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SUMMARY

ART and ARTMAP Neural Networks for Applications:
Self-Organizing Learning, Recognition, and Prediction

ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a
variety of problems. Applications include parts design retrieval at the Boeing Company, automatic
mapping from remote sensing satellite measurements, medical database prediction, and robot vision.
This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete
algorithm for applications. Computational properties of these networks are illustrated by means of
remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-
take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA
coding in these networks enables fast learning, that allows the network to encode important rare cases
but that may lead to inefficient category proliferation with noisy training inputs. This problem is
partially solved by ART-EMAP, which use WTA coding for learning but distributed category
representations for test-set prediction. In medical database prediction problems, which often feature
inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP
performance with distributed prediction, category instance counting, and a new search algorithm. A
recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition,
and prediction, but allows arbitrarily distributed category representation during learning as well as

performance.
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1. ART AND ARTMAP NEURAL NETWORKS

Adaptive resonance theory originated from an analysis of human cognitive information processing and
stable coding in a complex input environment (Grossberg, 1976, 1980). An evolving series of ART
neural network models have added new principles to the early theory and have realized these principles
as quantitative systems that can be applied to problems of category learning, recognition, and prediction.
Each ART network forms stable recognition categories in response to arbitrary input sequences with
either fast or slow learning regimes (Section 2). The first ART model, ART 1 (Carpenter and
Grossberg, 1987a), was an unsupervised learning system to categorize binary input patterns. ART 2
(Carpenter and Grossberg, 1987b) and fuzzy ART (Carpenter, Grossberg, and Rosen, 1991) extend the
ART 1 domain to categorize analog as well as binary input patterns (Sections 3-5) (Carpenter &
Grossberg, 1991).

Supervised ART architectures, called ARTMAP systems, self-organize arbitrary mappings from
input vectors, representing features such as spectral values and terrain variables, to output vectors,
representing predictions such as vegetation classes in a remote sensing application (Section 6). Internal
ARTMAP control mechanisms create stable recognition categories of optimal size by maximizing code
compression while minimizing predictive error in an on-line setting. Binary ART 1 computations are
the foundation of the first ARTMAP network (Carpenter, Grossberg, and Reynolds, 1991), which
therefore learns binary maps. When fuzzy ART replaces ART 1 in an ARTMAP system, the resulting
fuzzy ARTMAP architecture (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992) rapidly
learns stable mappings between analog or binary input and output vectors. Section 7 includes a complete
fuzzy ARTMAP implementation algorithm for applications.

Recently fuzzy ARTMAP has become the basis of new methodologies for producing maps from
satellite data (Carpenter, Gjaja, Gopal, & Woodcock, 1995; Gopal, Sklarew, & Lambin, 1994). A
simplified version of this problem (Section 8) introduces and illustrates the dynamics of fuzzy
ARTMAP networks. A medical database prediction example (Section 9) illustrates how the basic
ARTMAP system can be augmented to meet the computational demands of particular classes of
supervised learning problems. Other applications of unsupervised ART networks and supervised
ARTMAP networks include a Boeing parts design retrieval system (Caudell, Smith, Escobedo, &
Anderson, 1994), robot sensory-motor control (Bachelder, Waxman, & Seibert, 1993; Baloch &
Waxman, 1991; Dubrawski & Crowley, 1994a), robot navigation (Dubrawski & Crowley, 1994b),
machine vision (Caudell & Healy, 1994), 3D object recognition (Seibert & Waxman, 1992), face
recognition (Seibert & Waxman, 1993), Macintosh operating system software (Johnson, 1993),
automatic target recognition (Bernardon & Carrick, 1995; Koch, Moya, Hostetler, & Fogler, 1995;
Waxman et al., 1995), electrocardiogram wave recognition (Ham & Han, 1993; Suzuki, Abe, & Ono,
1993), prediction of protein secondary structure (Mehta, Vij, & Rabelo, 1993), air quality monitoring
(Wienke, Xie, & Hopke, 1994), strength prediction for concrete mixes (Kasperkiewicz, Racz, &
Dubrawski, 1994), signature verification (Murshed, Bortozzi, & Sabourin, 1995), tool failure
monitoring (Ly & Choi, 1994; Tarng, Li, & Chen, 1994), chemical analysis from UV and IR spectra
(Wienke & Kateman, 1994), frequency selective surface design for electromagnetic system devices
(Christodoulou, Huang, Georgiopoulos, & Liou, 1995), Chinese character recognition (Gan & Lua,
1992), and analysis of musical scores (Gjerdingen, 1990).
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2. ART DYNAMICS

The central feature of all ART systems is a pattern matching process that compares the current input
with a learned category representation, or active hypothesis, selected by the input.. This matching
process leads either to a resonant state that focuses attention and triggers category learning or to a self-
regulating parallel memory search that always leads to a resonant sate, unless the network’s memory
capacity is exceeded. If the search ends with selection of an established category, then the category’s
learned representation may be refined to incorporate new information from the current input. If the
search ends by selecting a previously untrained node, the ART network establishes a new category.

Figure 1 illustrates the main components of an ART 1 network and Figure 2 illustrates the ART
search cycle. During ART search, an input vector A registers itself as a pattern x of activity across level
F, (Figure 2a). Converging and diverging F; — F, adaptive filter pathways, each weighted by a long
term memory (LTM) trace, or adaptive weight, transform x into a net input vector T to level F,. The
internal competitive dynamics of F, contrast-enhance vector T, generating a compressed activity vector
y across Fy. In ART 1 and fuzzy ART, strong competition selects the F, node that receives the

maximal F; — F, input component 7; Only one component (y J) of y remains positive after this
choice takes place. Activation of such a winner-take-all node selects category J for the input pattern A.

Activation of an F, node may be interpreted as “making a hypothesis” about an input A. After
sending the F, activity vector y through top-down adaptive filter pathways, a filtered vector-V becomes
the F, — F; input (Figure 2b). The ART network matches the “expectation” pattern V of the active
category against the current input pattern, or exemplar, A. This matching process typically changes the
F) activity pattern X, suppressing activation of all features in A that are not confirmed by V. The
resultant pattern x* represents the features to which the network “pays attention.” If the expectation V is
close enough to the input A, then a state of resonance occurs, with the matched pattern x* defining an
attentional focus. The resonant state persists long enough for weight adaptation to occur; hence the term
adaptive resonance theory. The fact that ART networks encode only attended features x* rather than all
input features A is directly responsible for ART code stability.

A dimensionless parameter called vigilance defines the criterion of an acceptable match. Vigilance
specifies what fraction of the bottom-up input A must remain in the matched Fj pattern x* in order for
resonance to occur. In ARTMAP, vigilance becomes an internally controlled variable, rather than the
fixed parameter of ART. Because vigilance then varies across learning trials, a single ARTMAP system
can encode widely differing degrees of generalization, or code compression. Low vigilance allows broad
generalization, coarse categories, and abstract representations. High vigilance leads to narrow
generalization, fine categories, and specific representations. At the very high vigilance limit, category
learning reduces to exemplar learning. Varying vigilance levels allow a single ART system to recognize
both abstract categories, such as faces and dogs, and individual faces and dogs.

ART memory search, or hypothesis testing, begins when the top-down expectation V determines
that the bottom-up input A is too novel, or unexpected, with respect to the chosen category to satisfy the
vigilance criterion. Search leads to selection of a better recognition code to represent input A at level
F5. An orienting subsystem Q controls the search process. The orienting subsystem interacts with the
attentional subsystem, as in Figures 2b and 2c, to enable the network to learn about novel inputs without
risking unselective forgetting of its previous knowledge. ART 3 (Carpenter & Grossberg, 1990)
implements parallel distributed search as a medium-term memory (MTM) process, as needed for
distributed recognition codes.



ART and ARTMAP Neural Networks 4

ART search prevents associations from forming between y and x* if x* is too different from A to
satisfy the vigilance criterion. The search process resets y before such an association can form. If the
search ends upon a familiar category, then that category’s representation may be refined in light of new
information carried by A. If the search ends upon an uncommitted F, node, then A begins a new

category. An ART choice parameter controls how deeply the search proceeds before selecting an
uncommitted node. In a parameter range called the conservative limit, the choice parameter o is very
small. Then an input first selects a category whose weight vector is a subset of the input, if such a
category exists. Given such a choice, no weight change occurs during learning; hence the name
conservative limit, since learned weights are conserved wherever possible. As learning self-stabilizes, all
inputs coded by a category access it directly and search is automatically disengaged.

3. FUZZY ART

The ART 1 operations of category choice, matching, and learning translate into fuzzy ART operations
when the intersection operator (n) of ART 1 is replaced by the fuzzy intersection, or component-wise
minimum, operator (A). For the special case of binary inputs and fast learning, the computations of
fuzzy ART are identical to those of ART 1.

Many ART applications use fast learning, whereby adaptive weights fully converge to equilibrium
values in response to each input pattern. Fast learning enables a system to adapt quickly to inputs that
occur only rarely but that may require immediate accurate performance. Remembering many details of
an exciting movie is a typical example of fast learning. Fast learning destabilizes the memories of
feedforward, error-based models like back propagation. When the difference between actual output and
target output defines “error,” present inputs drive out past learning, since fast learning zeroes the error
on each input trial. This feature of back propagation typically restricts its domain to off-line applications
with a slow learning rate. In addition, lacking the key feature of competition, a back propagation system
tends to average rare events with similar frequent events that have different consequences.

Some applications benefit from a fast-commit slow-recode option that combines fast initial
learning with a slower rate of forgetting. Fast commitment retains the advantage of fast learning,
namely, the ability to respond to important distinctive inputs that occur only rarely. Slow recoding then
prevents features in a category’s learned representation from being erroneously altered in response to
noisy or partial inputs.

Complement coding is a preprocessing step that normalizes input patterns and solves a potential
fuzzy ART category proliferation problem (Carpenter, Grossberg, & Rosen, 1991). In neurobiological
terms, complement coding uses both on-cells and off-cells to represent an input pattern, preserving
individual feature amplitudes while normalizing the total on-cell/off-cell activity. Functionally, the on-
cell portion of a weight vector encodes features that are consistently present in category exemplars, while
the off-cell portion encodes features that are consistently absent. Small weights in both on-cell and off-
cell portions of a category representation encode as “uninformative” those features that are sometimes
present and sometimes absent. Complement coding allows a geometric interpretation of fuzzy ART
recognition categories as box-shaped regions of input space. Simulations of a prototype remote sensing
example illustrate fuzzy ART geometry with inputs that provide two TM spectral band values at each
pixel (Section 8). Thus the inputs are two-dimensional and category boxes are rectangles.
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4. FUZZY ART DYNAMICS

This section summarizes the dynamics of a fuzzy ART network with a complement coding preprocessor.
Each step is found in the summary fuzzy ARTMAP algorithm (Section 7), which includes a fuzzy ART
algorithm as a special case, just as a fuzzy ART network is embedded in the simplified ARTMAP
network shown in Figure 3.

4.1 - Field Activity Vectors

A fuzzy ART system includes a field F(y of nodes that represent a current input vector; a field F, that
represents the active code, or category; and a field Fj that receives both bottom-up input from Fy and
top-down input from F, (Figure 3). Vector A denotes Fj activity, with each component A; in the

interval [0,1]. With complement coding, Az(a,ac). That is, A;=a; for i=1...M; and

Aj=af ,,=(1-aj_p) for i=M+1..2M. Vector x=(xi,...,xp3 ) denotes Fj activity and
y= ()’1 ,...,yN) denotes F, activity. The number of input components (M) and the number of category
nodes (N) can be arbitrarily large..

4.2 - Weight Vector

Associated with each F, category node j (j=1...N) is a vector W E(le’---’wj,zM) of adaptive

weights, or long-term memory (LTM) traces. Initially:
le(O)=...=wj,2M(O)=1. (eq 1)

Then each category is uncommitted. After a category codes its first input, it becomes committed. Each
component w j; can decrease toward O but never increase during learning, so weights always converge

during learning. The fuzzy ART weight vector w; denotes both the bottom-up and top-down weight
vectors.

4.3 - Parameters

A choice parameter « >0, a learning rate parameter e[0,1], and a vigilance parameter p€[0,1]
determine fuzzy ART dynamics.

4.4 - Category Choice

For each input a and F, node j, a Weber law choice function T]. is defined by

_‘A/\w

T i (eq 2)

, a+ le‘ ’
where the fuzzy intersection A (Zadeh, 1965) is defined by
(pAq); =min(p;,q;) (eq 3)

and where the city-block norm |---| is defined by
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Ipl= | pil- (eq 4)
i

Alternative choice functions (Section 7.1, Step (2)) include choice-by-difference (Carpenter & Gjaja,
1994), which selects the categories to minimize weight changes.

The system makes a category choice when at most one F, node can become active at a given time.
The index J denotes the chosen category, where

TJ=max{Tj:j=1,...,N}. (eq 5)

If more than one Tj is maximal, the category with the smallest j index is chosen. In particular, nodes

become committed in order j=1,2,3... . When the J’hcategory is chosen, y; =1; and y; =0 for

j#J. The Fy — F; signal vector V is then equal to the J th category weight vector w; and the Fj
activity vector x is reduced from A to the matched pattern A A w ;. That is, in a choice system, the Fj

vector x obeys the equation

A if F is inactive
X = (eq 6)

AAwjy ifthe Jh F3 node is chosen.
4.5 - Resonance or Reset

Resonance occurs if the match function ‘A A wjl|A|"1 of the chosen category meets the vigilance

criterion:

’A/\WJI

2p; (eq 7)
|Al

that is, by (eq 6), when the J th category becomes active, resonance occurs if
|X|=|A/\WJ’ZP|A|. (eq 8)

Learning then ensues, as defined below. Mismatch reset occurs if

|A A wj'
—<p; (eq 9)
|A]
that is, if
|x|=|AAwJ‘ <plAl. (eq 10)

Then the value of the choice function T, is set to O for the duration of the input presentation to prevent
the persistent selection of the same category during search. A new index J represents the active category,

sg
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selected by (eq 5). The search process continues until the chosen J satisfies the matching criterion (eq 7).
By (eq 1), search ends if J is an uncommitted node.

4.6 - Learning

Once search ends, the weight vector w ; learns according to the equation
1d Id
w(new) =[3(A/\W(J° ))+(1—B)w(j° ) (eq 11)

(Moore, 1989). Fast learning corresponds to setting 8 =1. The weight vector w; then converges to the
matched F; vector X =A A w on each input presentation.

4.7 - Normalization by Complement Coding

Normalization of fuzzy ART inputs prevents category proliferation as many weights erode to 0 in some
2M

cases. An F, — F, input is normalized if ZAi =|A|= constant for all inputs A. Complément coded
i=1
inputs are automatically normalized because

|A|='(a )Za +21— - (eq 12)

=1 =1

5. FUZZY ART GEOMETRY

A geometric interpretation of fuzzy ART represents each category as a box in M-dimensional space,
where M is the number of components of input a. In the prototype remote sensing example (Section 8),
a represents two Landsat Thematic Mapper (TM) spectral band values for a glven pixel, scaled to the
interval [0,1], so M =2. With complement coding, then,

A=(a,ac).=.(a1,a2,alc,a§). (eq 13)

With M =2, each category j has a geometric representation as a rectangle R;. Following the form of
equation (eq 13), a complement-coded weight vector w j can be written as

w;=(u;,v5), (eq 14)

where u; and v; are 2-dimensional vectors. Vector u; defines one corner of a rectangle R; and v;
defines the opposite corner (Figure 4a). The size of R | is

|R;|=v; —u,l, (eq 15)

which is equal to the height plus the width of R;. In the prototype example, each side of R; represents a
range of values of the corresponding TM band.
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In a fast-learn fuzzy ART system, with f=1 (eq 11), w(Jnew) =A=(a,ac) when J is an

(new) (new)
J J

uncommitted node. The corners of R are then a and (ac )C =a. Hence R is just the point box a.
Learning increases the size of R;, which grows as weights shrink. Vigilance p determines the maximum
size of R;, with IRJ-ISM(I—p), as shown below. With fast learning, R, expands to R; @ a, the

minimum box containing R; and a (Figure 4b). The corners of R; @a are aAu; and avv,, where
the fuzzy intersection A is defined by (eq 3); and the fuzzy union v is defined by

(pvaq), =max(p;.q;) (eq 16)
(Zadeh, 1965). Hence, by (eq 15), the size of R; @ a is:
R, @a|=|(avv,)-(anu,) (eq 17)

However, before R, can expand to include a, category J is reset if |R 7 @a| would be too large,
according to the vigilance criterion. With fast learning, R; is the smallest box that el}closes all vectors
a that have chosen category j without reset.

If a has dimension M, the box R; includes the two opposing vertices A;a and v; a, where the

it component of each of these vectors is:

(/\j a)i = min{ai :a has been coded by categoryj} (eq i8)
and

(vj a)i = max{a,- : a has been coded by categoryj} (eq 19)

(Figure 4c¢). The size of R; is
lelzlvja—/\jal . (eq 20)

and the weight vector w is

wj=(/\ja,(vja)c), | (eq 21)

as in (eq 14) and (eq 15). Thus

[wil=2(~a), +z_[1*(vj-a),-]=M—|Vja—Aja, (eq 22)

1

so the size of the box R i is
IRj‘=M—|wj|. (eq 23)

By (eq 8), (eq 11), and (eq 12),
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|w;|zpM. (eq 24)
By (eq 23) and (eq 24),
R;|<(1-p)M. (eq 25)

Inequality (eq 25) shows that high vigilance (p=1) leads to small R; while low vigilance (p =0)
permits large R;.

6. ARTMAP

ARTMAP networks for supervised learning self-organize mappings from input vectors, representing
features such as patient history and test results, to output vectors, representing predictions such as the
likelihood of an adverse outcome following an operation. The original binary ARTMAP (Carpenter,
Grossberg, & Reynolds, 1991) incorporates two ART 1 modules, ART, and ART)}, that are linked by a

map field F ab (Figure 5). During supervised learning', ART , receives a stream of patterns {a(")} and

ART),, receives a stream of patterns {b(")}, where b is the correct prediction given a(™. An

associative learning network and an internal controller link these modules to make the ARTMAP system
operate in real time. The controller creates the minimal number of ART, recognition categories, or
“hidden units,” needed to meet accuracy criteria. A minimax learning rule enables ARTMAP to learn
quickly, efficiently, and accurately as it conjointly minimizes predictive error and maximizes code
compression. This scheme automatically links predictive success to category size on a trial-by-trial basis
using only local operations. It works by increasing the ART, vigilance parameter p, by the minimal
amount needed to correct a predictive error at ART),.

At the map field an ARTMAP network forms associations between categories via outstar learning
and triggers search, via a match tracking rule, when a training set input fails to make a correct
prediction. Match tracking increases the ART, vigilance parameter p, in response to a predictive error

at ART},. A baseline vigilance parameter p, calibrates a minimum confidence level at which ART, will
accept a chosen category. Lower values of p, allow larger categories to form, maximizing code
compression. Initially, p, = p,. During training, a predictive failure at ART} increases p, just enough
to trigger an ART , search. Match tracking sacrifices the minimum amount of compression necessary to
correct the predictive error. Hypothesis testing selects a new ART category, which focuses attention on a
cluster of a(™ input features that is better able to predict b(") . With fast learning, match tracking allows
a single ARTMAP system to learn a different prediction for a rare event than for a cloud of similar

frequent events in which it is embedded. Fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds,
& Rosen, 1992) substitutes fuzzy ART for ART 1.

7. A FUZZY ARTMAP ALGORITHM

Many applications of supervised learning systems such as ARTMAP are classification problems, where
the trained system tries to predict a correct category given a test set input vector. A prediction might be
a single category or distributed as a set of scores or probabilities. The fuzzy ARTMAP algorithm below
outlines a procedure for these problems, which do not require the full ART, architecture. The
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algorithm implements a fuzzy ARTMAP network (Figure 3) that is a simplified version of the full
network (Figure 5) but that nevertheless is sufficient for most current applications. In the algorithm an

input a=(ay...a;...ap) learns to predict an outcome b=(b;...b;...by ). A classification problem
would set one component bg =1 during training, placing an input a in class K.

Note that the algorithm allows a small match-tracking parameter (€) to be either positive or
negative. Compared to the original match tracking algorithm, which allowed only positive € values, a
negative value of € can facilitate prediction with sparse or inconsistent data and improve memory
compression without loss of accuracy, and the resulting algorithm is actually a better approximation of
the full ARTMAP differential equations (Carpenter & Markuzon, 1996).

7.1 - Fuzzy ARTMAP Training

During training, input pairs (a(l),b(l)),(a(z),b(z) ),...,(a("),b(") ), are presented for equal time

intervals. Each ART, input is complement coded, with 0<aq; <1, al.c =1-a;, and input A = (a,ac ) o)
L .

|A|=M The output b is normalized to 1 Zbk =1|, corresponding to a set of output class
k=1

probabilities. During testing, search may occur if the baseline vigilance parameter (p) is positive. Once

achosen F, node J meets the ART,; matching criterion, the predicted outcome probability distribution

isthe Fp — Feb weight vector (w...w . ...wyy ), normalized to 1 at Fg.

(1) Variables: i=1...2M, j=1..N, k=1..L

STM activation LTM weights F; — F, signals
x; - Fp (matching) wij - Fl & Fp S; - Phasic C - # committed nodes
yj - F2 (coding) wix - Fp — Fob ©; - Tonic p - ART, vigilance
2k - F (map field) T; - Total

(2) Signal rule: Define the F| — F, signal function T; =g(Sj,@j ) where g(0,0)=0
and ﬁ->——a—g—>0 for S; >0 and ©; >0.
Eg, T;=S5;+(1-a)©; with & (0,1) (choice-by-difference) or
T; =Sj/(a+2M—@j) with a >0 (Weber law).
In ARTMAP, ART-EMAP, and ARTMAP-IC, the phasic signal component S; equals
2M 2M
ZA,- A w;; and the tonic signal component © ; equals 2(1 - Wi )

i=1 i=1

(3) Notation

Minimum -  aAb=min{a,b}

- e W W
i e i E s

\D _
A - i

“ _ : m
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(4) Parameters

Number of input components - i=1...2M

Number of coding nodes - _] =1...N

Number of output components - k=1...L

Signal rule parameters - E.g., o €(0,1) (choice-by-difference) or o >0 (Weber law)
Learning rate - §€[0,1], with =1 for fast learning

Baseline vigilance (ART,) - p €[0,1], with p =0 for maximal code compression
Map field vigilance - p,p, €[0,1], with p,, =1 for maximal output separation

Match tracking - €, with |&| small.

MT+: >0 .

MT-: €<0

F5 order constants - 0<Ppy <...<P; <...< Py <g(M,0), with all ®; =g(M,0).
(5) First iteration: n=1

ad  if1gism
Input - A= :
1-a) ifM+1gi<2M

Output - by = b,gl) k=1...L
Fi &> Fy weights - wj; =1 i=1..2M, j=1...N
Fy = F weights - wip =1 j=1L.N, k=L..L

Number of committed nodes - C=0

Signal to uncommitted nodes - T; =@ ; j=1..N

ART, vigilance - p=p

(6) Reset: New STM steady state at Fp and Fj

Choose a category - Let J be the index of the F, node with maximal input T}, i.e.,
TJ :max{T1 TN}

Number of committed nodes - If J>C, set C=J

Fp activation - x; =A; Awyy i=1.2M

() MTM: F{ — F, signal is refractory on the time scale of search

T;=0

11
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(8) Reset or prediction: Check the F; matching criterion

2M
If Zx,- < pM, go to (6) Reset

i=1

2M
If in = pM, go to (9) Prediction
i=l1

(9) Prediction:

F activation -z =by Awy,  k=1...L

(10) Match tracking or resonance: Check the F matching criterion

L
If ZZk < Pap» go to (11) Match tracking
k=1

L
If sz > pab» go to (12) Resonance
k=1

(11) Match tracking: Raise p to the point of ART, reset

12M
P M; i

Go to (6) Reset
(12) Resonance: New LTM weights on the time scale of learning

Old weights - w4 =w;;  i=1..2M, wid =wp k=1L
. (1 old ) Jold .
Decrease Fy <> Fy weights - w;; =(1-B)w" + BlA; Aw]) i=1...2M

Decrease F, — F% weights - w =(1—ﬁ)w‘l’]l<d +ﬁ(bk /\w‘}/[(d) k=1...L

ART , vigilance recovery - p=p

(13) Next iteration: Increase n by 1

a  if1<i<M
New input - A; =
1-a i M+1<i<2M

New output - by =b"  k=1..L

12
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New Fj activation- x; =A; Awyy  i=1..2M

New F} — F, signal to committed nodes

2M ,
Phasic-  S;=) AjAw;  i=1.2M, j=1..C
i=1

2M
Tonic-  ©;=Y (1-wy;) i=1.2M, j=1.C
i=1
g(5;.0;) j=1..C, j#J ((2) Signalrule)
Total - T;= .

0 j=J (J h node refractory)

Go to (8) Reset or prediction

7.2 - Fuzzy ARTMAP Testing

During ARTMAP testing (Figure 6), Fj <> F, categorization weights w;; and Fp — Feb prediction
weights w ;. are fixed. A test-set input a chooses an ART, category J, possibly following search, if

p >0. Map field activation z then equals the Fp — Fb weight vector (w“ ...WJk...WJL), and the

output vector b equals this vector normalized to 1. With fast learning, when b represents single output
classes during training, only one component of z and b is positive, corresponding to a single class
prediction. When b is distributed during training or learning is slow, b may represented a probability

vector, distributed across output classes.
b

ARTMAP fast learning typically leads to different adaptive weights and recognition categories for
different orderings of a given training set, even when the overall predictive accuracy of each such
trained network is similar. The different category. structures cause the location of test set inputs where
errors occur to vary as the training set input orderings vary. A voting strategy uses several ARTMAP
systems that are separately trained on one input set with different orderings. The final prediction for a
given test set item is the one made by the largest number of networks in a voting “committee.” Since the
set of items making erroneous predictions varies from one ordering to the next, voting serves both to
cancel many of the errors and to assign confidence estimates to competing predictions. A committee of
about five voters has proved suitable in many examples, and the marginal benefits of voting are most
apparent when the number of training samples is limited.

For voting, ARTMAP generates a set of prediction vectors for each of the trained networks
produced by several different orderings of the training set inputs. The voting networks may average
their output vectors b for each input a; or each voting network may choose one output class, with the
predicted class being the one that receives the most votes.

(1) Test set input:

a; if1<i<M
Input - A; =

l-a; fM+1<i<2M

(2) F| = Fysignal:
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2M
Phasic-  §; =) Ajawy;  i=1..2M, j=1...C
i=1

2M
Tonic-  ©;=) (1-wy;) i=1..2M, j=1..C
i=1
S;,0; j=1...C (Signal rule
Total - T, = o(5:0;) J (Sie )
O j=C+1...N

J

(3)_F, category choice:
Let J be the index of the F, node with maximal signal 7, i.e.,

T;=max{T;...Ty}

(4) Output prediction:

by = —k k=1...L

y?
ZWJK'
k=1

8. AN ARTMAP PROTOTYPE APPLICATION: SATELLITE REMOTE SENSING

A new ARTMAP-based methodology for automatic mapping from Landsat Thematic Mapper (TM) and
terrain data has been tested on a challenging remote sensing classification problem, using spectral and
terrain features for vegetation classification in the Cleveland National Forest (Carpenter, Gjaja, Gopal, &
Woodcock, 1995). After training at the pixel level, system capabilities are tested at the stand level, using
sites not seen during training. ARTMAP performance was compared to those of maximum likelihood
classifiers, as well as back propagation neural networks and K Nearest Neighbor (KNN) algorithms.
ARTMAP learning, being fast, stable, and scalable, overcomes common limitations of back propagation,
which did not give satisfactory performance on this problem: Best results were obtained using a hybrid
system based on a convex combination of fuzzy ARTMAP: and maximum likelihood predictions. The
prototype remote sensing example below (Section 8.1) introduces each aspect of data processing and
fuzzy ARTMAP classification (Section 8.2). The example shows how the network automatically
constructs a minimal number of recognition categories to meet accuracy criteria (Section 8.3). A voting
strategy (Section 8.4) improves prediction by training the system several times on different orderings of
an input set. Voting assigns confidence estimates to competing predictions.

8.1 - A Prototype Remote Sensing Problem

Mapping vegetation from satellite remote sensing data has been an active area of research and
development over a twenty year period (Hoffer et al., 1975; Strahler, Logan, & Bryant, 1978). Fuzzy
ARTMAP has become the basis of a new systematic methodology for automatic classification of
vegetation at the species level from multispectral and ancillary data.

A simplified remote sensing classification problem illustrates fuzzy ARTMAP dynamics. The
prototype task is learning to identify one of three CALVEG (Matyas & Parker, 1980) vegetation classes
(mixed conifer, coast live oak, southern mixed chaparral) for sites at which two spectral values
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(Landsat TM1 and TM4) are known at each pixel. The prototype example is based on a data set
collected at the Cleveland National Forest. Larger scale simulations on this data set predict 8 possible
vegetation classes with inputs of up to 6 TM bands and 7 ancillary variables. In this more realistic
setting, fuzzy ARTMAP performance compares favorably with that of maximum likelihood (Lillesand
& Kiefer, 1994, pp. 594-596; Richards, 1993), K Nearest Neighbor (Duda & Hart, 1973), and back
propagation (Rumelhart, Hinton, & Williams, 1986; Werbos, 1974). However, reducing the number of
input dimensions to M =2 (TM bands) and the number of output classes to L =3 (vegetation classes)
allows visual illustration of fuzzy ARTMAP dynamics, as follows.

The data set for the prototype remote sensing problem reports the vegetation class for each of 50
sites: 16 mixed conifer, 25 coast live oak, and 9 southern mixed chaparral (Table 1.A). The sites vary
in size, averaging about 90 pixels each. Landsat spectral bands TM1 and TM4 constitute the data set
input for each pixel, with values scaled to the interval [0,1]. Before training, 10 sites, representative of

the vegetation class mix, are reserved as a test set. No pixels from these sites are used during training.
The goal is to predict the correct vegetation class label for each of the 10 test set sites.

During training and testing, a given pixel corresponds to an ART, input a=(ay,a; ), where a;
is the value of TM1 and a, is the value of TM4 at that pixel. The corresponding ART,, input vector b
represents the CALVEG vegetation class of the pixel’s site:

(1,0,0) mixed conifer
b=<(0,1,0) coast live oak (eq 26)
(0,0,1) southern mixed chaparral .

During training, vector b informs the ARTMAP network of the vegetation class to which the pixel’s
site belongs. This supervised learning process allows adaptive weights to encode the correct association
between a and b. Simulations below examine the effect of training set size on predictive accuracy
(Table 1.B). To generate a training set of a given size, pixels are selected at random from the entire
training set, which represents approximately 3600 pixels in 40 sites. Other simulations show how
voting can improve predictive accuracy (Table 1.C).

During testing, each test set pixel predicts a class, given the spectral band input values a; and a,

for that pixel. Performance accuracy is measured both in terms of the percent of pixels that are correct
and in terms of the fraction of sites that are correctly identified by a vote among pixels in the site.

The prototype remote sensing problem requires a trained network to predict the vegetation class
(mixed conifer, coast live oak, or southern mixed chaparral) of a test set site, given TM bands 1 and 4
measured at each pixel in the site. This section illustrates fuzzy ARTMAP dynamics by showing how the
network learns to make correct vegetation class predictions on this problem. Figure 7 illustrates why the
problem is difficult: of the 4436 pixels in the data set (Table 1.A), many share spectral band values
within and between the three vegetation classes, and the three classes are not linearly separable. In fact
the problem proved to be too difficult for back propagation to make accurate predictions.

During the initial learning phase, pixels are selected one at a time, at random, from the 40 training
set sites. Fuzzy ARTMAP is trained incrementally, with each TM band vector a presented just once.
Following a search, if necessary, the network selects an ART, category by activating an F g node J for
the input pixel, then learns to associate category J with the ART, vegetation class K of the site in which
the pixel is located. With fast learning, the class prediction K of each ART, category J is permanent. If
some input a with a different class prediction later selects this category, match tracking will raise ART ,
vigilance p just enough to trigger a search for a different ART, category. All prototype simulations use
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a Weber law signal rule (Section 7) with & =0 (conservative limit, Section 2), B =1 (fast learning),
and p =0 (forced choice prediction). The map field vigilance p,, (Section 6) can have an arbitrary
value between 0 and 1, since with fast learning and binary predictions the map field registers either a
perfect match (|z|=1) or a complete mismatch (|z|=0).

8.2 - Geometry of Incremental Learning

Figure 8 illustrates fuzzy ARTMAP learning in response to the first 6 training set inputs, selected at
random from the 40 training set sites. Input 1 (Figure 8a) represents a pixel that has a low TM1 value

(a;) and a high TM4 value (a; ) and that is found at a mixed conifer site (0). Input a selects the

uncommitted F» node J=1. During learning, all weights wj from this node to the map field Fb
(Figure 3) decay to O except for the weight w i to the node K representing the correct vegetation class.
Category J =1 appears as the point box R;

Input 2 (Figure 8b) also selects category J =1. At the start of each input presentation, the ART,
vigilance p equals the baseline vigilance p, which here equals 0. Therefore, a meets the ART,
matching criterion, so category J =1 remains active and predicts, via the map field, that this new input is
also from a mixed conifer site. Since this prediction is correct, field F ab registers a perfect match and
so meets the map field matching criterion. During learning the category box R; expands to include input
point 2.

Input 3, from a coast live oak site (+), requires match tracking and search to learn the correct
prediction as follows (Figure 8c). This input a first selects category J=1. Again, since p=p =0,

ART, accepts the new input into this category long enough to predict mixed conifer. However, the
network now detects.a predictive error, since the incorrect prediction sends the activity z; of all map
field nodes to 0. Match tracking increases p just enough to reset ART,, where a new node J=2
becomes active. Since uncommitted nodes meet the matching criterion for any p, node J =2 remains
active, establishing the point box R;, which henceforth will predict coast live oak.

Input 4, again from a mixed conifer (o) site, shows how match tracking can create more than one
box for each class. This feature allows. ARTMAP to learn a set of decision rules of arbitrary complexity
while minimizing predictive error. For example, concentric rings in an input space could be mapped to
alternating category predictions. At the same time, setting p equal to O allows the network to maximize

code compression, creating a new category only in response to a predictive error. Design principles that
balance the two goals - minimum error, maximum compression - allow ARTMAP to learn correct
predictions for a small category of rare cases embedded in a large category of common cases. Input 4
(Figure 8d) first selects the F, point category J =2, which maximizes the choice function T; (eq 2).

Since this category predicts coast live oak, the map field registers a mismatch, which sends a match
tracking signal to ART,. This raises p until it is just above the match ratio IA/\ WJ“AI—I, where

A= (a,ac) is the complement coded input to F;. The next category J that will be able to resonate, and

so remain active long enough to make a class prediction, must now meet the stricter matching criterion
imposed by the new, higher ART, vigilance p. Geometrically (Section 5), once node J =2 leads to
match tracking, a new active category J will now meet the ART, matching criterion only if the
expanded box R; @ a would be smaller than R, @ a, where a is the current input. After match

tracking, input 4 next selects category J =1 (which actually would have made the correct prediction),
but this category fails to meet the ART, matching criterion, since the box R; @ a would have been
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larger than R, @ a. The input therefore activates the uncommitted node J =3, which learns to predict
mixed conifer.

Input 5 (Figure 8e) selects category node J =2, which correctly predicts coast live oak (+), so no
match tracking or ART, search is invoked. During learning, as the weight vector w, adapts according
to equation (eq 11), the box R, expands to Ry @ a, where a represents the TM values of input 5. Since
p=p =0, the size of R, @ a is unrestricted. Finally, input 6 (Figure 8f) selects and further expands
box R,. Weights remain unchanged during learning only if a is inside a selected box that has already
learned to make the correct prediction. As training proceeds, category boxes cover more of the input
space, so the case where weights remain unchanged during learning occurs increasingly often. If a finite
input set can be presented repeatedly, all training set inputs learn to predict with 100% accuracy,
provided that the set of input predictions is consistent, i.e., that no two identical inputs a make the same
vegetation class prediction.

8.3 - Predictions of the Trained ARTMAP Network

As incremental learning proceeds, fuzzy ARTMAP creates a set of overlapping category boxes R;, each

predicting one of the three vegetation classes. By the time 100 training set pixel inputs have been selected
at random from the 40 training set sites, fuzzy ARTMAP has created 8 categories (Table 1.B). Three of
these categories predict mixed conifer, four predict coast live oak, and one predicts southern mixed
chaparral. The 10 test set sites contain a total of 1108 pixels. After training on the first 100 inputs,
network performance at this stage of learning was first measured by the number of correct vegetation
class predictions the test set pixels were able to make. For each test set pixel, the TM band vector a
selects one of the 8§ ART , categories, then predicts that its site belongs to the vegetation class associated
with that category. After training on just 100 input points, 85.9% of the test set pixels correctly
predicted the vegetation classes of their sites. A second performance measure examined the number of
test set sites that would be correctly classified. This method counts the number of pixels in each site that
predict each vegetation class, then selects the class chosen by the most pixels. At this stage of learning,
having used only 3% of the training set pixels, 8 of the 10 test site vegetation classes were correctly
identified. In this case, too few southern mixed chaparral exemplars had been presented for that class to
easily win a majority at any site.

As the number of training set inputs increased, the pixel-level predictive accuracy increased only
marginally, even decreasing as the number of training set inputs increased from 100 to 500 (Table 1.B).
After presentation of all 3328 training set pixels, 89.3% of the test set pixels correctly predict the
vegetation class of their site. However, site-level prediction improves steadily to 9/10 test set sites, after
training on 500 inputs; and 10/10 sites, after training on 2000 inputs or on the full training set. This
result highlights the observation that the pixel is often too small and noisy a unit to make an accurate
prediction. However, a group of noisy pixel-level results can be pooled to form accurate mappings across
functional regions or sites.

8.4 - Voting

A typical characteristic of fast learning is dependence of category structure upon the order of training set
input presentation. For example, suppose that two fuzzy ARTMAP networks learn from a common input
set that is presented in two different orders during training. The two networks might then each correctly
predict 90% of the test set inputs, despite the fact that the two have significantly different internal input
grouping rules, or category boxes, at ART,. In particular, the test set inputs that the first network
identifies correctly are typically different from those that the second network identifies correctly, despite
the fact that both were trained on the same input set. ARTMAP voting uses this order dependence to
advantage to improve and stabilize overall predictive performance, as follows.
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Figure 9a-e illustrates the decision regions of the prototype remote sensing example after
presentation of all 3328 training set inputs (Table 1.C). A decision region plot shows predictions all TM
band inputs a would make if presented to the trained network. In Figure 7, data set points from mixed
conifer sites were are represented by a circle (o), points from coast live oak sites by a plus (+), and
points from southern mixed chaparral sites by a slash (/). The same marks indicate vegetation class
predictions made by a network in response to spectral value inputs across the unit square. The rough
decision boundaries in Figure 9a reflect the ambiguous predictions in the corresponding portion of the
data set.

Figure 9a-e and Table 1.C show how network predictions can vary as a function of input order.
Each of these five tests uses the same training set, presented in different, randomly chosen, orders.
Decision boundaries vary, as do the number of ART, categories (from 126 to 153), the number of
correct test set pixels (from 84.8% to 8§9.4%), and the number of correct test set site identifications
(from 8/10 to 10/10). Before knowing the test set answers, it would be difficult to decide which of these
five networks would be the most accurate on novel data. ARTMAP voting chooses for each pixel the
class prediction chosen by the largest number of the five “voting committee” networks. The size of each
vote also provides a measure of confidence in each decisions. Confidence is typically lowest near decision
boundaries. Figure 9f indicates how voting can smooth and stabilize decision boundaries. In addition,
pixel-level performance on the voting network (91.0%) is better than that of any individual trained
network, and site-level prediction is perfect (10/10).

9. ARTMAP VARIATIONS FOR APPLICATIONS

ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs
into disjoint recognition categories. Other neural network learning systems such as back propagation
feature distributed coding, which can provide good noise tolerance and code compression but which
typically requires slow learning. Fast learning tends to cause catastrophic forgetting in these networks,
as it does in ART and ARTMAP networks in which the code representation is distributed. On the other
hand, fast learning is often desirable for on-line adaptation to rapidly changing circumstances and for
encoding of rare cases and large databases.

Variants of the basic ART and ARTMAP networks can acquire some of the advantages of
distributed coding while maintaining fast learning capability. For example, ART-EMAP, which uses
WTA codes for learning and distributed codes for testing (Section 9.1). Distributed prediction can
significantly improve ARTMAP performance, especially when the size of the training set is small
(Carpenter & Ross, 1993, 1995; Rubin, 1995). In medical database prediction problems (Section 9.3),
which often feature inconsistent training” input predictions, ARTMAP-IC (Carpenter & Markuzon,
1996) improves performance with a combination of distributed prediction, category instance counting,
and a new match tracking search algorithm (Section 9.2). A voting strategy further improves
prediction by training the system several times on different orderings of an input set. Voting, instance
counting, and distributed representations combine to form confidence estimates for competing
predictions. However, since these and most other ART and ARTMAP variants use WTA coding during
learning, they do not solve problems such as category proliferation with noisy training sets, unless
learning is slow. A new class of ART and ARTMAP networks permit fast distributed learning as well
as performance (Section 9.4). These dART and dARTMAP systems (Carpenter, 1996) are now being
analyzed and developed for future applications.

9.1 - ART-EMAP Distributed Prediction by the Q-max Rule

To improve performance in a noisy or ambiguous input environment, ART-EMAP adds spatial and
temporal evidence accumulation processes to the basic ARTMAP system (Carpenter & Ross, 1993,
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1995). ART-EMAP (Stage 1) distributes activity across category representations during performance.
In a variety of studies, this device improves test-set predictive accuracy compared to ARTMAP, which
is the same network with category choice during testing. Distributed test-set category activation also
improves performance accuracy on medical database simulations, and further improvement is achieved
by the addition of an instance counting measure (Section 9.2) that weights distributed predictions
according to the number of training set inputs placed in each category.

ART-EMAP training is the same as ARTMAP training, with ART, category choice. During
ART-EMAP testing, the degree of contrast enhancement at the competitive field F, is reduced,
allowing distributed category activities y; to form a combined prediction. The Q-max rule is a simple
algorithm that approximates competitive contrast enhancement. The O-max rule distributes F activity
yj across the Q nodes that receive the largest Fy — F; inputs T, with y; proportional to T';. That is,

T
ifAleA
Q-max rule:  y; = ZTﬂv - (eq 27)
AeA
0 if A eA,

where A is the set of Q nodes with the largest T; values (Figure 10). The way a @-max rule makes

test set predictions is analogous to a K nearest neighbor (KNN) algorithm with K = Q. When Q =1, the
O-max rule reduces to category choice. In the simulations below both ART-EMAP and ARTMAP-IC
use the Q-max rule during testing.

Fair use of a 0-max rule requires a priori selection of O, without knowledge of the test set
exemplars. A general parameter selection method divides the original training set into a new training
set and a complementary verification set, which can then be used to examine performance of the trained
network for various parameters. Once parameters are selected by this method, the network can then
start over, learning from the entire training set with the fixed set of parameters before making test set
predictions. In choosing Q, the optimal value tends to scale with the size of the training set, so the
optimal verification set value should be increased somewhat for testing. A second way to estimate Q is
by a simple rule of thumb. ARTMAP, ART-EMAP, and ARTMAP-IC all employ the same training
regime, using category choice. ART-EMAP and ARTMAP-IC then apply a Q-max rule during testing.
Once a network is trained, the number (C) of committed F, category nodes is known, with each node
having learned to predict one of the L possible output classes. On average, then, C/ L category nodes
predict each class. A reasonable a priori estimate sets Q equal to half that number, up to some
maximum, say 30 category nodes. In other words:

Rule-of-thumb Q value: Q= min{%,?@}. (eq 28)

This estimate requires no separate verification step and has given good results on medical database
simulations, where the number of output classes is often two, corresponding to good or bad outcomes.
In the end, test set results can also be examined over a range of Q values to check for parameter
sensitivity.

9.2 - Instance Counting

Instance counting biases distributed predictions according to the number of training set inputs classified
by each F, node. Figure 10 illustrates how an ARTMAP network with an extra field F3 can

implement instance counting. During testing the F, — F3 input yj is multiplied by the counting
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weight c; to produce normalized F3 activity Y;, which projects to the map field F b for prediction
(Figure 10). That is, for j=1,..., N, activity at the counting field F3 is:
C:

iYi
Y] =N————. (eq 29)

an

n=1

The input U}, from Fj to the k™ map field node is then:

N D WkE;Yj
=t
Uk=2wjij=~]—7v——— (eq 30)

o
! 2.¢ij
J=1
for k=1,..., L. With choice at Fy>

1 ifj=J
Y.=vy. = (eq 31)
i=i {0 ifj# J,

so Uy =wy;. With choice, map field activation and learning proceed as characterized in the training
algorithm (Section 7.1). )

The basic instance counting (IC) algorithm simply enumerates the training set inputs that activate
each category, following search:

(new) _ (old) )
c; T =ci T ), (eq 32)

with ¢;(0)=0. In the simulations below, ¢; counts the number of times inputs select category j during
training. Alternatives to this basic instance counting algorithm could be adapted to specific problems.
One variation would train the entire network without instance counting, i.e., as a basic ARTMAP
network; then calculate the counting weight vector ¢ by re-presenting the training set, with either choice
or O-max distributed activation at F,, and letting ¢ enumerate the distributed activation vectors Yy,

summed across all training sets. With large training sets, it may also be useful to moderate the influence
of some nodes that acquire an overwhelming number of training set instances. This could be
accomplished by setting an upper bound on the c; values or by having ¢; grow logarithmically rather

than linearly.

During testing (Section 7.2), when distributed F, activation is determined by a Q-max rule
(eq 27):

% 2 4 = 3 ¢ . 3 3 2 b 4 H Al . kA t b i ) . i i s i > i




1 ; ki y w y b i E y 2 7 i 3
i _ ; . i y .
i 1 1 { { i ]

, § ]
] { y ]

‘5'

K

]

!
!

ART and ARTMAP Neural Networks 21 -

N
Dowikeiyi D wike;T;
_ =

Uy = = J<a (eq 33)

JeA

Sep 29T
=1

where A is the index set of the Q nodes with maximal F; — F; input T;. The net output probability
distribution thus combines learned measures of pattern match (T i) instance frequency (c i) and class
predictions (w j ) for each category j.

9.3 - ARTMAP-IC Applied to a Medical Prediction Problem

The ARTMAP-IC neural network (Carpenter & Markuzon, 1996) adds distributed prediction and
category instance counting to fuzzy ARTMAP. The ARTMAP match tracking algorithm, which controls
search following a predictive error facilitates prediction with sparse or inconsistent data. Compared to
the original match tracking algorithm MT+, MT- better approximates the network differential equations
and compresses memory without loss of accuracy. Simulations below examine predictive accuracy on the
Pima Indian diabetes medical databases. ARTMAP-IC networks results are favorable compared to those
of logistic regression, K nearest neighbor (KNN), and the perceptron network ADAP, and also
compared to the basic ARTMAP network and ART-EMAP. Voting, instance counting, and distributed
representations combine to form confidence estimates for competing predictions.

The Pima Indian diabetes (PID) data set (Smith et al., 1988) was obtained from the UCI repository
of machine learning databases (Murphy & Aha, 1992). The database task is to predict whether a patient
will develop diabetes, based on eight clinical findings: age, the diabetes pedigree function, body mass, 2-
hour serum insulin, triceps skin fold thickness, diastolic blood pressure, plasma glucose concentration,
and number of pregnancies. Each patient represented in the database is a female of Pima Indian heritage
who is at least 21 years old.

‘Smith et al. (1988) used the PID data set to evaluate ADAPtive learning routine (ADAP) (Smith,
1962), a type of perceptron (Rosenblatt, 1958, 1962). This study had 576 cases in the training set and
192 cases in the test set, and comparative simulations in this section keep the same training and test sets.
About 39.9% of patients in the sample developed diabetes. Table 2 compares ADAP test set performance
with that of logistic regression, KNN, and three ARTMAP networks. ARTMAP-IC uses the instance
counting rule and the @-max rule (eq-27) for distributed prediction. Comparative simulations show
results for ART-EMAP (Stage 1), which is equivalent to ARTMAP-IC without instance counting; and for
basic ARTMAP, which sets Q@ =1 for category choice during testing. On average, the various ARTMAP
networks (&€=+0.0001), which share a common training regime, have 62 committed category nodes
(C=62). With two output classes (L =2) the rule-of-thumb estimate (eq 28) for the size of distributed
category representation sets Q =15. Table 2 shows that ARTMAP-IC has the best test set performance,
both in terms of the C-index and the number of correct test set predictions. MT- with (&=-0.0001)
compresses memory even more, reducing the number of committed nodes from 62 to 45, with little
deterioration in predictive accuracy. Compared to KNN, the ARTMAP networks compress memory by a
factor of about 10:1.

9.4 - Distributed ART and Distributed ARTMAP

A new class of ART and ARTMAP models retain stable coding, recognition, and prediction, but allow
arbitrarily distributed code representation during learning as well as performance (Carpenter, 1996).
These networks automatically apportion learned changes according to the degree of activation of each
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coding node. This permits fast as well as slow learning without catastrophic forgetting. Distributed ART
models replace the traditional neural network path weight with a dynamic weight equal to the rectified
difference between coding node activation and an adaptive threshold. The input signal T; that activates

the distributed code is a function of a phasic component S i which depends on the active input, and a
tonic component © ;, which depends on prior learning but is independent of the current input, as in the

fuzzy ARTMAP algorithm (Section 7.1). The computational properties of the phasic and tonic
components are derived from a formal analysis of distributed pattern learning. However, these
components can also be interpreted as postsynaptic membrane processes, with phasic terms mediated by
ligand-gated receptors and tonic terms mediated by voltage-gated receptors (Nicholls, 1994). At each
synapse, phasic and tonic terms balance one another and exhibit dual computational properties. For
example, during learning with a constant input, phasic terms are constant while tonic terms may grow.
Tonic components would then become larger for all inputs, but phasic components would become more
selective, reducing the total coding signal sent by a significantly different input pattern. Dynamic weights
that project to coding nodes obey a distributed instar leaning law and those that originate from coding
nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic
signal components with dual computational properties, and a parallel distributed match-reset-search
process helps stabilize memory. When the code is winner-take-all, the unsupervised distributed ART
model (dART) is computationally equivalent to fuzzy ART and the supervised distributed ARTMAP
model (dARTMAP) is equivalent to fuzzy ARTMAP. With fast distributed learning, dART and
dARTMAP networks are likely to further expand the domain of applications of the ART family of
networks.
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! Table 1: Prototype remote sensing simulations
~ A. Data set
! Class label # sites # pixels
; mixed conifer 16 1336
! coast live oak 25 2752
southern mixed 9 348
chaparral
TOTAL 50 4436

;
“_

B. Fuzzy ARTMAP Incremental Learning

Training set Categories Test set pixels Test set sites
(# pixels) G Fg nodes) (% correct) (# correct)

. 100 8 85.9% 8/10
o 500 21 83.2% 9/10
: 2000 72 88.5% 10710
B 3328 126 893% 1010
! C. Voting

Input ordering Categories Test set pixels Test set sites

! (Figure 9)  (# Fg nodes) (% correct) (# correct)
- (a) 126 89.3% 10/10 P
! (b) 131 86.8% 9/10
! ©) 139 86.8% 9/10
‘\ (d) 153 . . 89.4% 9/10
! (e) 133 84.8% 8/10
average 136 87.4% 9/10

voting --- 91.0% 10/10



Table 2: Pima Indian diabetes (PID) simulations
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Model Correct C-index Compression
predictions factor

logistic regression  77% 0.84 -~
ADAP 76% -- --
ARTMAP (K=1) 66% 0.76 9.3
[MT+: € = +0.0001]

0=15 12<0 <19 Peak % [C-index. Q] Compression
KNN 77% 76-77% 77% [0.80, 0=13-15] 1
ART-EMAP 76% 76-78% 78% [0.87, 0=13] 9.3
[MT+: € = +0.0001]
ARTMAP-IC 79% 79-80% 80% [0.87, 0=9-13] 9.3
[MT+: € = +0.0001]

0=15  13<0<IT
ARTMAP-IC 81% 80-81% 81% [0.88, 0=15] + 9.3
[MT-: € = -0.0001]

o=11 8<0 <14
ARTMAP-IC 79% 78-81% - 81% [0.87, 0=9] 12.8

[MT-: £ =-0.01]
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FIGURE CAPTIONS

Figure 1: In ART 1 and fuzzy ART, the F, the node (j=J) that receives the largest input T j from
F| becomes active. Activity x at the field F| reflects the match between the bottom-up input I and the
top-down input, which is equal to the weight vector w ;. When x fails to meet the vigilance matching

criterion, reset leaves node J refractory on the time scale of search. Refractory nodes recover on the
time scale of learning.

Figure 2. ART search for an F; code. (a) The input vector A generates the Fy activity vector x as it
activates the orienting subsystem Q. Activity x both inhibits Q and generates an F; — F, signal. A
bottom-up adaptive filter transforms x into the F input vector T, which activates the STM pattern y
across F,. (b) A top-down adaptive filter transforms y into the category representation vector V. Where
V mismatches A, F| registers a diminished STM activity pattern x*. The resulting reduction of total
STM reduces the total inhibitory signal from F; to Q. (c) If the ART matching criterion fails, Q
releases a nonspecific signal that resets the STM pattern y at F5. (d) Since reset inhibits y, it also
eliminates the top-down signal V, so x can be reinstated at F|. However, enduring traces of the prior
reset allow x to activate a different STM pattern y* at F,. If the top-down signal due to y* also
mismatches A at Fj, then the search for an F;, code that satisfies the matching criterion continues.
(Carpenter & Grossberg, 1987a) :

Figure 3. Fuzzy ART embedded in a simplified ARTMAP network. In the fuzzy ART algorithm, w;
denotes both the bottom-up weight vector and the top-down weight vector, with w;; =wj;. The

ARTMAP network computes classification probabilities, with |b| =1 at an output field F g .

Figure 4. Fuzzy ART category boxes, with M =2. (a) In complement coding form, each weight vector
w ; has a geometric interpretation as a rectangle R; with corners (u jrVj ) (b) During fast learning, R;

expands to R; @ a, the smallest rectangle that includes R; and a, provided that iRJ @ a| <2(1-p). (©)

With fuzzy ART fast learning and complement coding, the j th category rectangle R; includes all those
vectors a in the unit square that have activated category j without reset. The weight vector w ; equals

(Aja,(vja)c).

Figure 5. ARTMAP architecture. The ART, complement coding preprocessor transforms the M ,-
vector a into the 2 M ,-vector A=(a,ac) at the ART, field F g . A is the input vector to the ART , field

F la. Similarly, the input to F lb is the 2 My,-vector B=(b,bc ) When ART), disconfirms a prediction of
ART,, map field inhibition induces the match tracking process. Match tracking raises the ART,
Xa‘ /|A| This triggers an ART, search which

leads either to an ART, category that correctly predicts b or to a previously uncommitted ART,
category node. (Carpenter, Grossberg, & Reynolds, 1991)

vigilance p,, to just above the Fy'-to- Fy match ratio |

Figure 6. During ARTMAP testing, an input a activates the J th F, category node. The map field
weights w ;. then to form a prediction vector z, which may be distributed. The network computes

classification probabilities, with |b| =1, at the output field F g .
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Figure 7: Prototype remote sensing inputs. Each point shows the scaled Landsat spectral ‘band
components a; (TM1 - blue) and a, (TM4 - near infrared) of the ART, input vector a. Points o are
found in mixed conifer sites, points + are found in coast live oak sites, and points / are found in
southern mixed chaparral sites. Data set values are taken from the Cleveland National Forest.

Figure 8: Prototype remote sensing example: Fuzzy ARTMAP incremental learning in response to
the first 6 training set points. Inputs 1(a), 2(b), and 4(d) are from mixed conifer sites (0) and inputs
3(c), 5(e), and 6(f) are from coast live oak sites (+). After learning, inputs 1 and 2 have established the
ART, category J =1, which maps to mixed conifer; inputs 3, 5, and 6 have established category
J =2, which maps to coast live oak; and input 4 has established the point category J =3, which maps
to mixed conifer. Southern mixed chaparral, with sites that include less than 8% of the pixels, happened
not to be represented among the first 6 inputs, which were selected at random.

Figure 9: Prototype remote sensing example: Fuzzy ARTMAP voting. (a)-(e) Fuzzy ARTMAP
networks trained on a common set of 3328 inputs presented in five different, random orders show
variations in decision region geometry. Points marked by a circle (0) predict mixed conifer, points
marked by a plus (+) predict coast live oak, and points marked by a slash (/) predict southern mixed
chaparral. Pixel-level predictive accuracy ranges from 84.8% (e) to 89.4% (d) while site-level
predictive accuracy ranges from 8/10 (e) to 10/10 (a) (Table 1.C). (f) Voting across the five trained
networks boosts pixel-level accuracy to 91.0% and site-level accuracy to 10/10. Blank spaces indicate a
2-2-1 tie among the voters.

Figure 10. During testing, an input activates Q category nodes, in proportion to the input from Fj to
the category field F,. After multiplication by the instance counting weights to produce distributed

activation Y at F3, the Q active nodes project to the map field F b yia the map field weights w jk to
form a distributed prediction vector U. The network then computes classification probabilities, with
|b| =1 at an output field F(I)’.
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Figure 2. ART search for an F, code. (a) The input vector A generates the F| activity vector x as it activates the orienting subsystem Q. Activity x both inhibits Q and generates an
Fy > F signal. A bottom-up adaptive filter transforms x into the F, input vector T, which activates the STM pattern y across F,. (b) A top-down adaptive filter transforms y into
the category representation vector V. Where V mismatches A, F) registers a diminished STM activity pattern x*. The resulting reduction of total STM reduces the total inhibitory
signal from Fj to Q. (c) If the ART matching criterion fails, Q releases a nonspecific signal that resets the STM pattern y at F,. (d) Since reset inhibits y, it also eliminates the top-
down signal V, so x can be reinstated at Fj. However, enduring traces of the prior reset allow X to activate a different STM pattern y* at F. If the top-down signal due to y* also

mismatches A at F), then the search for an F, code that satisfies the matching criterion continues. (Carpenter and Grossberg, 1987a)
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inputs 3, 5, and 6 have established category J =2, which maps to coast live oak; and input 4 has established the point category J =3, which maps to mixed conifer. Southern mixed

chaparral, with sites that include less than 8% of the pixcls, happened not to be represented among the first 6 inputs, which were selected at random.
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Figure 9: Prototype remote sensing example: Fuzzy ARTMAP voting. (a)-(e) Fuzzy ARTMAP nctworks trained on a common set of 3328 inputs presented in five different, random
orders show variations in decision region geometry. Points marked by a circle (0) predict mixed conifer, points marked by a plus (+) predict coast live oak, and points marked by a
slash (/) predict southern mixed chaparral. Pixcl-level predictive accuracy ranges from 84.8% (c) to 89.4% (d) while site-level predictive accuracy ranges from 8/10 (e) to 10/10 (a)

(Table 1.C). (f) Voting across the five trained networks boosts pixcl-level accuracy to 91.0% and site-level accuracy to 10/10. Blank spaces indicate a 2-2-1 tic among the voters.




ARTMAP-IC: Testing
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Figure 10. During testing, an input activates Q category nodes, in proportion to the input from F| to the category field /%,. After muitiplication by the instance counting weights to

produce distributed activation ¥; at F3, the 0 active nodes project to the map field F

computes classification probabilities, with |b| =1 at an output field Fg .

4 via the map field weights wy to form a distributed prediction vector U. The network then
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