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A6st~act- The WSOM ( Wavelet Self- Organizing Map) 
model, a neural network for the creation of wavelet bases 
adapted to the distribution of input data, is introduced. 
The model provides an efflcient on-line way to construct 
high-dimensional wavelet bases. Simulations of a 1D 
function approximation problem illustrate how WSOM 
adapts to non-uniformly distributed input data, outper- 
forming the discrete wavelet transform. A speaker- 
independent vowel recognition benchmark task demon- 
strates how the model constructs high-dimensional bases 
using low-dimensional wavelets. 

I. INTRODUCTION 

Wavelets offer an economical framework for the 
representation of signals, images, and functions [l], [2], 
[3]. Interest in wavelet theory and applications has 
recently accelerated with the introduction of efficient 
algorithms for analyzing, approximating, estimating, 
and compressing functions and signals. The most 
popular of these algorithms is the discrete wavelet 
transform (DWT) [4], which uses general-purpose bases 
that are capable of representing many different types of 
functions. The bases used in the DWT algorithm are 
especially suited for uniformly sampled data. However, 
for an application that seeks to  estimate functions with 
data that might be unevenly sampled, better perfor- 
mance could be obtained if information extracted from 
the distribution of the data were to help specify the 
wavelet basis. This paper proposes a new architecture, 
WSOM ( Wavelet Self-organizing Map), that uses a 
self-organizing map to construct wavelet bases that 
adapt to input data distributions. In addition, the 
WSOM model can use low-dimensional wavelets to 
construct bases for high-dimensional input spaces. 

In recent years, several other hybrid methods have 
combined wavelets and neural networks to select 
bases adapted to particular problems. These systems 
substitute wavelets for the network activation function. 
Some use a fixed set of wavelets and adapt the dilation 
and translation parameters with a gradient descent 
algorithm such as conjugate gradient [5], [6 ] ,  [7], [8]. 
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Fig. 1. The WSOM network 

Others incrementally select basis functions from a 
dictionary of orthogonal wavelets while keeping the 
wavelet parameters constant [SI, [lo]. Although these 
hybrid approaches create adaptive wavelets suited to  
specific problems, they lack some important features 
of the discrete wavelet transform, such as orthogonal 
bases, especially for irregularly sampled input data. 
Also, these methods do not provide an easy way to  
construct wavelet bases for problems with three or 
more input components. Finally, the bases created by 
these hybrid methods are tuned to a single function. 
In contrast, WSOM preserves many of the desirable 
features of traditional wavelet bases. 

11. WSOM: WAVELET SELF-ORGANIZING 
MAP 

WSOM is a four-layer feedforward network (Figure 
1). The SOM layer quantizes the input space, mapping 
an input A onto an N-node grid via a SOM compet- 
itive learning algorithm [ll], [12]. The N x N weight 
matrix D = ( d j s )  then maps the SOM layer onto 
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a wavelet layer. The elements of this matrix are 
non-adaptive and they encode the discrete wavelet 
function associated with each node in the wavelet layer. 
These weights can be easily computed using the inverse 
discrete wavelet transform. As SOM nodes are succes- 
sively activated, the activation 0, of each wavelet 
unit plots a piecewise-constant function (a wavelet) of 
the input space at a given scale. These scales vary 
from coarse to fine. When the input space is one- 
dimensional, the number of wavelet units (including 
one scaling function unit) is the sum 1 + 1 + 2 + 4 + 
... + Z r b l  = 2r = N ,  where I? is the number of scales. 
For a 1D function approximation problem (Section III- 
A), the SOM layer represents N segments of the input 
interval [0, 11. Figure 2 illustrates the sum of two scale- 
1 wavelet units, as A varies from 0 to  1; and the sum 
of eight scale-3 units. 

The adaptive grid (SOM layer) and the wavelet 
layer together approximate a basis for the space of L2 
functions on the input space. Because of the prepro- 
cessing by the SOM layer, the wavelets used in this 
approximation are adapted to the distribution of the 
training data. Because the wavelets are defined in 
the grid coordinates of the SOM layer instead of the 
coordinates of the input space, the basis functions 
created with WSOM preserve many properties found 
in traditional discrete wavelet bases, including orthog- 
onality. The weights c,k encode the wavelet coefi-  
cients. The approach used in WSOM to compute these 
coefficients is quite different from most discrete wavelet 
applications. Traditionally a sampled version of the 
function to be approximated is stored in memory and 
the wavelet coefficients are then computed using the 
discrete wavelet transform. WSOM allows the compu- 
tation of the wavelet coefficients without the need to 
store all observations in memory. This is accomplished 
by presenting each observation (or function sample) one 
at a time and computing the coefficients using the delta 
rule. 

The number of dimensions of the SOM layer grid 
is less than or equal to the number of input compo- 
nents M .  When the dimension of the grid is less than 
M , WSOM uses low-dimensional wavelets to construct 
bases for high-dimensional input spaces. Although 
SOM and WSOM systems produce the same RMS 
errors, WSOM has a number of advantages. WSOM 
requires fewer nan-zero weights ( c s k )  to represent a 
function. It also provides a multiresolution represen- 
tation of the function and permits the use of wavelet 
denoising techniques to recover signal from noise. 

The following algorithm implements the WSOM 
network during training. 

Variables: 
A s (A1 . . .Ai . . . A M )  is the input vector 
y 5 ( y1  . . . yj . . . y ~ )  is the vector of activities of the 
SOM layer 
@ G (01.. .a, . . . @N) is the vector of activities of the 
wavelet layer 
B Z (&  . . . i k  . . . k ~ )  is the vector of network outputs 
W j  E (wl j  . . . wij . . . W M ~ )  is the weight vector from the 
input layer to the jth unit in the SOM layer 
d, E ( d l ,  . . .dj, . .  .dnrs) is the non-adaptive weight 
vector from the SOM layer to the sth unit in the wavelet 
layer 
ck ( C l k  . . . c,~, . . . C N k )  is the weight vector from the 
wavelet layer to the kth unit in the output layer 
Xi is the position, on an integer-valued grid, of the jth 
unit in the SOM layer 

Parameters: 
Q is the learning rate for the weights csk  
p is the learning rate for the weights wij 
u is the neighborhood size used in the SOM algorithm 
J is the index of the winning unit at the SOM layer 
hJj modulates the amount of learning for the j th  
unit in the SOM layer, decreasing exponentially with 
distance to the Jth unit 
w- and w+ are the lower and upper bounds for the 
initial weights waj 
0 0  is the initial value for p 
p1 is the final value for 0 
uo is the initial value for u 
u1 is the final value for u 
t l  is the number of training set inputs needed for 
u to decrease to /31 and u1 
n is the total number of training set inputs 

and 

In all simulations below: SOM is a 1D grid with 
N = 64, W- = -0.001, W+ = 0.001, Q = 0.1, 00 = 0.5, 
p1 = 0.01, and u1 = 0.1. 

Algorithm: 
0. 

1. Decrease a: 
Set t = 1, distribute weights wij uniformly in 
[w-, w+], and set all C , k  = 0 

2. Decrease (r: 
i-1 

uo(u1/uo)- if 1 st < t l  
c1 

cJ={ if t 2 t l  

3. 
4. 

Get the tth input vector A and output vector B 
Find the winning SOM unit: 
J = argminj llA-wjII 
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5. Compute the activity of the SOM layer: 
Y J  = 1 and yj = 0, j # J 

6. Compute the activity of the wavelet layer: 
as = Df = d j ,  

7. Compute the output: & = cs=l cSkQs 

8. Adjust c S k  according to: Ac,k = aiPs(Bk - is) 
9. Set: hj j  = exp(-llXj - ~ j 1 1 ~ / u ~ )  
10. Adjust w;j according to: Awij = /3hJ,(Aj - wij) 
11. If t = n then stop. Else add 1 to t and go to  1 

N 

t L 

I 3000 Observations 11 ‘YO00 Observations 

During testing the same algorithm is applied with a = 
0, /3 = 0, and output B for all inputs A. If the task is 
categorical, the maximum & value chooses the output 
class. 

1 11 0.261 
2 11 0.295 

111. SIMULATIONS 

This section illustrates WSOM’s capabilities with 
a 1D function approximation task and a speaker- 
independent vowel recognition task. The discrete 
wavelet transform implemented by the weights d j s  from 
the SOM layer to the wavelet layer is computed using 
[133- 

A .  1D FUNCTION APPROXIMATION 

This task is to estimate a fifth-order chirp function 
(Figure 2). Simulations consider five different input 
probability distributions px(x). Each distribution takes 
the form: 

x’dx O < z <  1 
otherwise px(x)dx= { 0 

where px(x)dx is the probability of generating a 
number between x and x + d x  and X is a nonneg- 
ative integer. In simulations X varied from 0 (uniform 
distribution) to 4 (equal to the degree of the chirp 
function frequency). Larger values of X bias the input 
distribution towards higher input values in the interval 
[O, 11. The training set for each distribution consisted 
of 7000 input points A in the interval [0,1], with output 
B = 0.5 + 0.5sin(w(A)A), w(A) = 40?rA4. 

In order to illustrate the advantages of adaptive 
wavelets for non-uniformly sampled data, perfor- 
mance comparisons were made between the discrete 
Haar wavelet basis (DWT) and an adaptive Haar 
wavelet basis (WSOM). Performance was measured 
by computing the root mean squared error RMSE= 4; c:=~(B(~) - B ( t ) ) 2  on a test set containing n = 
3000 observations drawn from the same distribution as 
the training set. The simulations used q, = 20 and 
t l  = 2000 for all distributions. 

Table I summarizes network performance for the 
different distributions for two stages in the training 

0.214 I 0.255 I 0.209 
0.230 I 0.291 I 0.228 

O p q  

,-&@oipM, -0.5 

B 0. h=l 

k 3  

0 0.5 1 0 0.5 1 0 0.5 1 

, I  

3 11 0.312 I 0.235 
4 11 0.330 I 0.220 

Fig. 2. Function approximation after training WSOM with 
7000 observations for simulation input distributions with 
X = 0,1,3. Scale 1 graphs show the s u m  of two coarse-scale 
wavelet node activations for inputs A E [0,1]; and scale 3 
graphs show the s u m  of eight finer-scale wavelet node activa- 
tions. The wavelets for X = 0 (uniform distribution) are close 
to those for the discrete wavelet transform. 

I 0.305 I 0.229 
I 0.331 I 0.218 

TABLE I 
ROOT MEAN SQUARED ERROR FOR THE CHIRP TASK WITH 

DIFFERENT INPUT DISTRIBUTIONS (INDEXED BY A) AND WITH 

3000 AND 7000 TRAINING SET INPUTS. 

II II R MS Error II 

u I* , I  u 

0 11 0.199 I 0.185 11 0.192 I 0.179 fl 

process. As the input distribution moves away 
from the uniform case (A increases) WSOM’s perfor- 
mance compared to DWT improves considerably. For 
less uniform distributions the adaptive wavelet basis 
selected by WSOM displays increased resolution in 
areas where the input density is larger (Figure 2). 

B. VOWEL RECOGNITION 

Performance of WSOM was compared to the perfor- 
mance of seven other models, reported by [14], on a 
speaker-independent vowel recognition task. The vowel 
examples were collected by [15], who recorded eleven 
steady-state English vowels from 15 speakers, 7 female 
and 8 male. A word containing each vowel was spoken 
once by each speaker. The speech signals were low-pass 
filtered at 4.7 kHz and then digitized to 12 bits with a 
10 kHz sampling rate. Twelfth-order linear predictive 
analysis was carried out on six 512-sample Hamming 
windowed segments from the steady part of the vowel, 
and the reflection coefficients were used to calculate 
10 log area parameters, giving a 10-dimensional input 
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space. Each speaker thus yielded six samples of speech 
from each of the eleven vowels. The data were parti- 
tioned into 528 samples for training, from four male and 
four female speakers, and 462 samples for testing, from 
the remaining four male and three female speakers. 
The data set is archived in the CMU connectionist 
benchmark collection [16]. 

TABLE I1 
PERFORMANCE ON THE TEST SET FOR THE SPOKEN VOWEL 

CLASSIFICATION PROBLEM. WITH THE EXCEPTION OF THOSE FOR 

WSOM, RESULTS ARE FROM [14]. RESULTS FOR WSOM ARE 

FOR 70 TRAINING EPOCHS AND Units STANDS FOR NUMBER OF 

HIDDEN UNITS. 

1 Classifier I Units I % Correct 

50 

Gaussian node network I 528 I 55 
Square node network I 88 I 55 H 
Nearest neighbor I 528 I 56 
WSOM I 64 I 55 I 

WSOM was trained during 70 epochs. The 
simulation used a0 = 10 and tl = 1000. Although 
WSOM used a completely unsupervised approach for 
placing the hidden units in feature space, its results 
were comparable to the best results reported by 
Robinson for other supervised classifiers (Table 11). 
WSOM also used fewer hidden units. 

I I 
0 10 20 30 40 50 60 

SOM unit 

Fig. 3. Decision regions for the different vowels. 

This example shows that WSOM can construct a 
high-dimensional wavelet basis from 1D wavelets. One 
advantage of WSOM compared to other approaches 

that combine wavelets and neural networks is the 
data visualization capability inherited from the SOM 
algorithm. Because the SOM layer is usually imple- 
mented as a one- or two-dimensional grid, it can 
represent the structure of high-dimensional data in 
graphical form. For the vowel recognition task, each 
SOM unit in the 1D grid represents a region in the ten- 
dimensional input space, and each unit has associated 
with it a prototypical input vector, equal to the 
centroid of the region. In Figure 3, circles plot which 
vowel is most frequently associated with a given region, 
projected onto an SOM unit. The horizontal bars 
indicate how spread out a given vowel (output class) 
is in the feature space. Figure 3 shows that similar 
vowels are grouped together and that the regions in 
feature space associated with similar vowels overlap 
significantly. 

IV. CONCLUSION 

WSOM is a neural network model for building 
wavelets that are capable of adapting to  non-uniformly 
distributed data and constructing high-dimensional 
wavelet bases from low-dimensional components. This 
new approach can be implemented on-line and has good 
data visualization capabilities. The primary contri- 
bution of the model is the use of a self-organizing 
map to implement a coordinate transformation from 
the input space to a regular grid. Basis functions 
(wavelets) are then defined on the new coordinate 
system (grid). This method can also be adapted to 
other basis functions, such as gaussians. 
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