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Abstract

Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and nois
tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input enviror
ment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, /
stability typically requires winner-take-all coding, which may cause category proliferation in a noisy input environment. Distributec
ARTMAP (dARTMAP) seeks to combine the computational advantages of MLP and ART systems in a real-time neural network fc
supervised learning. An implementation algorithm here describes one class of AARTMAP networks. This system incorporates eleme
of the unsupervised dART model, as well as new features, including a content-addressable memory (CAM) rule for improved contrast con
at the coding field. A dJARTMAP system reduces to fuzzy ARTMAP when coding is winner-take-all. Simulations show that dARTMAP
retains fuzzy ARTMAP accuracy while significantly improving memory compressio998 Elsevier Science Ltd. All rights reserved.

Keywords:Distributed ARTMAP; Adaptive resonance; ART; ARTMAP; Distributed coding; Fast learning; Supervised learning; Neural
network

1. Distributed coding by adaptive resonance systems (Carpenter & Grossberg, 1987) and fuzzy ART (Carpenter
et al., 1991b) for unsupervised learning, and ARTMAP
Adaptive resonance theory (ART) began with an analysis (Carpenter et al., 1991a) and fuzzy ARTMAP (Carpenter
of human cognitive information processing (Grossberg, et al., 1992) for supervised learning. The coding field of a
1976, 1980). Fundamental computational design goalssupervised system is analogous to the hidden layer of a
have therefore always included memory stability with fast multi-layer perceptron (MLP) (Rosenblatt, 1958, 1962;
or slow learning in an open and evolving input environment. Rumelhart et al., 1986; Werbos, 1974), where distributed
As a real-time model of dynamic processes, an ART net- activation helps the network achieve memory compression
work is characterized by a system of ordinary differential and generalization. However, an MLP employs slow learn-
equations, which are approximated by an algorithm for ing, which limits adaptation for each input and so requires
implementation purposes. In a general ART system, an multiple presentations of the training set. With fast learning,
input is presumed to generate a characteristic pattern ofwhere dynamic variables are allowed to converge to asymp-
activation, or spatial code, that may be distributed acrosstote on each input presentation, MLP memories suffer cat-
many nodes in a field representing a brain region such as theastrophic forgetting. However, features of a fast-learn
inferior temporal cortex (e.g., Miller et al., 1991). system, such as its ability to encode significant rare cases
While ART code representations may be distributed in and to learn quickly in the field, may be essential for a given
theory, in practice nearly all ART networks feature winner- application domain. Additional ART capabilities, including
take-all (WTA) coding. These systems include ART 1 stable coding and scaling to accommodate large databases,
are also essential for many applications, such as the Boeing
* Requests for reprints should be sent to Professor Gail A. Carpenter, parts design retrieval system (Caudell et al., 1994).
Department of Cognitive and Neural Systems, 677 Beacon Street, Boston ~ An overall aim of the distributed ART (dART) research
University, Bostqn, MA 02215, USA. Tel.: (617) 353-9483; fax: (617) 353- program is to combine the computational advantages of
7755; e-mail: gail@cns.bu.edu . . .
Technical Report CASICNS TR-97-026, Boston, MA: Boston ART and MLP systems. Desirable properties include code
University. stability when learning is fast and on-line, memory
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compression when inputs are noisy and unconstrained, and The present article presents one family of dARTMAP

real-time system dynamics. networks that have performed well in pilot studies. In parti-
cular, JARTMAP retains fuzzy ARTMAP test set accuracy
1.1. Distributed learning while significantly reducing network size. A self-contained

dARTMAP algorithm is designed both to expedite ready

A key step in the derivation of the first family of JART implementation and to foster the development of alternative
models (Carpenter, 1996, 1997) was the specification of designs adapted to the demands of new applications.
dynamic learning laws for stable distributed coding. These
laws generalize the instar (Grossberg, 1972) and outstarl.3. Outline
(Grossberg, 1968, 1970) laws used, for example, in fuzzy
ART. Instar and outstar learning feature a gating operation A number of computational devices that were not part of
that permits weight change only when a coding node is the more general distributed ART theory were found to be
active. This property is critical to ART stability. With a  useful in dARTMAP simulations. These include a new rule
distributed code and fast learning, however, instar and out- characterizing the content-addressable memory stored at the
star dynamics cause catastrophic forgetting. A system suchcoding field in response to a given input (Section 2.1), an
as Gaussian ARTMAP (Williamson, 1996) includes many internal control device that causes the system to alternate
features of a distributed coding network, but retains the between distributed and WTA coding modes (Section 2.2),
instar and outstar learning laws of earlier ART and and credit assignment and instance counting (Section 2.3).
ARTMAP models. The weight update rules in a Gaussian A geometric representation aids the visualization of dis-
ARTMAP algorithm therefore approximate a real-time tributed ARTMAP computational dynamics. Since the algo-
system only in the slow-learn limit. Other ARTMAP varia- rithm reduces to fuzzy ARTMAP when coding is WTA, the
tions, such as ART-EMAP (Carpenter & Ross, 1995) and geometric characterization of dARTMAP builds upon the
ARTMAP-IC (Carpenter & Markuzon, 1998), acquire some geometry of fuzzy ARTMAP, which represents weight
of the advantages of distributed coding, but sidestep thevectors as category boxes in input space (Section 3.1).
learning problem by permitting distributed activation during The relationship between these boxes and a system input
testing only. determines the order in which categories are searched

The distributed instar (Carpenter, 1997) and distributed (Section 3.2), and box expansion represents weight changes
outstar (Carpenter, 1994) laws used in dART dynamically during WTA learning (Section 3.3).
apportion learned changes according to the degree of acti- Distributed ARTMAP replaces the long-term memory
vation of each coding node, with fast as well as slow weights of fuzzy ARTMAP with dynamic weights, which
learning. The update rules listed in the dJARTMAP imple- depend on short-term memory coding node activations, as
mentation algorithm represent exact, closed form solutions well as long-term memory (Section 4.1). The corresponding
of the model differential equations. These solutions are geometric representation replaces each fuzzy ARTMAP
valid across all time scales, with fast or slow learning. category box with a nested family of boxes, one for each
When coding is WTA, the distributed learning laws reduce coding node activation value (Section 4.2). Some or all of
to instar and outstar equations, and dART reduces to fuzzythese coding boxes may expand during JARTMAP learn-
ART. Similarly, with coding that is WTA during training  ing, but the geometry shows how the system preserves
but distributed during testing, the dARTMAP algorithm dynamic range with fast as well as slow learning (Section
specified here reduces to ARTMAP-IC, and further reduces 4.3). The rule in the dARTMAP algorithm that characterizes
to fuzzy ARTMAP with coding that is WTA during both  the signal transmitted to the coding field in response to a

testing and training. given input admits a geometric interpretation (Section 4.4),
as does the rule characterizing the response of the content-
1.2. Distributed ARTMAP design choices addressable memory to the incoming signal (Section 4.5).

The dARTMAP algorithm includes the computational
An ART module is embedded as the primary component elements that were useful in simulation studies. For clarity,
of ARTMAP, and similarly an unsupervised dART module the training (Section 5.1) and testing (Section 5.2) portions
is embedded in a supervised dARTMAP network. In of the algorithm are listed separately. In the version pre-
applications, ARTMAP requires few design choices: the sented here, the dARTMAP algorithm is feedforward during
number of coding nodes is determined by on-line perfor- testing.
mance, and the default network parameters work well in A series of simulations indicate how the dARTMAP algo-
most settings. In contrast, a general JARTMAP system pre- rithm works. Distributed prediction in the basic algorithm
sents the user with a far greater array of choices, due to thereduces network size, but this system uses only binary con-
new degrees of freedom afforded by distributed code nections from the coding field to the output field (Section
possibilities. In practice, a number of the ‘obvious’ 6.1). Performance can be improved by augmenting the
design choices have failed to produce good performancetrained dARTMAP system with a linear output map such
in simulation studies. as Adaline (Section 6.2). Other simulations analyze the role
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Fig. 1. Distributed ART network. A dART coding field, receives signals directly from an input fiehd. The Fo — F, signalT; is a function of a phasic
component;, which depends on the current input, and a tonic compo®gnwhich is independent of the input. A CAM rule defines the transformation from
signalsT; to theF, codey, which may be arbitrarily distributed. Activityat the fieldF , reflects a match between bottom-up inpahd top-down inpui. The
active code is reset wherfails to meet the vigilance matching criterion, determined by pararpetesng-term memory is stored & — F, thresholds-j,
which adapt according to a distributed instar learning law, Bne- F, thresholdsr;, which adapt according to a distributed outstar learning law.
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of dARTMAP learning that takes place in the distributed memory (STM) activation pattern even after the input is
mode, as opposed to the WTA mode (Section 6.3). By vary- removed. A new input then requires some active reset pro-
ing the degree of pattern contrast in the content-addressablecess before it can instate a different code, or content-addres-
memory system, dARTMAP performance can be improved, sable memory (CAM). ACAM rulespecifies a function that
without increasing network size (Section 6.4). A statistical characterizes the steady-state STM response to a given vec-
analysis confirms the significance of simulation findings tor of inputs converging upon a field of neurons.

(Section 6.5). Traditional CAM rules include: McCulloch—Pitts acti-

Finally, a step-by-step presentation of the geometry of vation, which makes STM proportional to input (McCulloch
dARTMAP learning demonstrates the detailed mechanism & Pitts, 1943); a power rule, which makes STM pro-
of system dynamics (Section 7). Section 8 concludes with a portional to input raised to a powgy, and a WTA rule,
discussion of possible JAARTMAP variations and directions which concentrates all activation at the node receiving the
for future research. largest net input. Other CAM rules include Gaussian acti-
vation functions, as used, for example, in radial basis
function networks (Moody & Darken, 1989). A power
rule reduces to a McCulloch—Pitts rule whpn= 1 and
converges to a WTA rule ap — <. Moving p from 0
towards infinity produces a stored STM pattern that is a
progressively contrast-enhanced transformation of the
input vector. In many examples, however, a power rule is
problematic because differences among input components
are small. A CAM system may then require unreasonably
large powersp to produce significant differences among
STM activations.

The CAM rule used in the dARTMAP algorithm is
designed to enhance input differences as represented in
the distributed internal code without raising input compo-
nents to high powers. It is therefore called tinereased
gradient CAM rule Beyond its role in the present system,
this rule is useful for defining the steady-state activation
function in other neural networks. The increased gradient
rule includes a powep for contrast control. The role qfis
analogous to the role of variance in Gaussian activation
2.1. Increased gradient content-addressable memory rule functions (Hertz et al., 1991; Moody & Darken, 1989). A

geometric representation of dARTMAP provides a

A neural network field of strongly competitive nodes can, natural interpretation of the increased gradient CAM rule

once activated by an initial input, maintain a short-term (Section 4.5).

2. CAM rules, coding modes, and credit assignment

The unsupervised distributed ART network (Carpenter,
1996, 1997) features a number of innovations that differ-
entiate it from previous ART networks, including a new
architecture configuration and distributed instar and outstar
learning laws (Fig. 1). In order to stabilize fast learning with
distributed codes, dART represents the unit of long-term
memory (LTM) as a subtractive threshold rather than a tra-
ditional multiplicative weight. Despite their different archi-
tectures, a dART algorithm reduces to fuzzy ART when
coding is WTA. While a dART module is the basic compo-
nent of a supervised dARTMAP system, the algorithm spe-
cified in Section 5 also employs additional devices not
included in the previous distributed ART description.
These features, including a new rule defining coding field
activation, alternation between WTA and distributed coding
modes, and credit assignment, will now be described.
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2.2. Distributed and winner-take-all coding modes the network resets the active code via ARTMAmatch
tracking feedbacKCarpenter et al., 1991a). In ARTMAP
The increased gradient CAM rule solves a pattern separa-networks, the reset process triggers a search for a category
tion problem that often arises in neural systems, where eachnode that can successfully code the current input. In dART-
element has a limited dynamic range. A second common MAP, reset also places the system MWaA coding modéor
problem is how to choose the size of a neural network. In an the duration of the search. The switch from a distributed
MLP, for example, deciding on the number of hidden units mode to a WTA mode could be implemented in a competi-
is a critical design choice. With WTA coding, ARTMAP tive network by means of a nonspecific signal that increases
determines network size by adding category nodes incre-the strength of intrafield inhibition (Ellias & Grossberg,
mentally, to meet the demands of on-line predictive 1975; Grossberg, 1973). Such an arousal signal might be
accuracy. Some types of MLP networks have also beeninterpreted as an increase in overall attentiveness in
designed to add hidden units incrementally. A cascade cor-response to an error signal or alarm, the computational
relation architecture, for example, creates a hierarchy of result being a sharpened focus on the most salient input
single-unit hidden layers until the error criterion is met features.
(Fahlman & Lebiere, 1990), but weights in all lower layers In WTA mode, dARTMAP can, like ARTMAP, add
are frozen during learning associated with the top layer.  nodes incrementally as needed. When a coding node is
With distributed coding, a dARTMAP network could, in  added to the network, it becomes permanently associated
principle, operate with a field of coding nodes that are fixed with the output class that is active at the time. From then
a priori. In practice, this type of network did not produce on, the network predicts this class whenever the same cod-
satisfactory results in simulation studies, where fast learning ing node is chosen in WTA mode. In distributed mode, STM
tended to make the learned representations too uniform. Toactivations across all nodes that project to a given output
solve this problem, the dARTMAP algorithm alternates class provide evidence in favor of that outcome. Despite its
between distributed and WTA coding modes, as follows. computational advantages, the WTA possibility implies that
Each dARTMAP input first activates a distributed code. If dARTMAP coding is not fully distributed all the time,
this code produces a correct prediction, learning proceeds inindicating one possible direction for future system
the distributed coding moddf the prediction is incorrect,  modifications.

ab ab b
F, F, F,
OUTPUT
PREDICTION Z, | 7, | b, -
SN
o, ° J

WT MATCH WTA
k=K’ k=K

CREDIT
ASSIGNMENT

Fig. 2. Distributed ARTMAP network. A complement-coded inpuactivates a distributeB, codey, which in turn is filtered through counting weightsto
produce thd-; activationY. The WTA field FS‘b activates the node= K’ that receives the largest inpait from F 3, representing the predicted output class.
During training, activation at the field2® determines whether the predicted output classK’ matches the actual output cldss: K, which is represented at
the field FS’. Adaptation in paths frorﬁg to the coding field-, realizes credit assignment. A mismatcl‘F@'? causes a match tracking signal to raise ART
vigilancep just enough to reset the active code.
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2.3. Credit assignment, instance counting, and match and instance counting are not necessarily fundamental prin-
tracking ciples intrinsic to the class of all dARTMAP networks.
Rather, they are developed for the pragmatic purpose of
When a dARTMAP network makes a distributed predic- defining one set of dARTMAP systems with the desired
tion, some of the active coding nodes may be linked to an computational properties.
incorrect outcome. In a real-time network, a feedback loop A real-time neural network can implement the computa-
for credit assignment would suppress activation in these tions of the dARTMAP algorithm (Fig. 2). Because the
nodes during training (Fig. 2). Credit assignment allows algorithm considers only the case where the output vector
learning to enhance only those portions of an active code represents discrete classes, it does not require all the vari-
that are associated with the correct outcome. This procedureables shown in the network diagram. A geometric represen-
is similar to credit assignment algorithms widely used in tation of JARTMAP dynamics (Section 4) helps visualize
other neural networks (e.g., Williamson, 1996) and genetic and motivate computations of the algorithm (Section 5).
algorithms (e.g., Booker et al., 1989). Because dARTMAP reduces to fuzzy ARTMAP when cod-
The current simulations were also found to benefit from ing is WTA, the geometry of JARTMAP generalizes the
design features used in the ARTMAP-IC network. These geometry of fuzzy ARTMAP, which will first be reviewed
include instance counting of category exemplars and the (Section 3). Where possible, dARTMAP retains fuzzy
MT — match tracking search rule. Instance counting biases ARTMAP notation as well.
output predictions according to previous coding node acti-
vations summed over training set inputs. The MTsearch
rule generally improves memory compression compared to 3. Fuzzy ARTMAP geometry
the original ARTMAP match tracking algorithm (M¥F ). It
also permits a system to encode inconsistent cases, where Both fuzzy ARTMAP and dARTMAP employ an input
two identical training set inputs are associated with different preprocessing device callatbmplement codingComple-
outcomes. Inconsistent cases are common in medical datament coding creates a system input vecdoequal to the
bases, for example. concatenation of the origind-dimensional input, where
Aspects of the dARTMAP algorithm such as the 0= a; = 1, and its complemera®, where &°; = (1 — a).
increased gradient CAM rule, the combination of WTA The input A thus positively represents both ‘present
with distributed coding during training, credit assignment, features’ &) and ‘absent featuresaf). In addition, using
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Fig. 3. Simplified fuzzy ARTMAP network. For an output class prediction task, the network does not require the fylihARbrk of a general fuzzy
ARTMAP system (Carpenter et al., 1992). A complement-coded iipubkes a WTA category selectign J) atF,, which predicts an output clags = «(J).
During training, ifK’ is not the same as the ind&of the actual output class, then match tracking raises vigilance enough to trigger a search for a ifferent
node. The dARTMAP network in Fig. 2 has two additional fielfs; for instance counting; anBg, for translating distributedr ; output into a WTA
prediction.
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the city-block normdefined by vl = L;lv;l, complement is consistently present in the inpuisoded by thgth cate-

coding serves to normalize inputs, since then gory; andwi,y; represents the degree to which fkie fea-
oM M ture is consistently absent. When bathandw;_y; become

Al = Z A= Z (& +(1—a)) =M. small, the network treats the sizeafas unpredictive with
i=1 i=1 respect to thgth category.

Complement coding allows weight vectors to be represented 1 € Weight vectow; is depicted geometrically as d-
geometrically as boxes in thd-dimensional space of the dimensionatategory box Rwith 'edges defined by the inter-
vectora. The doubled system input vectosproduce the ~ ValS [Wij, W u,j]- The boxR; is the set of points for

endpoints of a set of intervals that define the edges of eachWhi_Ch wj = G = (1 — Wi,y (Fig. 4a). The SiZéRJ‘_ Is
box, as described in the following section. defined as the sum of the lengths of the baM«defining

intervals. Thus,
3.1. ARTMAP category boxes M

Ri= 2 (1= Wim) —wy) =M~ Il
During fuzzy ARTMAP learning, ®I-dimensional com- =1
plement coded input& give rise to M-dimensional weight ~ When a node is first activated, committecdithe active node
vectorsw; = (Wy;, ..., Wi, ..., Way ), One for eactF; cate- ( = J) becomes permanently associated with the active
gory nodej (Fig. 3). Bottom-up weights equal top-down output classK = K = «(J)). The network adds a committed
weights, sov; may stand for both. Fdr= 1, ..., M, weight node when it determines that previously active nodes cannot

wj intuitively represents the degree to which thiefeature adequately represent the current input. The number of

(@) 44 (b) to
1 1
1=y Wi = K3
J Wej=-- XR, = {a}
a :
Woi T~ 2 :
q q
0 w); 1-wy; 1 0 wlj—w3; =q 1

© o @ e
1 k=2 %‘=1 1 k= _________ :
R, R; R,
R;®a '/
___________________ a
q q
0 1 0 1

Fig. 4. Fuzzy ARTMAP geometry, in the conservative limit with fast learning and a choice-by-difference signal function. (a) A categymepoesents the
complement-coded weight vectar. (b) When a nodd is first committedw;; =w{, v ;=4 fori = 1, ..., M, so the category boR; is the point box &}.
Categoryd becomes permanently mapped to the current output &{dss- K. Point boxes are drawn as and the current inpwtis drawn aD. (c) If ais not
contained in any boR,;, categories are searched in order of their boxes’ distarae(t) Once a categorythat makes the correct output prediction is found to
meet the vigilance matching criterioR; expands just enough to include
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committed nodesQ@) grows incrementally during training.  box that contains all the training set inpatthat have been
When a nod¢is uncommittegw; = 1. Then, when the node  coded by categorywithout reset.

first becomes committed®; equals thgpoint box{ a}, where In summary, with fast learning in the conservative limit, a

W :vvi°+,\,|,j =g (i=1, ..., M) (Fig. 4b). fuzzy ARTMAP inputa chooses boxes in turn, starting with
the closest and, dis in more than one box, starting with the

3.2. ARTMAP order of search smallest box that containg A predictive error increases

vigilance enough to cause reset. Search ends when the

When a committed~, node becomes active and incor- chosen box makes the correct prediction and satisfies the
rectly predicts the output class, fuzzy ARTMAP triggers a matching criterion. For a committed node, the box expands
search process callechatch tracking Match tracking until itincludesa, and for an uncommitted node, a point box
increases theigilance matching parametes just enough is established.
to reset the active category. Search ends when the chosen
node_ p_redlcts the C(_)rrect_ouftput_ cldss K, prc_Mded that 4. Distributed ARTMAP geometry
the vigilance matching criterion is also satisfied.

Fuzzy ARTMAP geometry serves to illustrate the order in
which nodes are searched. Lgtdenote the signal sent to
the jth node of the category fiel&F,. The function that
determinesT; depends jointly on the current inpatand
on the learned weight vectar;. With WTA coding, F,
nodes become active in order of the sizeTof starting
with the largest. The geometric version ofchoice-by-
differencesignal function (Carpenter & Gjaja, 1994) sets:

The geometric representation of JARTMAP builds upon
the geometry of fuzzy ARTMAP. With distributed coding,
steady-state activatioygatF, nodes may take on any value
between 0 and 1, in contrast to WTA coding, which
produces only binary activations. Distributed ARTMAP
therefore replaces the single fuzzy ARTMAP category
box R; with a nested family of coding boxeR; (y;), with
the smallest boxR; (1), corresponding t&;. As with fuzzy
T=M2-a) - d(R, a) —a|R], Q) ARTMAP, dARTMAP geometry illustrates the dynamics of

: code selection, search, and learning.
wherea € (0, 1). In Eqg. (1) d(R;, @) = d; denotes the city- : ' N .
block distance frona to R, That is,d(R;, a) = IRj @al— For a given system inpud, the vector transmitted to the

IR, whereR; @ ais the smallest box enclosing bathand coding field F, is determined by a chosen signal rule
a V\/henj o Jan uncommitted nodd. = T At an unlcom (Section 4.4). AtF,, the resulting distributed steady-state
N j = . =

mitted node. w: = 1. 5o formallvIR| = M — lw — — M activation patterry is determined by a chosen CAM rule
and d(R a?’— |”{a_}| " R|— M yThJusT by E ! (I)T“ o (Section 4.5). If that code predicts the correct output diass
M(2 — '5 ” I\_/I + oM _RM_ ' - Y EG- (= learning within the dART module ensues (Section 4.3). Dis-
For Otl)oxes . %at_con.taina dR,8) =0, soT, = tributed learning is depicted geometrically in terms of
M2 — o) — ozF\|)lR-| When a is c;)ntzjr’led_in 6ne orl m_ore families of coding boxes (Section 4.2), which represent
boxesR; and « :J .O+ nodes first become active in order dARTMAP dynamic weights (Section 4.1). If the distri-

) ) . . buted code makes an incorrect prediction, the network
of the sizes of thesR,, starting with the smallest. Whenis reverts to a WTA mode. For the rest of the search. svstem
not contained in any box and= 0", T; = 2M — d(R,, a) so ) » SY

nodes become active in order of the distances faamR;, dynamics then closely resemble those of fuzzy ARTMAP.
. . . CommittedF, nodes are added only in WTA mode, with
starting with the nearest. In Fig. 4c, nodes would become : . . .
o . each newly committed node producing a geometric point
active in the ordej = 2, 1, 3.

. . oXx associated with a unique output class. During testing,
Search continues until the chosen node makes the correct .~~~ L
. e - . oo coding is always distributed and the network operates as a
prediction and satisfies the vigilance matching criterion. If

all committed nodes witl{; = T" are reset, the network feedforward system.
chooses a previously uncommitted node, which learns the

. 4.1. Distributed ARTMAP dynamic weights
correct prediction.

The key step in the transformation from fuzzy ART to
distributed ART replaces the traditional LTM path weights
w; /wj; with dynamic weightsEach dynamic weight is a
function of a coding node activatioy) (STM), as well as
a subtractive threshold; /7; (LTM). The formal substitu-
tions that convert a fuzzy ART algorithm into a dART
algorithm are described as:

3.3. ARTMAP winner-take-all learning

During fast learning with nodgé=J active, R; expands
just enough to include; that is, the category box grows to
R; @ a(Fig. 4d). The total weight increase therefore equals
the initial distancel; = d(R;, a). Thus, asx — 07, selecting
the closest box via the signal functidn[Eq. (1)] is equiva-
lent to selecting the node where weights will be minimally W — [y; —7;] 2)
changed, or maximally conserved. The parameter choicejn pottom-up paths and:

a = 07 is therefore called theonservative limi{Carpenter N
et al., 1991b). At each stage of learnir),is the smallest Wi = i — 7] ©)
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in top-down paths (Figs. 1 and 3). In Egs. (2) and (3), (a)
[£]T = max{¢, 0} denotes the rectification operator. The Aa,
LTM thresholds 7 and 7y, initially O, rise toward a 1- [ —14j]f1
maximum of 1 during learning. R; (%)
With WTA coding and setting; = 1 in Egs. (2) and (3), Yy
distributed ART reduces to fuzzy ART. WTA coding limits R; (1)
learned changes to processes associated with the single
active category node, thereby stabilizing memory by impos- 2
ing an upper bound on the total change. With distributed il ;
coding, dynamic weights take over responsibility for bound- P -l ; ; : a
ing the total learned change. A dynamic weightf ;] " is 0 [ R R
positive only when coding node activatign exceeds the L
adaptive threshold;. Only then does the dART learning j-1,]" 1-[y -,
law permit the threshold to increase. This restriction
imposes an upper bound on total threshold changes: the \
sum I_,A7; is bounded above byZZ [y —7;]", (b) %
which in turn is bounded above by 1, since
|y\=EjC:1yj =1. On the other hand, the coding capacity
of each threshold setr{, ..., 7y, ..., 7ic} is limited only
by the number of committed coding nodes, which may be
arbitrarily large. Dynamic weights thereby allow the limited

[

capacity of STM to impose an upper bound on adaptive R;O) -
changes in an LTM system of unlimited capacity, even m&(»yi)»@gm:'{z%
when coding field activation is fully distributed and fast 2 9
learning causes all variables to reach asymptote on every 0 1

input presentation.

4.2. Distributed ARTMAP coding boxes and matching boxes

Consider now the geometry of dAARTMAP dynamics in
paths from the input fiel&, to the coding field=, (Fig. 2).
An entire family of dynamic weightsy] — 7;]*, one for 5
eachy; € [0, 1], replaces each single fuzzy ARTMAP path a° zy Ra(D
weightw;. A corresponding family of nestetbding boxes q
R; (y;) thus replaces the single category b8x The box 0 >
R; (y;) equals the set of point for which [y; — 7] = q;
=(1- [yj _ Ti+Mj] +) (Fig. 5a). Fig. 5. Distributed ARTMAP geometry, in the conservative limit with fast

L . learning, a choice-by-difference signal function, and the increased gradient
In dARTMAP, initial code selection depends on the CAM rule with p = 1. (a) A coding boxR; (y;) represents the complement-

boxesR; (y;) only for the case wherg; = 1: the network  cogeq dynamic weight vector, witly[— 7] replacing the fuzzy ART-

models reset as a process that breaks competitive feedbackiap weightw; (Fig. 4). (b) If a distributed code makes the correct output

loops atF, by momentarily saturating ayl— activations. prediction,y is recalculated for credit assignment. Then, all boRey))

Therefore, since a CAM system maintainsfanactivation ;Xpa“dli“(it) Ie:rc‘)‘r":gg stositzcr:q“g’: E‘tzdbﬁzz (tlﬁeegi‘lfﬁfftéﬁ ;“02:(5’2';/

patterny until the next reset, the boxe& 1) detem,"ne . 0.112,0.21) makes the)::orrect p:)edictk)& 1.1Aftercredit assignmenjz,:l

the sequence of stored codes. Just as the dynamic weighfg g4, 0.0, 0.36). TherRs(ys) includesa, so neitherRy(ys) nor Ra(1)

ly; — 7] " is formally equivalent to the weight; wheny; = 1, expands during learning. On the other hand, since the left edge of box

the dARTMAP coding boxR; (1) is formally equivalent to Ri(y,) is a distance of 0.13 units from box R;(y;) does expand to meet

the fuzzy ARTMAP category bO)Rj. Once a codg has a, causingR,(1) also to grow as; increases by 0.13 units.

been established, the boxBs(y;) control the dynamics of

search and learning. (Fig. 4a) can represent the geometry of top-down matching
In fuzzy ARTMAP, the dynamics of category search are as well as bottom-up category choice.

determined by the degree of match between bottom-up sig- In dJARTMAP, top-down signals t&; originate from the

nals from the input field=q and top-down signals from the field F;, where theF, codey is transformed into a new

category field-,, calculated at the matching fiekd (Fig. 3). normalized coding vectoY by instance countingThat is,

When theJth F, node is active, the top-down signal to the Y; is proportional toc;y;, where thecounting weight ¢

ith F1 node equalwry. Sincew; = wj;, the category boxeR, reflects the sum of prior activationg during training
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(Fig. 2). The total signal fronfr3 to theith F; node is the
dynamic weight suna;(Y) =, [Y; — 7] *.
Since the dARTMAP top-down signal to dn; node
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towardR; (y;) @ a as the bottom-up thresholds;, ..., 7o}
to thejth F, node increase.
Thresholds in top-down paths frof to F, adapt accord-

depends on the entire distributed code rather than a singleing to adistributed outstar learning law

dynamic weight, the coding box& (y;) cannot also repre-

sent the geometry of matching. Instead, the geometry of —7; = [Y, — 73] * (0i(Y) = %) = [Y; = 751] T [ai(Y) — A] T

search is characterized by a family afatching boxes
R(Y), one for each vector. The matching boR(Y) equals
the set of pointsy for which oi(Y) = ¢ = (1 — i L m(Y))

(i =1, ..., M). With the total signab;(Y) to theith F; node
replacing thew;, dARTMAP matching and search are

dt
(5)

(Carpenter, 1994). Eq. (5) states that the threshgldiill
grow until theF; — F, inputo;(Y) shrinks down to meet the
Fo — Fy input A;. The amount a given threshold will

analogous to the corresponding processes in fuzzyincrease during learning depends upon the contribution of

ARTMAP. See Carpenter (1997) for a more complete
description of the geometry of distributed search.

4.3. Distributed ARTMAP learning

The coding boxes; (y;) provide a geometric represen-
tation of JARTMAP learning, witty; equal to thgth com-
ponent of the currently activie, codey. During distributed
learning, each boR, (y;) that does not already contain the
input a expands just enough to include(Fig. 5b). Unless
coding is WTA andj is the chosen nodg; is less than 1,
making R; (y;) larger thanR; (1). In this case, unles]; (1)
initially containsa, R; (1) still does not contaia after learn-
ing, even with all LTM variables reaching asymptote. The
limited capacity of STM hereby permits the code-selecting
boxesR; (1) to conserve their capacity during fast as well as
slow learning.

Fig. 5c illustrates an example where, at the timés

[Y; — 73] " to the dynamic weight surei(Y). In particular,
7ji remains constant ifY; — 7;]* = 0, i.e. if Yj = 7.
Geometrically,R(Y) expands towardx(Y) @ a, as top-
down thresholds; increase in parallel.

The piecewise-linear equations [Eqgs. (4) and (5)] can be
solved exactly: the adaptive threshold update equations in
Step 8 of the dARTMAP algorithm (Section 5.1) represent
closed form solutions of the differential equations, not
approximations. These solutions are valid for all initial
values and all learning rates, including the fast-learn
limit.

4.4. Distributed ARTMAP signal rule
The signalT; from the dARTMAP input field=, to thejth

node of the coding fiel& is a functiong; (S;, ®;), where the
phasic component;8lepends on the inp#, thetonic com-

presented, three coding nodes have previously been component ©; is independent ofA, g;(0, 0) = 0, and

mitted € = 3). Nodesj = 1 andj = 3 map to the output
classk = 1 and nodg = 2 maps to the output clags= 2.
The increased gradient CAM rule distributes activatjpn
across all three nodes, with1y, > y; > y; > 0. Before the
output prediction is madsy; is multiplied by the counting
weightc;. The subsequent field pools the distributed activa-
tions to make an output class predictikr= K'. Suppose
thatK’ = K = 1, i.e. that the system correctly predicts class
k= 1. Feedback from the output layi§ to the coding layer
F, then implements credit assignment (Fig. 2), which
restricts adaptation to paths to and from nogassociated
with the correct predictioiK. Credit assignment would per-
mit the boxeR;(y1) andRs(ys) to expand towarda. In fact,
Ra(y3) already contain® at the outset. Thus, onliRy(y,)
expands to include, as7; increases, anR;(1) expands as
well (Fig. 5¢).

In a real-time dARTMAP network, thresholds in bottom-
up paths fromF, to F, adapt according to distributed
instar learning law

d + +
=i —Al =[y—n] —A]
(Carpenter, 1997). Eq. (4) states that the threshgldiill

grow until its dynamic weighty; — 7;]* shrinks down to
meet theF, — F, input A;. Geometrically ,R; (y;) expands

i 4)

(09;/0§) > (9g;/00;) > 0 for § > 0 and®; > 0. Compo-
nentsS; and O; also depend on adaptive thresholgsin
paths fromF, to thejth F, node and on target node activa-
tion y;. Simulations in this paper usechoice-by-difference
signal rule

Ti(v) =5 (%) + Q- )0;(y), (6)

with the signal rule parameter € (0, 1). In Eq. (6), the
phasic component is defined by:

=S Al -nl"

()
i=1
and the tonic component is defined by:
2M
O (y) = D i A Y, (8)

i=1

wherea A b = min{a, b}.

At first, the definition ofT; appears to be circular: the
signal function that determines the cogealso seems to
depend upory. Recall, however, that JARTMAP reset
momentarily sets ail; = 1. The content-addressable memory
at F, is therefore determined by the valugg(l) at that
time, and the ensuing stored cogehen remains constant
until the next reset. Between resets, sigrgléy;) control
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the internal computations underlying distributed search and  (a) If input ais notin any boxR; (1), (2— «)M - T;(1) =
learning. Sincey! = 1, activeF, nodes typically represent a d(R; (1), &) for all j. Then:

concentrated subset of the field's total capacity, which can 1 .
be arbitrarily large. Correspondingly, the signd(y;) 4(R(1 p IfjEA
between resets is, on average, a small fractiom; ¢f). )1+ Z (R( ). a)
In geometric terms, Y = ASh d(R\(1), a) =
i
as in Eqg. (1). Thus, the signal rule favors nodes with small (11)
coding boxes IR; (1)l = 0) that are close to the input 1 if A={j}
(d(R; (1), @) = 0). In the conservative limit, where = 0",
the system seeks primarily to minimize the distance feom l_[ d(Ru(l), a)p
to R; (1). In this case, the size &; (1) is used only to break Mfgj\ ' _
ties, as whera is contained in more than one box. - if IAl=2 andj€ A,
> [Td(R). )"
ANEA REA
uFEN
4.5, Distributed ARTMAP CAM rule 0 if j & A

The CAM rule that specifies AARTMAP activation at the
coding field approximates the steady-state response that a
field of competitive nodes would make to thg— F, input
vectorT (1), evaluated at the time of reset. In general jthe
component of th&, codey is determined by a functioy) =

where the powep is greater than 0 (Fig. 6a).

(b) If a is contained in at least one boR;(1),
(2— )M —T;(1) = «lR; (1)! for these boxes. In this case,
letA’=An{j:ae RQ)}

£, (Ty, ..., To), with of;/aT, = 0 and withT, = T, (1) at the M) If IRj (1)l > 0 for allj € A", then:
time of reset. Distributed ARTMAP simulations here use an 1 e A
increased gradienEAM rule to determine thé& , activation IR@DITP :
vectory. The coding functionf; that defines this rule is Y = 1+ xé,[“q)\(l)d =
specified formally in Step 2 of the algorithm (Section 5.1) e
using the terms [(2- «)M — T;(1)]. The increased gradient 0 if j & A’
CAM rule is here given a geometric interpretation, in terms (12)
of coding boxes, by observing that: 1 if A’ ={j}
2-a)M-T,(1)=d(R(1), a) +«lR (1)l (10) [T R.@P
[Eq. (9) il
q. . w7) H S H ’
In a real-time network, committed nodes would compete Z l_[ IR, (D) it 1A'= 2 andj € A
with uncommitted nodes for coding field activation. In order AEA’ pEN’
to simulate this situation in the dARTMAP algorithm, a EN
committed nodej is allowed to become active at reset 0 if j&A’
only whenT;(1) is at least as great as the sigial that
would be sent to an uncommitted node, where all thresholds ~ (Fig. 6b).
7j = 0. The phasic signal to an unpommitte_d ngdes (ii) If IR (1)l = 0forsomg € A’, 2— )M — T;(1)=0
S (1) = IAl = M [Eq. (7)] and the tonic signal i®; (1) = for these boxes, which are just points. In this case, let
0 [Eq. (8)], so the total choice-by-difference signal is A" = A’ n{j: R (1) = {a}} ( point box casp Then:
T (Dl,=0=T"=M [Eq. (6)]. For a given inputa, the 1
CAM index setA = {j = 1, ..., C: T;(1) = T"} denotes A7l if jeAN
the F, nodes that may become active during distributed y=q A o (13)
coding. With the choice-by-difference signal function 0 ifj&A”
[Eq. (6)], Tj(1) = (1 — )M = (1 — )T" This indicates wherelA”l is the number of elements in the gt (Fig.

that smaller values ok predispose the network to activate 6C).

larger numbers of committed nodes during distributed cod-  Note thatA” indexes only point boxes of the current input

ing. In the conservative limit, where = 0%, T; (1) = S;(1) a. The ARTMAP-IC match tracking search rule, M¥ ,

+0;(1) =T soA ={1, ..., C} and activation is distrib- permits the creation of two or more identical boxg$l) =

uted across all committed nodes. {a}. This allows a network to encode inconsistent cases,
In the conservative limit, the increased gradient CAM where identical training vectors are associated with different

rule can be visualized geometrically as follows. output predictions.
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(@)
q
0 1T
(b) 1=
a
0 1
(c) ba,
1
q

0 1

Fig. 6. Increased gradient CAM rule in the conservative limit wita 1. (a)

If ais not contained in any baR; (1), theny is a function of the distances
fromato each box. In this exampld,= {1, 2, 3}, andd; = 0.49,d, = 0.44
andd; = 0.85. Thusy = (0.37,0.42, 0.21), as in Fig. 5c. Coding converges
toward WTA asa approaches one bdy; (1), since therd(R; (1),a) — 0 in

Eq. (11). (b) Ifais contained in one or more boxBg(1), the corresponding
activations dominate the stored code, in order of the box sizes. In this
example,A’ = {1, 2}, IRy(1)l = 0.96 andIRy(1)l = 0.53. Thus,y =
(0.36, 0.64, 0). Coding converges toward WTA as one of these boxes
shrinks toward the point boxa§, since thenlR;(1)l — 0 in Eq. (12). (c)

If ais identical to one or more point boxes, the corresponding activations
dominate the stored code. In this examplé= {1, 2, 3} andA” = {1, 2}.
Thus,y = (0.5, 0.5, 0), as in Eq. (13).

5. Distributed ARTMAP algorithm

In the general case, JARTMAP learns to predict an arbi-
trary outcome vectdo = (by, ..., by, ..., by), given an input
vectora = (ay, ..., a;, ..., ay). The specific dAARTMAP
algorithm below considers the special case of classification
problems, which set one compondnt = 1, placing the
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inputain the output clask. Disengaging the search process
by settingp = 0 converts the algorithm to a type of
distributed competitive learning system. The full dART-
MAP algorithm reduces to a version of ARTMAP-IC
when F, coding remains distributed during testing, but is
WTA during training. The algorithm further reduces to
fuzzy ARTMAP when coding is WTA during both testing
and training.

A complete JARTMAP system may be implemented as a
real-time network with local computations (Fig. 2). The
algorithm employs a reduced set of necessary variables
(Table 1), eliminating computations that become redundant
in the case of classification outputs. Table 2 lists system
parameters, along with their ranges and the fixed values
used in subsequent simulations. Table 3 summarizes the
computational notation used in the algorithm. Each
dART, input is complement coded, with & a; = 1, so
I =A = (a a°.

5.1. Distributed ARTMAP training

During dARTMAP training, input pairs
@@, by, (@2, @), ..., (a”, b™), ... are presented
for equal time intervals. Prior to training, all LTM variables
are set equal to O (Table 4).

Step 1—First iteration: n =1

1
ai()

1—

flsi=M

1
ai()

Output vector—K is the target output class, witl) = 1.

Input vector—A; = .
if M+1l=i=2M

SetC=1,y;=1,Yy=1,0=1(G=1,..., 2M), and
k(1) = K.

Go to Step 8—Resonance

Step 2—ResetNew STM steady state at the coding fields
F,andF4

Fo— F,signal—Forj =1, ..., C:

M
Phasic—§ = Z AN (L—T5).
i=1

Table 1

dARTMAP variables

ST™M LTM Signals

X;  F1, matching i Fo—F T;, total Fo—F»
(S, phasic @, tonic)

yj F2 coding ¢ Fr,—F; gi F;—F;

Y, Fj3, counting i Fs—Fy ok Fa—Fg°

i = 1,..., 2M; j =1,..,C k= 1,..., L.
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Table 2
Parameters
Parameter Range Simulation value
Fo input components i i=1,...,2M
Number of committeds, nodes C
F, coding nodes j ji=1,..,C
Output components k k=1,...,L
Fo — F signal to uncommitted nodes T T, =0 M
In distributed mode, the index set B nodes activated A c{1, ...C Committed nodes witfT; (1) = T"
by the CAM rule
In WTA mode, the index of the single active node J j=1,...,C
Correct output class K k=1,..L
Predicted output class K’ k=1,..L
Association between the coding nodend the output k() =k k=1,...,L
classk
Index set ofF, nodes that are refractory A c{, ... C
Signal rule parameter o 0, 1) o =0.01
CAM rule power p (0, ] p=1
Learning rate B [0, 1] B =1 (fast learning)
Match tracking € lel small e= —0.001 (MT-)
dART, baseline vigilance o [0, 1] p=0
dART, vigilance 0 [p, 1]

2M

TOHiC—@i = Z Tij -
i=1

S+(1-a)® ifjga

Total—T; = .
0 ifjeA

The CAMrule indexsef = {j=1,...,C:T; = T%

(a) If the network is in distributed mode: F, nodes are
activated according to the increased gradient CAM rule.

F, activation—

(i) If(2 —a)M —T; > 0forallj € A, then:

yJ:fJ(Tl! eay Tc)E
1 s
1 3 [EonTy Hed
NEA, A% (2= )M =T,
0 if j&A

(if) Point box case:If (2 — o)M — T; = 0 for some

Table 3
Notation

JEA AN ={jE A (2 - oM - T, =0}

Then:
1
— ifjen

y={ w1 "/
0 ifj&A"

F5 activation—Y;, =

F3— F; signal—o; = Z Y, — 7] "

GY;

C
Z G\
A=l

(i=1, ..., C)

C

=1

(b) If the network is in WTA mode: Only oneF, node,

with j = J, is activated.

(i) Committed node: If A # J, letJ be the smallest
indexj such thafTy = maxe, {T;}.

Vector norm vl = Zi Iv; |
Rectification P = max{w, 0}
Minimum a A b= min{a, b}

Complement a°=1-a

Table 4

Initial values of LTM variables

Fo— F, threshold =0
F2— F3, count ¢ =0
F3— F, threshold 7 =0
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Uncommitted node:If A = J, letJ=C + 1. Node
J is then newly committed: increase by 1, and let
k(J) = K.

1 oam
Setp= _Zi:lxi +6.
M
Revert to WTA mode and go tBtep 2—Reset

(i) F2 andFs activation— Step 7—Credit assignment:Black outF, nodes that do

1 ifj=J not predict the correct output class via F§ — F, credit
i=Yji= e assignment connections (Fig. 2). RenormakizandF; and
0 ifj#J recalculate thé=; — F, signal¢;. Fori = 1, ..., 2M and
ji=1,..C
(iiiy F3— F signal— F, blackout—s, — yj if K(J)=K'
"l o if k() #K
gi=1—-1y(@{=1,...,2M). )
- Y,
. . F, activation—y, = ————.
(iv) Add J to the refractory node index sat 2 i Zf—ly)\
Step 3—Reset or prediction: Check theF; matching F. activation—Y. — GYj
criterion 3 J Zf—lcx)’x.
Factivation—x; = A A gi (i=1, ..., 2M). Fs— Fy sighal—o, — ch=1[Yj _ Tji] +

(a) Fymismatch: If ﬁzlz'\:’ll X < p, revertto WTA mode

Step 8—ResonanceFori =1, ...,2Mandj =1, ..., C:
and go toStep 2—Reset P :

d Id

Save old values—‘;%j’Id =1, cjo' =g, 77" =Tj.

(_b) F, match: If ﬁZ?le‘ = p, go toStep 4—Predic-
tion. Increase F; — F, threshold (distributed instar)—
old

.0  _old_ A7t
Step 4—Prediction: m =T 4Bl -t - A
Increase F, — F3 instance counting weights—

(@) If the network is in distributed mode, define the G =C,°'d+y,-.

F;— F& signal by:
S Increasd-; — F threshold (distributed outstar)—
> Y, if k(j)=K for some;

= j=1 —
KW= =« k=1, ..., L) —

ALy gy
0 otherwise

Let K’ be the smallest indek such thatry: = max{s}. Reset node recoverya-= & .

(b) If the network is in WTA mode, let K’ = «(J). ART, vigilance recovery—p =p.

Step 5—Match tracking or resonance:Check the output ~ SteP 9—Next iteration: Increasen by 1.

class prediction

(a) Incorrect prediction: New input—A; = {
If K" # K, go to Step 6—Match tracking.

a fl<i=M
1-a" ifM+1=i=2M

(b) Correct prediction: New output—K is the target output class, Witlrf?) =1.

If K" = K and the network is in distributed mode, go to o
Step 7—Credit assignment Revert to distributed mode.
If K' = K and the network is in WTA mode, go to Go toStep 2—Reset
Step 8—Resonance
5.2. Distributed ARTMAP testing
Step 6—Match tracking: Raise vigilance to the point of
dART, reset. Neither search nor learning occurs during dARTMAP
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testing, when the dARTMAP algorithm implicitly imple-
ments feedforward network activation. Wigh=0, theF;

matching criterion is always met, so the algorithm does not

need to computd-, activation. Alternative testing algo-
rithms are also possible. For example, by setting 0

and checking the matching criterion, a system might reject
certain predictions as unreliable. Since predictions are dis-
tributed across classes, an output class decision threshold

could also be selected to calibrate the false alarm rate.

Test Step 1—Test vectom:

a fl=i=M
Input vector—A; =
1-a" ifM+1=i=2m

Output class—K is the target output class, with) = 1.

Test Step 2—ResetNew STM steady state at the coding
fieldsF, andF4

Fo— F,signal—Forj =1, ..., C:
2M

Phasic—§ = Z A A (L—1).
i=1

2M
i:lTi]'

Tonic—0); =
Total—T; = § + (1 — )9;.
The CAMruleindexsen ={j=1,...,C: T, = T'}.

F, activation: Increased gradient CAM rule—

(i) If(2 —a)M —T;>0forallj € A, then:

yJ:fj(T11 faey Tc)E
1 s
1+ 3 [Ty et
AEA, A#j (2—a)M =T,
0 if j €A

(if) Point box case:If (2 — o)M — T; = 0 for some
JEA letA"={j € A: (2— )M — T; = 0}. Then:

1
o fjen
0 ifjeA
C. A
F3 activation—Y; = C’iyj (j=1 ..., C).
A=1CY\

(@)
30

Mean = 92.0
Std. Dev. =2.3

Mean = 16.7
Std. Dev. =3.2

Fuzzy ARTMAP
Number of Data Sets
s & 8 8

o

0
®) 60 70 80 90
b)
30
Mean = 88.6 Mean = 16.7
%) % 251 Std. Dev. = 4.3 Std. Dev. =3.2
- n
I =20
& 8
s § 15
= é 10
<z
5
06
(c)
30
Mean = 90.6 Mean =11.7
25} Std. Dev. = 3.5 Std. Dev. = 4.7

n
o

dARTMAP
Number of Data Sets
S &

Committed Nodes

Percent Correct

Fig. 7. Circle-in-the-square simulations. For (a) fuzzy ARTMAP, (b) ART-
MAP-IC, and (c) dARTMAP, histograms show the humber of data sets that
produce a given test set predictive accuracy and a given number of com-
mitted nodes.

Test Step 3—Prediction:

F3 — F&® signal—

C
Z Y, if k(j)=k for somej
a=1 =« k=1, ..., L)

0 otherwise

Let K" be the smallest indek such thatoyx = max{o}.

Test Step 4—Evaluation:

The prediction is counted as correckif = K.

Alternatively, whernL = 2, the signal vectos = (o4, 07)
may make the predictiok = 1 wheng; exceeds a spe-
cified decision thresholgl; or 0, may be used to generate
an ROC curve parameterized by

6. Distributed ARTMAP simulations

The circle-in-the-square benchmark problem serves to

illustrate computational properties of the dARTMAP
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Table 5
Simulations with binary and Adaline output mappings

807

Binary output map

Adaline output map

No. of committed nodes

(% correctx *+ sd) (% correct,x = sd) (X £ sd
(a) Fuzzy ARTMAP 92.0+ 2.3 92.5+ 2.0 16.7* 3.2
(b) ARTMAP-IC 88.6+ 4.3 93.7+ 1.3 16.7+ 3.2
(c) dJAARTMAP 90.6+ 3.5 922+ 2.4 11.7= 4.7

algorithm. This task requires a network to identify those
points in a unit square that lie within a circle placed at the

accuracy of 92.0% on the test set. Except for the addition of
instance counting, ARTMAP-IC (Fig. 7b) uses the same

center of the square and occupying half the area. During training regime as fuzzy ARTMAP, and so creates the

training, 1000 randomly chosen input poirds= (aj, a,)

same number of recognition categories. During testing,

are each presented once, in an incremental learning paraARTMAP-IC uses the dARTMAP algorithm (Section

digm. The output vector specifies whether a point is inside
(b = (1, 0)) or outsidel§ = (0, 1)) the circle. During testing,
the system makes an/out prediction for each of 10000
randomly chosen points in the unit square.

Fast learning = 1) implies that different training input

5.2), with an increased gradient CAM rule. Although
instance counting and distributed prediction often improve
fuzzy ARTMAP performance, in this case accuracy deterio-
rates somewhat, with the average correct prediction rate
dropping to 88.6%. The dARTMAP training regime

presentation orders produce somewhat different results. In(Fig. 7¢) brings performance back up somewhat, to an aver-

order to discount variations due to training set selection,
each simulation is performed on 100 different input sets.

age of 90.6%, while reducing the average number of com-
mitted nodes by 30%, from 16.7 to 11.7. These simulations

Reported accuracy and network size results are averageshus indicate how dARTMAP can improve the efficient use
across the 100 simulations. The same test set is used in albf network memory.

examples.

Each simulation in Sections 6.1-6.3 uses the parameter6.2. Post-processing with a linear map

values listed in Table 2. In particular, the CAM rule power
is set equal to 1, thus fixing arbitrarily the degree of contrast

enhancement. For this paradigm, average dARTMAP per-

formance accuracy is slightly below that of fuzzy ART-
MAP, but memory utilization is significantly less. Section
6.4 shows how validation set selectionpafan boost dART-
MAP performance beyond that of fuzzy ARTMAP, while
further improving memory utilization. Section 6.5 includes
a statistical analysis of results.

6.1. Distributed prediction

Fig. 7 shows two sets of histograms that illustrate
the performance of fuzzy ARTMAP, ARTMAP-IC, and
dARTMAP on the circle-in-the-square benchmark problem.
The left-hand column shows how many of the 100
simulations produce a given percentage cormekiut test
set prediction. The right-hand column shows the distribution
of the numbers of committed nodes produced during
training.

Fuzzy ARTMAP (Fig. 7a) creates an average of 16.7

When dARTMAP adds a new category node in WTA
mode, that node becomes permanently connected to a single
output class prediction. The algorithm thus does not take
advantage of potentially distributed prediction at this stage,
in contrast to the distributed representation of the ART
stage. Similarly, the ARTMAP-IC output map remains
binary and many-to-one after training.

One way to improve performance of a trained network is
to calculate a fully connected linear mapping from AR®
the output layer. Table 5 summarizes simulations that add
such a mapping to paths froffs — Fab, computed via a
least squares, or Adaline, method (Widrow & Hoff, 1960;
Widrow & Sterns, 1985). A test set output then becomes a
vector YW, whereY is the distributed activation pattern
generated by the test set inputfat The C X L matrix W
equals> (YTY) "'YTb®, whereY is the distributedFs
activation pattern in response to the training set irgdli
summed across all training set paia&{ b™) as they are re-
presented to the trained network in distributed mode. Ana-
logous post-processing is a typical training stage of a radial

recognition categories and achieves an average predictivebasis function network (e.g., Hertz et al., 1991).

Table 6
Role of distributed learning

% correct(X = sd

No. of committed node& = sd)

(a) Fuzzy ARTMAP 92.0+ 2.3
(b) dARTMAP without distributed learning 923 2.8
(c) dJARTMAP with distributed learning 90.6 2.3

16.7+ 3.2
17.6x 5.9
11.7+ 4.7
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(a) OUT BOXES IN BOXES 6.3. Learning vs. no learning while in distributed mode

For the first prediction for each input, dAARTMAP is in
distributed mode. If this prediction proves correct, then
learning also takes place in the distributed mode. However,
given that at least some learning also takes place in WTA
mode, it is reasonable to ask to what extent learning in the
distributed mode has any influence on network formation. It
could be, for example, that all significant AARTMAP adap-
tation actually occurs in WTA mode. With this scenario,
increased memory efficiency would then be ascribed to
improved performance of the initial predictions, when the
network is in distributed mode. Better initial predictions
would diminish the number of searches, which would
cause a reduction in the number of committed nodes.

To test whether most of the JARTMAP LTM changes
occur in WTA mode, simulations were run with an alterna-
tive algorithm that makes initial predictions in distributed
mode, but that suppresses distributed learning. For this
dARTMAP alternative, if the first prediction is correct,
the network updates instance counting, but otherwise
experiences no learned changes. Learning is permitted
only in WTA mode. Otherwise, the algorithm is identical
to dARTMAP.

The behavior of the no-distributed-learning algorithm
turns out to be much closer to that of fuzzy ARTMAP
than to that of distributed ARTMAP. For dARTMAP
o o5 ” o o5 ” (Table 6c), the average number of committed nodes is

. . . o 11.7, as in Table 5c. Table 6b shows that the no-distribu-
Fig. 8. Geometry of distributed Iearn_lng.A_II.systems learn the circle-in-the- ted-learning system produces far more nodes, an average of
square task from the same 1000-point training set. (a) Fuzzy ARTMAP uses - __ !

14 category nodes (sevent, severin) to produce 93.3% predictive accu-  17.6 with a large standard deviation. Performance measures
racy. (b) The JARTMAP alternative, without distributed learning, uses 16 of this network are similar to those of fuzzy ARTMAP,

coding nodes (sevenut, ninein) to produce 93.2% accuracy. (c) The full  \which produces an average of 16.7 nodes (Table 6a). In
dARTMAP network uses only nine coding nodes (fawrt, five in) to

produce 92.5% predictive accuracy.

Fuzzy ARTMAP
o
o

(=4
<
-

o
&)

dARTMAP no distr. learning __

o

—
(1)
-
-

dARTMAP
=)
3

12+ Median=0.8 A
Mean =1.3

Since fuzzy ARTMAP coding remains WTA during test-
ing as well as training, the linear mapping would not change
the output map if the training set were presented for enough
epochs to give 100% correct performance. For the networks
trained here, in one epoch, the addition of a linear output
mapping boosts performance from 92.0% to 92.5% for
fuzzy ARTMAP, from 88.6% to 93.7% for ARTMAP-IC,
and from 90.6% to 92.2% for dARTMAP (Table 5). The
Adaline output map thus reduces error, most notably for
ARTMAP-IC, without increasing the number of nodes in
each network. Adaline also reduces the standard deviation
in all cases, which implies that performance measures have % 0.102030.40506070808 1 2 3 4 5 6 7 8 9 102050 100
become less dependent on input orderings. On the other P
hand, addition of a linear map does increase memory Fig. 9. Distribution ofp values for 100 circle-in-the-square simulations. The
requirements, since thg; — ng map would then have CAM rule power was selected, via a validation set procedure, to maximize
C X L real-valued connections as opposed to the original predictive accuracy while minimi_zing th_e number of coding nodes. [Eq.
network maps, which have oniy binary connections. Sec- (14)]. Low values ofp prodgce highly distributed code representations,

. . . b T and codes become increasingly concentrated at a small number of nodes
tion 6.5 includes an analysis of the statistical significance of aspincreases. Table 7 shows the performance improvements resulting from
the results shown in Table 5. power selection.

Number of Data Sets
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Table 7 ARTMAP and dARTMAP networks are designed to

Power selection balance the twin goals of maximizing predictive accuracy
% correct No. of committed nodes and minimizing network size while carrying out fast, stable,
(X * sd (X = sd on-line learning. In dARTMAP circle-in-the-square

simulations, predictive accuracy is generally greater than

Eﬁg EZEZTYMAARPTV'\C%P 9922_'102 ;2 ig:;i 2:421 80%, with the number of coding node€)(less than 25
power selection (Fig. 7). A criterion function that expresses the balance
(c) JARTMAP with ~ 90.6* 3.5 11.7+ 4.7 between maximal accuracy and minimal size can be expressed
power P=1 as:
+ +

criterion:@w+ a- G)M (14)
particular, in the absence of distributed mode learning, all 20 25
improvement in memory utilization is lost. for 8 € [0, 1]. Settingd = 0 would minimize the number of

The geometry of coding boxes further reveals differences coding nodes while settingg = 1 would maximize predic-
resulting from the learning strategies summarized in Table 6. tive accuracy. The simulations summarized belowfset
An example that illustrates these differences trains all three 0.5, which weighs the competing goals about equally.
systems on one of the 100 simulation input sets that con- For each 1000-point circle-in-the-square training set, a
tributed to the average statistics. The input set was chosen apowerp was selected by a validation procedure. For each
having predictive accuracies and numbers of coding nodesof 22 candidate values betwepe= 0.1 ando = 100 (Fig. 9),
that are close to each of the averages. The left-hand column750 inputs were presented to a JARTMAP system using the
of Fig. 8 shows the final boxeR;/R; (1) that map to the  given p value in the increased gradient CAM rule. The
predictionout, and the right-hand column shows the boxes chosen powep was then the one that maximized the criter-
that map to the predictioim. With fast learning, each fuzzy ion function defined by Eq. (14) on the remaining 250 train-
ARTMAP box R; just contains all pointa that select cate- ing set inputs. Before testing, AARTMAP was trained anew
gory j without reset. Thus, after training on 1000 randomly on all 1000 inputs using the chosen power.
selected inputs, overlapping boxes tend to cover most of the Fig. 9 shows that selecteulvalues vary across at least
unit square (Fig. 8a). The no-distributed-learning dART- three orders of magnitude, depending upon the randomly
MAP algorithm also learns in WTA mode, but LTM chosen input sets. Despite the essential similarities among
changes may occur only if the initial distributed prediction the simulations, certain input sets produce best results with
is incorrect. The resulting box& (1) tend to cluster around  highly distributed codesp(= 0.1), while others prefer codes
the circle boundary (Fig. 8b), where most of the predictive that are nearly WTA{= 100). Across 100 training sets, the
errors occur. Despite these geometric differences, fuzzy median selectedvalue was 0.8 and exp(mean()) = 1.3.
ARTMAP and the no-distributed-learning system produce Therefore, the arbitrary valye= 1 used in previous simu-
similar numbers obut/in boxes and nearly identical predic- lations would actually be a reasonable a priori choice for
tive accuracies for this input set. Like fuzzy ARTMAP, the this problem if a validation set selection process were not
full JARTMAP system produces boxes that cover most of possible. Table 7 demonstrates that power selection
the input space (Fig. 8c). However, distributed activation improves dARTMAP performance even beyond that of
allows the network to utilize resources more efficiently, fuzzy ARTMAP, while further decreasing the average
producing fewer coding nodes. Differences between Fig. number of coding nodes. In addition, the reduction in the
8b and c are due entirely to the absence or presence ofstandard deviation indicates that power selection produces
learning in the distributed mode. more consistent performance with respect to the input

orderings.

6.4. Contrast control with the increased gradient CAM rule

The basic JARTMAP algorithm admits a host of design 6.5. Statistical analysis of performance comparisons
alternatives. One such alternative varies the degree of con-
trast enhancement in the code by varying the pgwiarthe Statistical analysis indicates the degree of significance of
increased gradient CAM rule. All previous simulations fixed result differences for the systems fuzzy ARTMAP, ART-
p = 1. Different values op alter the degree to which the MAP-IC, and dARTMAP and their Adaline modifications,
storedF, codey contrast-enhances the sigigl As p — o, summarized in Table 5, as follows.
the increased gradient rule converges to WTA coding, and
codes become increasingly uniform s~ 0. The simula- 6.5.1. Procedure
tions below show that selectiqgusing a validation subset Each system was trained on the same 100 data sets.
of the training set improves dARTMAP performance System performance on a single, common test set was mea-
beyond that of fuzzy ARTMAP, while further reducing sured by two variables, percentage of correct responses and
the number of committed nodes. number of committed nodes.
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6.5.2. Analysis
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measures test (Hotellingsl(2, 98) = 35.17,p < 0.001.

Repeated measures analysis of variance was the naturalhis result indicates that the percentage of correct responses
design to use, since the same subjects (100 data sets) werdiffered within the group of networks with Adaline

compared under different treatments (types of network algo- modification.

dARTMAP with Adaline and fuzzy

rithms) (Devore, 1995). The analysis performed included ARTMAP with Adaline did not differ significantly t(=

the following components:

» the percentage of correct responses of FARTMAP, fuzzy

ARTMAP, and ARTMAP-IC (binary output map) were

subjected to repeated measures analysis of variance wit

multiple dependent paired-tests (employing the

Bonferroni inequality) used as a post hoc procedure

(Stevens, 1996);

—1.1, df = 99, p = 0.27). ARTMAP-IC with Adaline
significantly outperformed both dARTMAP with Adaline
(t =6.22,df = 99, p < 0.001) and fuzzy ARTMAP with

{Adaline ¢ = 6.92,df = 99, p < 0.001),

6.5.3.3. Adaline effecEor each of the networks, the effect
of the Adaline modification produced a significant
improvement in the percentage of correct responses:

+ the same approach was used for the percent correCtyaRTMAP vs. dARTMAP with Adaline (= — 544
responses of the networks with the Adaline modifica- ¢ _ gg p < 0.001), fuzzy ARTMAP vs. fuzzy ARTMAiD

tion;

with Adaline ¢t = —-5.25, df = 99, p < 0.001), and

* pairedt-tests were used to determine the effect of the ArTMAP-IC vs. ARTMAP-IC with Adaline {=—12.38

Adaline modification for each network (i.e., JARTMAP
vs. dARTMAP with Adaline, fuzzy ARTMAP vs. fuzzy
ARTMAP with Adaline, and ARTMAP-IC vs. ART-
MAP-IC with Adaline);

df = 99, p < 0.001).

6.5.4. Number of category nodes
A pairedt-test determined that the numbers of category

* apaired-test was employed to compare the numbers of nodes for dARTMAP were significantly smaller than

node results of dARTMAP vs. fuzzy ARTMAP, the
latter being identical to ARTMAP-IC for this measure.

6.5.3. Percentage of correct responses

In the repeated measures analysis, both univariate an
multivariate approaches were considered. Generally, the
univariate approach is believed to be more powerful,
provided that the sphericity assumption is not violated. On
the other hand, the multivariate approach has certain
advantages when the number of subjects is high (Stevens

1996).

6.5.3.1. Binary output algorithms (distributed ARTMAP,
fuzzy ARTMAP, and ARTMAP-ICREreenhouse—Geisser
e = 0.95531 (sphericity holds); univariate repeated
measures test (witke adjusteddf): F(1.91, 189.15)=

36.09, p < 0.001; multivariate repeated measures test

(Hotellings): F(2, 98) = 29.72,p < 0.001. This result

d

those for fuzzy ARTMAP/ARTMAP-IC { = —12.54,
df = 99, p < 0.001).

6.5.5. Summary

The results from the statistical analysis indicate that, for
the binary output algorithms, fuzzy ARTMAP performs bet-
ter than dARTMAP, which in turn performs better than
ARTMAP-IC. However, dARTMAP requires significantly
fewer nodes than fuzzy ARTMAP and ARTMAP-IC. The
Adaline modification significantly boosted the performance
of all networks, making dARTMAP results comparable to
those of fuzzy ARTMAP, with ARTMAP-IC outperforming
both. Once again, however, the memory efficiency of
dARTMAP was significantly higher.

7. Circle-in-the-square geometry

Early in the learning process, both fuzzy ARTMAP and

indicates that the percentage of correct responses differsdistributed ARTMAP typically establish a few categories
between algorithms to a statistically significant degree. To that form the basis for subsequent coding. With a fast learn-

determine where the difference(s) exist(s), multiple
dependent pairetitests were employed. The performance
of binary output dJARTMAP was significantly worse than
that of binary output fuzzy ARTMAPt(= — 3.79,df = 99,

p < 0.001). Analogously, binary output ARTMAP-IC was
outperformed by both binary output FARTMAP= —5.03,

df =99,p < 0.001) and binary output fuzzy ARTMAR £
—7.75,df = 99, p < 0.001).

6.5.3.2. Adaline output algorithms (distributed ARTMAP,
fuzzy ARTMAP, and ARTMAP-IClreenhouse—Geisser

ing paradigm, the structure of this code foundation is highly
dependent on the location of the first several input points.
New committed nodes are added whenever the current net-
work is unable to support the correct prediction. The circle-
in-the-square example, with its two-dimensional inpats
permits a graphical representation of this incremental learn-
ing process, as follows.

Fig. 10 shows the three coding boxeq1) learned by a
dARTMAP network in response to an initial sequence of
eight inputs, with fast learning in the conservative limit.
These inputs were hand-picked to illustrate possible stages

e = 0.83647 (sphericity cannot be assumed); univariate of distributed-mode learning. A more typical input sequence

repeated measures test (with adjusted df): F(1.67,
165.62) = 23.92, p < 0.001; multivariate repeated

would produce a preponderance of early WTA learning.
Subsequent input points were chosen at random (Fig. 11).
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0.5 1

0 0.5 1 0

Fig. 10. Distributed ARTMAP circle-in-the-square simulations. Each
square shows the coding b& (1) after learning. During an initial series
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andd(Rx(1), a) = 1.2. Thus, by the geometric version of the
increased gradient CAM rule witp = 1 [Eq. (11)], F;
steady-state activation i = (12/40, 21/40, 7/40). As a
result of the first four inputs, the counting weights begin
as.c; = 2,¢c, = 1 andcz = 1. Thus,F; activation isY =
(24/52, 21/52, 7/52). The distributed prediction sets=
24/52 = 0.46 ando, = 28/52 = 0.54, so the output class
prediction isK” = 2 (out), which is correct, despite the fact
that the maximally activeF; node { = 1) would have
predictedin. Before distributed learning can occur, credit
assignment sets to 0 the activationdefnodes that map to
the incorrect outcome. After renormalization, thes; Y =
(0.0, 0.75, 0.25).

How much a boxR;(1) will expand during learning
depends on the boR;(y;) (Fig. 5b). Before learning in
Fig. 10e,R,(1) is the point box {(0.8, 0.8)}, andR,(y,) is
the box with lower left-hand corner (0.55, 0.55) and upper
right-hand corner (1, 1) (Fig. 5a). ThuR,(y,) initially con-
tains the inputa = (1, 1), so neitherR,(y,) nor Ry(1)
expands during learning. The box&s(y;) and R3(1) do
expand, however. Before learninBy(1) is the point box
{(0.7, 0.1)} (Fig. 10d) andRs(y5) is the set of pointg in
the unit square witky, = 0.85. The upper edge of bé¥(y-)
is therefore a distance of 0.15 units away from the input
a= (1, 1). During learning, this box expands to inclia@as
the thresholdr,; increases by 0.15 units, from 0.1 to 0.25.
After learning, the boRs(1) has expanded to become the set
of pointsq with g; = 0.7 and 0.1= g, = 0.25 (Fig. 10e).
The counting weights are theoy = 2, ¢, = 1.75 and
c3 = 1.25.

Note that the pattern of learning in Fig. 10e would be
altered for values of the CAM rule power different
from p = 1. If p were large enough to makg > 0.8
following credit assignment, theR,(y,) would not initially
contain the inputa = (1, 1), SORx(Y,) and R,(1) would

of eight input presentations, JARTMAP creates three coding boxes. Node expand during learning. Further, pfwere large enough to

j = 1mapstothe outconmeand nodeg= 2 andi = 3 map to the outcomaut

makey; = 0.1 following credit assignment, theRs(ya)
would initially containa and so neitheRs(y3) nor Ra(1)

Each newly committed node begins as a point box would expand during learning.

(Fig. 10a, ¢, d), which may then grow during subsequent

Additional learning may occur even if an input repeats the

learning. Upon commitment, each point box becomes per- previous one. In both Fig. 10e andaf= (1, 1). When this

manently mapped to an output prediction: thenodej = 1
maps tok = 1 (in) andj = 2 andj = 3 map tok = 2 (out). If
only one active nodgmakes the correct prediction, then the
box R; (1) grows just enough to include the current input
In Fig. 10b,R4(1) grows to include the input point (0.5, 0.2),
and later grows further to include (0.2, 0.3) (Fig. 10h). In
Fig. 10g, nodg = 1 is also the only one that remains active

point is presented the second tim&(R.(1), a) = 0.7,
d(Rx(1), @) = 0.4, andd(R5(1), @) = 1.05, soy =
(0.29,0.51,0.20) and = (0.34, 0.52, 0.14). The distributed
output prediction sets; = 0.34 ands, = 0.66. Note that,
due to learning in the previous interval, the network predic-
tion of K’ = 2 (out) is now much stronger than it was when
a = (1, 1) was first presented. After credit assignment,

after credit assignment, but the input point (0.6, 0.4) is, by y = (0.0, 0.72, 0.28). During learnindR,(y,) and Ry(1)

then, already contained iR,(1), so no further expansion
occurs.

If the network in distributed mode makes the correct pre-

again do not grow. The bdRs(y3) begins as the set of points
g in the unit square witlg, = 0.97, so the upper edge is a
distance of 0.03 units away from the inut (1, 1). During

diction, then one or more of the boxes associated with the learning, this box expands to includeas the threshold,;

correct output clasK may grow towarca. When the point
a= (1, 1) is presented (Fig. 10e), the initial distances faom
to the three boxes ard(Ry(1), a) = 0.7,d(Rx(1), a) = 0.4,

increases by 0.03 units, from 0.25 to 0.28. After learning,
the boxR3(1) has expanded slightly, to become the set of
pointsq with g; = 0.7 and 0.1= g, = 0.28 (Fig. 10f).
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(a) OUT BOXES IN BOXES

dARTMAP

Fuzzy ARTMAP

0 0.5 1 0 0.5 1

Fig. 11. (a) Following the sequence of points illustrated in Fig. 10, present-
ing 92 more inputs to the JARTMAP system creates a total of five coding
boxesRj(1), three mapped tout and two mapped tin. (b) For the same
100 inputs, fuzzy ARTMAP creates six category boRgsthree mapped to
outand three mapped fo.

Fig. 11a shows the dARTMAP boxd%(1) that map to
the predictionut andin after 100 input points have been
presented, starting with the sequence illustrated in Fig. 10.
Due to presentation of inputs 9-100, thaet boxesR,(1)
andR3(1) have expanded to the left and a thingt box Rs(1)
has appeared at the right. Tire box Ry(1) has remained
almost unchanged and a secdndox R4(1) has appeared
above it.

Early in the training process, dARTMAP and fuzzy ART-
MAP usually commit similar numbers of nodes. In this
example, dARTMAP has thre@ut boxes and twoin
boxes, while fuzzy ARTMAP has threeut boxes and
threein boxes after 100 inputs (Fig. 11b). However, the
two systems learn different codes for the same input

sequence. Differences in the coding structure are traced toNaval

dARTMAP distributed activation and learning.

8. Distributed ARTMAP variations

In addition to contrast control of thE, code (Section
6.4), many other JARTMAP design variations are possible.
Network parameters may be modified, for example. All
reported simulations set the rate paramétet 1, for fast
learning, and the baseline vigilance parameiet0, to
minimize network size. Choosingy< 1 permits slow learn-
ing and choosing > 0 rejects poorly matched codes. Other
variations include alternative rules defining thg — F»
signalT;, CAM steady-state activation &, andF, — F3
instance counting. For example,Vdeber law rulewould

G.A. Carpenter et al./Neural Networks 11 (1998) 793—-813

define theF, — F, signal by:

S¥)
o+ 2My; — O(y;)

Alternative CAM rules could makEg, activationy; propor-
tional toT;(1) or to a power offj(1), forj in a defined index
setA. Instance counting could be nonlinear, which is useful
in preventing highly active nodes from overwhelming all
other predictions. Alternatively, instance counting could be
suppressed by setting all counting weights equal to 1. Also,
pruning algorithms may reduce the size of a trained network.

The computational demands of targeted application
domains, as well as limitations of the JARTMAP algorithm
defined in Section 5, pose challenges that suggest design
alternatives more radical than variations. One open problem
is how to generalize the network to learn arbitrary map-
pings, not just those where the outputs are categorical.
The alternating use of WTA and distributed coding leaves
open the question of what capabilities can be realized in a
network that is fully distributed all the time. Another ques-
tion is whether this type of distributed learning requires
credit assignment. Also, the present JARTMAP algorithm,
which places a premium on code stability, may lock in codes
prematurely. In particular, with fast learning and a noisy
input environment, dJARTMAP solves the category prolif-
eration problem of fuzzy ARTMAP, but accuracy may suf-
fer. Alternative learning laws or other changes in the
training regime could make the system more flexible in
response to later training inputs while preserving fundamen-
tally desirable stability properties. The distributed ART-
MAP algorithm presented here is thus but one member of
a family of possible systems that seek to combine distribu-
ted coding with stable fast learning.

Ti(yp) = (15)
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