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ABSTRACT 
This article compares the performance of Fuzzy ARTMAP with that of Learned Vector 

quantization and Back Propagation on a handwritten character recognition task. Training 
with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with FUZZY 
ARTMAP yielded the highest recognition rates. 

1. Introduction 
FUZZY ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1991) has 

been proposed as a neural network architecture for supervised learning of recognition cat- 
egories and multidimensional maps in response to arbitrary sequences of analog or binary 
input vectors. The first ARTMAP system (Carpenter, Grossberg, and Reynolds, 1991) was 
used to classify binary vectors. The generalization to analog input vectors is accomplished by 
replacing the ART 1 modules in ARTMAP by Fuzzy ART modules (Carpenter, Grossberg, 
and Rosen, 1991). In this work, we use handwritten digit recognition as a test problem for 
comparing the performance of Fuzzy ARTMAP with other two commonly used neural net- 
works, Learned Vector Quant,ization (LVQ) and Back Propagation (BP). Fuzzy ARTMAP 
was superior to LVQ and BP in terms of the speed of learning and prediction accuracy. 

2. Summary of the Fuzzy ARTMAP Algorithm 
Fuzzy ARTMAP consists of a pair of Fuzzy ART modules (.4RT, and ART/,) linked 

together via an inter-ART associative memory Fab that is called a map field. During SU- 

pervised learning, the Fuzzy ARTMAP receives a stream (ap, bp) of input patterns, where 
b, is the correct prediction given a,. The ART, and ARTb modules classify a, and b, into 
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Figure 1: Simplified Fuzzy ARTMAP architecture for classification problem. 
The map field and ARTb of the original Fuzzy ARTMAP are reduced to a field 
Fb where each cell corresponds to a pattern class. 

categories and the map field makes associations from ART, categories to ARTb categories. 
If ap predicts an incorrect b,, then the mismatch between actual and predicted b, causes a 
memory search within ART, by a mechanism called match trucking. Match tracking realizes 
a Minimax Learning Rule which conjointly minimizes predictive error and maximizes gener- 
alization under fast, incremental learning conditions in response to arbitrarily ordered input 
pairs (a,, bp). Match tracking increases the ART, vigilance parameter pa by the minimum 
amount needed to trigger a memory search. Vigilance relaxes to its baseline vigilance p 
between learning trials. For a pattern classification problem where each b, itself represents 
the class to which a, belongs, the ARTb and the map field can be replaced by a single field 
Fb (Figure 1). 

3. Handwritten Digit Data Base and Preprocessing 
The data base consists of 600 examples of digits which are handwritten by 30 persons. 

Each person wrote each digit twice using a tablet and a stylus pen. The position of the 
stylus pen on the tablet was sampled at a speed of 5 points per second. Then the sampled 
points were thinned out to compress the data without substantially degrading character ap- 
pearance, and added to the data base. Stroke features were extracted from each of the 4 
x 4 rectangular receptive fields AI,.  . . , A16 (Figure 2). In each receptive field A,, we cal- 
culated the projections ( H a ,  k:, R t ,  L,) of the part of stroke in A, onto four representative 
orientation (horizontal, vertical, and two diagonal) lines as well as the number E, of stroke 
end points which fall into A,. They were combined into an SO-dimensional feature vector 
(Hi ,  b'l, RI,  L1, El, ..., H16, \/\6, RIG, ,516, El6). Then each vector generated from 600 exam- 
ples of the data was normalized to form a vector a whose components range from 0.0 to 
1.0. 

4. Simulation Results and Comparison with Other Methods 
In each simulation, we used 400 examples randomly chosen from the data base for learn- 
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ONCELLS 

No. Epochs 
10 hidden units 
20 hidden units 

OFF-CELLS 

1 5 10 20 50 100 200 
83.5 91.0 93.0 94.5 94.5 96.0 96.0 
65.5 90.5 93.5 92.5 93.5 93.5 93.0 

Figure 2: Preprocessing for Fuzzy ARTMAP with complement coding. Each 
output cell represents an orientation sensitive or end point sensitive on-cell or 
off-cell. 

No.Reference 
Vectors 10 20 30 40 50 60 70 80 

89.5 94.5 93.0 94.5 95.5 96.5 95.0 94.5 

Table 1: Correct test set prediction rates (%) of BP network with 10 or 20 
hidden units for various number of learning epochs. 

Table 2: Correct test set prediction rates (%) of LVQ network for various number 
of reference vectors. 

ing and the remaining 200 examples to test the predictive generalization of the trained 
networks. We compared Fuzzy ARTMAP performance with that of the LVQ and BP neural 
network classifiers on the same data base using the same preprocessing to generate input vec- 
tors a. The BP network had 80 input units, 10 or 20 hidden units, and 10 output units with 
an adaptable bias for each hidden and output unit. The best test set prediction rate of the 
BP network was 96.0% with 10 hidden units. It decreased to 94.0% as the number of hidden 
unit increases to 20 (Table 1 ). Table 2 summarizes test set and training set prediction rates 
on 8 LVQ simulations along with the numbers of reference vectors. For the LVQ learning, 
we started with reference vectors generated by k-mean methods and evolved them through 
500 x (the number of reference vectors) randomly chosen training pattern presentations. 

Table 3 shows a series of Fuzzy ARTMAP simulation results corresponding to various 
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(a) 

(b) 

(c) 

Table 3: Fuzzy ARTMAP simulations with p equal to (a) 0.0, (b) 0.5, and (c) 
0.6 for diverse a. Each result shows the average over 5 independent simulation 
results as well as their performance range denoted in parentheses. 

Q p Correct Test Set No. ARTa No. Epochs 

0.1 0.0 95.2(94.5-96.0) 21.6( 19-26) 2.0(2-2) 
Prediction Rate(%) Categories 

1.0 0.0 95.9 (94.5-96.5) 23.2 (20-29) 2.8 (2-3) 
5.0 0.0 95.9 (92.0-98.5) 28.8( 26-3 1) 4.2( 3-5) 

10.0 0.0 95.8( 94.5-98.0) 42.2( 36-50) 6.0( 5-7) 
20.0 0.0 94.2( 91.5-96.0) 66.6( 56-81) 8.4( 7-12) 

0.1 0.5 87.1(84.0-90.5) 28.6(24-34) 2.0(2-2) 
100.0 0.0 90.4(86.0-93.5) 172.2( 116-208) 14.6( 12-19) 

1.0 0.5 87.4(84.5-91.0) 29.6(26-36) 2.4(2-3) 
5.0 0.5 95.4(92.5-98.5) 31.2(25-36) 3.6(3-5) 

10.0 0.5 96.3(95.9-98.0) 43.2(36-50) 6.0(5-8) 
20.0 0.5 94.2(91.5-96.0) 66.6(56-81) 8.4(7-12) 

100.0 0.5 90.4(86.0-93.5) 172.2( 116-208) 14.6( 12-19) 
0.1 0.6 83.5(79.5-88.5) 42.0(40-45) 2.0(2-2) 
1.0 0.6 84.1 (80.5-89.5) 42.6( 40-48) 2.2( 2-3) 
5.0 0.6 87.8(82.0-92.5) 44.4(41-51) 2.6(2-3) 

10.0 0.6 91.9(89.9-94.0) 45.0(40-48) 4.0(3-5) 
20.0 0.6 95.4(92.5-97.0) 70.0(65-77) 8.2(7-9) 

100.0 0.6 90.4(86.0-93.5) 172.2( 116-208) 14.6( 12-19) 

combination of choice parameter a and baseline vigilance 3. The choice parameter Q appears 
in the functions T3 =I I A wy I (a+ I w; that are defined for each category j in E; 
(Figure 1). The category j whose T3 is maximal is selected to represent input a. The 
statistics are averages from 5 simulations using different randomly chosen test and training 
sets. The training patterns were presented in a different order for the number of epochs 
shown in Table 3 until 100% training set performance was reached. 

The peak performances are 95.9% at a = 1.0 or a = 5.0 for jj = 0.0, 96.3% at a = 10.0 
for P = 0.5 and 95.4% at a = 20.0 for p = 0.6. Figure 3 shows the prediction rate as a 
function of a. Although these rates are almost identical, the required number of committed 
nodes and training epochs increases with a. Baseline vigilance 7 = 0 uses fewer ART, 
categories and generates stable performance for a relatively wide range of a. 

Table 4 shows how test set performance changes depending on the number of training 
epochs of Fuzzy ARTMAP with Q = 1.0, 5.0 and 10.0. After one epoch, for any a, the 
correct prediction rate on the test set reaches above 99% of its best performance. 

Figure 4 shows examples of category templates and a part of coded patterns which 
Fuzzy ART, module with p = 0.0 and Q. = 1.0 has learned through one epoch presentation 
of training patterns. 

The prediction rate of Fuzzy ARTMAP can be improved by using the voting strategy 
(Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1991). Here several ARTMAPS are 
trained on different random orderings of the same inputs, and the category favored by the 
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Figure 3: The correct prediction rate vs. choice parameter Q for three different 
values of vigilance parameter 7. 

Figure 4: Fuzzy ARTMAP category templates and coded patterns. The left box 
represents on-cell adaptive weights and the right box represents the complemen- 
tary off-cell weights, corresponding to three Fuzzy ART categories. Illustrative 
exemplars of the digit “0” from each category are displayed. 

majority is selected. Table 5 shows how voting improves performance of Fuzzy ARTMAP. 
Each result of .5-voter Fuzzy ARTMAP performance is an average of five independent 5- 
simulation votings. In each case, &simulation voting eliminated 2436% of the test set error. 
yielding the hest prediction accuracy of the three models. Moreover. the fluctuation in 
prediction rates are reduced to 1-2% from 2.1-6.5x for 1-simulation systems. This makes 
the system highly reliable. 

In summary: 

1. The best correct prediction rates for BP, LVQ, and a single Fuzzy ARTMAP are almost 
equivalent. ARTMAP voting generates the best prediction accuracy of all the models. 

2. In terms of the number of training epochs needed to achieve a certain predictive rate, 
Fuzzy ARTMAP is far superior to BP and LVQ. Even one epoch of Fuzzy ARTMAP training 
yields close to maximal performance. 

3. In terms of the total number of pathways needed for the best performance, the BP 
network is superior to Fuzzy ARTMAP and to LVQ. However, all compression in ARTMAP 
occurs between layers F f  and & in Figure 1. For each FF category, only one weight to Fb 
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(a) 

(b) 

(c) 

Correct Test Set No.ARTa No.Epochs 

97.4 (96 -5-98.5) 30.0( 25-36) 4.6 (3- 7) 
Prediction Rate(%) Categories 

5.0 0.5 96.7( 95 .O-97.5) 32.2( 26-42) 3.5 (2-5) 
10.0 0.5 97.2(97.0-98.0) 41.8(32-50) 5.8(3-8) 

a, p Correct Test Set No.ARTa No.Epochs 
Prediction Rate(%) Categories 

1.0 0.0 95.9(94.5-96.5) 22.8( 19-28) 1 
1.0 0.0 95.9( 94.5-96.5) 23.2( 20-29) 2 
5.0 0.0 95.2 (92.0-96.5) 26.0 (23-29) 1 
5.0 0.0 96.1(93.0-97.5) 28.0(26-30) 2 
5.0 0.0 96.0(92.5-97.5) 28.6(26-31) 3 

10.0 0.0 94.0(92.0-96.5) 32.6(31-35) 1 
10.0 0.0 95.6( 94.0-98.0) 36.2 (32-40) 2 
10.0 0.0 95.3(94.0-96.5) 38.6(35-42) 3 
10.0 0.0 95.6 (94.0-97.5) 40.4( 35-46) 4 
10.0 0.0 95.7(94.0-98.0) 41.6( 36-48) 5 

Table 5: The performances of 5-voter Fuzzy ARTMAP with ( a  = 5 and jj = 0), 
(a = 5 and jj = 0.5), and (a = 10 and i j  = 0.5). Each result shows the average of 
5 independent 5-simulation votings as well as their performance range denoted 
in parentheses. 

is non-zero and many weights from FF to F$ equal zero. In contrast, BP uses all three levels 
to build its map. For example, in the best BP simulations, 92% of weights from level 2 to 
level 3 are at least 5% of the maximal weight value in absolute size. 
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