsηjs :

ηjs = (wj − wJ) · (A − wJ)

(wj − wJ) · (wj − wJ)
, j ∈ �s

b.4. SetK(s) = arg maxj {ηjs}
b.5. Compute theM-dimensional local basis vectorls in feature space:

ls =
{

0 if J is an interior grid point; andηjs ≤ 0, ∀j ∈ �s
wK(s) − wj otherwise

b.6. Compute theS-dimensional local basis vectorps in grid space:

ps = XK(s) − XJ

64 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Figure 3. Selecting a basis vector for dimensions of a map.wJ is the weight vector for the
winning unitJ , andw�s(1) andw�s(2) are the weight vectors for the two neighbors of the
unit J along dimensions in the grid. Depending in which of the three regions in the figure the
input A falls, a different basis vectorls is used for computing the affine coordinatesu.

b.7. If s < S add 1 tos and go to step b.2

b.8. Define the local systemsL = [l1, l2, . . . lS] and

P= [p1,p2, . . .pS]
(c) Interpolate:

c.1. Compute theS-dimensional local affine coordinatesu:

u = (LLL + λI)−1L T (A − wJ)

c.2. Setvs = XJ
s +

∑S
µ=1Psµuµ

c.3. Compute grid coordinatesX∗s for the inputA:

X∗s =

X−s if vs < X−s
vs if X−s ≤ vs ≤ X+s
X+s if vs > X+s

The CSOM interpolation step first finds the grid unitJ whose weight vectorwJ

is closest to the input (step 4(a)). The local system is then defined in terms of the
nodes adjacent to theJ th unit in theS-dimensional CSOM layer grid. For each
grid dimensions the neighbor with the largest projectionηjs is selected (steps b.2–
b.4). If both projectionsηjs are negative thenus = 0 and the grid coordinate along
dimensions remains equal that of the winnerJ (X∗s = XJ

s). This is equivalent to
setting the local basis vector for that grid dimension to0 (step b.5).

Figure 3 illustrates how selection of a local basis vectorls depends on the loc-
ation of inputA. Once a neighbor for each map dimension has been selected, an
S-dimensional local coordinate systemL is defined for the input space and another,

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 65

P, for the grid space (step b.8) (Figure 4). Using the local systemL it is possible to
compute affine coordinates for the vector(A − wJ) (step c.1). The coordinatesu
can then be used with the local systemP, defined in grid coordinates, and the grid
position of the winning node(XJ) to create an initial representation (v) of input
A in the CSOM grid (step c.2). Finally, the coordinates ofv are truncated (step
c.3) in order to keep them within specified bounds. This last step is necessary to
guarantee that there will always be some CSOM activity in response to any input.
This is crucial during the initial stages of the map formation, when the weight
vectorswj are typically packed together in a small area of the input space. In this
situation input vectors can be far away from the weight vectorswj . Without bounds
on CSOM grid coordinates, these input vectors would be mapped to coordinates far
away from those of the nodes in the CSOM grid, which would cause the activity of
the nodes in the grid to be zero.

Note that the matrix inversion operation in step c.1 is normally not too demand-
ing because the number of dimensions used for the CSOM layer is usually small
(maps withS = 1, 2, or 3 are typical). If a map created by CSOM has a topological
defect, the matrixL T L may be singular. This problem can usually be avoided by an
appropriate choice of grid topology and regularization parameterλ. Göppert and
Rosenstiel (1995b, 1997) found that topologically well organized maps can have
small values forλ while maps with topological defects require larger values forλ.
In all simulations below,λ = 0.001.

3. Basis Functions

Step 5 of the CSOM algorithm specifies a gaussian radial basis function (RBF).
The network may also be implemented with a variety of alternative basis functions
(Figure 5). A key property of the radial basis functions created by CSOM is that
they are adapted to the input distribution (Figure 6). In addition, the CSOM scheme
allows for the specification of radial basis functions in a single training phase, in
contrast to traditional RBF networks (Moody and Darken [11]), which uses two
training phases. In two-phase training, the basis functions are first determined using
an unsupervised algorithm (e.g., K-means). Standard deviations are then computed
as average distances to the mean of each cluster. Alternative approaches such as
the supervised growing cell structure (Fritzke [4]) use the variable topology of a
map to select which nodes to include in computing the standard deviations of the
basis functions, but this still requires a separate step. These approaches define the
basis functions in feature space coordinates, with information on the location, in
the feature space, of nearby nodes used to compute the standard deviations. This
information changes constantly during training, unless the positions of the centers
are kept fixed. In contrast, CSOM defines the basis function in grid coordinates.
Because node positions do not change in this coordinate system, the standard de-
viation of the basis functions can be specified as a constant(δ) in the model. For
gaussian basis functions and an integer CSOM grid,δ is set equal to 0.4247

√
S.

66 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Figure 4. CSOM uses the local systemL = [l1, l2] in the input space (above) to compute
coordinatesu for an input vectorA. These coordinates are then used with the local system
P = [p1,p2] in grid space (below) to constructX∗, the position to whichA is mapped in the
grid space.

This value forδ causes the activity of each basis to equal 0.5 at a distance of
√
S

from the basis function center.

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 67

Figure 5. Examples of 1–D basis functions: hat function (left) and gaussian (right).

Figure 6. 1–D gaussian basis functions created by CSOM for two different input distributions:
uniform distribution (left) and polynomial distribution (right). The dark dots mark the position
in the input space of each CSOM grid node’s weight vectorwj . In the uniform case the nodes
are evenly spaced, and the basis functions are symmetric. As a result the input space is evenly
covered by the basis functions. In the polynomial case the basis functions are asymmetric
and are concentrated in the region where most of the data points fall. This provides improved
coverage of the input space where the input density is higher.

4. Examples

This section illustrates CSOM’s capabilities with three function approximation
tasks. In the first two tasks the CSOM grid has the same dimensionality as the input
space(S = M). The third task illustrates how CSOM accomplishes dimensionality
reduction. Performance is measured by the root mean squared error (RMSE), com-
puted on a test set drawn from the same distribution as the training set, according

to
√

1
n

∑n
t=1 ||B(t)− B̂(t)||2. A measure of theperformance gainfor each model

is computed as the percent reduction in RMSE compared to the traditional SOM
algorithm. The parameters used in the simulations are listed in Table III. These

68 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Figure 7. Fifth-order chirp signal used in the 1–D function approximation simulations:B =
0.5 + 0.5 sin (ω(A)A), whereω(A) = 40πA4.

values were determined, using only the training set data, by inspecting the quality
of maps created by the CSOM and SOM algorithms.

4.1. 1–D FUNCTION APPROXIMATION

The 1–D function approximation task seeks to estimate a fifth-order chirp function
(Figure 7). Simulations consider two input distributions, a uniform distribution
and a polynomial distribution of degree four, which matches the chirp function
frequency. The training set for each distribution consists of 7,000 input pointsA in
the interval [0,1], with outputB = 0.5 + 0.5 sin(ω(A)A), whereω(A) = 40πA4.
The test set containsn = 3,000 observations drawn from the same distribution as
the training set.

Four models were compared: the traditional SOM, a gaussian radial basis func-
tion network (GRBF), CSOM with gaussian basis functions (CSOM-G), and CSOM
with hat basis functions (CSOM-L). Each model had 150 nodes in the hidden layer
(or the CSOM layer), and each was tested in both a fixed grid mode and an adaptive
grid mode. In the fixed grid mode the weightswij were initialized according to the
distribution of the inputs and were not adapted, the same distribution of weights
wij being used for all models. In the adaptive grid mode, CSOM–G and CSOM–L
had the same final map because the adaptation of the CSOM layer is independent
of the choice of basis function. The GRBF model used the same grid learned by
CSOM after the training procedure. The standard deviation of the gaussian of each
node was set equal to the mean distance to the node’s neighbors in the grid. This
procedure is the same as in the supervised version of the growing cell structure
model (Fritzke [4]). The hat basis functions for CSOM–L were defined to drop to
zero at the coordinates of neighboring nodes.

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 69

Table III. Simulation parameters.

All simulations

Parameter SOM CSOM

α 0.1 0.1

w− –0.001 –0.001

w+ 0.001 0.001

β1 0.01 0.01

σ1 0.01 0.05

λ – 0.001

δ – 0.4247
√
S

X−s – –1

X+s – Ns + 2

1–D function approximation

β0 0.5 2

σ0 30 50

t1 2,000 4,000

N1 150 150

2–D function approximation

SOM CSOM

Parameter 1D 2D 1D 2D

β0 0.5 0.5 5 5

σ0 4 4 5 5

t1 5,000 5,000 5,000 5,000

N1 64 8 64 8

N2 – 8 – 8

Inverse kinematics

β0 0.5 0.5 5 5

σ0 30 7 20 4

t1 8,000 8,000 8,000 8,000

N1 100 10 100 10

N2 – 10 – 10

70 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Table IV. 1–D function approximation: RMSE and gain
compared to SOM for the chirp task, with 20 training
epochs. Boldface type indicates the best performance in
each column.

Fixed Input Distribution

grid Uniform Polynomial

SOM 0.1340 (0.0%) 0.0876 (0.0%)

GRBF 0.1099 (18.0%) 0.0112 (87.2%)

CSOM–G 0.1099 (18.0%) 0.0112 (87.2%)

CSOM–L 0.1113 (16.9%) 0.0142 (83.8%)

Adaptive Input Distribution

grid Uniform Polynomial

SOM 0.1260 (0.0%) 0.1017 (0.0%)

GRBF 0.1008 (20.0%) 0.0292 (71.3%)

CSOM–G 0.1005 (20.0%) 0.0289 (71.6%)

CSOM–L 0.1030 (18.3%) 0.0332 (67.4%)

Table IV summarizes performance of the four models with uniform and polyno-
mial input distributions and with fixed and adaptive grids. Each system was trained
for 20 epochs, where one epoch corresponds to one pass through the training
set. The result for CSOM–G and CSOM–L are significantly better than for the
traditional SOM. CSOM–G also performs slightly better than GRBF.

The polynomial distribution of nodes in fixed mode approximates an optimal
distribution. The larger RMS errors for the polynomial input distribution in the
adaptive mode (Table IV) reflect imperfect learning at the CSOM layer, whereas
nodes in fixed mode are chosena priori to perfectly reflect the input distribution.
As shown by Ritter and Schulten [12], the SOM algorithm under-represents high
stimulation regions in favor of low stimulation ones. This shortcoming seems to
carry over to the continuous version implemented by CSOM. This limitation might
be ameliorated by modifying the CSOM algorithm along the lines proposed by
Bauer, Der, and Herrmann [2] for the SOM algorithm.

4.2. 2–D FUNCTION APPROXIMATION

The 2–D function approximation task simulated here is similar to the one used by
Göppert and Rosenstiel [6]. The goal is to approximate the inverse function of a
polynomial. The components(A1, A2) are calculated as polynomial expressions of
the output components(B1, B2):

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 71

Figure 8. Input and output data distributions for the inverse function of polynomials task. A
single data set consisting of 961 observations was used for training and testing. The output
data were obtained from a 31×31 uniform grid and the respective inputs computed according
toA1 = B2

1 + 5(B1+ B2)+ 2.5 andA2 = B2
2 + 5(B1+ B2)+ 2.5.

A1 = B2
1 + 5(B1+ B2)+ 2.5

A2 = B2
2 + 5(B1+ B2)+ 2.5.

A single data set consisting of 961 observations (Figure 8) was used for training
and testing.

Three models were compared: SOM, CSOM–G, and GRBF. Each model had
64 nodes in the hidden layer or CSOM layer. For SOM and CSOM–G, the hidden
nodes were arranged in an 8× 8 grid. The GRBF network used the map learned
by CSOM–G to compute the standard deviation of the gaussians. The standard
deviations were taken to be the average distance to the neighboring nodes in the
map.

Table V summarizes performance of the three models after 50 training epochs.
The results for CSOM–G were considerably better than the traditional SOM and
GRBF. Figure 9 show the maps learned by the SOM algorithm and CSOM–G, and
the receptive fields of each basis function for GRBF and CSOM–G.

4.3. INVERSE KINEMATICS OF A TWO-JOINT ARM

The third example task is learning the inverse kinematics of a two-dimensional
two-joint arm (Figure 10). For this task, given the end-effector position(x, y), a
system is required to return joint angles(ϕ1, ϕ2) such that(x, y) and(ϕ1, ϕ2) are
related through the forward kinematics equations:

72 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Table V. 2–D function approx-
imation: the inverse function of
polynomials task, with 50 training
epochs.

Model RMSE Gain

SOM 0.2639 0.0%

GRBF 0.0824 68.8%

CSOM–G 0.0437 83.4%

Figure 9. Final map configurations and receptive field shapes for the inverse function of
polynomials task. Top row: maps learned by SOM and CSOM–G superimposed on the input
distribution. CSOM–G self-organized a map similar to that of SOM. Bottom row: recept-
ive field shapes of each basis function for GRBF and CSOM–G. The curves represent a
non-normalized activity level(8j) of 0.5. The graphics show how CSOM–G shapes the basis
functions to match the distribution of the input data.

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 73

Figure 10. Coordinate definitions for the task of learning the inverse kinematics of a
two-dimensional two-joint arm.

x = sin ϕ1+ sin(ϕ1+ ϕ2− π)
y = cosϕ1+ cos(ϕ1+ ϕ2− π).

with π/6 ≤ ϕ1 ≤ 4π/3 andπ/6 ≤ ϕ2 ≤ π . The training set consisted of 10,000
input and output points. The test set contained 3,000 observations. The data were
obtained by randomly generating pairs of joint angles(ϕ1, ϕ2) and then computing
the associated end-effector positions(x, y) using the forward kinematics equations.
Components of the input and the output data were then scaled to fall in the interval
[0, 1].

Four models were trained to solve this problem: a one-dimensional SOM
(SOM1), a one-dimensional CSOM with gaussian basis functions (CSOM–G1),
a two-dimensional SOM (SOM2), and a two-dimensional CSOM with gaussian
basis functions (CSOM–G2). Each model had 100 units in the map layer. For the
two-dimensional models these units were arranged in a 10× 10 grid.

Table VI summarizes the performance for the two models, and Figure 11 shows
the final map configuration for SOM1 and CSOM–G1. In both the one-dimensional
and the two-dimensional cases, CSOM–G significantly outperformed the tradi-
tional SOM. Most remarkably, while the two-dimensional SOM (SOM2) had worse
performance than the one-dimensional SOM (SOM1), the reverse held for CSOM–
G. Due to the piecewise constant approximation implemented by SOM1 and SOM2,
the quality of the approximation is limited by the quantization created by the mod-
els. Because of the shape of input distribution, the 2–D grid learned by SOM2 does
a poorer job at covering the input region with nodes than the 1–D grid used by
SOM1, and thus SOM2 has a larger RMSE than SOM1. For CSOM–G, the quality

74 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Table VI. Dimensionality reduc-
tion: the inverse kinematics task,
with 5 training epochs.

Model RMSE Gain

SOM1 0.0764 0.0%

CSOM–G1 0.0612 19.9%

SOM2 0.0784 0.0%

CSOM–G2 0.0482 38.5%

Figure 11. Final map configurations superimposed on the input distribution for the
one-dimensional models used in the inverse kinematics of a two-dimensional two-joint arm
task. Inputs correspond to “hand” positions(x, y), with angle constraintsπ/6 ≤ ϕ1 ≤ 4π/3
andπ/6≤ ϕ2 ≤ π . CSOM–G1 self-organized a map similar to the one created by SOM, and
each map does a good job of quantizing the input space.

of the approximation is a function of the basis functions used as well as the quantiz-
ation. Even though CSOM–G2 does not quantize the inputs as well as CSOM–G1,
the 2–D basis functions used by CSOM–G2 provide better interpolation than the
ridge-like functions in CSOM–G1. As a result, CSOM–G2 has a smaller RMSE
than CSOM–G1.

The one-dimensional CSOM–G1 shows how CSOM works when the dimen-
sionality of the input space(M = 2) is greater than that of the map(S = 1). This
is illustrated in more detail in Figures 12 and 13 for a map with 10 units trained
with the same data as in Figure 11. The smaller number of nodes in the map makes
it easier to visualize the CSOM–G1 basis functions.

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 75

Figure 12. Input distrubtion and map topology for a 1–D map with 10 units trained with the
data used in the inverse kinematics of a two-dimensional two-joint arm task. BF activity levels
81 and82 are illustrated in Figure 13.

5. Related Work

The closest work to CSOM is the interpolation approach proposed by Göppert and
Rosenstiel [6, 8] for the SOM algorithm. The similarities are accentuated because
in the algorithm presented in this paper, CSOM, following that work, uses an af-
fine transformation for finding intermediate positions in the CSOM grid. However
the two approaches differ in their goals and overall implementation. Göppert and
Rosenstiel propose a way to interpolate the predictions of a SOMafter the map has
been learned with the traditional SOM algorithm. In this way it is a two-stage pro-
cess. CSOM completely integrates self-organization and smooth prediction. The
two approaches also have different criteria for selecting neighbors and basis vectors
for the local basis system. The differences between the algorithms derive from the
goals of the two models. In particular, CSOM focuses on creating a continuous
map that uses the affine transformation to define a continuous variable (feature), in
the grid coordinates, that can then be used to define basis functions.

Another interpolation scheme for the SOM was proposed by Anguita, Pas-
saggio, and Zunino [1], in the context of image compression. They proposed a
simpler interpolation scheme that does not require the computation of the affine
coordinates. Like Göppert and Rosenstiel, Anguita et al. introduce interpolation
after the map has been learned with the traditional SOM. Although this scheme
was not designed for function approximation tasks, it might be adapted to work
with this class of problems. In this case, it could also be used to create an alternative
implementation of CSOM by modifying the interpolation step.

76 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Figure 13. Non-normalized BF activity levels81 and82 for the gaussian basis functions for
nodes 1 and 2 in Figure 12. Because of the dimensionality reduction, points along a direction
orthogonal to a map segment are mapped to the same coordinate in the grid system. As a
result, the basis functions are ridge-like functions oriented along the axes defined by the map
connectivity, having a constant value in the direction orthogonal to a map segment.

Fritzke [4] has used maps with variable topology to design gaussian radial basis
function networks. The topological information in the map is used to compute the
standard deviations of the gaussians, which are defined in terms of input space
coordinates. This approach requires constant updating of the standard deviation
during training, and it generates only symmetric radial basis functions. In contrast,
CSOM defines the basis functions in grid space (Section 3) and thus can generate
basis functions that conform to input data distributions. The difference between the
types of basis functions generated by the two approaches is illustrated in Figure 9,
where the standard deviations of the basis functions for GRBF were computed
using the approach suggested by Fritzke [4].

BUILDING ADAPTIVE BASIS FUNCTIONS WITH A CSOM 77

6. Conclusions

This paper introduces CSOM, a distributed version of the SOM algorithm capable
of generating maps similar to those created with the original algorithm. Due to
the continuous nature of the mapping, CSOM outperforms the SOM in function
approximation tasks. CSOM also implements a new approach for building basis
functions adapted to the distribution of the input data. The main idea proposed
here is the mapping of the inputs onto a grid space in a continuous fashion and
the specification of the basis functions in the grid space coordinates instead of the
input space coordinates. Unlike related approaches, CSOM self-organizes the basis
functions in a single training phase.

Two characteristic features of the CSOM model are its mapping or interpolating
step, and its regular topology. Limitations of the current implementation are con-
nected with the choices made for these two elements. The interpolation scheme has
discontinuities in the first derivative at transition points (shifting from one winner to
another and from choosing one neighbor over another) and is relatively expensive
computationally. The investigation of alternative interpolation schemes is an area
for future research. The use of a fixed topology for the CSOM layer can introduce
topological defects in the map and negatively affect CSOM’s performance. This
can be improved by adapting the concepts introduced here to work with other
approaches to topological map construction that use a variable topology, such as
the growing cell structure (Fritzke [4]), growing grid (Fritzke [5]), or incremental
grid growing (Blackmore and Miikkulainen [3]). A key aspect of these models is
that the dimensionality of the grid is fixed, although the grid itself is incrementally
built. The fixed dimensionality allows the system to define a coordinate system
that can be exploited by CSOM. The incremental approach to grid construction
allows the creation of grids that are adapted to the distribution of the inputs, thus
minimizing the occurrence of topological defects and incorrect representation of
the input probability distribution. The modification of CSOM to work with these
incremental models is another area for future development.

Acknowledgments

This research was supported in part by the Office of Naval Research (ONR N00014–
95–1–0409 and ONR N00014–95–1–0657).

References

1. Anguita, D., Passaggio, F. and Zunino, R.: SOM-based interpolation for image compression,
In: Proceedings of the World Congress on Neural Networks (WCNN’95)I , Lawrence Erlbaum
Associates, Mahwah, NJ, 1995, pp. 739–742.

2. Bauer, H.U., Der, R. and Herrmann, M.: Controlling the magnification factor of self-organizing
feature maps,Neural Computation8 (1996), 757–775.

3. Blackmore, J. and Miikkulainen, R.: Visualizing high-dimensional structure with the incre-
mental grid growing neural network, In: A. Prieditis and S. Russell (eds.),Machine Learning:

78 MARCOS M. CAMPOS AND GAIL A. CARPENTER

Proceedings of the 12th International Conference (ICML’95), Kaufmann, San Francisco, 1995,
pp. 55–63.

4. Fritzke, B.: Growing cell structures – a self-organizing network for unsupervised and super-
vised learning,Neural Networks7(9) (1994), 1441–1460.

5. Fritzke, B.: Growing grid – a self-organizing network with constant neighborhood range and
adaptation strength,Neural Processing Letters2(5) (1995), 9–13.

6. Göppert, J. and Rosenstiel, W.: Interpolation in SOM: Improved generalization by iterative
methods, In: F. Fogelman-Soulie and P. Gallinari (eds.),Proceedings of the International
Conference on Artificial Neural Networks (ICANN’95), EC2 & Cie, Paris, France, 1995a,
pp. 69–74.

7. Göppert, J. and Rosenstiel, W.: Topology interpolation in SOM by affine transformations, In:
M. Verleysen (ed.),Proceedings of the 3rd European Symposium on Artificial Neural Networks
(ESANN’95), D facto, Brussels, Belgium, 1995b, pp. 15–20.

8. Göppert, J. and Rosenstiel, W: The continuous interpolating self-organizing map,Neural
Processing Letters5 (1997), 185–192.

9. Grossberg, S.: Adaptive pattern classification and universal recoding, I: Parallel development
and coding of neural feature detectors,Biological Cybernetics23 (1976), 121–134.

10. Kohonen, T.:Self-Organization and Associative Memory(Second edition), Springer-Verlag,
New York, 1988.

11. Moody, J. and Darken, C. J.: Fast learning in networks of locally-tuned processing units,Neural
Computation1(2) (1989), 281–284.

12. Ritter, H. and Schulten, K.: On the stationary state of Kohonen’s self-organizing sensory
mapping,Biological Cybernetics54 (1986), 99–106.

13. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex,
Kybernetics14 (1973), 85–100.

