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NERVE IMPULSE EQUATIONS
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THE HODGKIN-HUXLEY MODEL

The Hodgkin-Huxley [5] model for nerve impulse transmission
consists of a long thin cylindrical membrane (axon) containing
axoplasm and bathed in an ionic solution. If the nerve is stimu-
lated above a threshocld, the permeability of the membrane increases
rapidly, allowing sodium ions to rush in. Diffusion of electrons
within the axon raises the membrane potential (V) above threshold
farther down the axon, where more, sodium lons enter, and the
impulse proceeds in a wavellke manner. Two slower processes
(inhibition of sodium entrance and exit of potassium ions) return
the axon éo its original resting staté.'

The impulse, or action potential, depends upon the distance
(x) from the point of stimulus and the time (t) since the stimulus.
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t) 1s described by a nonlinear diffusion equation coupled with

nary differential equations describing sodium (m activation,

lactivation) and potassium (n activation):

2
% %ﬂg = C g% + g(V,m,n,n) !
X
3n r ‘
3T = Yn(.\') (nm(V) - n)
Bo v (M) (V) - ) (HH)

v, << y_ 3 0<n,h ,m < 1; and all functions are
h m [~

TRAVELING WAVE SOLUTIONS

Let us consider a phenomenon (e.g, nerve impulse, muscle
traction, heartbeat, chemical reaction) whose principal process
described by a nonlinear diffusion equation and whose subpro-

ses are described by ¢ "slow" and m "fast" equations:

2
§—¥ = %% + g(V,y,z)

ox“

oy .
F = en(v,y,2) (P)
dz -1

5t = 8 a(V,y,z)

vn Ve fy Y1 R, voed, C© Rz; z.e (0, E_Bm; €,86 are
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small; and all functions are 02. Note that two slow [or fast]
variables may be slow or fast relative to one another. This is the
case,; for example, in a model for the heart muscle and pacemaker
which we shall discuss later.

We now consider traveling wave solutions of (P) with speed
8 >0, If s=2x+ 68t and . = g% ; (P) becomes the system in

R2+f+m‘

W= 8W + g(V,y,z) (¥*,9)

-1
y =8 "en(V,y,z)

2 = 9_16-lq(V,y,z)

We proceed by analyzing the V-W, y, and 2z systems separately and
patching together these solutions to form singular solutions of
(**,8) . Isolating block techniques [1,2,3] prove that the exis-
tence of a singular solution of~(**,s) implies the exirtence of a
true solution for certain ranges‘of"the 8 , 5 , ¢ parameters,
We shall assume that the equation q(V,y,z) = 0 defines a

| function z(V,y) and that, if & 1$ small, solutions of (¥**,8)

are strongly attracted to the surface z = z(V,y) .
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Figure 2: (HH,8) with Vo > 1.

ore precisely, we assume:

| (A) Tiﬁere exists a function z(V,y): [Va’VB] xﬂy —-»Qz such
hat q(V,y,z) = 0 iff z = z(V,y) .
(B) For fixed <V,y> , the eigenvalues of qu(\f,y,z) at

= z(V,y) have negative real parts.

Let (*,8) be the system in R°Y? associated with (**,8):
V=W N
'-.:J = 8W + G(V,y) , (*,8)
y = S-leH(V,y) s

here  G(V,y) = g(V,y,z(V,y)) and H{V,y) = h(V,y,z(V,y)) . All
he following results, stated for (*,8), are true for (**,8)

rovided (A) and (B) are satisfied and & is small.
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Observing that the rates of the n,h

THE FITZHUGH-NAGUMO EQUATIONS

variables of (HH) are

about equal, FitzHugh [4] and Nagumo, et al. [6] considered a

system with one slow variable:

V=W
W= oW - £(V) +y

59-1 (V"‘{'y> E

<
i

where feC® 1is "eubic"; f£(0) = 0; f'(C) < 0O; and

Y2

6 . (see

Figure 5,) Solutions of (F-N,8) Have many of the same '"nerve-like'

e

properties as those of (HH), but the uncoupling of the two slow

variables in (HH) leads to new types of solutions, such as finite

wave train and "plateau" solutions, not seen in the (F-N) model,

STINGULAR SOLUTIONS

Definitlions

Fcr the moment, consider the system:

x = F(x) ,

where erSlRK and F e cl . Let x-t

(¢) for t ¢ J , a subinterval of R. If

XM = {x-t:teM} .

X 1is a rest point of (1) if F(X) =

() Y

denote a solution of

Mc T,

o . If

let

x

is a rest
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int whose eigenvalues have J positive and ‘(k-J) negative real

rts, U(X) = {xeQ:xt-%X as t--o} 1is a j-manifold (the
stable manifold of X ); and S(k) = {xeN:x<t->X%X as t-w} is

(k-3)-manifold (the stable manifold of X ). If X,%

are rest

ints of (t) a solution x:RcU(X)N S(X) - {x,X} is homoeclinic

i

3-(=

1

; heteroclinic if # X . A solution x+R is periodic

X.T = x for some T ¢ O .

[
i

Figure 3: Homoclinic, heteroclinic, and periodie solutions.

We now return to (*,8). If ¢ 1s small, (*,8) is appro-

|
|
1
i
i
i
|
;
L

nated by the system:

-

V=W
W= 8W + G(V,y) (*59)4
y=0,

W,y> 1is a rest point of (*,9)O iff W =G{V,y) = O . Hence-
th we assume that for fixed y e¢ 7 C ﬂy , G is "cuvbic" and

-three zeros,




Vi( ' .

Figure 4: Cubic G for y e7 .

The first (V:Vl(y)) and last (V=V,{y)) zeros are saddle points

o
of (*,8) 8

Moreover, there exists = |e(y)| such that (*,e)o

o*
admits a heteroclinic solution from <V1(y),0,y> to <V2(y),0,y>
V5 (¥) _
if f G(V,y)dv<O[6(y) > 0] ; or from <V2(y),o,y> to
v, (¥) - -
1 (¥) v, (y)
<V1(y),o,y> if E G(V,y)dv > 0 [8(y) < O] . (See figures
vy (y)
5,6.)

The (F-N) example

There exists ® > O such that (F—N,@)O ‘admits a solution
from <0,0,0> to <V2(O),O,O> . In addition, for some y > O ,

(F-N,ﬁ)o admits a solution from <V2(§),O,§> to <Vl(§),0,§>

e,
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Figure 5: Homoclinic singular solution of (F-N} . (&) and

(B) are solutions of (F-N,@)O . 8(y) = -8(0)

Let us now re-examine the statement "(*,8) is approximated
'y (*,e)o when ¢ 1s small". This is accurate unless a trajec-
iory is near {Q = W = 0} ; in this case, i;[ >> 3&5, }@i no
’atfer how small e 1is,

If Vl(y) [Vg(y)] is the left [right] zero of G(V,y) for

+* 3
€ Wl{vg} c Qy , let { )i be the system on 7,

or  <V,W,y> near <Vi(y),o,y$ , then, solutions of (*,8) are
overned by (*)i. A singular solution consists of solutions of

f (*,8), connected by solutions of (*),. Figure 5 illustrates a
omoclinic singular solution of (F-N) . If y 1is large, (F-N)
s more than two rest points and admits two heteroclinic singular

olutions.
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HOMOCLINIC SOLUTIONS
/ Assume:

(A) y 1is a rest point of (*)l whose eigenvalues have
negative real part.

(B) The solution of (*), containing § crosses

{y:0(y) = -8(¥)1 transversely at y = y .

i, s,

Figure 6: Homoclinic singular solution, & = 2

()

The solution of (*)i contalning ¥ 1is contained in
S(¥) . Then (*,8) admits a homoclinic solution for
continuum (figure 7(A)).

<6,e> 1in a

£ 5
\ N3y
6(2)4’ 8(3)
*) 4 (8)
Figure T:

Parameter ranges for existence of homoclinic (A)

and wave train (B) solutions of (*).
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+ (1) The last section contains hypotheses which imply
A) - (C) generically for (HH).

(2) The existence theorem generalizes easily to include a

inite number of "jumps" between w, and 7w, . If 4 > 2, then,

1 2
*,8) admits finite wave train solutions provided the solution in

1 containing y crosses {8(y) = 8(¥)} transversely.
T, v
s

(A) 3 @) = ot
Figure 8: (B)A three-fold wave train, V(t) for fixed x .
ff this is the case, (*,8) admits a double wave train solution for

8,¢> 1in a continuum (figure 7(B)). In fact, for fixed small
AY

> 0, if (*,8) admits a singular k-fold wave train, then there

xist el <eoeol ek such that (*,QJ) admits a k»fgld wave train
= 1,...,k). ’
(3) If s =2 ; 8 (y) < 0 when 8(y) = 8(¥) ; and
l(y) >0 when 68(y) = -6(¥) , then (*,8) admits singular k-fold

ave trains for all k = 1,2,... iff (*,8) admits a singular
~fold wave traln.
(4) Solutions of (*,8) converge to the singular solution

s <8,e> > <8(y),0> . ‘

S
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(5) Detailed analysis of (*)i may provide further quali-

tative information. For example, consider (HH) with

o
]

envn(V)(nm(V}-n)

no= ey (V) (h (V)-n) .
An approximate model for the contraction of the heart muscle con-

€
sists of (HH) with ?E small. In this case, solutions of (*)i

appear as in 9(A), and solutions of (%*,8) appear as in §(B).
RN T, K v

=0 1
v

N2 platecw
T

)

‘ e
(A) a (8)

Figure 9: Plateau homoclinic singular solution

(1) Jump to T, . (2) Move rapidly to {ﬁ = 0} in Ty
(3} Move to {8(y) = -6(y)} in T, ﬂ'{hz =0} . (4) Jump to Ty
(5} Move rapidly to (hl = 0} in Ty - (6) Move to rest in

LA {ﬁl = 0} .

The shape of the action potential of the heart muscle is as seen
in Figure 9(B); a nerve exhibits similar behavior if injected with

tetraethylammonium chloride (TEA) [7].
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(6) Analogous results hold for heteroclinic solutions.

PERIODIC SOLUTIONS

Periodic singular solutions may be defined as solutions of

'(*,9)0 connected by finite solution segments of (*),.

§

i\\EvV
Figure 10: Pericdic singular solution of (F-N) . (A) and

- (B) are solutions of (*,g)o and 0<8<8(0) .

A fixed point theorem implies that (*,3) admits a periodic
solution for all small e > O provided ¢ = 1 and H(Vl(y),y} <
0 < H(V,(y),y) for |e(y)| < 8.

If 4>2, (*,E) may admit a plateau periocdic solution

provided that one slow variable is much slower than the others.
: €
For example, let ¢ = 2 and consider (HH) with Eﬁ <« 1 . 1If
h

e, = 0, <V,0,n,h> 1is a rest point of (HH) iff G(V,n,h) = 0

and h=nh (V) . (HH,s) admits two heteroclinic singular solu-

tions, one from m, to T, (1), (2) of figure 11(A)]; the other

from 7, to m, [y, (5)1.
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Figure 11: Singular plateau periodic solution of (HH) .

T

(%)

If these solutions are connected in my , 7, [{6),(3)], there

exists a periodic plateau solution {figure 11 (B)) of (*,8) ir

¢, and en/eh are &mall.

As 1in the previous section, plateau solutions model "heart-

like" behavior, with periodic solutions corresponding to pacemaker

activity. In nerves, however €, and eh are about equal; hence
we- seek a definition of periodic singular solution which will imply
the existence of periodic solutions of (%,E) for all small

€ >0 . The appropriate notion 1s an g-dimensional singular solu-

tion [2].

w

Fix © > O and assume that £ 2 2 .and that all solutions
of (*); [(*)2] cross {(8(y) = -6} -[(B(Y) = 8}] transversely.
Assume alsc that there exists Mc {8(y) = 8} such that (A) - (c)
hold: ,

(A) M is homeomorphic to {O,ljz—l .

(B) If y eM the solution of (*)2 through y crosses
fo(y) = -8} transversely in a point Fg(y) . Moreover the solu-

tion of (*)l through F?(y) crosses {68(y) = 3} transversely
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in a point F1°F2(Y) .

(C) F eF, (M) € int (M) .

L

CIOVERCH

6(3:"'@' s‘):‘g

Figure 12: Singular periodic soiution, L =2 .
Notice that F1°F2!M admits at least one fixed point (Brouwer
fixed-point theorem) and hence (*,3) admits a singular periodic

solution in the previous sense. (*,S) admits a periodic solution

for all small ¢ > O if (A) - (C) are satisfied.

Remarks

(1) The natural choice of M is (8(y) = 81 (assuming
that this set is homeomorphic to [0,1]%"1 , as it is for (HH) ).
If no solution of (*),, (*)2 leaves m,,7T, 1in 8G}y), (C) is
satisfied; again (HH) satisfies this criterion Kwith Oy =
[0,1]2 ) since 0<n_,h < 1. (B), however, may not be an
appropriate assumption if FE({S(Y) =8}) n {é2(y) >0} #¢g or

F oF,({o(y) = 81) n (6%(y) < 0} # @ , as illustrated in Figure 13.
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Figure 13: F1°F2 piecewise-continuous. M < (By)

F10F2 is discontinuous at 8 and y . However, if M 1is chosen
to be a closed interval such that F1°F2((BY)) cMc (BY) , M
then satisfies (B) and (*,5} admits a periodic solution. In
fact, induction on the number of points of discontinuity of F. ¢F

12

proves that (A) - (C) are satisfied if ¢ = 2 and FieF, 1is

plecewise-continuous. .

(2) 1If gs=1, (*,3) admits at most one periodic sing-
ular solution for each E . (It seems likely, too, that for each
small ¢ > O (*,E) admits a unique periodic solution.) If
¢ > 2 , however, (*,5) may admit N periodic singular solutions;
in thils case (*,E) admits at least N periodic solutions for

small € > O . These solutions may not be‘locally unique.
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o> '
L £ 2 (* ?) admits at least two periodic
Figure 14: = 2 . ,8)
soluticns.
* 3} admits
(3) If (*), admits a rest point, ¥g » (%s%)

gular periodic sotutions only 1 8 ¢ 5(}/0/ when [ = ] /0}4
he plateau case). If £ > 2, (*"g) may admit periodic solu-

s for 8 > 8(y,) @&s illustrated in Figure 15.

L )

"igure 15: Singular periodic solution of (HH) with

~
P S
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', Again note that

(HH) admits solu%ions of a type not seen
in the (P-N) system.

(3) If 2>3, (*,9) may admit "finite wave train"

periodic solutions as illustrated in Figure 16.

(FoFL)(H) ¥
W) e

(B)

&

Figure 16: A 2-fold periocdic wave train,

gular solution. (B) V(t) for fixed x

Problems of transversality (condition (A)) may become
complex for & > 3 .
HYPOTHESES ON THE HODGKIN-HUXLEY EQUATIONS

In the original Hodgkin-Huxley model of the squid giant
R axon,

- 3 - 4 -
g(V,m,n,h) = Bal h(V-—Vﬁa) + ggn (v~ VK) + gz(vn VL) ,

where éNa’ Na’éK’VK’éL and VZ are constants. Also, n',m! > 0
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s 5 vel to potassium and sodium
nd h! < O, corresponding (respectiv y)

sctivation and sodium inactivation with maintained depolarization

(i.e., if V¥V is fixed, as in a voltage clamp experiment, n-anm(v),

j hat the model describe nerve
h-ahm(v), and m—emm(v) Y. In order t
sctivity of nearly every species,.as well as other excitable mem-
yrane phenomena, hypotheses on (HH) should be mild and qualita-
tive., We impose the following conditions on {HH} , where
(V,n,h) = g(v,qw(v),n,h), n, = n_(0), h, = h_(0), and m, = m_(0).

HH) Hypotheses

There exist V, < 0 < V. a such that for every Ve[V,,V

X N Na]
nd n,he[0,1]:

(A)  6(Vg.n,h) < O < G(Vy,,n,h) .

(B) There exist at most three VE‘(VK,Vﬁa) such that

s

V,n,h) = O . Moreover, if G(V,n,h) = S%(V,n,h) = 0

G(V,n,n 2n
CUVuniB) 20 and v o 1r g_g(v,n,n) >0
-

3G(0,n
(c) 57( 70’ O) > 0, and there exists V, > 0 such that

vV
_ 2
orlyshy) = 0 and f; G(V;no,ho)dv <0,

oG 3G

(D) S5 0 and 35 € 0.

(E) G(V,n (V),h _(V)) =0 1ff V=0

(F) nl >0 and n! <o0. ///

ATRS

(A) and (D) are clearly true of the original (HH). (E)
)

les that <0,0,no,h sm. > 1is the unique rest point of (HH,8

0’70
any 8 (i.e: the nerve has a unique rest state). (B) and (C)

the "cubic" conditions on ¢ and depend upon the function

\ vt m™T T aw dbam emomd bt el N
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Note that we nowhere assume that g 1is linear in V or

that the activity of Na© and X' are independent.

These assumptions give w1,wp the phase portraits seen in

figuresb, 8, 2, 11, and 12.

n
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