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Abstract--A Fuzzy Adaptive Resonance Theory (ART) model capable of rapid stable learning of recognition 
categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART 
incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize 
only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by 
replacing appearances of the intersection operator ( N ) in ART 1 by the MIN operator ( /~ ) of fuzzy set theory. 
The MIN operator reduces to the intersection operator in the binarv case. Category proliferation is prevented 
by, normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding 
leads to a symmetric theory in which the M1N operator (/\) and the MAX operator (V) of fuzzy set theory play 
complementary roles. Complement coding uses on-cells and o f  cells to represent the input pattern, and preserves 
individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all 
adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of categorv "boxes." 
Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. 
With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one 
presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting 
rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously 
learned memories are not rapidly erased in response to statistically unreliable input fluctuations. 

Keywords--Fuzzy set theory, Adaptive resonance theory, Neural network, Pattern recognition, Learning, 
ART 1, Categorization, Memory search. 

1. INTRODUCTION: A CONNECTION 
BETWEEN ART SYSTEMS AND 

FUZZY LOGIC 

Adaptive Resonance Theory,  or ART, was intro- 
duced as a theory of human cognitive information 
processing (Grossberg, 1976, 1980). The theory has 
since led to an evolving series of real-time neural 
network models for unsupervised category learning 
and pattern recognition. These models are capable 
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of learning stable recognition categories in response 
to arbitrary input sequences with either fast or slow 
learning. Model families include ART 1 (Carpenter 
& Grossberg, 1987a), which can stably learn to ca- 
tegorize binary input patterns presented in an arbi- 
trary order: A RT 2 (Carpenter & Grossberg, 1987b), 
which can stably learn to categorize either analog or 
binary input patterns presented in an arbitrary order; 
and A RT 3 (Carpenter & Grossberg, 1990a, 1990b), 
which can carry out parallel search, or hypothesis 
testing, of distributed recognition codes in a multil- 
evel network hierarchy. Variations of these models 
adapted to the demands of individual applications 
have been developed by a number of authors (Baloch 
& Waxman, 1991; Baxter, 1991; Carpenter,  Gross- 
berg, & Rosen, 1991a; Galindo & Michaux, 1990; 
Gjerdingen, 1990; Gochin, 1990; Harvey et al., 1990; 
Hecht-Nielsen, 1990; Johnson, 1990: Kosko, 1987a, 
1987b, 1987c; Kumar & Guez, 1989, 1991: Levine & 
Penz, 1990; Li & Wee, 1990; Liao, Liang, & Lin, 
1990: Mekkaoui & Jespers, 199(I; Michalson & Heldt, 
1990; Moore,  1989; Nigrin, 199(/; Rajapakse, Jaku- 
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bowicz, & Acharya, 1990; Ryan, 1988; Seibert & 
Waxman, 1990a, 1990b; Simpson, 1990; Weingard, 
1990; Wilson, Wilkinson, & Ganis, 199(1: Winter, 
1989; Winter, Ryan, & Turner, 1987). 

Recently the ART 1 model has been used to de- 
sign a hierarchical network architecture, called ART- 
MAP, that can rapidly self-organize stable categor- 
ical mappings between m-dimensional input vectors 
and n-dimensional output vectors (Carpenter, Gross- 
berg, & Reynolds, 1991a,b). Under supervised learn- 
ing conditions, ARTMAP's  internal control mech- 
anisms create stable recognition categories of optimal 
size by maximizing predictive generalization while 
minimizing predictive error in an on-line setting. 
ARTMAP was originally used to learn mappings be- 
tween binary input and binary output vectors. The 
Fuzzy ART model (Carpenter, Grossberg, & Rosen, 
1991b) developed herein generalizes ART l to be 
capable of learning stable recognition categories in 
response to both analog and binary input patterns. 
This Fuzzy ART model has been incorporated into 
a Fuzzy ARTMAP architecture (Carpenter, Gross- 
berg, Markuzon, Reynolds, & Rosen, 1991) that can 
rapidly learn stable categorical mappings between 
analog or binary input and output vectors. For ex- 
ample, Fuzzy ARTMAP learns in five training ep- 
ochs a benchmark that requires twenty thousand ep- 
ochs for back propagation to learn (Lang & Witbrock. 
1989). The Fuzzy ART system is summarized in Sec- 
tion 3. 

Fuzzy ART incorporates the basic features of all 
ART systems, notably, pattern matching between 
bottom-up input and top-down learned prototype 
vectors. This matching process leads either to a res- 
onant state that focuses attention and triggers stable 
prototype learning or to a self-regulating parallel 
memory search. If the search ends by selecting an 
established category, then the category's prototype 
may be refined to incorporate new information in 
the input pattern. If the search ends by selecting a 
previously untrained node, then learning of a new 
category takes place. 

Figure 1 illustrates a typical example chosen from 
the family of ART 1 models, and Figure 2 illustrates 
a typical ART search cycle. As shown in Figure 2a, 
an input vector ! registers itself as a pattern X of 
activity across level Fj. The F~ output vector S is then 
transmitted through the multiple converging and di- 
verging adaptive filter pathways emanating from F~. 
This transmission event multiplies the vector S by a 
matrix of adaptive weights, or long-term memory 
(LTM) traces, to generate a net input vector T to 
level F:. The internal competitive dynamics of /< 
contrast-enhance vector T. A compressed activity 
vector ¥ is thereby generated across F> In ART 1, 
the competition is tuned so that the F2 node that 
receives the maximal F~ --~ Fz input is selected, Only 

A T T E N T I O N A L  
S U B S Y S T E M  

i SEARCH ; 
! O R I E N T I N G  i 

gain 2 I 
S T M  F2  i ~  

I+ oain, L _ _ _ f  .......... +t  ' 

[ . . . .  M A T C H I N G  I N T E R N A L  
A C T I V E  /~ I N P U T  C R I T E R I O N :  
R E G U L A T I O N  . . . . . . . . . . . . . . . . . . .  V I G I L A N C E  

P A R A M E T E R  

FIGURE 1. Typical ART 1 neural network (Carpenter & Gross- 
berg, 1987a). 

one component of Y is nonzero after this choice takes 
place. Activation of such a winner-take-all node de- 
fines the category, or symbol, of the input pattern i. 
Such a category represents all the inputs I that max- 
imally activate the corresponding node. 

Activation of an F, node may be interpreted as 
"'making a hypothesis" about an input I. When Y is 
activated, it generates a signal vector U that is sent 
top-down through the second adaptive filter. After 
multiplication by the adaptive weight matrix of the 
top-down filter, a net vector V inputs to F, (Figure 
2b). Vector V plays the role ol a learned top-down 
expectation. Activation of V by ¥ may be interpreted 
as "testing the hypothesis" ¥.  or "'reading out the 
category prototype" V. The ART l network is de- 
signed to match the "'expected p ro to type  V of the 
category against the active input pattern, or exem- 
plar, I. 

This matching process ma~ change the k acuv~tv 
pattern X by suppressing activauon of all the feature 
detectors in I that are not confirmed by V. The re- 
sultant pattern X* encodes the pattern of features to 
which the network "pays attention." If the expec- 
tation V is close enough to the input | .  then a state 
of resonance occurs as the attentional focus takes 
hold. The resonant state persists long enough for 
learning to occur; hence the term adaptive resonance 
theory. ART 1 learns prototypes, rather than ex- 
emplars, because the attended feature vector X ~. 
rather than the input ! itself, is learned. 
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FIGURE 2. ART search for an F2 code: (a) The input pattern I generates the specific STM activity pattern X at F, as it nonspecificaily 
activates the orienting subsystem A. Pattern X both inhibits A and generates the output signal pattern S. Signal pattern S is 
transformed into the input pattern T, which activates the STM pattern Y across F2; (b) Pattern Y generates the top-down signal 
pattern U, which is transformed into the prototype pattern V. If V mismatches I at F1, then a new STM activity pattern X* is 
generated at F1. The reduction in total STM activity which occurs when X is transformed into X* causes a decrease in the total 
inhibition from F1 to A; (c) If the matching criterion fails to be met, A releases a nonspecific arousal wave to F2, which resets 
the STM pattern Y at F2; (d) After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated at F ,  
Enduring traces of the prior reset lead X to activate a different STM pattern Y* at F2. If the top-down prototype due to Y* also 
mismatches I at F1, then the search for an appropriate F2 code continues. 

The criterion of an acceptable match is defined 
by a dimensionless parameter called vigilance. Vig- 
ilance weighs how close the input exemplar I must 
be to the top-down prototype V for resonance to 
occur. Because vigilance can vary across learning trials, 
recognition categories capable of encoding widely 
differing degrees of generalization, or morphological 
variability, can be learned by a single ART system. 
Low vigilance leads to broad generalization and ab- 
stract prototypes. High vigilance leads to narrow gen- 
eralization and to prototypes that represent fewer 
input examplars. In the limit of very high vigilance, 
prototype learning reduces to exemplar learning. Thus 
a single ART system may be used, say, to recognize 
abstract categories of faces and dogs, as well as in- 
dividual faces and dogs. 

If the top-down expectation V and the bottom- 
up input I are too novel, or unexpected, to satisfy 
the vigilance criterion, then a bout of hypothesis test- 
ing, or memory search, is triggered. Search leads to 
selection of a better recognition code, symbol, cat- 

egory, or hypothesis to represent input I at level F~. 
An orienting subsystem A mediates the search pro- 
cess (Figure l). The orienting subsystem interacts 
with the attentional subsystem, as in Figures 2c and 
2d, to enable the attentional subsystem to learn about 
novel inputs without risking unselective forgetting of 
its previous knowledge. 

The search process prevents associations from 
forming between Y and X* if X* is too different from 
I to satisfy the vigilance criterion. The search process 
resets Y before such an association can form. A fa- 
miliar category may be selected by the search if its 
prototype is similar enough to the input I to satisfy 
the vigilance criterion. The prototype may then be 
refined in light of new information carried by I. If I 
is too different from any of the previously learned 
prototypes, then an uncommitted [2 node is selected 
and learning of a new category is initiated. 

A network parameter controls how deeply the 
search proceeds before an uncommitted node is cho- 
sen. As learning of a particular category self-stabi- 
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lizes, all inputs coded by that category access it di- 
rectly in a one-pass fashion, and search is automatically 
disengaged. The category selected is then the one 
whose prototype provides the globally best match to 
the input pattern. Learning can proceed on-line, and 
in a stable fashion, with familiar inputs directly ac- 
tivating their categories, while novel inputs continue 
to trigger adaptive searches for better categories, un- 
til the network's memory capacity is fully utilized. 

The read-out of the top-down expectation V may 
be interpreted as a type of hypothesis-driven query. 
The matching process at F~ and the hypothesis testing 
process at /~'~ may be interpreted as query-driven 
symbolic substitutions. From this perspective, AR'I 
systems provide examples of new types of self-or- 
ganizing production systems (Laird. Newell, & Ro- 
senbloom, 1987). By incorporating predictive feed- 
back into their control of the hypothesis testing cycle, 
ARTMAP systems embody self-organizing produc- 
tion systems that are also goal-oriented. ARTMAP 
systems are thus a new type of self-organizing experl 
system, which is capable of stable autonomous fast 
learning about nonstationary environments that ma3 
contain a great deal of morphological variability. The 
fact that fuzzy logic may also be usefully incorporated 
into ARTMAP systems blurs even further the tra- 
ditional boundaries between artificial intelligence and 
neural networks. 

The new Fuzzy ART model incorporates the de- 
sign features of other ART models due to the close 
formal homolog between ART 1 and Fuzzy ART 
operations. Figure 3 summarizes how the ART 1 
operations of category choice, matching, search, and 

ART 1 FUZZY ART 
(BINARY) (ANALOG) 

CATEGORY CHOICE 

a+lwjl 

MATCH CRITERION 

FAST LEARNING 

P 

Wj (new) = I f-'l wj(°la) Wj (new) = I A wj (°ld) 

n = logical AND A = fuzzy AND 
intersection minimum 

FIGURE 3. Analogy between ART 1 and Fuzzy ART. The no- 
tation wt In ART 1 denotes the index set of top-down LTM 
traces of the j-th category that exceed a prescribed positive 
threshold value. See Carpenter and Grossberg (1987a) for 
details. 

learning translate into Fuzzy AR'I operations by re- 
placing the set theory intersection operator ((~) of 
ART 1 by the fuzzy set theory conjunction, or M1N 
operator (/\}. Despite this close formal homology, 
Fuzzy ART is described as an algorithm, rather than 
a locally defined neural model. A t~cural network 
realization of Fuzzy ART is desc6bed elsewhere 
(Carpenter, Grossberg, & Rosen. 19talc). For ~he 
special case of binary inputs and fast learning, the 
computations o[ Fuzzy ART arc identical to those 
of the ART 1 neural network, 'Fhc [:uzzv ART al- 
gorithm also includes two optional leatures, tree con- 
cerning learning and the other input preprocessmg, 
as described in Section 2 

2. FAST-LEARN SLOW-RECODE A N D  
COMPLEMENT CODING 

Many' applications of ART I use [asi iearnmg, whereby 
adaptive weights fully converge tt~ new equilibrium 
values in response to each input pattern, Fast learn- 
ing enables a system to adapt quickly to inputs that 
may occur only rarely and that may require imme- 
diate accurate performance. The ability of humans 
to remember man~ details of an exciting movie is a 
typical example of fast learning. I~ has been math-- 
ematicallv proved that ART 1 c~m carry out fast 
learning of stable recognition categories in an on,line 
setting in response to arbitrary lists of binary input 
patterns (Carpenter & Grossberg, 1987a), in con- 
trast, error-based learning models like backpropa- 
gation become unstable in this type of learning en- 
vironment. This is because back propagation learning 
is driven by the difference between the actual output 
and a target output. Fast learning would zero this 
error signal on each input trial and would thus force 
unsclective forgetting of past lear~m~g. This feature 
of back propagation restricts its domain to off-line 
learning applications carried out ~ith a slow' learning 
r a t e .  Off-line learning is needed because real-time 
presentation of inputs with variable durations has a 
similar effect on learning as presenting the same in- 
puts with a fixed duration but variable learning rates. 
In particular, longer duration inputs reduce the error 
signal more on each input trial and thus have an effect 
similar to fast learning. In addition, lacking the ke), 
teature of competition, a back propagation system 
tends to average rare events with similar frequent 
events that may have different consequences. 

For some applications, it is useful to combine fas~ 
initial learning with a slower rate of forgetting. We 
call this the ,['ast-commit slow-recode option, This 
combination of properties retains the benefit of fast 
learning; namely, an adequate response to inputs 
that may occur only rarely and in response to which 
accurate performance may be quickly demanded. The 
slow-recode operation also prevents features that have 
already been incorporated into ?. category's proto- 
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type from being erroneously deleted in response to 
noisy or partial inputs. With slow recoding, only a 
statistically persistent change in a feature's relevance 
to a category can delete it from the prototype of t h e  

category. The fast-commit slow-recode option in Fuzzy 
ART corresponds to ART 2 learning at intermediate 
learning rates (Carpenter, Grossberg, & Rosen, 
1991a). 

The input preprocessing option concerns normal- 
ization of input patterns. It is shown below that input 
normalization prevents a problem of category pro- 
liferation that could otherwise occur (Moore, 1989). 
A normalization procedure called complement cod- 
ing is of particular interest from three vantage points. 
From a neurobiological perspective, complement 
coding uses both on-cells and off-cells to represent 
an input pattern, and preserves individual feature 
amplitudes while normalizing the total on-cell/off- 
cell vector. From a functional perspective, the on- 
cell portion of the prototype encodes features that 
are critically present in category exemplars, while 
the off-cell portion encodes features that are criti- 
cally absent. Features that are occasionally present 
in a category's input exemplars lead to low weights 
in both the on-cell and the off-cell portions of the 
prototype. Finally, from a set theoretic perspective, 
complement coding leads to a more symmetric theory 
in which both the MIN operator (/~) and the MAX 
operator (V) of fuzzy set theory play a role (Figure 
4). Using both the MIN and the MAX operations, 
a geometrical interpretation of Fuzzy ART learning 
is given in terms of box-shaped recognition categories 
whose corners are iteratively defined in terms of the 
/~ and V operators. Complement coding hereby es- 
tablishes a connection between on-cell/off-cell re- 
presentations and fuzzy set theory operations. This 
linkage further develops a theme concerning the 

A Fuzzy AND (conjunction) 

V Fuzzy OR (disjunction) 

0 

y ,  ........ x.Vy 

. . . . . . .  • X x A y  

x =  

(x A Y)l =min (x l , y l )  

(X V Y)l =max(xl ,Yl)  

Y = (Yt,Y2) 
(x A Y)2 = min(x2,Y2) 
(x V Y)2 = max(x2,Y2) 

FIGURE 4. Fuzzy operations. 

relationship between ART on-cell/off-cell r e p r e -  

s e n t a t i o n s ,  hypothesis testing, and probabilistic 
logic that was outlined at the theory's inception 
and used to explain various perceptual and cognitive 
data (Grossberg, 1980, Sections 7-9; Grossberg, 
1982, Section 47). 

Section 4 discusses Fuzzy ART systems in a pa- 
rameter range called the conservative limit. In this 
limit, an input always selects a category whose weight 
vector is a fuzzy subset of the input, if such a category 
exists. Given such a choice, no weight change occurs 
during learning; hence the name conservative limit, 
since learned weights are conserved wherever pos- 
sible. Section 5 describes Fuzzy ART coding of two- 
dimensional analog vectors that are preprocessed into 
complement coding form before being presented to 
the Fuzzy ART system. The geometric interpretation 
of Fuzzy ART dynamics is introduced here and il- 
lustrative computer simulations are summarized. The 
geometric formulation allows comparison between 
Fuzzy ART and aspects of the NGE (Nested Gen- 
eralized Exemplars) algorithms of Salzberg (199(I). 
Section 6 further develops the geometric interpre- 
tation and provides a simulation of Fuzzy ART with- 
out complement coding to show how category pro- 
liferation can occur. Section 7 compares the stability 
of Fuzzy ART to that of related clustering algorithms 
that were discussed by Moore (1989). The Fuzzy ART 
computations of choice, search, learning, and com- 
plement coding endow the system with stability prop- 
erties that overcome limitations of the algorithms 
described by Moore. 

3.  S U M M A R Y  O F  T H E  F U Z Z Y  

A R T  A L G O R I T H M  

I n p u t  v e c t o r :  Each input I is an M-dimensional v e c -  

tor  (L . . . . .  IM), where each component li is in the 
interval [0, 1]. 
W e i g h t  v e c t o r :  Each category (j) corresponds to a 
vector w/-= (Wjl . . . . .  win) of adaptive weights, or 
LTM traces. The number of potential categories 
N( j  = i . . . . .  N)  is arbitrary. Initially 

w,, = . . .  - w , ,  = 1. (1) 

and each category is said to be uncommitted. Alter- 
natively, initial weights w/, may be taken greater than 
1. Larger weights bias the system against selection 
of uncommitted nodes, leading to deeper searches 
of previously coded categories. 

After a category is selected for coding it becomes 
committed. As shown below, each LTM trace wii is 
monotone nonincreasing through time and hence 
converges to a limit. The Fuzzy ART weight vector 
w, subsumes both the bottom-up and top-down weight 
vectors of ART 1. 
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P a r a m e t e r s :  Fuzzy A R T  dynamics are determined 
by a choice parameter a > 0; a learning rate par- 
ameter fl ~ [0, 1]; and a vigilance parameter p 
[ 0, 11. 
Category c h o i c e :  For each input I and category j, the 
choice function T i is defined by 

T/(I) = [ I / \%]  + !w,l' (2) 

where the fuzzy AND (Zadeh, 1965) opera to r /~  is 
defined by 

(x A y), -=- min(x, y,), (3) 

and where the norm I'1 is defined by 

M 
Ix}--- .~ Ix, I. (4) 

i=1 

For notational simplicity, Tj(I) in eqn (2) is often 
written as Tj when the input I is fixed. The category 
choice is indexed by J, where 

1": = max{T/:] = 1 . . .  N}. (5) 

If more than one T) is maximal, the category j with 
the smallest index is chosen. In particular, nodes 
become committed in order j = 1, 2, 3, . . . . 
R e s o n a n c e  o r  re se t :  R e s o n a n c e  occurs if the match 
function of the chosen category meets the vigilance 
criterion; that is, if 

II/~ wj[ _> p. (O) 

Learning then ensues, as defined below. M i s m a t c h  

rese t  occurs if 

tl A w~____~t < p. (7) 
Ill 

Then the value of the choice function Tj is reset to 
- 1 for the duration of the input presentation to pre- 
vent its persistent selection during search. A new 
index J is chosen, by eqn (5). The search process 
continues until the chosen J satisfies eqn (6). 
L e a r n i n g :  The weight vector wj is updated according 
to the equation 

w~ "~w) = fl(l A wy ''°)) + (1 - fl)w~ °'d). (8) 

Fast learning corresponds to setting fl = 1 (Figure 
3). The learning law (8) is the same as one used by 
Moore  (1989) and Salzberg (1990). 
F a s t . c o m m i t  s i o w - r e c o d e  o p t i o n :  For efficient coding 
of noisy input sets, it is useful to set fl = 1 when J 
is an uncommitted node,  and then to take fl < 1 after 
the category is committed. Then w(j "~w) = I the first 
time category J becomes active. 
Input normalization option: Moore  (1989) described 
a category proliferation problem that can occur in 
some analog A R T  systems when a large number of 

inputs erode the norm of weight vectors. Prolifera- 
tion of categories is avoided in Fuzzy A R T  if inputs 
are normalized; that is, for some :, ::, (L 

for all inputs 1. Normalization can be achieved by 
preprocessing each incoming vector a, for example 
setting 

a 
I : ~- .  (10) 

An alternative normalization rule, called c o m p l e -  

m e n t  c o d i n g ,  achieves normalization while preserv- 
ing amplitude information. Complement  coding rep- 
resents both the on-response and the off-response to 
a (Figure 5). To define this operation in its simplest 
form, let a itself represent the on-response. The com- 
plement of a, denoted by a c, represents the off-re- 
sponse, where 

a: -=-l - a~. ( l l )  

The complement coded input I to the recognition 
system is the 2M-dimensional vector 

! = (a, a ~) ~- (at . . . . .  aM, a', . . . . .  a~). (12) 

Note that 

[!I = I(a, ac)l 

~4 ~f at ) =Zo,+(M-Z 
M,  (13) 

so inputs preprocessed into complement coding form 
are automatically normalized. Where complement 
coding is used, the initial condition (1) is replaced 
by 

%1 = . . .  : %2~ i (14) 

Fl l  I =(a,a c) 

al [aC = (1-a 1 , 

F0 a 

iIl=M 

..., 1-a M) 

l a = (a 1, ..., a M) 
FtGUM S. ~ codkw mm ~ m d  o f f -~ l  ~ s  
to normalize input vectors. 
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4.  F U Z Z Y  S U B S E T  C H O I C E  A N D  O N E -  
S H O T  F A S T  L E A R N I N G  IN T H E  

C O N S E R V A T I V E  L I M I T  

In fast-learn ART 1, if the choice parameter a in (2) 
is chosen close to 0 (see Figure 3), then the first 
category chosen by (5) will always be the category 
whose weight vector wl is the largest coded subset 
of the input vector I, if such a category exists (Car- 
penter & Grossberg, 1987a). In other words, wj is 
chosen if it has the maximal number of l 's (wji = 1) 
at indices i where Ii = 1, and O's elsewhere, among 
all weight vectors wj. Moreover,  when wj is a subset 
of I during resonance, w: is unchanged, or conserved, 
during learning. More generally, wj encodes the 
attentional focus induced by I, not I itself. The 
limit a ~ 0 is called the conservative limit because 
small values of a tend to minimize recoding during 
learning. 

For analog vectors, the degree to which y is a fuzzy 
subset of x is given by the term 

Ix A yl 
lyl (15) 

(Kosko, 1986). In the conservative limit of Fuzzy 
ART, the choice function Tj in eqn (2) reflects the 
degree to which the weight vector wj is a fuzzy subset 
of the input vector I. If 

I1 A wjl _ 1, (16) 

then wj is a fuzzy subset of I (Zadeh, 1965), and 
category j is said to be a fuzzy  subset choice for input 
I. In this case, by eqn (8), no recoding occurs if j is 
selected since I /~  wj = w r 

Resonance depends on the degree to which 1 is a 
fuzzy subset of wj, by eqns (6) and (7). In particular, 
if category j is a fuzzy subset choice, then the match 
function value is given by 

II/~ w/l = ~ (17) 
al al '  

Thus, choosing J tO maximize ]wjl among fuzzy subset 
choices also maximizes the opportunity for resonance 
in eqn (6). If reset occurs for the node that maximizes 
Iwjl, reset will also occur for all other subset choices. 

Consider a Fuzzy A R T  system in the conservative 
limit with fast learning and normalized inputs. Then 
c~ = 0 in eqn (2), fl = 1 in eqn (8), and eqn (9) holds. 
Under these conditions, one-shot stable learning oc- 
curs; that is, no weight change or search occurs after 
each item of an input set is presented just once, al- 
though some inputs may select different categories 
on future trials. To see this, note by eqns (6), (8), 
and (9) that when I is presented for the first time, 
w~ "~) ~ I /~  w~ °l~) for some category node J = j such 
that II/~ w) °'d)] -> p l I [=  PY- Thereafter,  category j is 

a fuzzy subset choice of I, by eqn (16). If ! is pre- 
sented again, it will either choose J = j or make 
another fuzzy subset choice, maximizing ]w:], be- 
cause fuzzy subset choices (16) maximize the cate- 
gory choice function (2) in the conservative limit. In 
either case, w~ n~w) = ! /~ w~ °~d) = w~ °~d), which implies 
that neither reset nor additional learning occurs. 

5.  F U Z Z Y  A R T  W I T H  
C O M P L E M E N T  C O D I N G  

A geometric interpretation of Fuzzy ART  with com- 
plement coding will now be developed. For definite- 
ness, let the input set consist of two-dimensional 
vectors a preprocessed into the four-dimensional 
complement coding form. Thus 

I = (a, a') = (a,, a_,, 1 - a,, 1 - a~_). (18) 

In this case, each category ) has a geometric repre- 
sentation as a rectangle Rj, as follows. Following eqn 
(18), the weight vector wj can be written in comple- 
ment coding form: 

w/ = (uj, v',), (19) 

where u/and vj are two-dimensional vectors. Let vec- 
tor uj define one corner of a rectangle Rj and let vj 
define another corner of Rj (Figure 6a). The size of 
R/is defined to be 

IR:I -= pv , -  u,J, (20) 

which is equal to the height plus the width of Rj in 
Figure 6a. 

In a fast-learn Fuzzy A R T  system, with fl -- 1 in 
eqn (8), w~ "ewl = I = (a, a c) when J is an uncommitted 
node. The corners of R~ newl are then given by a and 
(aC) c = a. Hence,  R~ "~wl is just the point a. Learning 
increases the size of each Rj. In fact the size of Rj 
grows as the size of wj shrinks during learning, and 
the maximum size of Rj is determined by the vigilance 
parameter p, as shown below. During each fast-learn- 
ing trial, Rj expands to Rj ~ a, the minimum rec- 
tangle containing Rj and a (Figure 6b). The corners 
of Rj G) a are given by a / ~  us and a V vl, where 

(x V y)i -= max(x,, y,) (21) 

(Zadeh, 1965). Hence, by eqn (20), the size of R: • 
a is given by 

IR, • al = p(a V v,) - (a A u,)l. (22) 

However,  reset leads to a new category choice if 
IRj • a[ is too large. These properties will now be 
proved. 

Suppose that I = (a, a C) chooses category J, by 
eqn (5). The weight vector wj is updated according 
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0 

a; 

(a) 
i ,  

1 

--?, aVvj 
R j :  

I 

ai 
i ' 

• . . . . . . . . . . . . . . . .  e ]aAuj a 
0 1 

(b) 
FIGURE 6. (a) In complement coding form with M = 2, each 
weight vector w I has a geometric Interpretation as a rectangle 
Rj with corners (uj, vl); (b) During fast learning, Rj expands 
to Rj ~ a, the smallest rectangle that Includes Rj and a, 
provided that IRa • al -< 2(1 - p). 

(;. A. Carpenter, S. Grossberg, and D, B. RosetJ 

satisfies 

!R~ • a i ~ 2(1 -- p).  ~26) 

By eqn (26), if vigilance p is close to 1, then all R ,s  
are small. If p is close to 0, then some Rj's may grow 
to fill most  of the unit square [0, lj ~: [0, 1]. 

Suppose  now that  the match cri ter ion is satisfied. 
By eqn (23) 

w', '''~' = ! A wl, '''~ 

(a, a') A (u~ . ~v':"%') 

.... (a /" ,  u', ''~"', a' ~ v}"~') ' ) 

: ( a / \  u~ ''~'~', (a ,,. v':'"")') 

=: (u l , , ~  v~,~,) ,~ j , ( . . (27) 

Thus  

R~ "c~' = R~? ~d' @ a ~2~) 

In part icular ,  no weight changes occur  if a ~ R} °~d'. 
In summary ,  with fast learning,  each R /equa l s  the 
smallest rectangle that  encloses all vectors  a that  have 
chosen category j, under  the constraint  that  ]Rji 
2(1 - - p ) .  

In general, if a has dimension M, the hyper-rec- 
tangle R/includes the two vertices/'~.ia and V/a, where 
the i-th component of each vector is 

(A/a)~ = min{a,:a has been coded by category it (29) 

and 

(V,a), = max{a,:a has been coded by category j} (30) 

(Figure 7). The  size of R/ is  given bv 

iRit = iV~a - . ' ' ia l  (31) 

to the fast- learn equa t ion  

W~ "~r) ~ I A w) "tJ~ (23) 

only if the match criterion eqn (6) is satisfied. Be- 
cause of complement coding, III = M,  by eqn (13). 
Thus, when M = 2, the match criterion eqn (6) is 
satisfied iff 

tl A wjI _> 2p. (24) 

H o w e v e r ,  

I[ A w,I = I(a, a") A (u,, v~;)l 

= I(a A u,) ,  (a ~ A v~)l 

= t(a A u,) ,  (a V v~)q 

= ka A u , l  + 2 - l a y  v,I 

= 2 - IR: • al, (25) 

by eqn (22). Thus  by eqns (24) and (25), the match  
cr i ter ion is met  iff the expanded  rectangle Rj @ a 

a 2 

1 

W c 
j4 

R ;  

w j2 

0 w jl wj3 1 1 

FIGURE 7. ~ fast ~ g  ~ ~ ~  thej-  
th c e ~  ~ n, ~ © ~  d ~  ~ a l .  the 
unit s q u m  which have activated category ] withoutreset. 
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As in eqn (27), 

SO 

w, = (A,a, (Via)') (32) 

!w,I = ~ (A,a), + ~\" ll - (Via),] 

- M - I V , a -  A,a]. (33) 

The size of the hyper-rectangle R i is thus 

IR, I -  M -Iw, I. (34) 

By eqns (6), (8), and (13), 

[w,l >- Mp. (35) 

By eqns (34) and (35), 

rR, I - <  M(I - p). (36) 

Thus, in the M-dimensional case, high vigilance 
(p ~ 1) again leads to small R/while low vigilance 
(p ~ 0) permits large R i. If]" is an uncommitted node, 
Iwii = 2M,  by eqn (14). and so, IR~] -= - M ,  by eqn 
(34). These observations may be combined into the 
following theorem. 

THEOREM (Stable Category Learning): 
In response to an arbitrary sequence of analog or 
binary input vectors, a Fuzzy ART system with com- 
plement coding and fast learning forms stable hyper- 
rectangular categories R i, which grow during learning 
to a maximum size IR/I -< M(1 - p) as Iw, I mono- 
tonically decreases. In the conservative limit, one- 
pass learning obtains such that no reset or additional 
learning occurs on subsequent presentations of any 
input. 

Similar properties hold for the fast-learn slow-re- 
code case, except that repeated presentations of an 
input may be needed before stabilization occurs. 

The geometry of the hyper-rectangles Rj resem- 
bles part of the Nested Generalized Exemplar (NGE) 
algorithm (Salzberg, 1990). Both NGE and Fuzzy 
A R T M A P  (Carpenter,  Grossberg, Reynolds, & Ro- 
sen, 1991) construct hyper-rectangles that represent 
category weights in a supervised learning paradigm. 
Both algorithms use the learning law eqn (8) to up- 
date weights when an input correctly predicts the 
output. The two algorithms differ significantly, how- 
ever, in their response to an incorrect prediction. In 
particular, NGE has no analogue of the ART vigi- 
lance parameter  p, and its rules for search differ from 
those of Fuzzy ART. In addition, NGE allows hyper- 
rectangles to shrink as well as to grow, so the Fuzzy 
AR T stability properties do not obtain. 

In the computer  simulation summarized in Figure 
8, M = 2 and vectors a ~), a ~2), . . . are selected at 
random from the unit square. Each frame shows the 
vector a t" and the set of rectangles Rj present after 
learning occurs. The system is run in the fast-learn, 

1,R1 

(a) 

(d) 

W 

(b) (c) 

(e) if) 

(g) (h) (i) 
FIGURE 8. Fuzzy ART complement coding simulation with 

~ 0,/~ -- 1, p -- .4, and input vectors a <o selected at random 
from the unit square. Rectangles Rj grow during learning, 
and new categories are established, until the entire square 
is covered by 8 rectangles. Categories do not proliferate. A 
new point rectangle, R2, is established at t = 4, since R1 • 
a ~4~ is too large to satisfy the match criterion eqn (26). 

conservative limit, and p = .4. When the first cat- 
egory is established, R~ is just the point a (~. If a ('~ 
lies within one or more established R i, the rectangle 
chosen is the one that has the smallest size IR/. In 
this case, neither reset nor weight change occurs. 
Each new input that activates ca tegory / ,  but does 
not lie within its previously established boundaries, 
expands R i unless (as in (d)) such an expansion would 
cause the size o f R  i t o  exceed 2(1 - p) - 1.2. As 
more and more inputs sample the square, all points 
of the square are eventually covered by a set of eight 
rectangles R i, as illustrated by (g)-(i). 

6. F U Z Z Y  ART WITHOUT 
C O M P L E M E N T  C O D I N G  

The advantages of complement coding are high- 
lighted by consideration of Fuzzy ART without this 
preprocessing component. Consider again a fast-learn 
Fuzzy A R T  system with M = 2. Let the input set 
consist of two-dimensional vectors I = a. During 
learning, 

w~ °'~1 = a/x wj"'ul. (37) 

since/3 : 1 in eqn (8). Without complement coding, 
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the monotone decrease in Iwjl that is implied by eqn 
(37) can lead to a proliferation of categories, as fol- 
lows. 
Geometry  o f  Fuzzy A R T :  The choice, match, and 
learning computations of Fuzzy A R T  (Figure 3) will 
now be described geometrically. Without comple- 
ment coding, these computations can be described 
in terms of polygonal regions. With complement cod- 
ing, the analogous regions would be four-dimen- 
sional sets. 

For a given input a, Fuzzy A R T  choice is char- 
acterized by a nested set of polygons. These polygons 
are defined by the choice function 

la A wfi 
T~(a) - (38) 

+ tw, l" 

and thus are called choice polygons (Figure 9), As 
in eqn (5), the category choice is indexed by J, where 

Tj(a) = max{Tj(a):j = 1,2 . . . . .  N}. (39) 

The choice J can be geometrically interpreted as fol- 
lows. For each input vector a and number T ~ [0, 

1], let 

e la) : w: S = 2: TI,   40) 

where w is a vector in the unit square. For each T, 
region Pr(a)  is a choice polygon with boundary 

{ i a / ' w L _ _  .... " i  aeffa) : w: . + !wi (4l t  

Progressively smaller values of I induce a family of 
progressively larger polygons that are nested within 
each other. In the conservative limit (a ~ 0), 
P~(a) ~ a and all Pr(a) include a for 0 ~ T ~ 1. 

By eqns (38) and (40), an LTM vector 

w i C Pr(a) {42} 

iff 

Tr(a) :>- I. (43) 

Thus, to find a category choice J that maximizes 
Tj(a), the largest T must be found such that 

a ~ PT(a), (44) 

T j = T  ~ (.L~.X~a 1_ ~ 

(a) 

0 a 1 1 

(b) 

1 

(ii) 

a 2 
(iv) 

0 

Resonance 

(i) ~ p ] ~ 

a I 1 0 

(c) 

Resonl 

( d )  

FIGURE 9. Geometry of Fuzzy ART without complement coding. Input a divides the unit ~ into ~ r  ~ ~ s  
(i) . . . . .  (Iv). (a) Choke ~ s  PT(a) for 0 < T < 1 and 0 < a < 1. if Input a ~ 8 ~ J ~ Tj = T, then wj Is a 
point on dPT(a), but no weight vector w, t 
is ~ " - t s d  onto the ~ Vlmgl . ;  (d) 
w, shrinks to 0 88 Iw, I ~ O. If 8 is In the~ 
change occum ¢lurlng IoBmlng, 
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wj E 0Pria), (45) 

but 

w/ ~ Ps(a) (46) 

for any j = 1, 2 . . . . .  N and S > T. To accomplish 
this, T is decreased and the corresponding polygon 
Pr(a) expands until its boundary 0PT(a) intersects 
the first LTM vector wj, ] = 1, 2 . . . . .  N, at some 
value T. Then set J = j and ~(a)  = T. 
Resonance  and reset regions: Once chosen, node J 
remains active only if the vigilance criterion is met: 
namely, by eqn (6), 

la/~ wj] -> plal. (47) 

The resonance and reset regions can be visualized in 
terms of the four rectangular regions into which a 
divides the unit square (Figure 9b). If wj is in region 
(i), 

la/~ w/I -- lal. (48) 

Thus, eqn (47) is satisfied given any vigilance value 
p ~ [0, i]. On the other hand, if w i is in region (iv), 
then 

]a/~ w,] = Iw,[, (49) 

so node J will be reset if 

Iw, j <: p[a[. (50) 

The boundary of the reset region m (iv) is thus de- 
fined by the straight line {w:lw[ = p[a[}, which ap- 
proaches a as p approaches 1. The fact that the reset 
boundary is a vertical line in region (ii) and a hori- 
zontal line in region (iii) is checked by evaluating 
[a/~ wi] in these regions. Figure 9b pieces together 
these reset regions and depicts the complementary 
resonance region in gray at a vigilance value p < 1. 
Learning: After search, some node J is chosen with 
w: in the resonance region. During learning, a /~  wj 
becomes the new weight vector for category J, by 
eqn (37). That is, wj is projected to region (iv); spe- 
cifically, to the shaded triangle in Figure 9c. Thus, 
unless w~ already lies in region (iv), wj is drawn to- 
ward the origin during learning. However, as wl ap- 
proaches the origin, it leaves the resonance region 
of most inputs a (Figure 9b). To satisfy the resonance 
criterion, future inputs are forced to drag other weight 
vectors toward the origin, or to choose uncommitted 
nodes, even though the choice value of these nodes 
is small. Figure 9d illustrates, for two different weight 
vectors wj and w~, the sets of points a where reso- 
nance will occur if category J or J '  is chosen. As 
shown, this set shrinks to zero as [wjl approaches 0. 
Category proliferation: Figure 10 shows how the 
properties of Fuzzy ART described above can lead 
to category proliferation. In the simulation illus- 
trated, the same randomly chosen sequence of inputs 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

FIGURE 10. Fuzzy ART simulation with a -~ 0, /~ = 1, and 
p = .4. The sequence of input vectors aro is the same as in 
Figure 8. The resonance triangle is shown for each category, 
with the triangle for category I shaded. Categories proliferate 
as Iw/I-* 0. 

a ~'~ as in Figure 8 were presented to a Fuzzy ART 
system. Each frame shows the vector a l') and the 
triangular subset of the resonance region (Figure 9d) 
for all established categories. As shown, proliferating 
categories cluster near the origin, where they are 
rarely chosen for resonance, while new categories 
are continually created. This problem is solved by 
complement coding of the input vectors, as was il- 
lustrated in Section 5. 

7. STABILITY OF 
C L U S T E R I N G  A L G O R I T H M S  

Moore (1989) described a variety of clustering al- 
gorithms, some of them classical and others, based 
on ART 1, that are similar to Fuzzy ART. All use, 
however, a choice function that includes a dot prod- 
uct or Euclidean distance measure that differs from 
the choice function ~ in eqn (2). In addition, com- 
plement coding is not used. For example, the Cluster 
Euclidean algorithm (Moore, 1989, p. 176) chooses 
the coded category J whose weight vector wj is the 
minimal Euclidean distance d(w/, I) to I, and which 
satisfies 

d(w:, I) <- 0 (51) 
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If such  a J exists, w: is u p d a t e d  by 

w '°~w' = /fl + (1 - /0w~ '<'. (52) ,I  

If n o  such  ca t ego ry  exists ,  an  u n c o m m i t t e d  n o d e  J 
is chosen and w5 "~wl = l, as in the fast commitment 
option. The Cluster Unidirectional algorithm (Moore. 
t989, p. 177) is similar except that weights are up- 
dated according to eqn (8). Moore pointed out that 
the Cluster Euclidean algorithm is unstable in the 
sense that weight vectors and category boundaries 
may cycle endlessly. Moore also showed that the 
unidirectional weight update rule eqn (8) avoids this 
type of instability, but introduces the category pro- 
liferation problem described in Section 6. 

As noted in the Stable Category Learning Theo- 
rem, normalization of inputs using complement cod- 
ing allows Fuzzy ART to overcome the category pro- 
liferation problem while retaining the stable coding 
properties of the weight update rule eqn (8). The 
strong stability and rapid convergence properties of 
Fuzzy ART models are due to the direct relationship 
between the choice function eqn (2), the reset rule 
eqn (7), and the weight update rule eqn (8). Choice_ 
search, and learning are made computationally con- 
sistent by the common use of the vector i / ~  w/. This 
direct relationship enables Fuzzy ART models to be 
embedded in multilevel Fuzzy ARTMAP systems for 
supervised learning of categorical maps between 
m-dimensional and n-dimensional analog vector pairs 
(Carpenter, Grossberg, Reynolds, & Rosen, 1991). 
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