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Abstract

Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and noise
tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input environ-
ment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, ART
stability typically requires winner-take-all coding, which may cause category proliferation in a noisy input environment. Distributed
ARTMAP (dARTMAP) seeks to combine the computational advantages of MLP and ART systems in a real-time neural network for
supervised learning. An implementation algorithm here describes one class of dARTMAP networks. This system incorporates elements
of the unsupervised dART model, as well as new features, including a content-addressable memory (CAM) rule for improved contrast control
at the coding field. A dARTMAP system reduces to fuzzy ARTMAP when coding is winner-take-all. Simulations show that dARTMAP
retains fuzzy ARTMAP accuracy while significantly improving memory compression.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Distributed coding by adaptive resonance systems

Adaptive resonance theory (ART) began with an analysis
of human cognitive information processing (Grossberg,
1976, 1980). Fundamental computational design goals
have therefore always included memory stability with fast
or slow learning in an open and evolving input environment.
As a real-time model of dynamic processes, an ART net-
work is characterized by a system of ordinary differential
equations, which are approximated by an algorithm for
implementation purposes. In a general ART system, an
input is presumed to generate a characteristic pattern of
activation, or spatial code, that may be distributed across
many nodes in a field representing a brain region such as the
inferior temporal cortex (e.g., Miller et al., 1991).

While ART code representations may be distributed in
theory, in practice nearly all ART networks feature winner-
take-all (WTA) coding. These systems include ART 1

(Carpenter & Grossberg, 1987) and fuzzy ART (Carpenter
et al., 1991b) for unsupervised learning, and ARTMAP
(Carpenter et al., 1991a) and fuzzy ARTMAP (Carpenter
et al., 1992) for supervised learning. The coding field of a
supervised system is analogous to the hidden layer of a
multi-layer perceptron (MLP) (Rosenblatt, 1958, 1962;
Rumelhart et al., 1986; Werbos, 1974), where distributed
activation helps the network achieve memory compression
and generalization. However, an MLP employs slow learn-
ing, which limits adaptation for each input and so requires
multiple presentations of the training set. With fast learning,
where dynamic variables are allowed to converge to asymp-
tote on each input presentation, MLP memories suffer cat-
astrophic forgetting. However, features of a fast-learn
system, such as its ability to encode significant rare cases
and to learn quickly in the field, may be essential for a given
application domain. Additional ART capabilities, including
stable coding and scaling to accommodate large databases,
are also essential for many applications, such as the Boeing
parts design retrieval system (Caudell et al., 1994).

An overall aim of the distributed ART (dART) research
program is to combine the computational advantages of
ART and MLP systems. Desirable properties include code
stability when learning is fast and on-line, memory
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compression when inputs are noisy and unconstrained, and
real-time system dynamics.

1.1. Distributed learning

A key step in the derivation of the first family of dART
models (Carpenter, 1996, 1997) was the specification of
dynamic learning laws for stable distributed coding. These
laws generalize the instar (Grossberg, 1972) and outstar
(Grossberg, 1968, 1970) laws used, for example, in fuzzy
ART. Instar and outstar learning feature a gating operation
that permits weight change only when a coding node is
active. This property is critical to ART stability. With a
distributed code and fast learning, however, instar and out-
star dynamics cause catastrophic forgetting. A system such
as Gaussian ARTMAP (Williamson, 1996) includes many
features of a distributed coding network, but retains the
instar and outstar learning laws of earlier ART and
ARTMAP models. The weight update rules in a Gaussian
ARTMAP algorithm therefore approximate a real-time
system only in the slow-learn limit. Other ARTMAP varia-
tions, such as ART-EMAP (Carpenter & Ross, 1995) and
ARTMAP-IC (Carpenter & Markuzon, 1998), acquire some
of the advantages of distributed coding, but sidestep the
learning problem by permitting distributed activation during
testing only.

The distributed instar (Carpenter, 1997) and distributed
outstar (Carpenter, 1994) laws used in dART dynamically
apportion learned changes according to the degree of acti-
vation of each coding node, with fast as well as slow
learning. The update rules listed in the dARTMAP imple-
mentation algorithm represent exact, closed form solutions
of the model differential equations. These solutions are
valid across all time scales, with fast or slow learning.
When coding is WTA, the distributed learning laws reduce
to instar and outstar equations, and dART reduces to fuzzy
ART. Similarly, with coding that is WTA during training
but distributed during testing, the dARTMAP algorithm
specified here reduces to ARTMAP-IC, and further reduces
to fuzzy ARTMAP with coding that is WTA during both
testing and training.

1.2. Distributed ARTMAP design choices

An ART module is embedded as the primary component
of ARTMAP, and similarly an unsupervised dART module
is embedded in a supervised dARTMAP network. In
applications, ARTMAP requires few design choices: the
number of coding nodes is determined by on-line perfor-
mance, and the default network parameters work well in
most settings. In contrast, a general dARTMAP system pre-
sents the user with a far greater array of choices, due to the
new degrees of freedom afforded by distributed code
possibilities. In practice, a number of the ‘obvious’
design choices have failed to produce good performance
in simulation studies.

The present article presents one family of dARTMAP
networks that have performed well in pilot studies. In parti-
cular, dARTMAP retains fuzzy ARTMAP test set accuracy
while significantly reducing network size. A self-contained
dARTMAP algorithm is designed both to expedite ready
implementation and to foster the development of alternative
designs adapted to the demands of new applications.

1.3. Outline

A number of computational devices that were not part of
the more general distributed ART theory were found to be
useful in dARTMAP simulations. These include a new rule
characterizing the content-addressable memory stored at the
coding field in response to a given input (Section 2.1), an
internal control device that causes the system to alternate
between distributed and WTA coding modes (Section 2.2),
and credit assignment and instance counting (Section 2.3).

A geometric representation aids the visualization of dis-
tributed ARTMAP computational dynamics. Since the algo-
rithm reduces to fuzzy ARTMAP when coding is WTA, the
geometric characterization of dARTMAP builds upon the
geometry of fuzzy ARTMAP, which represents weight
vectors as category boxes in input space (Section 3.1).
The relationship between these boxes and a system input
determines the order in which categories are searched
(Section 3.2), and box expansion represents weight changes
during WTA learning (Section 3.3).

Distributed ARTMAP replaces the long-term memory
weights of fuzzy ARTMAP with dynamic weights, which
depend on short-term memory coding node activations, as
well as long-term memory (Section 4.1). The corresponding
geometric representation replaces each fuzzy ARTMAP
category box with a nested family of boxes, one for each
coding node activation value (Section 4.2). Some or all of
these coding boxes may expand during dARTMAP learn-
ing, but the geometry shows how the system preserves
dynamic range with fast as well as slow learning (Section
4.3). The rule in the dARTMAP algorithm that characterizes
the signal transmitted to the coding field in response to a
given input admits a geometric interpretation (Section 4.4),
as does the rule characterizing the response of the content-
addressable memory to the incoming signal (Section 4.5).

The dARTMAP algorithm includes the computational
elements that were useful in simulation studies. For clarity,
the training (Section 5.1) and testing (Section 5.2) portions
of the algorithm are listed separately. In the version pre-
sented here, the dARTMAP algorithm is feedforward during
testing.

A series of simulations indicate how the dARTMAP algo-
rithm works. Distributed prediction in the basic algorithm
reduces network size, but this system uses only binary con-
nections from the coding field to the output field (Section
6.1). Performance can be improved by augmenting the
trained dARTMAP system with a linear output map such
as Adaline (Section 6.2). Other simulations analyze the role
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of dARTMAP learning that takes place in the distributed
mode, as opposed to the WTA mode (Section 6.3). By vary-
ing the degree of pattern contrast in the content-addressable
memory system, dARTMAP performance can be improved,
without increasing network size (Section 6.4). A statistical
analysis confirms the significance of simulation findings
(Section 6.5).

Finally, a step-by-step presentation of the geometry of
dARTMAP learning demonstrates the detailed mechanism
of system dynamics (Section 7). Section 8 concludes with a
discussion of possible dARTMAP variations and directions
for future research.

2. CAM rules, coding modes, and credit assignment

The unsupervised distributed ART network (Carpenter,
1996, 1997) features a number of innovations that differ-
entiate it from previous ART networks, including a new
architecture configuration and distributed instar and outstar
learning laws (Fig. 1). In order to stabilize fast learning with
distributed codes, dART represents the unit of long-term
memory (LTM) as a subtractive threshold rather than a tra-
ditional multiplicative weight. Despite their different archi-
tectures, a dART algorithm reduces to fuzzy ART when
coding is WTA. While a dART module is the basic compo-
nent of a supervised dARTMAP system, the algorithm spe-
cified in Section 5 also employs additional devices not
included in the previous distributed ART description.
These features, including a new rule defining coding field
activation, alternation between WTA and distributed coding
modes, and credit assignment, will now be described.

2.1. Increased gradient content-addressable memory rule

A neural network field of strongly competitive nodes can,
once activated by an initial input, maintain a short-term

memory (STM) activation pattern even after the input is
removed. A new input then requires some active reset pro-
cess before it can instate a different code, or content-addres-
sable memory (CAM). ACAM rulespecifies a function that
characterizes the steady-state STM response to a given vec-
tor of inputs converging upon a field of neurons.

Traditional CAM rules include: McCulloch–Pitts acti-
vation, which makes STM proportional to input (McCulloch
& Pitts, 1943); a power rule, which makes STM pro-
portional to input raised to a powerp; and a WTA rule,
which concentrates all activation at the node receiving the
largest net input. Other CAM rules include Gaussian acti-
vation functions, as used, for example, in radial basis
function networks (Moody & Darken, 1989). A power
rule reduces to a McCulloch–Pitts rule whenp ¼ 1 and
converges to a WTA rule asp → `. Moving p from 0
towards infinity produces a stored STM pattern that is a
progressively contrast-enhanced transformation of the
input vector. In many examples, however, a power rule is
problematic because differences among input components
are small. A CAM system may then require unreasonably
large powersp to produce significant differences among
STM activations.

The CAM rule used in the dARTMAP algorithm is
designed to enhance input differences as represented in
the distributed internal code without raising input compo-
nents to high powers. It is therefore called theincreased
gradient CAM rule. Beyond its role in the present system,
this rule is useful for defining the steady-state activation
function in other neural networks. The increased gradient
rule includes a powerp for contrast control. The role ofp is
analogous to the role of variance in Gaussian activation
functions (Hertz et al., 1991; Moody & Darken, 1989). A
geometric representation of dARTMAP provides a
natural interpretation of the increased gradient CAM rule
(Section 4.5).

Fig. 1. Distributed ART network. A dART coding fieldF2 receives signals directly from an input fieldF0. TheF0 → F2 signalTj is a function of a phasic
componentSj, which depends on the current input, and a tonic componentQ j, which is independent of the input. A CAM rule defines the transformation from
signalsTj to theF2 codey, which may be arbitrarily distributed. Activityx at the fieldF1 reflects a match between bottom-up inputI and top-down inputj. The
active code is reset whenx fails to meet the vigilance matching criterion, determined by parameterr. Long-term memory is stored asF0 → F2 thresholdst ij,
which adapt according to a distributed instar learning law, andF2 → F1 thresholdst ji, which adapt according to a distributed outstar learning law.
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2.2. Distributed and winner-take-all coding modes

The increased gradient CAM rule solves a pattern separa-
tion problem that often arises in neural systems, where each
element has a limited dynamic range. A second common
problem is how to choose the size of a neural network. In an
MLP, for example, deciding on the number of hidden units
is a critical design choice. With WTA coding, ARTMAP
determines network size by adding category nodes incre-
mentally, to meet the demands of on-line predictive
accuracy. Some types of MLP networks have also been
designed to add hidden units incrementally. A cascade cor-
relation architecture, for example, creates a hierarchy of
single-unit hidden layers until the error criterion is met
(Fahlman & Lebiere, 1990), but weights in all lower layers
are frozen during learning associated with the top layer.

With distributed coding, a dARTMAP network could, in
principle, operate with a field of coding nodes that are fixed
a priori. In practice, this type of network did not produce
satisfactory results in simulation studies, where fast learning
tended to make the learned representations too uniform. To
solve this problem, the dARTMAP algorithm alternates
between distributed and WTA coding modes, as follows.

Each dARTMAP input first activates a distributed code. If
this code produces a correct prediction, learning proceeds in
the distributed coding mode. If the prediction is incorrect,

the network resets the active code via ARTMAPmatch
tracking feedback(Carpenter et al., 1991a). In ARTMAP
networks, the reset process triggers a search for a category
node that can successfully code the current input. In dART-
MAP, reset also places the system in aWTA coding modefor
the duration of the search. The switch from a distributed
mode to a WTA mode could be implemented in a competi-
tive network by means of a nonspecific signal that increases
the strength of intrafield inhibition (Ellias & Grossberg,
1975; Grossberg, 1973). Such an arousal signal might be
interpreted as an increase in overall attentiveness in
response to an error signal or alarm, the computational
result being a sharpened focus on the most salient input
features.

In WTA mode, dARTMAP can, like ARTMAP, add
nodes incrementally as needed. When a coding node is
added to the network, it becomes permanently associated
with the output class that is active at the time. From then
on, the network predicts this class whenever the same cod-
ing node is chosen in WTA mode. In distributed mode, STM
activations across all nodes that project to a given output
class provide evidence in favor of that outcome. Despite its
computational advantages, the WTA possibility implies that
dARTMAP coding is not fully distributed all the time,
indicating one possible direction for future system
modifications.

Fig. 2. Distributed ARTMAP network. A complement-coded inputA activates a distributedF2 codey, which in turn is filtered through counting weightscj to
produce theF3 activationY. The WTA fieldFab

0 activates the nodek ¼ K9 that receives the largest inputjk from F3, representing the predicted output class.
During training, activation at the fieldFab

1 determines whether the predicted output classk ¼ K9 matches the actual output classk ¼ K, which is represented at
the fieldFb

0. Adaptation in paths fromFb
0 to the coding fieldF2 realizes credit assignment. A mismatch atFab

1 causes a match tracking signal to raise ARTa

vigilancer just enough to reset the active code.
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2.3. Credit assignment, instance counting, and match
tracking

When a dARTMAP network makes a distributed predic-
tion, some of the active coding nodes may be linked to an
incorrect outcome. In a real-time network, a feedback loop
for credit assignment would suppress activation in these
nodes during training (Fig. 2). Credit assignment allows
learning to enhance only those portions of an active code
that are associated with the correct outcome. This procedure
is similar to credit assignment algorithms widely used in
other neural networks (e.g., Williamson, 1996) and genetic
algorithms (e.g., Booker et al., 1989).

The current simulations were also found to benefit from
design features used in the ARTMAP-IC network. These
include instance counting of category exemplars and the
MT ¹ match tracking search rule. Instance counting biases
output predictions according to previous coding node acti-
vations summed over training set inputs. The MT¹ search
rule generally improves memory compression compared to
the original ARTMAP match tracking algorithm (MTþ ). It
also permits a system to encode inconsistent cases, where
two identical training set inputs are associated with different
outcomes. Inconsistent cases are common in medical data-
bases, for example.

Aspects of the dARTMAP algorithm such as the
increased gradient CAM rule, the combination of WTA
with distributed coding during training, credit assignment,

and instance counting are not necessarily fundamental prin-
ciples intrinsic to the class of all dARTMAP networks.
Rather, they are developed for the pragmatic purpose of
defining one set of dARTMAP systems with the desired
computational properties.

A real-time neural network can implement the computa-
tions of the dARTMAP algorithm (Fig. 2). Because the
algorithm considers only the case where the output vector
represents discrete classes, it does not require all the vari-
ables shown in the network diagram. A geometric represen-
tation of dARTMAP dynamics (Section 4) helps visualize
and motivate computations of the algorithm (Section 5).
Because dARTMAP reduces to fuzzy ARTMAP when cod-
ing is WTA, the geometry of dARTMAP generalizes the
geometry of fuzzy ARTMAP, which will first be reviewed
(Section 3). Where possible, dARTMAP retains fuzzy
ARTMAP notation as well.

3. Fuzzy ARTMAP geometry

Both fuzzy ARTMAP and dARTMAP employ an input
preprocessing device calledcomplement coding. Comple-
ment coding creates a system input vectorA equal to the
concatenation of the originalM-dimensional inputa, where
0 # ai # 1, and its complementac, where (ac) i ; (1 ¹ ai).
The input A thus positively represents both ‘present
features’ (a) and ‘absent features’ (ac). In addition, using

Fig. 3. Simplified fuzzy ARTMAP network. For an output class prediction task, the network does not require the full ARTb network of a general fuzzy
ARTMAP system (Carpenter et al., 1992). A complement-coded inputA makes a WTA category selection (j ¼ J) atF2, which predicts an output classK9 ¼ k(J).
During training, ifK9 is not the same as the indexK of the actual output class, then match tracking raises vigilance enough to trigger a search for a differentF2

node. The dARTMAP network in Fig. 2 has two additional fields:F3, for instance counting; andFab
0 , for translating distributedF3 output into a WTA

prediction.

797G.A. Carpenter et al. / Neural Networks 11 (1998) 793–813



the city-block normdefined by lvl ; Si lvi l, complement
coding serves to normalize inputs, since then

lAl¼
∑2M

i ¼ 1
Ai ¼

∑M
i ¼ 1

ai þ (1¹ ai)
ÿ �

¼ M:

Complement coding allows weight vectors to be represented
geometrically as boxes in theM-dimensional space of the
vectora. The doubled system input vectorsA produce the
endpoints of a set of intervals that define the edges of each
box, as described in the following section.

3.1. ARTMAP category boxes

During fuzzy ARTMAP learning, 2M-dimensional com-
plement coded inputsA give rise to 2M-dimensional weight
vectorsw j ; (w1j, …, wij, …, w2M;j), one for eachF2 cate-
gory nodej (Fig. 3). Bottom-up weights equal top-down
weights, sow j may stand for both. Fori ¼ 1, …, M, weight
wij intuitively represents the degree to which theith feature

is consistently present in the inputsa coded by thejth cate-
gory; andwiþM,j represents the degree to which theith fea-
ture is consistently absent. When bothwij andwiþM,j become
small, the network treats the size ofai as unpredictive with
respect to thejth category.

The weight vectorw j is depicted geometrically as anM-
dimensionalcategory box Rj with edges defined by the inter-
vals wij , wc

i þ M, j

� �
. The boxRj is the set of pointsq for

which wij # qi # (1 ¹ wi þ M;j) (Fig. 4a). The sizelRjl is
defined as the sum of the lengths of the box’sM defining
intervals. Thus,

lRj l¼
∑M
i ¼ 1

1¹ wi þ M, j
ÿ �

¹ wij

ÿ �
¼ M ¹ lwj l:

When a node is first activated, orcommitted, the active node
(j ¼ J) becomes permanently associated with the active
output class (k ¼ K ¼ k(J)). The network adds a committed
node when it determines that previously active nodes cannot
adequately represent the current input. The number of

Fig. 4. Fuzzy ARTMAP geometry, in the conservative limit with fast learning and a choice-by-difference signal function. (a) A category boxRj represents the
complement-coded weight vectorw j. (b) When a nodeJ is first committed,wiJ ¼ wc

i þ M,J ¼ ai for i ¼ 1, …, M, so the category boxRJ is the point box {a}.
CategoryJ becomes permanently mapped to the current output classk(J) ¼ K. Point boxes are drawn as3 and the current inputa is drawn asW. (c) If a is not
contained in any boxRj, categories are searched in order of their boxes’ distance toa. (d) Once a categoryJ that makes the correct output prediction is found to
meet the vigilance matching criterion,RJ expands just enough to includea.
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committed nodes (C) grows incrementally during training.
When a nodej is uncommitted, wij ; 1. Then, when the node
first becomes committed,Rj equals thepoint box{ a}, where
wij ¼ wc

i þ M, j ¼ ai (i ¼ 1, …, M) (Fig. 4b).

3.2. ARTMAP order of search

When a committedF2 node becomes active and incor-
rectly predicts the output class, fuzzy ARTMAP triggers a
search process calledmatch tracking. Match tracking
increases thevigilance matching parameterr just enough
to reset the active category. Search ends when the chosen
node predicts the correct output classk ¼ K, provided that
the vigilance matching criterion is also satisfied.

Fuzzy ARTMAP geometry serves to illustrate the order in
which nodes are searched. LetTj denote the signal sent to
the jth node of the category fieldF2. The function that
determinesTj depends jointly on the current inputa and
on the learned weight vectorw j. With WTA coding, F2

nodes become active in order of the size ofTj, starting
with the largest. The geometric version of achoice-by-
differencesignal function (Carpenter & Gjaja, 1994) sets:

Tj ¼ M(2¹a) ¹ d Rj , a
ÿ �

¹ajRj j, (1)

wherea [ (0, 1). In Eq. (1),d(Rj, a) ; dj denotes the city-
block distance froma to Rj. That is,d(Rj, a) ¼ lRj ! al¹
lRjl, whereRj ! a is the smallest box enclosing bothRj and
a. Whenj is an uncommitted node,Tj ; Tu. At an uncom-
mitted nodej, wij ; 1, so formallylRjl ¼ M ¹ lwjl ¼ ¹ M
and d(Rj, a) ¼ l{ a} l ¹ lRj l ¼ M. Thus, by Eq. (1),Tu ¼

M(2 ¹ a) ¹ M þ aM ¼ M.
For boxes Rj that contain a, dðRj ;a) ¼ 0, so Tj ¼

M(2 ¹ a) ¹ alRjl. When a is contained in one or more
boxesRj and a ¼ 0þ, nodes first become active in order
of the sizes of theseRj, starting with the smallest. Whena is
not contained in any box anda ¼ 0þ, Tj > 2M ¹ d(Rj, a) so
nodes become active in order of the distances froma to Rj,
starting with the nearest. In Fig. 4c, nodes would become
active in the orderj ¼ 2, 1, 3.

Search continues until the chosen node makes the correct
prediction and satisfies the vigilance matching criterion. If
all committed nodes withTj $ Tu are reset, the network
chooses a previously uncommitted node, which learns the
correct prediction.

3.3. ARTMAP winner-take-all learning

During fast learning with nodej ¼ J active,RJ expands
just enough to includea; that is, the category box grows to
RJ ! a (Fig. 4d). The total weight increase therefore equals
the initial distancedJ ¼ d(RJ, a). Thus, asa → 0þ, selecting
the closest box via the signal functionTj [Eq. (1)] is equiva-
lent to selecting the node where weights will be minimally
changed, or maximally conserved. The parameter choice
a ¼ 0þ is therefore called theconservative limit(Carpenter
et al., 1991b). At each stage of learning,Rj is the smallest

box that contains all the training set inputsa that have been
coded by categoryj without reset.

In summary, with fast learning in the conservative limit, a
fuzzy ARTMAP inputa chooses boxes in turn, starting with
the closest and, ifa is in more than one box, starting with the
smallest box that containsa. A predictive error increases
vigilance enough to cause reset. Search ends when the
chosen box makes the correct prediction and satisfies the
matching criterion. For a committed node, the box expands
until it includesa, and for an uncommitted node, a point box
is established.

4. Distributed ARTMAP geometry

The geometric representation of dARTMAP builds upon
the geometry of fuzzy ARTMAP. With distributed coding,
steady-state activationsyj atF2 nodes may take on any value
between 0 and 1, in contrast to WTA coding, which
produces only binary activations. Distributed ARTMAP
therefore replaces the single fuzzy ARTMAP category
box Rj with a nested family of coding boxesRj (yj), with
the smallest box,Rj (1), corresponding toRj. As with fuzzy
ARTMAP, dARTMAP geometry illustrates the dynamics of
code selection, search, and learning.

For a given system inputa, the vector transmitted to the
coding field F2 is determined by a chosen signal rule
(Section 4.4). AtF2, the resulting distributed steady-state
activation patterny is determined by a chosen CAM rule
(Section 4.5). If that code predicts the correct output classK,
learning within the dART module ensues (Section 4.3). Dis-
tributed learning is depicted geometrically in terms of
families of coding boxes (Section 4.2), which represent
dARTMAP dynamic weights (Section 4.1). If the distri-
buted code makes an incorrect prediction, the network
reverts to a WTA mode. For the rest of the search, system
dynamics then closely resemble those of fuzzy ARTMAP.
CommittedF2 nodes are added only in WTA mode, with
each newly committed node producing a geometric point
box associated with a unique output class. During testing,
coding is always distributed and the network operates as a
feedforward system.

4.1. Distributed ARTMAP dynamic weights

The key step in the transformation from fuzzy ART to
distributed ART replaces the traditional LTM path weights
wij /wji with dynamic weights. Each dynamic weight is a
function of a coding node activationyj (STM), as well as
a subtractive thresholdt ij /t ji (LTM). The formal substitu-
tions that convert a fuzzy ART algorithm into a dART
algorithm are described as:

wij → yj ¹ tij

� �þ (2)

in bottom-up paths and:

wji → yj ¹ tji

� �þ (3)
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in top-down paths (Figs. 1 and 3). In Eqs. (2) and (3),
[y] þ ; max{y, 0} denotes the rectification operator. The
LTM thresholds t ij and t ji, initially 0, rise toward a
maximum of 1 during learning.

With WTA coding and settingyj ; 1 in Eqs. (2) and (3),
distributed ART reduces to fuzzy ART. WTA coding limits
learned changes to processes associated with the single
active category node, thereby stabilizing memory by impos-
ing an upper bound on the total change. With distributed
coding, dynamic weights take over responsibility for bound-
ing the total learned change. A dynamic weight [yj ¹ t ij]

þ is
positive only when coding node activationyj exceeds the
adaptive thresholdt ij. Only then does the dART learning
law permit the threshold to increase. This restriction
imposes an upper bound on total threshold changes: the
sum SC

j ¼ 1Dtij is bounded above bySC
j ¼ 1 yj ¹ tij

� �þ ,
which in turn is bounded above by 1, since
lyl¼ SC

j ¼ 1yj ¼ 1. On the other hand, the coding capacity
of each threshold set {t i1, …, t ij, …, t iC} is limited only
by the number of committed coding nodes, which may be
arbitrarily large. Dynamic weights thereby allow the limited
capacity of STM to impose an upper bound on adaptive
changes in an LTM system of unlimited capacity, even
when coding field activation is fully distributed and fast
learning causes all variables to reach asymptote on every
input presentation.

4.2. Distributed ARTMAP coding boxes and matching boxes

Consider now the geometry of dARTMAP dynamics in
paths from the input fieldF0 to the coding fieldF2 (Fig. 2).
An entire family of dynamic weights [yj ¹ t ij]

þ, one for
eachyj [ [0, 1], replaces each single fuzzy ARTMAP path
weight wij. A corresponding family of nestedcoding boxes
Rj (yj) thus replaces the single category boxRj. The box
Rj (yj) equals the set of pointsq for which [yj ¹ t ij]

þ # qi

# (1 ¹ [yj ¹ t iþM,j]
þ) (Fig. 5a).

In dARTMAP, initial code selection depends on the
boxesRj (yj) only for the case whereyj ¼ 1: the network
models reset as a process that breaks competitive feedback
loops atF2 by momentarily saturating allyj activations.
Therefore, since a CAM system maintains anF2 activation
patterny until the next reset, the boxesRj (1) determine
the sequence of stored codes. Just as the dynamic weight
[yj ¹ t ij]

þ is formally equivalent to the weightwij whenyj ; 1,
the dARTMAP coding boxRj (1) is formally equivalent to
the fuzzy ARTMAP category boxRj. Once a codey has
been established, the boxesRj (yj) control the dynamics of
search and learning.

In fuzzy ARTMAP, the dynamics of category search are
determined by the degree of match between bottom-up sig-
nals from the input fieldF0 and top-down signals from the
category fieldF2, calculated at the matching fieldF1 (Fig. 3).
When theJth F2 node is active, the top-down signal to the
ith F1 node equalswJi. Sincewji ; wij, the category boxesRj

(Fig. 4a) can represent the geometry of top-down matching
as well as bottom-up category choice.

In dARTMAP, top-down signals toF1 originate from the
field F3, where theF2 code y is transformed into a new
normalized coding vectorY by instance counting. That is,
Yj is proportional tocj yj, where thecounting weight cj
reflects the sum of prior activationsyj during training

Fig. 5. Distributed ARTMAP geometry, in the conservative limit with fast
learning, a choice-by-difference signal function, and the increased gradient
CAM rule with p ¼ 1. (a) A coding boxRj (yj) represents the complement-
coded dynamic weight vector, with [yj ¹ t ij]

þ replacing the fuzzy ART-
MAP weightwij (Fig. 4a). (b) If a distributed code makes the correct output
prediction,y is recalculated for credit assignment. Then, all boxesRj (yj)
expand just enough to includea. The boxRj (1) expands to meeta only
if yj ¼ 1. (c) For the system depicted here, the distributed codey ¼ (0.37,
0.42, 0.21) makes the correct predictionk ¼ 1. After credit assignment,y ¼

(0.64, 0.0, 0.36). ThenR3(y3) includes a, so neitherR3(y3) nor R3(1)
expands during learning. On the other hand, since the left edge of box
R1(y1) is a distance of 0.13 units froma, box R1(y1) does expand to meet
a, causingR1(1) also to grow ast11 increases by 0.13 units.
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(Fig. 2). The total signal fromF3 to the ith F1 node is the
dynamic weight sumji(Y) ; SC

j ¼ 1 Yj ¹ tji

� �þ .
Since the dARTMAP top-down signal to anF1 node

depends on the entire distributed code rather than a single
dynamic weight, the coding boxesRj (yj) cannot also repre-
sent the geometry of matching. Instead, the geometry of
search is characterized by a family ofmatching boxes
R(Y), one for each vectorY. The matching boxR(Y) equals
the set of pointsq for which j i(Y) # qi # (1 ¹ ji þ M(Y))
(i ¼ 1, …, M). With the total signalj i(Y) to theith F1 node
replacing thewJi, dARTMAP matching and search are
analogous to the corresponding processes in fuzzy
ARTMAP. See Carpenter (1997) for a more complete
description of the geometry of distributed search.

4.3. Distributed ARTMAP learning

The coding boxesRj (yj) provide a geometric represen-
tation of dARTMAP learning, withyj equal to thejth com-
ponent of the currently activeF2 codey. During distributed
learning, each boxRj (yj) that does not already contain the
input a expands just enough to includea (Fig. 5b). Unless
coding is WTA andj is the chosen node,yj is less than 1,
makingRj (yj) larger thanRj (1). In this case, unlessRj (1)
initially containsa, Rj (1) still does not containa after learn-
ing, even with all LTM variables reaching asymptote. The
limited capacity of STM hereby permits the code-selecting
boxesRj (1) to conserve their capacity during fast as well as
slow learning.

Fig. 5c illustrates an example where, at the timea is
presented, three coding nodes have previously been com-
mitted (C ¼ 3). Nodesj ¼ 1 andj ¼ 3 map to the output
classk ¼ 1 and nodej ¼ 2 maps to the output classk ¼ 2.
The increased gradient CAM rule distributes activationyj

across all three nodes, with 1. y2 . y1 . y3 . 0. Before the
output prediction is made,yj is multiplied by the counting
weightcj. The subsequent field pools the distributed activa-
tions to make an output class predictionk ¼ K9. Suppose
thatK9 ¼ K ¼ 1, i.e. that the system correctly predicts class
k ¼ 1. Feedback from the output layerFb

0 to the coding layer
F2 then implements credit assignment (Fig. 2), which
restricts adaptation to paths to and from nodesj associated
with the correct predictionK. Credit assignment would per-
mit the boxesR1(y1) andR3(y3) to expand towardsa. In fact,
R3(y3) already containsa at the outset. Thus, onlyR1(y1)
expands to includea, ast11 increases, andR1(1) expands as
well (Fig. 5c).

In a real-time dARTMAP network, thresholds in bottom-
up paths fromF0 to F2 adapt according to adistributed
instar learning law:

d
dt

tij ¼ yj ¹ tij ¹ Ai

� �þ
¼ yj ¹ tij

� �þ
¹ Ai

� �þ
(4)

(Carpenter, 1997). Eq. (4) states that the thresholdt ij will
grow until its dynamic weight [yj ¹ t ij]

þ shrinks down to
meet theF0 → F2 input Ai. Geometrically,Rj (yj) expands

towardRj (yj) ! a as the bottom-up thresholdst1j, …, t2M,j

to the jth F2 node increase.
Thresholds in top-down paths fromF3 to F1 adapt accord-

ing to adistributed outstar learning law:

d
dt

tji ¼ Yj ¹ tji

� �þ
ji(Y) ¹ xi

ÿ �
¼ Yj ¹ tji

� �þ
ji(Y) ¹ Ai

� �þ

(5)

(Carpenter, 1994). Eq. (5) states that the thresholdt ji will
grow until theF3 → F1 inputj i(Y) shrinks down to meet the
F0 → F1 input Ai. The amount a given threshold will
increase during learning depends upon the contribution of
[Yj ¹ t ji]

þ to the dynamic weight sumj i(Y). In particular,
t ji remains constant if [Yj ¹ t ji]

þ ¼ 0, i.e. if Yj # t ji.
Geometrically,R(Y) expands towardR(Y) ! a, as top-
down thresholdst ji increase in parallel.

The piecewise-linear equations [Eqs. (4) and (5)] can be
solved exactly: the adaptive threshold update equations in
Step 8 of the dARTMAP algorithm (Section 5.1) represent
closed form solutions of the differential equations, not
approximations. These solutions are valid for all initial
values and all learning rates, including the fast-learn
limit.

4.4. Distributed ARTMAP signal rule

The signalTj from the dARTMAP input fieldF0 to thejth
node of the coding fieldF2 is a functiongj (Sj, Q j), where the
phasic component Sj depends on the inputA, thetonic com-
ponent Q j is independent ofA, gj (0, 0) ¼ 0, and
(]gj =]Sj) . (]gj =]Qj) . 0 for Sj . 0 andQ j . 0. Compo-
nentsSj and Q j also depend on adaptive thresholdst ij in
paths fromF0 to the jth F2 node and on target node activa-
tion yj. Simulations in this paper use achoice-by-difference
signal rule:

Tj yj

ÿ �
¼ Sj yj

ÿ �
þ (1¹ a)Qj yj

ÿ �
, (6)

with the signal rule parametera [ (0, 1). In Eq. (6), the
phasic component is defined by:

Sj yj

ÿ �
¼

∑2M

i ¼ 1
Ai ∧ yj ¹ tij

� �þ (7)

and the tonic component is defined by:

Qj yj

ÿ �
¼

∑2M

i ¼ 1
tij ∧ yj , (8)

wherea ∧ b ; min{a, b}.
At first, the definition ofTj appears to be circular: the

signal function that determines the codey also seems to
depend upony. Recall, however, that dARTMAP reset
momentarily sets allyj ¼ 1. The content-addressable memory
at F2 is therefore determined by the valuesTj (1) at that
time, and the ensuing stored codey then remains constant
until the next reset. Between resets, signalsTj (yj) control
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the internal computations underlying distributed search and
learning. Sincelyl ¼ 1, activeF2 nodes typically represent a
concentrated subset of the field’s total capacity, which can
be arbitrarily large. Correspondingly, the signalTj (yj)
between resets is, on average, a small fraction ofTj (1).

In geometric terms,

Tj (1) ¼ (2¹ a)M ¹ d Rj (1), a
ÿ �

¹alRj (1)l, (9)

as in Eq. (1). Thus, the signal rule favors nodes with small
coding boxes (lRj (1)l > 0) that are close to the inputa
(d(Rj (1), a) > 0). In the conservative limit, wherea ¼ 0þ,
the system seeks primarily to minimize the distance froma
to Rj (1). In this case, the size ofRj (1) is used only to break
ties, as whena is contained in more than one box.

4.5. Distributed ARTMAP CAM rule

The CAM rule that specifies dARTMAP activation at the
coding field approximates the steady-state response that a
field of competitive nodes would make to theF0 → F2 input
vectorT(1), evaluated at the time of reset. In general, thejth
component of theF2 codey is determined by a functionyj ¼

f j (T1, …, TC), with ]f j /]Tj $ 0 and withTj ¼ Tj (1) at the
time of reset. Distributed ARTMAP simulations here use an
increased gradientCAM rule to determine theF2 activation
vector y. The coding functionf j that defines this rule is
specified formally in Step 2 of the algorithm (Section 5.1)
using the terms [(2¹ a)M ¹ Tj (1)]. The increased gradient
CAM rule is here given a geometric interpretation, in terms
of coding boxes, by observing that:

(2¹ a)M ¹ Tj (1) ¼ d Rj (1), a
ÿ �

þalRj (1)l (10)

[Eq. (9)].
In a real-time network, committed nodes would compete

with uncommitted nodes for coding field activation. In order
to simulate this situation in the dARTMAP algorithm, a
committed nodej is allowed to become active at reset
only whenTj (1) is at least as great as the signalT u that
would be sent to an uncommitted node, where all thresholds
t ij ; 0. The phasic signal to an uncommitted nodej is
Sj (1) ¼ lAl ¼ M [Eq. (7)] and the tonic signal isQ j (1) ¼

0 [Eq. (8)], so the total choice-by-difference signal is
Tj (1)ltij ;0 ; T u ¼ M [Eq. (6)]. For a given inputa, the
CAM index setL ; { j ¼ 1, …, C: Tj (1) $ T u} denotes
the F2 nodes that may become active during distributed
coding. With the choice-by-difference signal function
[Eq. (6)], Tj (1) $ (1 ¹ a)M ¼ (1 ¹ a)T u. This indicates
that smaller values ofa predispose the network to activate
larger numbers of committed nodes during distributed cod-
ing. In the conservative limit, wherea ¼ 0þ, Tj (1) > Sj (1)
þ Q j (1) $ T u, soL ¼ {1, …, C} and activation is distrib-
uted across all committed nodes.

In the conservative limit, the increased gradient CAM
rule can be visualized geometrically as follows.

(a) If input a is not in any boxRj (1), (2¹ a)M ¹ Tj (1) >
d(Rj (1), a) for all j. Then:

yj >

1

1þ
∑
l[L
lÞj

d Rj(1), a
ÿ �

d Rl(1), a
ÿ �" #p if j [ L

0 if j Ó L

8>>>>><>>>>>:
(11)

1 if L ¼ { j}∏
m[L
mÞj

d Rm(1), a
ÿ �p

∑
l[L

∏
m[L
mÞl

d Rm(1), a
ÿ �p if lLl $ 2 andj [ L

0 if j Ó L

,

8>>>>>>>>>><>>>>>>>>>>:
where the powerp is greater than 0 (Fig. 6a).

(b) If a is contained in at least one boxRj (1),
(2¹ a)M ¹ Tj (1)¼ alRj (1)l for these boxes. In this case,
let L9 ; L ∩ { j: a [ Rj (1)}.
(i) If lRj (1)l . 0 for all j [ L9, then:

yj >

1

1þ
∑

l[L9
lÞj

jRj(1)j
jRl(1)j

� �p if j [ L9

0 if j Ó L9

8>>>><>>>>:
(12)

1 if L9 ¼ { j}∏
m[L9
mÞj

jRm(1)jp

∑
l[L9

∏
m[L9
mÞl

jRm(1)jp
if lL9l $ 2 andj [ L9

0 if j Ó L9

8>>>>>>>>>><>>>>>>>>>>:
(Fig. 6b).

(ii ) If lRj (1)l¼ 0 for somej [ L9, (2¹ a)M ¹ Tj (1)¼ 0
for these boxes, which are just points. In this case, let
L0 ; L9 ∩ { j: Rj (1) ¼ { a}} ( point box case). Then:

yj ¼

1
lL0l

if j [ L0

0 if j Ó L0

8<: (13)

wherelL0l is the number of elements in the setL0 (Fig.
6c).

Note thatL0 indexes only point boxes of the current input
a. The ARTMAP-IC match tracking search rule, MT¹ ,
permits the creation of two or more identical boxesRj (1) ¼

{ a}. This allows a network to encode inconsistent cases,
where identical training vectors are associated with different
output predictions.

=

=
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5. Distributed ARTMAP algorithm

In the general case, dARTMAP learns to predict an arbi-
trary outcome vectorb ¼ (b1, …, bk, …, bL), given an input
vector a ¼ (a1, …, ai, …, aM). The specific dARTMAP
algorithm below considers the special case of classification
problems, which set one componentbK ¼ 1, placing the

inputa in the output classK. Disengaging the search process
by setting r ; 0 converts the algorithm to a type of
distributed competitive learning system. The full dART-
MAP algorithm reduces to a version of ARTMAP-IC
when F2 coding remains distributed during testing, but is
WTA during training. The algorithm further reduces to
fuzzy ARTMAP when coding is WTA during both testing
and training.

A complete dARTMAP system may be implemented as a
real-time network with local computations (Fig. 2). The
algorithm employs a reduced set of necessary variables
(Table 1), eliminating computations that become redundant
in the case of classification outputs. Table 2 lists system
parameters, along with their ranges and the fixed values
used in subsequent simulations. Table 3 summarizes the
computational notation used in the algorithm. Each
dARTa input is complement coded, with 0# ai # 1, so
I ¼ A ¼ (a, ac).

5.1. Distributed ARTMAP training

During dARTMAP training, input pairs
a(1), b(1)ÿ �

, a(2), b(2)ÿ �
, …, a(n), b(n)ÿ �

, … are presented
for equal time intervals. Prior to training, all LTM variables
are set equal to 0 (Table 4).

Step 1—First iteration: n ¼ 1

Input vector—Ai ¼
a(1)

i if 1 # i # M

1¹ a(1)
i if M þ 1 # i # 2M

(
.

Output vector—K is the target output class, withb(1)
K ¼ 1.

SetC ¼ 1, y1 ¼ 1, Y1 ¼ 1, j i ¼ 1 (i ¼ 1, …, 2M), and
k(1) ¼ K.

Go toStep 8—Resonance

Step 2—Reset:New STM steady state at the coding fields
F2 andF3

F0 → F2 signal—Forj ¼ 1, …, C:

Phasic—Sj ¼
∑2M

i ¼ 1
Ai ∧ 1¹ tij

ÿ �
.

Fig. 6. Increased gradient CAM rule in the conservative limit withp¼ 1. (a)
If a is not contained in any boxRj (1), theny is a function of the distances
from a to each box. In this example,L ¼ {1, 2, 3}, andd1 ¼ 0.49,d2 ¼ 0.44
andd3 ¼ 0.85. Thus,y > (0.37, 0.42, 0.21), as in Fig. 5c. Coding converges
toward WTA asa approaches one boxRj (1), since thend(Rj (1),a) → 0 in
Eq. (11). (b) Ifa is contained in one or more boxesRj (1), the corresponding
activations dominate the stored code, in order of the box sizes. In this
example,L9 ¼ {1, 2}, lR1(1)l ¼ 0.96 andlR2(1)l ¼ 0.53. Thus,y >
(0.36, 0.64, 0). Coding converges toward WTA as one of these boxes
shrinks toward the point box {a}, since thenlRj(1)l → 0 in Eq. (12). (c)
If a is identical to one or more point boxes, the corresponding activations
dominate the stored code. In this example,L9 ¼ {1, 2, 3} andL0 ¼ {1, 2}.
Thus,y ¼ (0.5, 0.5, 0), as in Eq. (13).

Table 1
dARTMAP variables

STM LTM Signals

xi F1, matching t ij F0 → F2 Tj, total F0 → F2

(Sj, phasic Q j, tonic)
yj F2, coding cj F2 → F3 j i F3 → F1

Yj F3, counting t ji F3 → F1 jk F3 → Fab
0

i ¼ 1, …, 2M; j ¼ 1, …, C; k ¼ 1, …, L.
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Tonic—Qj ¼
∑2M

i ¼ 1
tij .

Total—Tj ¼
Sj þ (1¹ a)Qj if j Ó D

0 if j [ D

(
.

The CAM rule index setL ; { j ¼ 1, …, C: Tj $ Tu}

(a) If the network is in distributed mode: F2 nodes are
activated according to the increased gradient CAM rule.

F2 activation—

(i) If (2 ¹ a)M ¹ Tj . 0 for all j [ L, then:

yj ¼ fj(T1, …, TC) ;

1

1þ
∑

l[L, lÞj

(2¹ a)M ¹ Tj

(2¹ a)M ¹ Tl

� �p if j [ L

0 if j Ó L

8>>>><>>>>:
(ii) Point box case: If (2 ¹ a)M ¹ Tj ¼ 0 for some

j [ L, let L0 ¼ { j [ L: (2 ¹ a)M ¹ Tj ¼ 0}.
Then:

yj ¼

1
lL0l

if j [ L0

0 if j Ó L0:

8<:

F3 activation—Yj ¼
cjyj∑C

l¼ 1

clyl

( j ¼ 1, …, C)

F3 → F1 signal—ji ¼
∑C

j ¼ 1
Yj ¹ tji

� �þ (i ¼ 1, …, 2M)

(b) If the network is in WTA mode: Only oneF2 node,
with j ¼ J, is activated.

(i) Committed node: If L Þ B , let J be the smallest
index j such thatTJ ¼ maxj[L Tj

� 	
.

Table 2
Parameters

Parameter Range Simulation value

F0 input components i i ¼ 1, …, 2M
Number of committedF2 nodes C
F2 coding nodes j j ¼ 1, …, C
Output components k k ¼ 1, …, L
F0 → F2 signal to uncommitted nodes Tu Tj (1)ltij ;0 M
In distributed mode, the index set ofF2 nodes activated

by the CAM rule
L # {1, …, C} Committed nodes withTj (1) $ Tu

In WTA mode, the index of the single active node J j ¼ 1, …, C
Correct output class K k ¼ 1, …, L
Predicted output class K9 k ¼ 1, …, L
Association between the coding nodej and the output

classk
k(j) ¼ k k ¼ 1, …, L

Index set ofF2 nodes that are refractory D # {1, …, C}
Signal rule parameter a (0, 1) a ¼ 0.01
CAM rule power p (0, `] p ¼ 1
Learning rate b [0, 1] b ¼ 1 (fast learning)
Match tracking e lel small e ¼ ¹ 0.001 (MT¹ )
dARTa baseline vigilance r̄ [0, 1] r̄ ¼ 0
dARTa vigilance r [r̄, 1]

Table 3
Notation

Vector norm lvl ;
∑

i lvi l
Rectification [w] þ ; max{w, 0}
Minimum a ∧ b ; min{a, b}
Complement ac ; 1 ¹ a

Table 4
Initial values of LTM variables

F0 → F2, threshold t ij ¼ 0
F2 → F3, count cj ¼ 0
F3 → F1, threshold t ji ¼ 0
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Uncommitted node: If L ¼ B , let J ¼ C þ 1. Node
J is then newly committed: increaseC by 1, and let
k(J) ¼ K.

(ii) F2 andF3 activation—

yj ¼ Yj ¼
1 if j ¼ J

0 if j Þ J

(

(iii) F3 → F1 signal—

j i ¼ (1 ¹ tJi) (i ¼ 1, …, 2M).

(iv) Add J to the refractory node index setD.

Step 3—Reset or prediction: Check theF1 matching
criterion

F1 activation—xi ¼ Ai ∧ j i (i ¼ 1, …, 2M).

(a) F1 mismatch: If 1
M

∑2M
i ¼ 1 xi , r, revert to WTA mode

and go toStep 2—Reset.

(b) F1 match: If 1
M

∑2M
i ¼ 1 xi $ r, go toStep 4—Predic-

tion.

Step 4—Prediction:

(a) If the network is in distributed mode, define the
F3 → Fab

0 signal by:

jk ¼

∑C

j ¼ 1
k( j) ¼ k

Yj if k( j) ¼ k for somej

0 otherwise

(k¼ 1, …, L)

8>>><>>>:
Let K9 be the smallest indexk such thatjK9 ¼ max{jk}.

(b) If the network is in WTA mode , let K9 ¼ k(J).

Step 5—Match tracking or resonance:Check the output
class prediction

(a) Incorrect prediction:
If K9 Þ K, go toStep 6—Match tracking.

(b) Correct prediction:
If K9 ¼ K and the network is in distributed mode, go to
Step 7—Credit assignment.

If K9 ¼ K and the network is in WTA mode, go to
Step 8—Resonance.

Step 6—Match tracking: Raise vigilancer to the point of
dARTa reset.

Setr¼
1
M

∑2M
i ¼ 1 xi þ e.

Revert to WTA mode and go toStep 2—Reset.

Step 7—Credit assignment:Black out F2 nodes that do
not predict the correct output classK, via Fb

0 → F2 credit
assignment connections (Fig. 2). RenormalizeF2 andF3 and
recalculate theF3 → F1 signal j i. For i ¼ 1, …, 2M and
j ¼ 1, …, C:

F2 blackout—̄yj ¼
yj if k(j) ¼ K

0 if k(j) Þ K

(
.

F2 activation—yj ¼
ȳj∑C

l¼ 1 ȳl

.

F3 activation—Yj ¼
cjyj∑C

l ¼ 1 clyl

.

F3 → F1 signal—ji ¼
∑C

j ¼ 1 Yj ¹ tji

� �þ .

Step 8—Resonance:For i ¼ 1, …, 2M and j ¼ 1, …, C:

Save old values—told
ij ¼ tij , cold

j ¼ cj , told
ji ¼ tji .

Increase F0 → F2 threshold (distributed instar)—
tij ¼ told

ij þ b yj ¹ told
ij ¹ Ai

� �þ
.

Increase F2 → F3 instance counting weights—
cj ¼ cold

j þ yj .

IncreaseF3 → F1 threshold (distributed outstar)—

tji ¼ told
ji þ b

ji ¹ Ai

� �þ

ji
Yj ¹ told

ji

� �þ

Reset node recovery—D ¼ B .

ARTa vigilance recovery—r¼ r̄.

Step 9—Next iteration: Increasen by 1.

New input—Ai ¼
a(n)

i if 1 # i # M

1¹ a(n)
i if M þ 1 # i # 2M

(
.

New output—K is the target output class, withb(n)
K ¼ 1.

Revert to distributed mode.

Go toStep 2—Reset.

5.2. Distributed ARTMAP testing

Neither search nor learning occurs during dARTMAP
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testing, when the dARTMAP algorithm implicitly imple-
ments feedforward network activation. With̄r¼ 0, theF1

matching criterion is always met, so the algorithm does not
need to computeF1 activation. Alternative testing algo-
rithms are also possible. For example, by settingr̄ . 0
and checking the matching criterion, a system might reject
certain predictions as unreliable. Since predictions are dis-
tributed across classes, an output class decision threshold
could also be selected to calibrate the false alarm rate.

Test Step 1—Test vectorn:

Input vector—Ai ¼
a(n)

i if 1 # i # M

1¹ a(n)
i if M þ 1 # i # 2M

(

Output class—K is the target output class, withb(n)
K ¼ 1.

Test Step 2—Reset:New STM steady state at the coding
fieldsF2 andF3

F0 → F2 signal—Forj ¼ 1, …, C:

Phasic—Sj ¼
∑2M

i ¼ 1
Ai ∧ 1¹ tij

ÿ �
.

Tonic—Qj ¼
∑2M

i ¼ 1 tij .

Total—Tj ¼ Sj þ (1 ¹ a)Q j.

The CAM rule index setL ¼ { j ¼ 1, …, C: Tj $ Tu}.

F2 activation: Increased gradient CAM rule—

(i) If (2 ¹ a)M ¹ Tj . 0 for all j [ L, then:

yj ¼ fj(T1, …, TC) ;

1

1þ
∑

l[L, lÞj

(2¹ a)M ¹ Tj

(2¹ a)M ¹ Tl

� �p if j [ L

0 if j Ó L

8>>>><>>>>:

(ii) Point box case: If (2 ¹ a)M ¹ Tj ¼ 0 for some
j [ L, let L0 ¼ { j [ L: (2 ¹ a)M ¹ Tj ¼ 0}. Then:

yj ¼

1
lL0l

if j [ L0

0 if j Ó L0

8><>:

F3 activation—Yj ¼
cjyj∑C

l¼ 1 clyl

( j ¼ 1, …, C).

Test Step 3—Prediction:

F3 → Fab
0 signal—

jk ¼

∑C

j ¼ 1
k( j) ¼ k

Yj if k( j) ¼ k for somej

0 otherwise

(k¼ 1, …, L)

8>>><>>>:
Let K9 be the smallest indexk such thatjK9 ¼ max{jk}.

Test Step 4—Evaluation:

The prediction is counted as correct ifK9 ¼ K.

Alternatively, whenL ¼ 2, the signal vectorj ¼ (j1, j2)
may make the predictionk ¼ 1 whenj1 exceeds a spe-
cified decision thresholdg; or j1 may be used to generate
an ROC curve parameterized byg.

6. Distributed ARTMAP simulations

The circle-in-the-square benchmark problem serves to
illustrate computational properties of the dARTMAP

Fig. 7. Circle-in-the-square simulations. For (a) fuzzy ARTMAP, (b) ART-
MAP-IC, and (c) dARTMAP, histograms show the number of data sets that
produce a given test set predictive accuracy and a given number of com-
mitted nodes.
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algorithm. This task requires a network to identify those
points in a unit square that lie within a circle placed at the
center of the square and occupying half the area. During
training, 1000 randomly chosen input pointsa ¼ (a1, a2)
are each presented once, in an incremental learning para-
digm. The output vector specifies whether a point is inside
(b ¼ (1, 0)) or outside (b ¼ (0, 1)) the circle. During testing,
the system makes anin/out prediction for each of 10 000
randomly chosen points in the unit square.

Fast learning (b ¼ 1) implies that different training input
presentation orders produce somewhat different results. In
order to discount variations due to training set selection,
each simulation is performed on 100 different input sets.
Reported accuracy and network size results are averages
across the 100 simulations. The same test set is used in all
examples.

Each simulation in Sections 6.1–6.3 uses the parameter
values listed in Table 2. In particular, the CAM rule powerp
is set equal to 1, thus fixing arbitrarily the degree of contrast
enhancement. For this paradigm, average dARTMAP per-
formance accuracy is slightly below that of fuzzy ART-
MAP, but memory utilization is significantly less. Section
6.4 shows how validation set selection ofp can boost dART-
MAP performance beyond that of fuzzy ARTMAP, while
further improving memory utilization. Section 6.5 includes
a statistical analysis of results.

6.1. Distributed prediction

Fig. 7 shows two sets of histograms that illustrate
the performance of fuzzy ARTMAP, ARTMAP-IC, and
dARTMAP on the circle-in-the-square benchmark problem.
The left-hand column shows how many of the 100
simulations produce a given percentage correctin/out test
set prediction. The right-hand column shows the distribution
of the numbers of committed nodes produced during
training.

Fuzzy ARTMAP (Fig. 7a) creates an average of 16.7
recognition categories and achieves an average predictive

accuracy of 92.0% on the test set. Except for the addition of
instance counting, ARTMAP-IC (Fig. 7b) uses the same
training regime as fuzzy ARTMAP, and so creates the
same number of recognition categories. During testing,
ARTMAP-IC uses the dARTMAP algorithm (Section
5.2), with an increased gradient CAM rule. Although
instance counting and distributed prediction often improve
fuzzy ARTMAP performance, in this case accuracy deterio-
rates somewhat, with the average correct prediction rate
dropping to 88.6%. The dARTMAP training regime
(Fig. 7c) brings performance back up somewhat, to an aver-
age of 90.6%, while reducing the average number of com-
mitted nodes by 30%, from 16.7 to 11.7. These simulations
thus indicate how dARTMAP can improve the efficient use
of network memory.

6.2. Post-processing with a linear map

When dARTMAP adds a new category node in WTA
mode, that node becomes permanently connected to a single
output class prediction. The algorithm thus does not take
advantage of potentially distributed prediction at this stage,
in contrast to the distributed representation of the ARTa

stage. Similarly, the ARTMAP-IC output map remains
binary and many-to-one after training.

One way to improve performance of a trained network is
to calculate a fully connected linear mapping from ARTa to
the output layer. Table 5 summarizes simulations that add
such a mapping to paths fromF3 → Fab

0 , computed via a
least squares, or Adaline, method (Widrow & Hoff, 1960;
Widrow & Sterns, 1985). A test set output then becomes a
vector YW , whereY is the distributed activation pattern
generated by the test set input atF3. TheC 3 L matrix W
equals

∑
n YTY
ÿ �¹ 1

YTb(n), whereY is the distributedF3

activation pattern in response to the training set inputa(n),
summed across all training set pairs (a(n), b (n)) as they are re-
presented to the trained network in distributed mode. Ana-
logous post-processing is a typical training stage of a radial
basis function network (e.g., Hertz et al., 1991).

Table 5
Simulations with binary and Adaline output mappings

Binary output map
(% correctx̄ 6 sd)

Adaline output map
(% correct,x̄ 6 sd)

No. of committed nodes
(x̄ 6 sd)

(a) Fuzzy ARTMAP 92.06 2.3 92.56 2.0 16.76 3.2
(b) ARTMAP-IC 88.66 4.3 93.76 1.3 16.76 3.2
(c) dARTMAP 90.66 3.5 92.26 2.4 11.76 4.7

Table 6
Role of distributed learning

% correct(x̄ 6 sd) No. of committed nodes(x̄ 6 sd)

(a) Fuzzy ARTMAP 92.06 2.3 16.76 3.2
(b) dARTMAP without distributed learning 92.36 2.8 17.66 5.9
(c) dARTMAP with distributed learning 90.66 2.3 11.76 4.7
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Since fuzzy ARTMAP coding remains WTA during test-
ing as well as training, the linear mapping would not change
the output map if the training set were presented for enough
epochs to give 100% correct performance. For the networks
trained here, in one epoch, the addition of a linear output
mapping boosts performance from 92.0% to 92.5% for
fuzzy ARTMAP, from 88.6% to 93.7% for ARTMAP-IC,
and from 90.6% to 92.2% for dARTMAP (Table 5). The
Adaline output map thus reduces error, most notably for
ARTMAP-IC, without increasing the number of nodes in
each network. Adaline also reduces the standard deviation
in all cases, which implies that performance measures have
become less dependent on input orderings. On the other
hand, addition of a linear map does increase memory
requirements, since theF3 → Fab

0 map would then have
C 3 L real-valued connections as opposed to the original
network maps, which have onlyC binary connections. Sec-
tion 6.5 includes an analysis of the statistical significance of
the results shown in Table 5.

6.3. Learning vs. no learning while in distributed mode

For the first prediction for each input, dARTMAP is in
distributed mode. If this prediction proves correct, then
learning also takes place in the distributed mode. However,
given that at least some learning also takes place in WTA
mode, it is reasonable to ask to what extent learning in the
distributed mode has any influence on network formation. It
could be, for example, that all significant dARTMAP adap-
tation actually occurs in WTA mode. With this scenario,
increased memory efficiency would then be ascribed to
improved performance of the initial predictions, when the
network is in distributed mode. Better initial predictions
would diminish the number of searches, which would
cause a reduction in the number of committed nodes.

To test whether most of the dARTMAP LTM changes
occur in WTA mode, simulations were run with an alterna-
tive algorithm that makes initial predictions in distributed
mode, but that suppresses distributed learning. For this
dARTMAP alternative, if the first prediction is correct,
the network updates instance counting, but otherwise
experiences no learned changes. Learning is permitted
only in WTA mode. Otherwise, the algorithm is identical
to dARTMAP.

The behavior of the no-distributed-learning algorithm
turns out to be much closer to that of fuzzy ARTMAP
than to that of distributed ARTMAP. For dARTMAP
(Table 6c), the average number of committed nodes is
11.7, as in Table 5c. Table 6b shows that the no-distribu-
ted-learning system produces far more nodes, an average of
17.6 with a large standard deviation. Performance measures
of this network are similar to those of fuzzy ARTMAP,
which produces an average of 16.7 nodes (Table 6a). In

Fig. 8. Geometry of distributed learning. All systems learn the circle-in-the-
square task from the same 1000-point training set. (a) Fuzzy ARTMAP uses
14 category nodes (sevenout, sevenin) to produce 93.3% predictive accu-
racy. (b) The dARTMAP alternative, without distributed learning, uses 16
coding nodes (sevenout, nine in) to produce 93.2% accuracy. (c) The full
dARTMAP network uses only nine coding nodes (fourout, five in) to
produce 92.5% predictive accuracy.

Fig. 9. Distribution ofp values for 100 circle-in-the-square simulations. The
CAM rule power was selected, via a validation set procedure, to maximize
predictive accuracy while minimizing the number of coding nodes [Eq.
(14)]. Low values ofp produce highly distributed code representations,
and codes become increasingly concentrated at a small number of nodes
asp increases. Table 7 shows the performance improvements resulting from
power selection.
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particular, in the absence of distributed mode learning, all
improvement in memory utilization is lost.

The geometry of coding boxes further reveals differences
resulting from the learning strategies summarized in Table 6.
An example that illustrates these differences trains all three
systems on one of the 100 simulation input sets that con-
tributed to the average statistics. The input set was chosen as
having predictive accuracies and numbers of coding nodes
that are close to each of the averages. The left-hand column
of Fig. 8 shows the final boxesRj /Rj (1) that map to the
predictionout, and the right-hand column shows the boxes
that map to the predictionin. With fast learning, each fuzzy
ARTMAP box Rj just contains all pointsa that select cate-
gory j without reset. Thus, after training on 1000 randomly
selected inputs, overlapping boxes tend to cover most of the
unit square (Fig. 8a). The no-distributed-learning dART-
MAP algorithm also learns in WTA mode, but LTM
changes may occur only if the initial distributed prediction
is incorrect. The resulting boxesRj (1) tend to cluster around
the circle boundary (Fig. 8b), where most of the predictive
errors occur. Despite these geometric differences, fuzzy
ARTMAP and the no-distributed-learning system produce
similar numbers ofout/in boxes and nearly identical predic-
tive accuracies for this input set. Like fuzzy ARTMAP, the
full dARTMAP system produces boxes that cover most of
the input space (Fig. 8c). However, distributed activation
allows the network to utilize resources more efficiently,
producing fewer coding nodes. Differences between Fig.
8b and c are due entirely to the absence or presence of
learning in the distributed mode.

6.4. Contrast control with the increased gradient CAM rule

The basic dARTMAP algorithm admits a host of design
alternatives. One such alternative varies the degree of con-
trast enhancement in the code by varying the powerp in the
increased gradient CAM rule. All previous simulations fixed
p ¼ 1. Different values ofp alter the degree to which the
storedF2 codey contrast-enhances the signalTj. As p → `,
the increased gradient rule converges to WTA coding, and
codes become increasingly uniform asp → 0. The simula-
tions below show that selectingp using a validation subset
of the training set improves dARTMAP performance
beyond that of fuzzy ARTMAP, while further reducing
the number of committed nodes.

ARTMAP and dARTMAP networks are designed to
balance the twin goals of maximizing predictive accuracy
and minimizing network size while carrying out fast, stable,
on-line learning. In dARTMAP circle-in-the-square
simulations, predictive accuracy is generally greater than
80%, with the number of coding nodes (C) less than 25
(Fig. 7). A criterion function that expresses the balance
between maximal accuracy and minimal size can be expressed
as:

criterion¼ v
[percent¹ 80] þ

20
þ (1¹ v)

[25¹ C] þ

25
(14)

for v [ [0, 1]. Settingv ¼ 0 would minimize the number of
coding nodes while settingv ¼ 1 would maximize predic-
tive accuracy. The simulations summarized below setv ¼

0.5, which weighs the competing goals about equally.
For each 1000-point circle-in-the-square training set, a

powerp was selected by a validation procedure. For each
of 22 candidate values betweenp¼ 0.1 andp¼ 100 (Fig. 9),
750 inputs were presented to a dARTMAP system using the
given p value in the increased gradient CAM rule. The
chosen powerp was then the one that maximized the criter-
ion function defined by Eq. (14) on the remaining 250 train-
ing set inputs. Before testing, dARTMAP was trained anew
on all 1000 inputs using the chosen power.

Fig. 9 shows that selectedp values vary across at least
three orders of magnitude, depending upon the randomly
chosen input sets. Despite the essential similarities among
the simulations, certain input sets produce best results with
highly distributed codes (p ¼ 0.1), while others prefer codes
that are nearly WTA (p ¼ 100). Across 100 training sets, the
median selectedp value was 0.8 and exp(mean(lnp)) ¼ 1.3.
Therefore, the arbitrary valuep ¼ 1 used in previous simu-
lations would actually be a reasonable a priori choice for
this problem if a validation set selection process were not
possible. Table 7 demonstrates that power selection
improves dARTMAP performance even beyond that of
fuzzy ARTMAP, while further decreasing the average
number of coding nodes. In addition, the reduction in the
standard deviation indicates that power selection produces
more consistent performance with respect to the input
orderings.

6.5. Statistical analysis of performance comparisons

Statistical analysis indicates the degree of significance of
result differences for the systems fuzzy ARTMAP, ART-
MAP-IC, and dARTMAP and their Adaline modifications,
summarized in Table 5, as follows.

6.5.1. Procedure
Each system was trained on the same 100 data sets.

System performance on a single, common test set was mea-
sured by two variables, percentage of correct responses and
number of committed nodes.

Table 7
Power selection

% correct
(x̄ 6 sd)

No. of committed nodes
(x̄ 6 sd)

(a) Fuzzy ARTMAP 92.06 2.3 16.76 3.2
(b) dARTMAP with
power selection

92.16 2.3 10.86 3.4

(c) dARTMAP with
power P = 1

90.66 3.5 11.76 4.7
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6.5.2. Analysis
Repeated measures analysis of variance was the natural

design to use, since the same subjects (100 data sets) were
compared under different treatments (types of network algo-
rithms) (Devore, 1995). The analysis performed included
the following components:

• the percentage of correct responses of dARTMAP, fuzzy
ARTMAP, and ARTMAP-IC (binary output map) were
subjected to repeated measures analysis of variance with
multiple dependent pairedt-tests (employing the
Bonferroni inequality) used as a post hoc procedure
(Stevens, 1996);

• the same approach was used for the percent correct
responses of the networks with the Adaline modifica-
tion;

• paired t-tests were used to determine the effect of the
Adaline modification for each network (i.e., dARTMAP
vs. dARTMAP with Adaline, fuzzy ARTMAP vs. fuzzy
ARTMAP with Adaline, and ARTMAP-IC vs. ART-
MAP-IC with Adaline);

• a pairedt-test was employed to compare the numbers of
node results of dARTMAP vs. fuzzy ARTMAP, the
latter being identical to ARTMAP-IC for this measure.

6.5.3. Percentage of correct responses
In the repeated measures analysis, both univariate and

multivariate approaches were considered. Generally, the
univariate approach is believed to be more powerful,
provided that the sphericity assumption is not violated. On
the other hand, the multivariate approach has certain
advantages when the number of subjects is high (Stevens,
1996).

6.5.3.1. Binary output algorithms (distributed ARTMAP,
fuzzy ARTMAP, and ARTMAP-IC).Greenhouse–Geisser
e ¼ 0.95531 (sphericity holds); univariate repeated
measures test (withe adjusted df): F(1.91, 189.15)¼
36.09, p , 0.001; multivariate repeated measures test
(Hotellings): F(2, 98) ¼ 29.72, p , 0.001. This result
indicates that the percentage of correct responses differs
between algorithms to a statistically significant degree. To
determine where the difference(s) exist(s), multiple
dependent pairedt-tests were employed. The performance
of binary output dARTMAP was significantly worse than
that of binary output fuzzy ARTMAP (t ¼ ¹ 3.79,df ¼ 99,
p , 0.001). Analogously, binary output ARTMAP-IC was
outperformed by both binary output dARTMAP (t ¼ ¹5.03,
df ¼ 99,p , 0.001) and binary output fuzzy ARTMAP (t ¼

¹7.75,df ¼ 99, p , 0.001).

6.5.3.2. Adaline output algorithms (distributed ARTMAP,
fuzzy ARTMAP, and ARTMAP-IC).Greenhouse–Geisser
e ¼ 0.83647 (sphericity cannot be assumed); univariate
repeated measures test (withe adjusted df): F(1.67,
165.62) ¼ 23.92, p , 0.001; multivariate repeated

measures test (Hotellings):F(2, 98) ¼ 35.17,p , 0.001.
This result indicates that the percentage of correct responses
differed within the group of networks with Adaline
modification. dARTMAP with Adaline and fuzzy
ARTMAP with Adaline did not differ significantly (t ¼

¹1.1, df ¼ 99, p ¼ 0.27). ARTMAP-IC with Adaline
significantly outperformed both dARTMAP with Adaline
(t ¼ 6.22,df ¼ 99, p , 0.001) and fuzzy ARTMAP with
Adaline (t ¼ 6.92,df ¼ 99, p , 0.001).

6.5.3.3. Adaline effect.For each of the networks, the effect
of the Adaline modification produced a significant
improvement in the percentage of correct responses:
dARTMAP vs. dARTMAP with Adaline (t ¼ ¹ 5.44,
df ¼ 99, p , 0.001), fuzzy ARTMAP vs. fuzzy ARTMAP
with Adaline (t ¼ ¹5.25, df ¼ 99, p , 0.001), and
ARTMAP-IC vs. ARTMAP-IC with Adaline (t ¼ ¹12.38,
df ¼ 99, p , 0.001).

6.5.4. Number of category nodes
A paired t-test determined that the numbers of category

nodes for dARTMAP were significantly smaller than
those for fuzzy ARTMAP/ARTMAP-IC (t ¼ ¹12.54,
df ¼ 99, p , 0.001).

6.5.5. Summary
The results from the statistical analysis indicate that, for

the binary output algorithms, fuzzy ARTMAP performs bet-
ter than dARTMAP, which in turn performs better than
ARTMAP-IC. However, dARTMAP requires significantly
fewer nodes than fuzzy ARTMAP and ARTMAP-IC. The
Adaline modification significantly boosted the performance
of all networks, making dARTMAP results comparable to
those of fuzzy ARTMAP, with ARTMAP-IC outperforming
both. Once again, however, the memory efficiency of
dARTMAP was significantly higher.

7. Circle-in-the-square geometry

Early in the learning process, both fuzzy ARTMAP and
distributed ARTMAP typically establish a few categories
that form the basis for subsequent coding. With a fast learn-
ing paradigm, the structure of this code foundation is highly
dependent on the location of the first several input points.
New committed nodes are added whenever the current net-
work is unable to support the correct prediction. The circle-
in-the-square example, with its two-dimensional inputsa,
permits a graphical representation of this incremental learn-
ing process, as follows.

Fig. 10 shows the three coding boxesRj (1) learned by a
dARTMAP network in response to an initial sequence of
eight inputs, with fast learning in the conservative limit.
These inputs were hand-picked to illustrate possible stages
of distributed-mode learning. A more typical input sequence
would produce a preponderance of early WTA learning.
Subsequent input points were chosen at random (Fig. 11).
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Each newly committed node begins as a point box
(Fig. 10a, c, d), which may then grow during subsequent
learning. Upon commitment, each point box becomes per-
manently mapped to an output prediction: theF2 nodej ¼ 1
maps tok ¼ 1 (in) andj ¼ 2 andj ¼ 3 map tok ¼ 2 (out). If
only one active nodej makes the correct prediction, then the
box Rj (1) grows just enough to include the current inputa.
In Fig. 10b,R1(1) grows to include the input point (0.5, 0.2),
and later grows further to include (0.2, 0.3) (Fig. 10h). In
Fig. 10g, nodej ¼ 1 is also the only one that remains active
after credit assignment, but the input point (0.6, 0.4) is, by
then, already contained inR1(1), so no further expansion
occurs.

If the network in distributed mode makes the correct pre-
diction, then one or more of the boxes associated with the
correct output classK may grow towarda. When the point
a ¼ (1, 1) is presented (Fig. 10e), the initial distances froma
to the three boxes are:d(R1(1), a) ¼ 0.7,d(R2(1), a) ¼ 0.4,

andd(R3(1), a) ¼ 1.2. Thus, by the geometric version of the
increased gradient CAM rule withp ¼ 1 [Eq. (11)], F2

steady-state activation isy > (12/40, 21/40, 7/40). As a
result of the first four inputs, the counting weights begin
as:c1 ¼ 2, c2 ¼ 1 andc3 ¼ 1. Thus,F3 activation isY >
(24/52, 21/52, 7/52). The distributed prediction setsj1 >
24/52 > 0.46 andj2 > 28/52 > 0.54, so the output class
prediction isK9 ¼ 2 (out), which is correct, despite the fact
that the maximally activeF3 node (j ¼ 1) would have
predictedin. Before distributed learning can occur, credit
assignment sets to 0 the activations ofF2 nodes that map to
the incorrect outcome. After renormalization, then,y ¼ Y >
(0.0, 0.75, 0.25).

How much a boxRj (1) will expand during learning
depends on the boxRj (yj) (Fig. 5b). Before learning in
Fig. 10e,R2(1) is the point box {(0.8, 0.8)}, andR2(y2) is
the box with lower left-hand corner (0.55, 0.55) and upper
right-hand corner (1, 1) (Fig. 5a). Thus,R2(y2) initially con-
tains the inputa ¼ (1, 1), so neitherR2(y2) nor R2(1)
expands during learning. The boxesR3(y3) and R3(1) do
expand, however. Before learning,R3(1) is the point box
{(0.7, 0.1)} (Fig. 10d) andR3(y3) is the set of pointsq in
the unit square withq2 # 0.85. The upper edge of boxR3(y3)
is therefore a distance of 0.15 units away from the input
a ¼ (1, 1). During learning, this box expands to includea, as
the thresholdt43 increases by 0.15 units, from 0.1 to 0.25.
After learning, the boxR3(1) has expanded to become the set
of pointsq with q1 ¼ 0.7 and 0.1# q2 # 0.25 (Fig. 10e).
The counting weights are thenc1 ¼ 2, c2 ¼ 1.75 and
c3 ¼ 1.25.

Note that the pattern of learning in Fig. 10e would be
altered for values of the CAM rule power different
from p ¼ 1. If p were large enough to makey2 . 0.8
following credit assignment, thenR2(y2) would not initially
contain the inputa ¼ (1, 1), soR2(y2) and R2(1) would
expand during learning. Further, ifp were large enough to
make y3 # 0.1 following credit assignment, thenR3(y3)
would initially contain a and so neitherR3(y3) nor R3(1)
would expand during learning.

Additional learning may occur even if an input repeats the
previous one. In both Fig. 10e and f,a ¼ (1, 1). When this
point is presented the second time,d(R1(1), a) ¼ 0.7,
d(R2(1), a) ¼ 0.4, and d(R3(1), a) ¼ 1.05, so y >
(0.29, 0.51, 0.20) andY > (0.34, 0.52, 0.14). The distributed
output prediction setsj1 > 0.34 andj2 > 0.66. Note that,
due to learning in the previous interval, the network predic-
tion of K9 ¼ 2 (out) is now much stronger than it was when
a ¼ (1, 1) was first presented. After credit assignment,
y > (0.0, 0.72, 0.28). During learning,R2(y2) and R2(1)
again do not grow. The boxR3(y3) begins as the set of points
q in the unit square withq2 # 0.97, so the upper edge is a
distance of 0.03 units away from the inputa¼ (1, 1). During
learning, this box expands to includea, as the thresholdt43

increases by 0.03 units, from 0.25 to 0.28. After learning,
the boxR3(1) has expanded slightly, to become the set of
pointsq with q1 ¼ 0.7 and 0.1# q2 # 0.28 (Fig. 10f).

Fig. 10. Distributed ARTMAP circle-in-the-square simulations. Each
square shows the coding boxRj (1) after learning. During an initial series
of eight input presentations, dARTMAP creates three coding boxes. Node
j ¼ 1 maps to the outcomein and nodesj ¼ 2 andj ¼ 3 map to the outcomeout.

811G.A. Carpenter et al. / Neural Networks 11 (1998) 793–813



Fig. 11a shows the dARTMAP boxesRj(1) that map to
the predictionsout and in after 100 input points have been
presented, starting with the sequence illustrated in Fig. 10.
Due to presentation of inputs 9–100, theout boxesR2(1)
andR3(1) have expanded to the left and a thirdoutboxR5(1)
has appeared at the right. Thein box R1(1) has remained
almost unchanged and a secondin box R4(1) has appeared
above it.

Early in the training process, dARTMAP and fuzzy ART-
MAP usually commit similar numbers of nodes. In this
example, dARTMAP has threeout boxes and twoin
boxes, while fuzzy ARTMAP has threeout boxes and
three in boxes after 100 inputs (Fig. 11b). However, the
two systems learn different codes for the same input
sequence. Differences in the coding structure are traced to
dARTMAP distributed activation and learning.

8. Distributed ARTMAP variations

In addition to contrast control of theF2 code (Section
6.4), many other dARTMAP design variations are possible.
Network parameters may be modified, for example. All
reported simulations set the rate parameterb ¼ 1, for fast
learning, and the baseline vigilance parameterr̄ ¼ 0, to
minimize network size. Choosingb , 1 permits slow learn-
ing and choosinḡr . 0 rejects poorly matched codes. Other
variations include alternative rules defining theF0 → F2

signalTj, CAM steady-state activation atF2, andF2 → F3

instance counting. For example, aWeber law rulewould

define theF0 → F2 signal by:

Tj(yj) ¼
Sj(yj)

a þ 2Myj ¹ Q(yj)
: (15)

Alternative CAM rules could makeF2 activationyj propor-
tional toTj(1) or to a power ofTj(1), for j in a defined index
setL. Instance counting could be nonlinear, which is useful
in preventing highly active nodes from overwhelming all
other predictions. Alternatively, instance counting could be
suppressed by setting all counting weights equal to 1. Also,
pruning algorithms may reduce the size of a trained network.

The computational demands of targeted application
domains, as well as limitations of the dARTMAP algorithm
defined in Section 5, pose challenges that suggest design
alternatives more radical than variations. One open problem
is how to generalize the network to learn arbitrary map-
pings, not just those where the outputs are categorical.
The alternating use of WTA and distributed coding leaves
open the question of what capabilities can be realized in a
network that is fully distributed all the time. Another ques-
tion is whether this type of distributed learning requires
credit assignment. Also, the present dARTMAP algorithm,
which places a premium on code stability, may lock in codes
prematurely. In particular, with fast learning and a noisy
input environment, dARTMAP solves the category prolif-
eration problem of fuzzy ARTMAP, but accuracy may suf-
fer. Alternative learning laws or other changes in the
training regime could make the system more flexible in
response to later training inputs while preserving fundamen-
tally desirable stability properties. The distributed ART-
MAP algorithm presented here is thus but one member of
a family of possible systems that seek to combine distribu-
ted coding with stable fast learning.
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