
Contributed article

S-TREE: self-organizing trees for data clustering and online
vector quantization

Marcos M. Campos, Gail A. Carpenter*

Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA

Received 6 December 2000; accepted 6 December 2000

Abstract

This paper introduces S-TREE (Self-Organizing Tree), a family of models that use unsupervised learning to construct hierarchical

representations of data and online tree-structured vector quantizers. The S-TREE1 model, which features a new tree-building algorithm,

can be implemented with various cost functions. An alternative implementation, S-TREE2, which uses a new double-path search procedure,

is also developed. The performance of the S-TREE algorithms is illustrated with data clustering and vector quantization examples, including

a Gauss±Markov source benchmark and an image compression application. S-TREE performance on these tasks is compared with the

standard tree-structured vector quantizer (TSVQ) and the generalized Lloyd algorithm (GLA). The image reconstruction quality with S-

TREE2 approaches that of GLA while taking less than 10% of computer time. S-TREE1 and S-TREE2 also compare favorably with the

standard TSVQ in both the time needed to create the codebook and the quality of image reconstruction. q 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction: clustering and decision trees

Data clustering is a technique used by both arti®cial and

biological systems for diverse tasks such as vision and

speech processing, data transmission and storage, and clas-

si®cation. Clustering can be de®ned as partitioning a dataset

into subsets, or clusters, where the number of subsets and

the grouping criteria depend on the application. Some appli-

cations seek `natural' groups, while others try to represent

hierarchical structure in the data (hierarchical clustering).

Other goals include summarizing the data while preserving

essential information as completely as possible. Fig. 1 illus-

trates hierarchical clustering and data summarization for a

simple dataset with four natural clusters. A review of the

clustering problem can be found in Duda and Hart (1973).

In situations where knowledge of the data distribution is

available, a Bayesian or maximum likelihood approach may

solve the clustering problem by estimating parameters of a

distribution (Duda & Hart, 1973). When this knowledge is

not available, clustering can be cast as an optimization

problem by specifying a suitable cost function to be mini-

mized. A common choice of cost function is the sum of

squared distances from points in a cluster to the cluster's

center. There are many procedures in the literature for

choosing cost functions for clustering problems. Some of

the most prominent are: the ISODATA algorithm (Ball &

Hall, 1967), the K-mean algorithm (MacQueen, 1967), the

generalized Lloyd vector quantization algorithm (Linde,

Buzo & Gray, 1980), and fuzzy clustering methods

(Dunn, 1974; Bezdek, 1980). These procedures share a

number of limitations, including sensitivity to initial condi-

tions and poor performance with datasets that contain over-

lapping clusters or variability in cluster shapes, densities,

and sizes. These are also unstructured clustering methods,

with no structural constraint imposed on the solution.

Because unstructured methods require an exhaustive search

for the nearest cluster, this approach typically becomes

impractical for large feature spaces or many clusters.

In order to overcome the computational burden asso-

ciated with unconstrained clustering, structural constraints

such as lattices and trees have been proposed (see Gersho &

Gray, 1992, for a review). In particular, tree-structured clus-

tering methods have become popular in the vector quantiza-

tion literature. Binary trees construct prototype vectors

(weight vectors) at each node (Fig. 2), and nodes are

traversed according to a nearest-neighbor algorithm and a

given distance measure (Fig. 3). For each node, starting at
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the root node, an input vector is compared to the prototypes of

the two child nodes of the current node. The child node with

the nearest neighbor, or closest prototype, to the input vector is

selected. The algorithm repeats the same procedure with the

new selected node until a leaf (terminal) node is selected.

Because of their local decision-making procedures, tree-

structured clustering methods are globally suboptimal, and

the algorithm might not select the leaf closest to the input.

However, tree-structured algorithms are fast, scale well (in

processing time) with the number of feature dimensions and

clusters, and can capture hierarchical structures in the data.

A balanced tree is grown one level at a time with all

nodes in a level split at once. Unbalanced trees can be

obtained either by growing a balanced tree and then pruning

using the generalized BFOS algorithm (Breiman, Freidman,

Olshen, & Stone, 1984), or by incrementally growing an

unbalanced tree directly one node at a time (Riskin &

Gray, 1991). Although unbalanced trees take longer to

build, they are more ¯exible, and in general yield better

results in vector quantization and clustering applications

than balanced trees.

This paper introduces S-TREE (Self-Organizing Tree), a

family of models that construct hierarchical representations

of data. S-TREE models solve the clustering problem by

imposing tree-structured constraints on the solution. The

S-TREE1 model, which features a new tree building algo-

rithm, can be implemented online and used in conjunction

with various cost functions. An alternative implementation,

S-TREE2, which uses a new double-path search procedure,

is also developed. S-TREE2 implements an online proce-

dure which approximates an optimal (unstructured) cluster-

ing solution while imposing a tree-structured constraint.

Because of their online nature, S-TREE models have smal-

ler memory requirements than traditional of̄ ine methods.

They are also fast, relatively insensitive to the initialization

of cluster centers, and, in the case of S-TREE2, approach the

performance of unconstrained methods while requiring a

fraction of the computer time of those methods.
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Fig. 1. In the unsupervised clustering problem, with no class labels, data points can be grouped according to the relationships they have among themselves. In

this example the gray regions represent areas where data points are located in four natural clusters. (a) A hierarchical clustering application would identify

three large clusters, and subdivide one of them (dashed line) into two clusters. (b) A typical solution for a data summarization application trying to group the

data into 12 compact clusters (small circles).

Fig. 2. Binary tree with 17 nodes. Nodes 4, 7, 8, 12, 13, 14, 15, 16, and 17

are leaf (terminal nodes). The remaining nodes are inner nodes. Node 1 is

the root node.

Fig. 3. The shape of the boundary, in input space, between two nodes

depends upon the distance measure used. (a) Euclidean distance. (b)

Weighted Euclidean distance using the inverse of the variance along each

dimension as the weighting factor for each node. The dotted lines represent,

for each node, the variance along the two dimensions.



The paper is organized in two parts. Sections 6±8

describe the S-TREE1 and S-TREE2 algorithms and illus-

trate applications to clustering. Sections 6±8 discuss online

vector quantization, with algorithm performance tested on a

Gauss±Markov source benchmark and an image compres-

sion application.

2. The S-TREE1 algorithm

The S-TREE family of tree-structured clustering algo-

rithms adapt their weight vectors via online incremental

learning. Fig. 4 illustrates the main steps of the algorithm,

which is speci®ed in Appendix A and available on the web

(http://cns.bu.edu/,gail/stree). S-TREE divides the input

space into a nested set of regions and assigns a prototype

weight vector to the data that fall into each region. This

nested structure implements a tree. Each node j in the tree

has an associated weight vector wj, a counter Nj (the number

of times the node has been updated), and a cost measure ej.

The algorithm also uses a splitting threshold E to track the

average cost associated with the winning leaf nodes.

The tree is initialized to a single root node. With each

input vector A the tree is traversed via single-path search (S-

TREE1) or double-path search (S-TREE2) until a leaf node

is reached. S-TREE1 searches in the traditional fashion, at

each internal node comparing the input vector to the proto-

types of the two child nodes and selecting the child node

whose weight vector wj is closest to A. After a leaf node has

been found, the algorithm performs a test to decide whether

it should modify the tree structure by splitting a node, if the

distortion at the winning leaf node is too great; and also by

pruning extra nodes, if the tree has reached its maximum

size. Following the tree modi®cation step, the weight

vectors of the nodes in the path connecting the root node

to the winning leaf are adapted to re¯ect the current input

vector. The system checks convergence by calculating the

total distortion C across a window of T inputs. Training

stops when C remains nearly unchanged from one window

to the next. Otherwise, a new input is read and the process is

repeated.

During testing, the tree is traversed until a leaf node is

found, and the input is assigned to the cluster labeled by that

leaf. The associated cost for that input vector is computed

using the weight vector of the winning leaf.

2.1. Adapting nodes

During training with an input vector A, the accumulated

cost ej, the counter Nj, and the weight vector wj are updated

for each node j in the path connecting the root node, where

j� 1, to the winning leaf, where j� J, according to:

Dej � e �1�

DNj � 1 �2�

Dwj � A 2 wj

� �
=Nj �3�

In Eq. (1), e is the value of the cost measure for the current

input vector, which in most applications tracks the square

distance from A to the winning weight vector wJ (Section

2.4). The splitting threshold E is also updated according to:

DE � b1�eJ 2 E�
Splitting and pruning may occur only when the cost eJ of the

winning leaf is greater than E. If this condition is met, E is

also increased to gE.

S-TREE uses a competitive learning approach to update the

tree weight vectors (3), with only one node at each level

updated for a given input vector. In particular, at most one

sibling in each pair is adapted for a given input. As a result,

the weight vectors of each sibling pair tend to align themselves

along the ®rst principal component of the data assigned to their

parent node. In the case of the sum-of-squared-distances cost

function, this alignment implicitly de®nes a partition of the

data by a hyperplane perpendicular to the principal component

(Fig. 5), which usually yields good results in vector quantiza-

tion tasks (FraÈnti, Kaukoranta, & Nevalainen, 1997; Lande-

lius, 1993; Wu & Zhang, 1991). S-TREE approximates a

principal component partition without needing to store a

covariance matrix or compute eigenvectors, as is required by

the related approaches.

2.2. Growing the tree

S-TREE begins with a single root node and grows a tree
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Fig. 4. Main steps of the S-TREE algorithms.



by adding either no nodes or two nodes per input, until a

maximum number of nodes (U) is reached. Thereafter, the

system prunes two nodes before adding each new pair

(Section 2.3). The algorithm adds a new pair, or splits,

when the cost eJ for the winning leaf is greater than the

splitting threshold E. The two new child nodes are initia-

lized as follows:

² The left child weight vector is set to wJ and the right child

weight vector to (1 1 d ) wJ, where d is a small positive

constant

² The counter Nj for each child is set to 1

² The cost variable ej for each child is set to eJ/2

After a split, the maximum index u of the tree nodes is

increased by 2.

In contrast to other decision tree methods (e.g. Cosman,

Perlmutter, & Perlmutter, 1995; Held & Buhmann, 1998;

Hoffmann & Buhmann, 1995; Landelius, 1993; Riskin &

Gray, 1991), the S-TREE splitting procedure does not

require a priori speci®cation of how often nodes should be

split. It also does not need a full search among all leaves to

determine which one to split.

2.3. Pruning

S-TREE grows the tree in a greedy fashion. At every

splitting step it tries to split the node with the largest accu-

mulated distortion, but, because S-TREE is an online algo-

rithm, the choice is not necessarily optimal. A pruning

mechanism reduces the effect of bad splits.

S-TREE pruning is implemented as a complementary

process to splitting. If the cost of the winning leaf J is

found to be too large and if the number of nodes in the

tree already equals the maximum U, then pruning is

engaged. The idea behind pruning is to remove nodes

from regions with the least cost to make room for new

nodes in regions where the cost is still high.

For each input for which eJ . E, S-TREE ®nds the leaf m

with the smallest ej. If the cost em is suf®ciently small

compared to eJ (that is, if em # GeJ , where G , 1 is a prun-

ing threshold) then m and one nearby node are removed

from the low-cost region, and two new children are added

near the high-cost region represented by J. There are three

cases to consider for pruning.

² Type I: Node m's sibling is not a leaf (Fig. 6a).

² Type II: Node m's sibling is leaf J (Fig. 6b).

² Type III: Node m's sibling is a leaf other than J (Fig. 6c).

For Type I, m and its parent are removed from the tree, m's

sibling takes the place of its parent, and J is split. For Type

II, both m and J are removed from the tree, and their parent

is split. For Type III, m and its sibling are removed from the

tree, J is split, and the value of ej for m's parent is divided by

2. This last step is needed to give the parent node a chance to

adapt its cost value to re¯ect the new structure of the tree

before it becomes a likely candidate for splitting, which

could otherwise send the tree into a local cycle of splitting

and pruning at the same node. In all cases the cost of each

new child node is set to ej/2.

2.4. Cost functions

The S-TREE construction discussed in Sections 2.1±2.3

could use a variety of cost functions, depending on the

application. For example, some applications seek to parti-

tion the input data in such a way that the distribution of the

weight vectors wj approximates the distribution of the data

points A. Ideally, then, all clusters would have the same

number of data points. This goal is pursued by methods

such as the Self-Organizing Map (Kohonen, 1988) and

Neural Gas (Martinetz & Schulten, 1991). One way to

implement this goal in S-TREE is to specify that all leaf

nodes should win the competition with the same frequency.

This can be accomplished using the number of times Nj that

a node is updated as the accumulated cost measure ej, setting

e � 1 in Eq. (1). As a result, a node that wins the competi-

tion frequently would have a large accumulated cost and

become a good candidate for splitting.

In other applications such as vector quantization, a

common goal is to minimize the sum of squared distances:

D �
X

j

X
A[L j

uuA 2 wjuu
2 �4�

where L j is the set of inputs A assigned to leaf j. The

strategy in this case is to split, at each split opportunity,

the node that contributes the most to the total distortion D.

One approach would be to set the cost e to uuA 2 wjuu
2
.

However, this formula would not work well in an online

setting for the following reason. Early in training, when

the weights are changing rapidly, uuA 2 wjuu
2

is on average
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Fig. 5. Sibling nodes partition the space by a hyperplane (solid line) perpen-

dicular to the direction of the ®rst principal component of the data (dashed

line). The ®lled circles (X) represent node weight vectors.



much larger than after the weights have converged. As a

result, setting e to uuA 2 wjuu
2

would lead ej to be dominated

by the large early error. This early factor would make the

model more sensitive to initial conditions, and would also

require a longer interval between splits to allow the weights

to stabilize and to allow ej to re¯ect the actual cost asso-

ciated with each leaf node.

The solution used in S-TREE is to transform the cost from

an absolute value to a relative one. Accordingly, e is

computed as

e � e0= �e0 �5�

wheree0 is uuA 2 wjuu
2

and �e0 is a fast-moving average of e 0

computed using

D �e0 � b2�e0 2 �e0�
When the weights are changing rapidly, e 0 is large but so is
�e0. Later, when the weights converge and e 0 becomes smal-

ler so does �e0. This relative cost measure allows the sum ej

to re¯ect more readily the true cost associated with each

node. Nodes with large ej have bigger contributions to D

than those with smaller ej and are good candidates for split-

ting.

2.5. Convergence criterion

In batch processing a commonly used convergence
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Fig. 6. Pruning cases with U� 9. (a) Type I: m's sibling is not a leaf. (b) Type II: m and J are siblings. (c) Type III: m's sibling is a leaf other than J. In all cases

J� 10 and u� 11 after splitting. J denotes the winning leaf, m is the leaf with the smallest cost ej, £ marks deleted nodes, and gray boxes indicate nodes

added by splitting.



criterion is

uCt21 2 Ctu
Ct21

, h �6�

where Ct21 and Ct measure system performance on the

whole training set for epochs t 2 1 and t respectively,

and h is a small constant.

For an online method this criterion needs to be modi®ed,

since the size of the training set is not speci®ed in advance.

S-TREE uses a window of a ®xed size and computes the

performance of the algorithm over consecutive windows of

the training data. To compensate for ¯uctuations that can

occur for small windows, a moving average of the perfor-

mance on consecutive windows is used to check for conver-

gence. Taking �Ct to be the smoothed moving average

performance on window t , S-TREE's online convergence

criterion is de®ned by

u �Ct21 2 �Ctu
�Ct21

, h

where �Ct � �Ct21 1 b3�C 2 �Ct21� and C is the perfor-

mance on window t .

2.6. Limitations of the S-TREE1 algorithm

S-TREE1, like other tree-structured clustering algorithms

(Gersho & Gray, 1992; Held & Buhmann, 1998; Hoffmann

& Buhmann, 1995), is suboptimal in the sense that the leaf

node selected by the algorithm is not necessarily the one

closest to the input vector. This occurs because branching at

the higher levels of the tree biases the search, which may

cause data points to be assigned to wrong clusters or weight

vectors not to correspond to the cluster centers. Fig. 7 illus-

trates the impact of this structural bias for two simple clus-

tering problems where S-TREE1 did not learn the correct

centers.

3. S-TREE2: double-path search

The goal of S-TREE2 is to minimize the bias introduced

by the tree-structured constraint. This version of the algo-

rithm uses two paths to search for the leaf closest to a given

input (Fig. 8). During training, for each input vector, the

algorithm ®rst selects the root node as the initial winning

node. If the root node has no children, then the root is

selected as the winning leaf and the search stops. Otherwise,

the input vector is compared with the weight vectors of the

children of two current winning nodes, and the two child

nodes with weight vectors closest to the input vector are

selected. If a node has no children, then the node itself is

used in the competition to determine the next two closest

weight vectors. The algorithm repeats the same procedure

M.M. Campos, G.A. Carpenter / Neural Networks 14 (2001) 505±525510

Fig. 7. Two S-TREE1 simulation examples illustrating how the tree-struc-

tured constraint may prevent the correct partition of the input space. (a) An

example with a mixture of four isotropic Gaussian components. Note how

the leaf weight vectors (W) have not converged to the correct cluster centers

( p ). Lines represent decision boundaries. (b) A non-Gaussian data distri-

bution has led to an uneven partition of the space, with the left-most and

right-most leaf nodes (X) having much larger accumulated costs than the

remaining two leaf nodes.

Fig. 8. Two examples using an S-TREE2 double-path search. Light gray boxes show the winning nodes for each level of the tree. Dark gray boxes indicate the

®nal winning leaf. The arrow shows the position of the input relative to leaf weight vectors. (a) Both winning leaves (14, 15) are on the same side of the tree. (b)

Winning leaves (13, 14) are on different sides of the tree.



with the newly selected nodes until both winners are leaves.

Which one of the two leaves is chosen as the ®nal winner

depends on the size of the tree. After the tree has reached its

maximum size (U), the selected leaf with weight vector

closer to the input is chosen. If the tree is still growing,

and if the two leaves are at the same depth, then the one

with the closer weight vector is again chosen, but if the paths

from the root node have different lengths, then the leaf with

the shorter path is chosen. This constraint on the selection of

the winning leaf in a growing tree enforces a type of load

balancing among nodes at each level, preventing nodes that

split early from seizing too many inputs. After an overall

winning leaf has been chosen, the algorithm proceeds in the

same fashion as the single-path search version.

In S-TREE2, the double-path search approximates the

unconstrained solution, as the system adjusts the boundaries

of the inner nodes to re¯ect the distribution of data around leaf

weight vectors. After training, S-TREE2 approximates the

Voronoi partition, unlike most other tree-structured clustering

algorithms (Fig. 9). The change in search strategy in S-TREE2

thus adds signi®cant power, at minor computation cost.

Fig. 10 presents a step-by-step example of how S-TREE2

grows a tree. The dataset is a 2-D Gaussian mixture with

eight isotropic components. The diagrams show the tree just

before pruning and splitting take place at each step. As

training proceeds, the boundaries between the tree leaves

approach the Voronoi partition for the leaf distribution.

The ®gure also shows how leaf weight vectors move

towards the centroid of the region they control. In Fig.

10(g), Type III pruning is engaged to remove underutilized

leaves (near the center) and to split a leaf (lower right)

accounting for too many inputs. Fig. 10(h) shows the ®nal

con®guration of the tree. With the exception of some minor

defects, the boundaries approach the Voronoi partition for

the leaf nodes, and the associated tree structure also re¯ects

the hierarchical structure in the data.

4. Clustering examples

This section compares S-TREE2 performance with other

tree-structured and unstructured clustering methods. In Figs.

11±13 the data were generated by randomly sampling 2-D

(Figs. 11 and 13) and 3-D (Fig. 12) Gaussian mixture distri-

butions with isotropic components. In Fig. 14 the data were

generated by randomly sampling 16 Gaussian distributions

with different shapes and densities. In all examples, each

mixture component contributed 400 samples to the dataset.

The parameters used in the simulations are listed in Table 1.

The window size T was set to about 20% of the sample size.

In applications, values for T are typically between 5 and

20% of the sample size; large datasets can use smaller

values for T.

Fig. 11(a) shows that the Tree-Structured Vector Quanti-

zer (TSVQ) algorithm (Gersho & Gray, 1992) may not do a

good job of discriminating mixture components, with

several leaf weight vectors missing the cluster centers. S-

TREE2, on the other hand, is capable of overcoming the tree

structure bias and correctly discriminating the eight mixture

components (Fig. 11(b)). The decision boundaries for
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Fig. 9. Improved solutions with S-TREE2, compared with Fig. 7. In (a), W represents leaf weight vectors, p represents the actual Gaussian centers, and lines

represent decision boundaries. In (b), ®lled circles (X) represent leaf weight vectors.

Table 1

S-TREE2 parameters for clustering simulations

Parameter Value

All simulations

E0 50

b 1 0.01

b 2 0.075

b 3 0.2

g 1.1

G 0.35

d 0.0001

h 0.01

Eight clouds (2-D and 3-D)

U 15

T 640

Sixteen clouds

U 31

T 1200



S-TREE2 also approach the Voronoi partition for the same

distribution of leaf weight vectors. Fig. 12 shows similar

results for a 3-D example.

For the example in Fig. 13, S-TREE2 is compared with

the unstructured K-means algorithm, as implemented by the

SPSS statistical package. Even though S-TREE2 imposes a

tree-structured constraint on the solution, it achieves better

results than K-means in this example. Fig. 14 shows similar

results for a mixture of Gaussians with different shapes and

orientations.

Detailed comparisons between S-TREE2, TSVQ, and the

unstructured generalized Lloyd algorithm (GLA) (Linde et

al., 1980) are given in Section 7, including analysis of their

performance on an image compression task.

5. Cluster validity and tree size

What is the proper number of clusters in a given data

sample? The answer to this question depends upon the

goal of the clustering task. Some applications seek to ®nd

`natural' clusters in data, and their subclusters. Other appli-

cations seek to group, or vector-quantize, the data.

In the case of grouping, an algorithm may actually be

imposing, rather than ®nding, a certain structure in the

data. If the data are uniformly distributed, the concept of

clusters does not make sense. Nevertheless, it may still be

useful to group the data in smaller bunches.

The premise of natural clusters is that the dataset has

some internal structure which can be used to summarize

it. For example, if data points are distributed in a Gaussian

cloud, the mean and the variance accurately summarize the

entire data distribution. How can one ®nd natural clusters in

a dataset? How can one extract a hierarchical structure if

present? In a tree-structured clustering algorithm these

questions are closely related, since the identi®cation of hier-

archical structures is equivalent to recursively ®nding the

natural clusters in a dataset. So, the key question becomes:

when should a cluster be further divided?

Duda and Hart (1973) suggest a procedure for deciding

upon cluster division which can be readily applied to S-

TREE, has some statistical backing, and is not computation-

ally expensive. The approach is based on the observation

that, although the sum of costs (mean squared distances)

after partitioning a cluster in two is always smaller than

the parent's cost, the reduction in cost is greatest with true

subclusters (Fig. 15). This observation, combined with some

simplifying assumptions (see Duda & Hart, 1973, Chapter 6,

for details), allows the construction of the following test for

rejecting the null hypothesis, that there are no subclusters in

the data. That is: assume there are subclusters at the p-

percent signi®cance level if

E2

E1

, 1 2
2

pM
2 a

�������������������
2�1 2 8=p2M�

NM

s
�7�

where E1 is the cost for the parent node, E2 is the sum of

costs for the children, M is the number of dimensions of the

input vector, N is the number of data points in the sample

assigned to the parent node, and a is determined by

p � 100
Z1

a

1

2p
e2u2

=2du � 100�1 2 erf�a��

where erf(.) is the standard error function.

Using this test, the following procedure can be implemen-

ted, for S-TREE, to prune spurious clusters: after training is

®nished check whether inequality (7) is satis®ed for each

inner node with two leaf children. If a node does not satisfy

(7), then its children represent spurious clusters and can be

pruned. Repeat this procedure until all inner nodes with two

children satisfy (7). The simulations reported in this paper

do not use this test.
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Fig. 10. (a)± (h) S-TREE2 solution for a Gaussian mixture with eight

components. Each ®gure illustrates the tree state just before pruning and

splitting takes place. Leaf weight vectors are indicated by X and lines

represent decision boundaries. (g) shows the tree before a pruning step

(h) shifts leaf weight vectors toward the lower right.



6. Vector quantization

Vector quantization is a special case of clustering. It is

mainly used for data compression, to represent images and

information. Applications of vector quantization include

speech and image transmission.

Fig. 16 illustrates a general data compression system. The

system has two components: an encoder and a decoder. The

encoder converts the original data into a compressed repre-

sentation that has a smaller size in bits than the original data.

The decoder uses the compressed data to reconstruct the

original data. The reconstructed data may be either identical

to the original data (lossless compression systems) or a close

match (lossy compression systems).

Vector quantization is a lossy compression technique that

uses a codebook for encoding and decoding data. Vector

quantization techniques are aimed at creating small code-

books capable of encoding and decoding with the smallest

possible difference between original and reconstructed data.

The search procedure for vector quantization (VQ) methods
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Fig. 10. (continued)



may be either unconstrained (Equitz, 1989; Linde et al., 1980)

or constrained. Constrained search procedures include tree-

structured (TSVQ) (Buzo, Gray, Gray, & Markel, 1980;

Makhoul, Roucos, & Gish, 1985) and lattice (Conway &

Sloane, 1985; Gersho, 1979) methods. In the unconstrained

(full search) case, all weight vectors are codewords, and the

system searches through all the entries in a codebook to ®nd

which one best represents the data. In the constrained case, a

subset of the weight vectors are used as codewords (e.g. in

TSVQ the leaf nodes are used as codewords), and only some

codewords are searched.

In the past 20 years, many new developments have aimed

at increasing the speed of vector quantizers. These include

splitting (Linde et al., 1980), single-node splitting (Makhoul

et al., 1985), ®ne-coarse VQ (Moayeri, Neuhoff, & Stark,

1991), subspace-distortion method (Chan & Po, 1992; Po &

Chan, 1990, 1994), pairwise nearest-neighbor (PNN) algo-

rithm (Equitz, 1989), principal component-based splitting

(Wu & Zhang, 1991), maximum descent (MD) algorithm

(Chan & Ma, 1994), and fast tree-structured encoding

(Katsavounidis, Kuo, & Zhang, 1996). A limitation of

these methods is that they create codebooks of̄ ine, requir-

ing all the data for training the system to remain in memory

throughout training. For large databases, this places heavy

demands on the system.

6.1. Competitive learning for online vector quantization

Recently there has been a growing interest in competitive

learning neural network approaches to vector quantization

(Ahalt, Krishnamurty, Chen, & Melton, 1990; Amerijckx,

Verleysen, Thissen, & Legat, 1998; Bruske & Sommer,

1995; Buhmann & Kuhnel, 1993; Butler & Jiang, 1996;

Choi & Park, 1994; Chung & Lee, 1994; Fritzke, 1995;
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Fig. 11. An example with a mixture of eight isotropic Gaussian compo-

nents. (a) TSVQ solution with sum of squared errors (SSE)� 8.6; (b) S-

TREE2 solution with SSE� 6.5. W represents leaf weight vectors and p

the actual Gaussian cluster centers.

Fig. 12. An example with a 3-D mixture of eight isotropic Gaussian components. (a) TSVQ solution with SSE� 12.3. (b) S-TREE2 solution with SSE� 11.8.

W represents leaf weight vectors and p the actual Gaussian cluster centers.



Hoffmann & Buhmann, 1996; Kohonen, 1988; Lee & Peter-

son, 1990; Li, Tang, Suen, Fang, & Jennings, 1992; Marti-

netz & Schulten, 1991; Racz & Klotz, 1991; Ueda &

Nakano, 1994). These are online methods for codebook

generation, and do not require all the data for training the

system to be kept in memory throughout training.

The majority of competitive learning neural network

methods use full search. The few tree-structured vector quan-

tizers among them either compromise speed by requiring the

update of all nodes during training (Held & Buhmann, 1998),

or are not generally stable and have not been tested on large

problems (Li et al., 1992; Racz & Klotz, 1991).

During training, competitive learning neural network

approaches to vector quantization update the weight vectors

according to the general equation:

Dwj � ahj�A 2 wj�;
where hj is a node-speci®c learning rate and a is a global

learning rate which decreases over time. For hard, or

winner-take-all, competitive learning systems (e.g. Ahalt

et al., 1990), hj� 1 for the nearest-neighbor weight vector

J and zero otherwise. For soft, or distributed, competitive

learning systems (e.g. Chung & Lee, 1994; Kohonen, 1988;

Martinetz & Schulten, 1991), hj is non-zero at more than one

node in the early stages of training, and slowly approaches

the hard competitive learning case over time.

Many competitive learning methods attempt to minimize

the sum of squared distances:

D �
X

j

X
A[Lj

uuA 2 wjuu
2
; �8�

where L j is the set of inputs mapped to codeword wj, while

also imposing the constraint that codewords have an equal

probability of being selected (Choi & Park, 1994; Chung &

Lee, 1994; Kohonen, 1988; Martinetz & Schulten, 1991). In

recent years, approaches that attempt to equalize the distor-

tion associated with each codeword have been proposed

(Butler & Jiang, 1996; Ueda & Nakano, 1994). As illu-

strated in Fig. 17, smaller total distortion can be achieved

using an equal distortion constraint.

S-TREE implements a hard competitive learning

approach at each level of the tree, with a single winner

per level. This constraint, combined with the tree-structured

search for the best codeword, reduces the number of code-

words searched and updated during training. As a result, S-

TREE achieves faster codebook generation, encoding, and

decoding than full search competitive learning approaches.

S-TREE can be applied to vector quantization with either

a probability equalization or a distortion equalization goal.

Distortion equalization is implemented by computing e
according to Eq. (5). Probability equalization is implemen-

ted using e � 1 to update the nodes in the path from the root

node to the winning leaf. Fig. 17 illustrates results for both

goals on a simple example.

6.2. Data compression measures

The compression ratio is one measure of quality of a data

compression system. It is de®ned by

r � size of original data in bits

size of compressed data in bits

For example, a compression ratio r� 2 means that the

compressed data require half the storage space of the origi-

nal data. The higher the value of r the better the compression

system.

Another useful ®gure of merit is the compression rate R

(bit/sample) achieved by a vector quantization system:

R � dlog2Ke
M

where dxe is the smallest integer greater than or equal to x, K

is the number of codewords, and M is the number of input

dimensions. A quantizer with three codewords and 16 input

dimensions produces a compression rate of R� 2/16� 1/

8 bit/sample. For images, compression rate measures bit per

pixel (bpp). The lower the value of R the better the compres-

sion system.
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Fig. 13. An example with a Gaussian mixture with 16 isotropic components.

(a) K-means solution with K� 16 and SSE� 5.0. (b) S-TREE2 solution

with SSE� 4.7. W represents leaf weight vectors and p the actual Gaus-

sian cluster centers.

Fig. 14. Example with a Gaussian mixture with 16 anisotropic components.

(a) K-means solution with K� 16 and SSE� 35.8. (b) S-TREE2 solution

with SSE� 34.7. W represents leaf weight vectors and p the actual Gaus-

sian cluster centers.



The quality of the reconstructed data can be measured

using the peak-signal-to-noise ratio (PSNR) in dB:

PSNR � 10log10

s 2

MSE
�9�

where s 2 is the variance of the original data and MSE is the

reconstruction mean squared error. For gray-scale images

with 256 (8-bit) gray levels, PSNR is de®ned as

PSNR � 10log10

2562

MSE
�10�

The examples in Section 7 use PSNR to measure the quality

of the different data compression algorithms.

7. Vector quantization examples

This section compares S-TREE performance with perfor-

mance of the tree-structured vector quantizer using the split-

ting method (TSVQ) (Linde et al., 1980; Makhoul et al.,

1985) and of the generalized Lloyd algorithm (GLA)

(Linde et al., 1980), on problems of vector quantization of

Gauss±Markov sources and image compression. The TSVQ

and GLA simulations were performed using programs

developed by the University of Washington Data Compres-

sion Laboratory. The TSVQ program was used in the

balanced tree mode, which allows the number of codewords

generated by the program to be speci®ed independently of
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Fig. 17. Equal probability versus equal distortion constraints for vector quantization using S-TREE2. Each cloud has 1000 points, but the two have different

standard deviations. (a) With an equal probability constraint, an equal number of codewords is assigned to each cloud and SSE� 8.4. (b) With equal distortion,

SSE is reduced to 6.7. W marks the position of the 16 codewords in input space.

Fig. 15. Dividing a cluster in half through the centroid ( £ ) creates a smaller

total cost. (a) The large cluster has no subclusters. The sum of squared

distances is still reduced, because the distance from a data point to the

two new centroids is on average smaller than the distance to the parent

centroid. (b) The cluster has two subclusters. In this case, the decrease in the

sum of squared distances is greater than in (a).

Fig. 16. A general data compression system.



the data. The GLA program was used in unconstrained

search mode. In order to make training time comparisons

meaningful, both programs were modi®ed to have all the

data in memory before the start of training. This eliminated

the impact of disk access time on the training time results.

In order to obtain average performance values for the

algorithms, the training process was repeated 20 times for

each example, each instance using a different random order-

ing of the data. The simulation parameters used by S-TREE

are listed in Table 2.

7.1. Gauss±Markov sources

Vector quantizers were ®rst tested on the classical

Gauss±Markov source benchmark, with construction

following Gersho and Gray (1992). Training sets were

processed with input dimensions M� 1, 2, ¼, 7, with

each training set consisting of 60,000 input vectors. Data

points were created using sequences of values from the

following random process:

Xt11 � 0:9Xt 1 ut

where ut is a zero-mean, unit-variance Gaussian random

variable. Each sequence was converted to vectors with the

appropriate dimensions. For example, for a training set with

two-dimensional input vectors, a sequence of length

n� 120,000 was created {X1, X2, ¼, Xn} and then converted

to a set of 60,000 two-dimensional vectors {(X1, X2), (X3,

X4), ¼, (Xn21, Xn)}. Training sets were encoded with code-

books of size 2M where M is the number of dimensions of

the input vector. Performance was measured using PSNR

(9).

Simulation results for the Gauss±Markov task are

summarized in Table 3 and illustrated in Figs. 18 and 19.

In most cases, especially in high dimensions, S-TREE1

outperformed TSVQ in signal-to-noise ratio while requiring

less training time. S-TREE2, as expected, showed even

better signal-to-noise performance, approaching that of the

full search GLA. This comparison is further illustrated in

Table 4, which shows that the performance (PSNR) gap

between GLA and TSVQ, introduced by the tree-structured

bias, is almost completely recovered by S-TREE2. The abil-

ity of the double-path search to overcome the bias decreases

with codebook size since, for large trees, the likelihood

increases that the nearest codeword is in one of the paths

not explored.

S-TREE2 also requires signi®cantly less time than TSVQ

for smaller codebook sizes. However, as the codebook size

grows, S-TREE2 training time approaches that of TSVQ. In

fact, S-TREE2 training time will eventually become larger

than that of TSVQ, but it will always be smaller than that of

GLA. Note that most of the savings in training time

achieved by TSVQ requires batch processing. Because S-

TREE is an online algorithm it has to traverse the tree start-

ing at the root node to ®nd the nearest neighbor leaf, for each
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Table 2

S-TREE2 parameters for vector quantization simulations

Parameter Value

All simulations

E0 50

b 1 0.02

b 2 0.075

b 3 0.2

g 1.5

G 0.4

d 0.0001

h 0.01

Gauss±Markov source

T 1200

Image compression

T 6000

Fig. 18. PSNR (dB) for the Gauss±Markov task. PSNR is measured on the

training set.

Fig. 19. Training time (s) for the Gauss±Markov task.



input vector. TSVQ, on the other hand, processes a dataset

one level at a time, storing the assignments of inputs vectors

to tree nodes. This avoids the need to traverse the tree

starting at the root when a new level is trained. This strategy

cannot be applied online.

In this benchmark, an online approach such as S-TREE,

which needs to start the search from the root node for each

input vector, is penalized twice. Because the codebook size

and the number of input dimensions grow simultaneously,

the computational requirements for large codebooks

increase more quickly than if the number of dimensions

were ®xed.

7.2. Image compression

For the image compression example, a training set was

prepared by taking 4 £ 4 blocks from four 256 £ 256 gray-

scale (8-bit) images (Bird, Bridge, Camera, Goldhill) in
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Table 3

PSNR and training time for the Gauss±Markov task. Numbers re¯ect average results over 20 random orderings of the training data. Best results are in boldface

Input dimension Codebook size PSNR (dB)

TSVQ GLA S-TREE1 S-TREE2

1 2 4.3 ^ 0.00 4.3 ^ 0.00 4.3 ^ 0.05 4.3 ^ 0.05

2 4 7.9 ^ 0.00 7.9 ^ 0.00 7.9 ^ 0.01 7.9 ^ 0.16

3 8 9.3 ^ 0.00 9.3 ^ 0.03 9.1 ^ 0.20 9.3 ^ 0.07

4 16 9.4 ^ 0.00 10.1 ^ 0.02 10.0 ^ 0.06 10.1 ^ 0.04

5 32 10.2 ^ 0.00 10.6 ^ 0.03 10.3 ^ 0.05 10.6 ^ 0.03

6 64 10.4 ^ 0.00 10.9 ^ 0.02 10.6 ^ 0.04 10.9 ^ 0.02

7 128 10.7 ^ 0.00 11.2 ^ 0.01 10.8 ^ 0.05 11.1 ^ 0.01

Training time (s)

1 2 0.9 ^ 0.02 0.4 ^ 0.02 0.1 ^ 0.02 0.1 ^ 0.02

2 4 1.7 ^ 0.02 1.4 ^ 0.02 0.1 ^ 0.05 0.1 ^ 0.04

3 8 2.7 ^ 0.04 3.3 ^ 0.15 0.5 ^ 0.14 0.8 ^ 0.17

4 16 3.5 ^ 0.03 8.5 ^ 0.73 0.9 ^ 0.14 1.6 ^ 0.21

5 32 5.0 ^ 0.40 17.6 ^ 0.94 1.7 ^ 0.14 3.0 ^ 0.28

6 64 6.8 ^ 0.05 34.4 ^ 1.33 3.0 ^ 0.25 5.3 ^ 0.28

7 128 9.0 ^ 0.08 68.1 ^ 2.57 4.6 ^ 0.17 8.2 ^ 0.31

Fig. 20. 256 £ 256 gray-scale (8-bit) images used in the image compression task. Images (a)± (d) were used as training set, and image (e) was used as testing set.



Fig. 20(a)± (d). These blocks were transformed into vectors,

resulting in a training set with 16,384 16-dimensional vectors.

A test set was prepared in a similar fashion using the 256 £ 256

gray-scale (8-bit) Lena image (Fig. 20(e)). Quantizers with

codebook sizes ranging from 2 to 512 were then trained

using S-TREE1, S-TREE2, TSVQ, and GLA.

The results of the simulations are summarized in Table 5

and illustrated in Figs. 21 and 22. Sample reconstruction

images are illustrated, for codebooks with 128 and 256

codewords, in Figs. 23 and 24, respectively. S-TREE1

outperformed TSVQ both in reconstruction quality (PSNR

(10)) and training time. S-TREE2 performance was better

than that of S-TREE1 in PSNR, but it required more time. In

this application, because the input dimension is kept

constant for different codebook sizes, S-TREE2 training

time is below that of TSVQ even for large codebook

sizes. Table 6 shows that S-TREE2 was capable of recover-

ing much of the performance (PSNR) gap between GLA and

TSVQ. As the codebook size increases, the size of the

performance gap recovered by S-TREE2 decreases, as in

Table 4.

8. Related work

Incremental tree-structured methods for clustering have

received a great deal of attention in the past few years. Some

are online methods (Choi & Park, 1994; Held & Buhmann,

1998; Li et al., 1992; Racz & Klotz, 1991); others are of̄ ine

( Chang & Chen, 1997; Hoffmann & Buhmann, 1995; Land-

elius, 1993; Miller & Rose, 1994, 1996; Xuan & Adali,

1995). Typically, tree-based approaches suffer from the
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Table 4

Gain in dB for GLA and S-TREE2, and percentage of the performance gap

recovered by S-TREE2 for the Gauss±Markov task. Gain is measured as the

method's PSNR minus TSVQ's. % recovered equals S-TREE2 gain divided

by GLA gain

Input dimension Codebook size Gain (dB) % Recovered

GLA S-TREE2

1 2 0.00 2 0.02 ±

2 4 0.00 2 0.05 ±

3 8 0.02 0.02 100

4 16 0.71 0.70 98

5 32 0.41 0.39 95

6 64 0.48 0.43 90

7 128 0.44 0.36 83

Table 5

PSNR and training time for the image compression task. Numbers re¯ect

average results over 20 random orderings of the training data. Best results

are in boldface

Codebook size PSNR (dB)

TSVQ GLA S-TREE1 S-TREE2

2 17.6 ^ 0.00 17.6 ^ 0.00 17.7 ^ 0.07 17.7 ^ 0.07

4 21.2 ^ 0.00 21.2 ^ 0.00 21.3 ^ 0.05 21.2 ^ 0.12

8 22.6 ^ 0.00 22.6 ^ 0.00 22.4 ^ 0.17 22.6 ^ 0.09

16 23.2 ^ 0.00 23.4 ^ 0.04 23.2 ^ 0.11 23.5 ^ 0.17

32 23.7 ^ 0.00 24.7 ^ 0.07 24.2 ^ 0.13 24.5 ^ 0.07

64 24.8 ^ 0.00 25.5 ^ 0.05 25.1 ^ 0.10 25.3 ^ 0.06

128 25.5 ^ 0.00 26.2 ^ 0.05 25.8 ^ 0.09 26.0 ^ 0.06

256 26.1 ^ 0.00 26.9 ^ 0.03 26.3 ^ 0.07 26.6 ^ 0.06

512 26.7 ^ 0.00 27.4 ^ 0.03 26.8 ^ 0.05 27.1 ^ 0.05

Training time (s)

2 1.0 ^ 0.02 0.9 ^ 0.03 0.1 ^ 0.05 0.1 ^ 0.05

4 1.6 ^ 0.03 1.6 ^ 0.08 0.3 ^ 0.06 0.4 ^ 0.09

8 2.0 ^ 0.04 2.8 ^ 0.03 0.6 ^ 0.12 0.8 ^ 0.20

16 2.7 ^ 0.03 5.0 ^ 0.29 0.9 ^ 0.18 1.2 ^ 0.23

32 3.7 ^ 0.06 11.6 ^ 0.71 1.3 ^ 0.28 1.8 ^ 0.31

64 4.5 ^ 0.07 18.7 ^ 0.86 1.9 ^ 0.37 2.6 ^ 0.35

128 5.5 ^ 0.06 32.8 ^ 1.59 2.6 ^ 0.29 3.6 ^ 0.55

256 6.9 ^ 0.07 59.1 ^ 2.65 3.3 ^ 0.43 4.9 ^ 0.80

512 8.8 ^ 0.07 105.3 ^ 2.40 4.3 ^ 0.39 6.3 ^ 0.80

Fig. 21. PSNR (dB) for the image compression task. PSNR is measured on a

test image (`Lena') not included in the training set. Fig. 22. Training time (s) for the image compression task.



bias created by imposing a tree-structured constraint on the

solution of the clustering problem. S-TREE2, with its

double-path search, minimizes this bias.

Xuan and Adali (1995) proposed the learning tree-struc-

tured vector quantization algorithm (LTSVQ). This is an

of̄ ine algorithm similar to TSVQ, the difference being the

use of a sequential competitive learning rule for updating the

codewords instead of the batch rule used by TSVQ. As a result,

LTSVQ presents the same limitations of TSVQ. Because S-

TREE1 and S-TREE2 train all the levels of the tree simulta-

neously, they are capable of learning a codebook faster than

TSVQ (Figs. 19 and 22), which trains one level at a time.

Landelius (1993) proposed a tree-structured algorithm

that partitions the space at the centroid of data along the

principal component. This is exactly what S-TREE1

approximates iteratively. While the method of Landelius
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Fig. 23. Reconstructed Lena image for different algorithms and 128 codewords. Original encoded at 8 bpp.



requires the storage of covariance matrices as well as

computing the eigenvectors of these matrices, S-TREE1

does not. There is no equivalent to S-TREE2 and its

improved search in that work.

Li et al. (1992) and Racz and Klotz (1991) used trees with

variable numbers of children per node and threshold-based

splitting rules. This has the potential of overcoming the bias

introduced by tree structures with a ®xed number of children

per node. There is little information on how these methods

perform on more dif®cult tasks. However, a comparative

study (Butchart, Davey, & Adams, 1996) indicates that both

approaches are sensitive to parameter settings, have problems

dealing with noisy data, and seem to be affected by the tree-

structure bias for trees with many levels. S-TREE1 is not very

sensitive to the ®rst two problems, and S-TREE2 minimizes

the bias. SCONN (Choi & Park, 1994), which also uses a
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Fig. 24. Reconstructed Lena image for different algorithms and 256 codewords. Original encoded at 8 bpp.



distance threshold to control the creation of new nodes, has

shown good performance on a few benchmarks. Although this

algorithm is cast as a hierarchical structure, SCONN uses an

unconstrained search for selecting the nearest neighbor leaf.

As a result, it does not scale well with the number of input

dimensions and codebook size.

Some recent methods have introduced interesting new ways

of determining the tree topology based on information theo-

retical principles. For example, the number of leaves may be

intrinsically determined by a complexity cost that penalizes

complex tree structures (Held & Buhmann, 1998) or by speci-

fying an annealing temperature (Hoffmann & Buhmann, 1995;

Miller & Rose, 1994, 1996). However, these approaches

require the processing of all the nodes in the tree for each

training observation. This is especially serious in the annealing

algorithms: while the effective size of the tree for each anneal-

ing temperature might be small, the actual size of the

processed tree can be much larger. At high temperatures,

many of the nodes in the tree have the `same' codewords,

which yields a small effective tree. As the temperature cools,

these nodes gradually differentiate and the effective tree

grows. Throughout this process, computations are performed

for the whole tree, not only the effective tree. This computa-

tional load penalizes speed, and raises the question of how well

these approaches scale with database and codebook size, and

with the number of input dimensions. The same drawback is

shared by a similar approach (Jordan & Jacobs, 1994) for

growing trees for regression applications.

Clustering by melting (Wong, 1993) also proposes a new

way of detecting clusters in data. The algorithm is agglomera-

tive: it starts with each data point as a separated cluster and

then gradually merges nearby clusters into a single cluster.

This procedure is repeated until a single cluster is obtained.

The natural clusters and hierarchical structures in the data are

identi®ed afterwards based on the analysis of bifurcations in

scale space. This method can in principle deal with cluster

variability in size, shape, and density. However, it is an of̄ ine

approach and is computationally expensive.

TSOM (Koikkalainen, 1994; Koikkalainen & Oja, 1990) is

a tree-structured clustering method that enforces topology

preservation in the codebook. That is, similar codewords

have nearby indices in the codebook. TSOM minimizes the

tree-structure bias by searching, for each level of the tree, the

neighbors of the best unit in the tree at that level. However,

TSOM can generate only balanced trees and clusters with

approximately equal numbers of data points. This is inade-

quate for many applications, including vector quantization.

The use of multiple searching paths in a tree has also been

proposed by Chang, Chen, and Wang (1992)and further

developed in the closest-coupled tree-structured vector

quantization (CCTSVQ) (Chang & Chen, 1997). CCTSVQ

has a number of drawbacks when compared with S-TREE2.

CCTSVQ relies on the TSVQ algorithm to generate its

codebook in an of¯ine fashion. It also requires extra storage

to keep a pointer for each node in the tree. This pointer

stores the index of the node in the same level with the

closest codeword to the codeword stored in the node owning

the pointer. The multipath search in CCTSVQ can compen-

sate for some of the bias introduced by the tree structure.

However, it cannot compensate for bad placement of leaf

codewords due to TSVQ's inability to minimize the tree-

structure bias during codebook generation. S-TREE2, as

illustrated in the examples in this paper, uses the double-

path search to improve the placement of leaf codewords.

9. Conclusion

S-TREE1 is a fast tree-structured clustering algorithm,

with online creation and pruning of tree nodes. It partitions

the space along the principal components of the data, and

can be used with different cost functions and model selec-

tion criteria (e.g. maximum number of nodes or minimum

acceptable error at the leaves).

An alternative version, S-TREE2, introduces a new

multipath search procedure which is integrated with the

tree building process. This multipath search approach

allows S-TREE2 to overcome, in many cases, the bias intro-

duced by the tree-structured constraint on the solution of the

clustering problem. For deeper trees, the ability of the

double-path search to overcome this bias decreases.

S-TREE algorithms can also be used to implement online

tree-structured vector quantizers. Unlike other neural

network tree-structured methods, S-TREE is fast and robust

to parameter choices. These features make it a viable solu-

tion to real vector quantization tasks such as image

compression. To illustrate this, the method is tested on a

Gauss±Markov source benchmark and an image compres-

sion application. S-TREE performance on these tasks is

compared with the standard TSVQ and GLA algorithms.

S-TREE's image reconstruction quality approaches that

of GLA while taking less than 10% of computer time

(Table 5). S-TREE also compares favorably with the

standard TSVQ in both the time needed to create the code-

book and the quality of image reconstruction.
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Table 6

Gain in dB for GLA and S-TREE2, and percentage of the performance gap

recovered by S-TREE2 for the image compression task. Gain is measured

as the method's PSNR minus TSVQ's. % recovered equals S-TREE2 gain

divided by GLA gain

Codebook Gain (dB) % recovered

size GLA S-TREE2

2 0.01 0.063 .100

4 0.00 20.022 ±

8 0.01 0.044 .100

16 0.15 0.287 .100

32 0.97 0.779 81

64 0.71 0.551 78

128 0.68 0.474 69

256 0.75 0.473 63

512 0.78 0.463 60



Besides clustering and vector quantization, S-TREE can

also be used, with minor modi®cations, in classi®cation,

function approximation, probability density estimation,

and curve and surface compression. These areas offer

many opportunities for the application of incremental

methods such as S-TREE.
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Appendix A. S-TREE algorithms

This appendix presents a detailed description of the

S-TREE1 (single-path search) and S-TREE2 (double-path

search) algorithms. Table 7 de®nes parameters and vari-

ables. The implementation assumes squared distance distor-

tion and distortion equalization goals, and limits the number

of nodes to a prescribed maximum (U).

A.1. S-TREE1: single-path search

Main algorithm

Initialize:

(0) Initialize the tree with a single node: set t� 1,

u� 1, wj� 0, Nj� 0, ej� 0, �e0 � 0, E� E0, t� 0,

C� 0, P1� 0

Get data;

(1) Get tth input vector A
Find leaf:

(2) Find winning leaf J (via single-path search below)

Modify tree structure:

(3) If eJ # E or U � 1 go to (7)

(4) If u $ U then prune (remove two nodes via prun-

ing step below)

(5) Split (add two nodes via splitting step below)

(6) Multiply E by g
Adapt nodes in path from root to winning leaf J:

(7) Compute distortion at winning leaf:

e0 � uuA 2 wJ uu2

(8) Adjust �e0 according to:

D �e0 �
(

e0 if t � 1

b2�e0 2 �e0� otherwise

(9) Compute relative cost: e � e0= �e0

(10) Adjust E according to: DE � b1�eJ 2 E�
(11) SetV to the index set of nodes in the path from the

root to the winning leaf J

(12) Adjust ej according to: Dej �
(
e if j [ V

0 otherwise
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Table 7

S-TREE parameters and variables. Parameter ranges for simulations are indicated in brackets

Parameter Description

E0 Initial value for E [50]

b 1 Learning rate for E [0.01, 0.02]

b 2 Learning rate for average cost �e0 [0.075]

b 3 Learning rate for �Ct [0.2]

g Multiplicative offset used after the tree modi®cation step [1.1, 1.5]

G Pruning threshold [0.35, 0.4]

d Multiplicative offset for initializing new child weights after a split [0.0001]

h Convergence threshold [0.01]

U Maximum number of tree nodes [an odd integer]

T Window size used with the online convergence criterion: typical values are 5±20% of the training set size

Variable Description

A Input vector (A1´ ´ ´Ai´ ´ ´AM)

wj Weight vector (codeword) for jth tree node (w1j´ ´ ´wij´ ´ ´wMj)

ej Relative cost associated with the jth tree node

Nj Number of times the jth tree node has been updated

Pj Index of the parent of node j; for the root node P1� 0

Sj Index of the sibling of node j

u j Set of indices of node j's children

V Set of indices of nodes in path from root to winning leaf

lj Tree depth of node j; this is de®ned as the number of nodes (not including the root node) in the path connecting j to the root node

e 0 Distortion at the winning leaf node

�e 0 Average distortion of the winning leaf nodes

e Relative cost of the winning leaf (distortion/average distortion)

E Splitting threshold

u Maximum index of the tree nodes

t Counter for online convergence criterion

C Total cost for current window
�Ct Moving average of total cost at window t



(13) Adjust Nj according to: DNj �
(

1 if j [ V

0 otherwise(14) Adjust wj according to:

Dw j �
( �A 2 wj�=Nj if j [ V

0 otherwise

Check convergence:

(15) Adjust C according to DC � e0

(16) Add 1 to t

(17) If t/T is not an integer go to (1)

(18) Add 1 to t
(19) If t � 1, set �Ct � C and go to (22)

(20) Compute �Ct according to: �Ct � �Ct211
b3�C 2 �Ct21�

(21) If u �Ct21 2 �Ctu=u �Ct21 , h; STOP

(22) Set C� 0 and go to (1)

Step (2): Single-path search (S-TREE1)

(2.1) Set J� 1 (the root node)

(2.2) If J is a leaf (node without children) go to (3)

(2.3) Let u J be the set of J's children

(2.4) Let k � argminj[uJ
uuA 2 wjuu

(2.5) Set J� k and go to (2.2)

Step (4): Pruning

(4.1) Let Y be the index set of leaf nodes

(4.2) Let m � argminj�ej�; j [ Y
(4.3) If em=eJ . G, go to (6)

(4.4) Type I: m's sibling is not a leaf

4.4.1 If Sm is a leaf go to (4.5)

4.4.2 Set Z � PPm

4.4.3 Delete m and Pm

4.4.4 Replace Pm with Sm

4.4.5 If Z� 0, for q� 1, 2 set

uZ�q� �
(

Sm if uZ�q� � Pm

uZ�q� otherwise

4.4.6 Go to (5)

(4.5) Type II: node m's sibling is leaf J

4.5.1 If Sm ± J go to (4.6)

4.5.2 Delete nodes m and J

4.5.3 Set uPm
� ¤0

4.5.4 Set J� PJ

4.5.5 Go to (5)

(4.6) Type III: node m's sibling is a leaf other than J

4.6.1 Delete nodes m and Sm

4.6.2 Divide ePm
by 2

4.6.3 Set uPm
� ¤0

4.6.4 Go to (5)

Step (5): Splitting

(5.1) Set uJ�1� � u 1 1 and uJ�2� � u 1 2

(5.2) Set Nj � 1; j [ uJ

(5.3) Set ej � eJ =2; j [ uJ

(5.4) Set wiuJ �1� � wiJ

(5.5) Set wiuJ �2� � �1 1 d�wiJ

(5.6) Increase u by 2

(5.7) Set J � uJ�1�

A.2. S-TREE2: double-path search

S-TREE2 is implemented by substituting the single-path

search (step (2)) in the basic algorithm with the following

algorithm.

Step (2): Double-path search

(2.1) Set J� 1 (root node)

(2.2) If u� 1 go to (3)

(2.3) Set J1 and J2, respectively, to the left and the right

child of the root node

(2.4) If uJ1
� ¤0 set C1 � {J1}; otherwise set C1 � uJ1

(2.5) If uJ2
� ¤0 set C2 � {J2}; otherwise set C2 � uJ2

(2.6) Set J �
(

J1 � arg minj jj A 2 wj jj; j [ {C1 < C2}

J2 � arg minj jj A 2 wj jj; j [ {C1 < C2} and j ± J1

(2.7) If either J1 or J2 is not a leaf go to (2.4)

(2.8) Set lJ1
and lJ2

to the tree depths of the leaf nodes J1

and J2, respectively

(2.9) Set J �
(

J1 if lJ1
# lJ2

or u $ U

J2 otherwise

A.3. S-TREE testing

S-TREE1 and S-TREE2 use the following algorithm

during testing.

(0) Set C� 0 and t� 1

(1) Get tth input vector A
(2) Find winning leaf J (via single-path search for

S-TREE1 or double-path search for S-TREE2)

(3) Compute distortion at winning leaf: e0 � uuA 2 wJ uu2

(4) Adjust C according to DC � e0

(5) If t is the last entry in the test set, STOP

(6) Add 1 to t

(7) Go to (1)
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