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1. INTRODUCTION

Neural network analysis exists on many different lev-
els. At the highest level (Figure 1) we study theories,
architectures. hierarchies for big problems such as
early vision. speech, arm movement, reinforcement,
cognition. Each architecture is typically constructed
from pieces. or modules. designed to solve parts of
a bigger problem. These pieces might be used, for
example. to associate pairs of patterns with onc an-
other or to sort a class of patterns into various cat-
egories. In turn, for every such module there is a
bewildering variety of examples, equations, simula-
tions. theorems. and implementations, studicd under
various conditions such as fast or slow input prescn-
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tation rates, supcrvised or unsupervised learning,
real-time or off-line dynamics. These variations and
their applications are now the subject of hundreds
of talks and papers cach year. In this review 1 will
focus on the middle level. on some of the funda-
mental neural network modules that carry out as-
soclative memory. pattern recognition. and category
learning.

Even then this is a big subject. To help organize
it further I will trace the historical development of
the main ideas, grouped by theme rather than by
strict chronological order. But keep in mind that
there is a much more complex history, and many
more contributors. than you will read about here. 1
refer you to the Bibliography section, in particular
to the recent collection of articles in the book Neu-
rocomputing: Foundations of Research, edited by
James A. Anderson and Edward Rosenfeld (1988).

2. THE McCULLOCH-PITTS NEURON

We would probably all agree to begin with the Mc-
Culloch-Pitts neuron (Figure 2a). The McCulloch-
Pitts model describes a neuron whose activity x; is
the sum of inputs that arrive via weighted pathways.
The input from a particular pathway is an incoming
signal S; multiplied by the weight w, of that pathway.
These weighted inputs are summed independently.
The outgoing signal S; = f(x,) is typically a nonlinear
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FIGURE 1. Levels of neural network analysis.

function—binary, sigmoid, threshold-linear—of the
activity x; in that cell. The McCulloch-Pitts neuron
can also have a bias term (), which is formally equiv-
alent to the negative of a threshold of the outgoing
signal function.

3. ADAPTIVE FILTER FORMALISM

There is a very convenient notation for describing
the McCulloch-Pitts neuron, called the adaptive fil-
ter. It is this notation that I will use to translate
models into a common language so that we can com-
pare and contrast them. The elementary adaptive
filter depicted in Figure 2b has:

1. a level F, that registers an input pattern vector;

2. signals §; that pass through weighted pathways:
and

3. a second level F, whose activity pattern is here
computed by the McCulloch-Pitts function:

X, = > Sw, + 0, (1
The reason that this formalism has proved so ex-

traordinarily useful is that the F; level of the adaptive
filter computes a pattern match, as in eqn (2):

> Sw, =S - w, = |IS| Iw{| cos(S, w,). (2)

The independent sum of the weighted pathways in
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(2) equals the dot product of the signial vector § times
the weight vector w;. This term can be factored into
the “energy,” the product of the lengths of § and w;:
times a dimensionless measure of “pattern match,”
the cosine of the angle between the two vectors.
Suppose that the weight vectors w; are normalized
and the bias terms {, are all equal: Then the activity
vector x across the second level describes the degree
of match between the signal vector § and the various
weighted pathway vectors w;: the [ node with the
greatest activity indicates the weight vector that
forms the best match.

4. LOGICAL CALCULUS AND
INVARIANT PATTERNS

The paper that first describes -the McCulloch-Pitts
model is entitled “*A logical calculus of the ideas
immanent in nervous activity” (McCulloch & Pitts,
1943). In that paper, McCulloch and Pitts analyze
the adaptive filter without adaptation. 1In their
models, the weights are constant. There is no learn-
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FIGURE 2. The McCulioch-Pitts mode! (s) as a neuron, with
typicai nonlinear signai functions; (b) as an.adaptive filter.
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ing. The 1943 paper shows that given the linear filter
with an absolute inhibition term:

x. = > Sw, + 0, — [inhibition] (3)

and binary output signals, these networks can be
configured to perform arbitrary logical functions.
And if vou are looking for applications of neural
network research vou need only read the memoires
of John von Neumann (1958) to sce how heavilv the
McCulloch-Pitts formalism influenced the develop-
ment of present-day computer architectures.

In a sensce this was looking backwards. to the carly
20th century mathematics of Principia Mathematica
(Russell & Whitchead, 1910, 1912, 1913). A glance
at the 1943 McCulloch-Pitts paper shows that it is
written in notation with which few of us are now
familiar. (This is a good example of revolutionary
ideas being expressed in the language of a previous
era. As the revolution comes about a new language
evolves. making the seminal papers “hard to read.™)
McCulloch and Pitts also clearly looked forward to-
ward present day neural network rescarch. For ex-
ample. a Jater paper is entitled "How we know
universals: The perception of auditory and visual
forms™ (Pitts & McCulloch, 1947). There they ex-
amine ideas in pattern recognition and the compu-
tation of invariants. They thus took their research
program into a domain distinctly different from the
carlicr analysis of formal network groupings and
computation. Still they considered only models with-
out learning.

5. PERCEPTRONS AND BACK-COUPLED
ERROR CORRECTION
The McCulloch-Pitts papers were extraordinarily in-
fluential, and it was not long before the next gen-
eration of researchers added learning and adapta-
tion. One great figure of the next decade was Frank

McCULLOCH-PITTS + LEARNING
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FIGURE 3. Principal elements of a Rosenblatt perceptron:
sensory unit (S), association unit (A), and response unit (R).
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Rosenblatt, whose name is tied with the perceptron
model (Rosenblatt. 1958). Actually. “perceptron”
refers to a large class of neural models. The models
that Rosenblatt himself developed and studied are
numerous and varied; see. for example, his book.
Principles of Neurodynamics (1962).

The core idea of the perceptron is the incorpo-
ration of learning into the McCulloch-Pitts neuron
model. Figure 3 illustrates the main elements of the
perceptron, including, in Rosenblatt’s terminology,
the sensory unit (S); the association unit (A), where
the learning takes place: and the response unit (R).

One of the many perceptrons that Rosenblatt
studied. one that remains important to the present
day. is the back-coupled perceptron (Rosenblatt,
1962, section 1V). Figure 4a illustrates a simple ver-
sion of the back-coupled perceptron model, with a
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i .
— 0 <
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FIGURE 4. Back-coupled error correction. (a) The difference
between the target output and the actual output is fed back
to adjust weights when an error occurs. (b) All weights wy
fanning in to the jth node are adjusted in proportion to the
error ¢; at that node.
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teedforward adaptive filter and binary output signal.
Weights w, are adapted according to whether the
actual output §; matches a target output b; imposed
on the system. The actual output vector is subtracted
from the target output vector: their difference is de-
fined as the error; and that difference is then fed
back to adjust the weights, according to some prob-
abilistic law. Rosenblatt called this process back-cou-
pled error correction. It was well known at the time
tht these two-level perceptrons could sort linearly
separable inputs. which can be separated by a hy-
perplane in vector space. into two classes. Figure 4b
shows back-coupled error correction in more detail.
In particular the error 9, is fed back to every one of
the weights converging on the jth node.

6. ADALINE AND MADALINE

Research in the 1960s did not stop with these two-
level perceptrons, and continued on to multiple-level
perceptrons, as indicated below. But first let us con-
sider another development that took place shortly
after Rosenblatt’s perceptron formulations. This is
the set of models used by Bernard Widrow and his
colleagues, especially the adaline and madaline per-
ceptrons, The adaline model has just one neuron in
the F; level in Figure 5; the madaline. or many-ada-
line, model has any number of neurons in that level.
Figure 5 highlights the principal difference between
the adaline/madaline and Rosenblatt’s two-level
feedforward perceptron: an adaline/madaline model
compares the analog output x; with the target output
b,. This comparison provides a more subtle index of
error than a law that compares the binary output
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FIGURE 5. The adaline and madaline perceptrons use-the
analog output x;, rather than the binary output S, In- the back-
coupled error correction procedure.
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with the target output. The error b, -~ x, = 9, 1s fed
back to adjust weights using a Rosenblatt back-cou-
pled error correction rule:

dw, o u

dt e lai &

This rule minimizes the mean squared error:

Rk {5)
averaged over all inputs (Widrow & Hoff, 1960). Tt
is therefore known as the least medii squared error
correction rule, or LMS.

Once again, adaline and madaline provide many
examples of the technological spinoffs already gen-
erated by neural network research. Some of these
are summarized in a recent article {Widrow. & Win-
ter, 1988) in a Computer special issue on artificial
neural systems. There the authors describe adaptive
equalizers and adaptive echo eancellation in ‘mo-
dems,. antennae, and other engineering applications.
all directly traceable to early neural network designs.

7. MULTILEVEL PERCEPTRONS: EARLY
BACK PROPAGATION i

We have so far been talking only about two-level
perceptrons. Rosenblatt. not content with these, also
studied multilevel perceptrons, as described-in Prin-
ciples of Neurodynamics. One particularly interest-
ing section in that book is entitled **Buck-propagating
error correction procedures,” The back-propagation
model described in that section anticipates the cur-
rently used back-propagation mode}; which is also a
multilevel perceptron. In chapter 13, Rosenblatt de-
fines a back-propagation algorithm that has, like
most of his algorithms, a probabilistic fearning law:
he proves a theorem about this system; and he carries
out simulations. His chapter. “Summary of three-
layer series-coupled systems: Capabilities and defi-
ciencies,” is equally revealing. This chapter-includes
a hard took at what is lacking as well as what is good
in Rosenblatt’s back-propagation algorithm, and it
puts the lie to the myth that all of these systems were
looked at only through rose-colored-glasses.”

8. LATER BACK PROPAGATION

Let us now move on to what has become one of the .
most useful and well-studied neural network algo-
rithms, the model we now call back propagation.
This system was first developed by Paul Werbos
(1974), as part of his Ph.D. thesis “Beyond regres-
sion: New tools for prediction and analysis in the
behavioral sciences”; and mdependently discovered
by David Parker (1982). (See Werbos (1988) for a-
review -of -the -history of the development of -back
propagation.)
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The most popular back-propagation examples
carry out associative learning: during training, a vec-
tor pattern a is associated with a vector pattern b;
and subsequently b is recalled upon presentation of
a (Rumelhart, Hinton, & Williams. 1986). The back-
propagation system is trained under conditions of
slow learning, with each pattern pair (a, b) presented
repeatedly during training. The basic elements of a
typical back-propagation system are the McCulloch-
Pitts lincar filter with a sigmoid output signal func-
tion and Rosenblatt back-coupled error correction.
Figure 6 shows a block diagram of a back-propaga-
tion system that is a three-level perceptron. The in-
put signal vector converges on the “hidden unit™ £
level after passing through the first set of weighted
pathways w,. Signals S, then fan out to the F; level.
which generates the actual output of this feedforward
system. A back-coupled error correction system then
comparcs the actual output §, with a target output
p, and feeds back their difference to all the weights
w, converging on the Ath node. In this process the
difference b, — S, is also multiplied by another term.
f'(x;). computed in a “differentiator™ step. Onc
function of this step is to ensure that the weights
remain in a bounded range: the shape of the sigmoid
signal function implies that weights wy will stop
growing if the magnitude of the activity x, becomes
too large, since then the derivative term f'(x;) goes
to zero. Then there is a second way in which the
error correction is fed back to the lower level. This
is where the term “back propagation™ enters: the
weights w, in the feedforward pathways from F to
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FIGURE 6. Block diagram of a back propagation algorithm
for associative memory. Weights in the three-level feedfor-
ward perceptron are adjusted according to back-coupled er-
ror correction rules. Weight transport propagates error
information in F-to-F, pathways back to weights in F,-to-F,
pathways.
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F; are now used in a second place. to filter error
information. This process is called weight transport.
In particular. all the weights w,, in pathways fanning
out from the jth £, node are transported for multi-
plication by the corresponding error terms d,; and
the sum of all these products. times the bounding
derivative term f'(x,), is back-coupled to adjust all
the weights w, in pathways fanning in to the jth f5
node.

9. HEBBIAN LEARNING

This brings us close to the present in this particular
line of perceptron research. I am now going to step
back and trace another major neural network theme
that goes under the name Hebbian learning. One
sentence in a 1949 book. The Organization of Be-
havior, by Donald Hebb is responsible for the phrase
Hebbian learning:

When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes place in firing it, some
growth process or metabolic change takes place in one or
both cells such that A’s efficiency. as one of the cells firing
B. is increased. (Hebb, 1949)

Actually, "Hebbian learning”™ was not a new idea
in 1949: it can be traced back to Pavlov and earlier.
But in the decade of McCulloch and Pitts, the for-
mulation of the idea in the above sentence crystal-
lized the notion in such a way that it became widely
influential in the emerging neural network field.
Translated into a differential equation (Figure 7). the
Hebbian rule computes a correlation between the
presynaptic signal S, and the postsynaptic activity x;,
with positive values of the correlation term S, x; lead-
ing to increases in the weight w,.

The Hebbian learning theme has since evolved in
a number of directions. One important development
entailed simply adding & passive decay term to the

PRESYNAPTIC
5 @ |
j tPOSTSYNAPTIC

r
]
CORRELATION /i

v

FE O

1

FIGURE 7. Donald Hebb (1949) provided a qualitative de-
scription of increases in path strength that occur when cell
A helps to fire cell B. In the adaptive filter formalism, this
hypothesis is often interpreted as a weight change that oc-
curs when a presynaptic signal S, is correlated with a post-
synaptic activity x;.
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Hebbian correlation term:
dw,
dr

(Grossberg, 1968). Other developments are de-
scribed below. In all these rules. changes in the
weight w; depend upon a simple function of the pre-
synaptic signal §;, the postsynaptic activity x;, and
the weight itself, as in (6). In contrast, back-coupled
€rror correction requires a term that must be com-
puted away from the target node and then transmit-
ted back to adjust the weight.

= adx, — w, (6)

10. THE LEARNING MATRIX

Many of the models that followed the perceptron in
the 1950s and 1960s can be phrased in Hebbian (plus
McCulloch-Pitts) language. One of the earliest and
most important is the learning matrix (Figure 8) de-
veloped by K. Steinbuch (1961). The function of the
learning matrix is to sort. or partition, a set of vector
patterns into categories. In the simple learning ma-
trix illustrated in Figure 8a, an input pattern a is
represented in the vertical wires. During learning a
category for a is represented in the horizontal wires
of the crossbar: a is placed in category J when the
Jth component of the output vector b-is set equal to
I. During such an input presentation the weight w,
is adjusted upward by a fixed amount if ¢, = 1 and
downward by the same amount if g, = 0. Then duriag
performance the weights w;, are held constant; and
an input a is deemed to be in category J if the weight
vector w; = (wy,, . . . wy;) is closer than any other
weight vector to a, according to some measure of
distance.

Recasting the crossbar learning matrix in the
adaptive filter format (Figure 8b) helps us to see that
this simple model is the precursor of a fundamental
module widely used in present day neural network
modeling, namely competitive learning. In particular,
activity at the top level of the learning matrix cor-
responds to a category representation. Setting activ-
ity x, equal to 1, while all other x/’s are set equal to
0, corresponds to the dynamics of a choice, or winner-
take-all, neural network. Steinbuch’s learning. rule
can also be translated into the Hebbian formalism,
with weight adjustment during learning a joint func-
tion of a presynaptic signal S; = (2a; — 1) and a
postsynaptic signal x, = b,. (This rule is not strictly
Hebbian since weights can decrease as well as in-
crease.) Then during performance, weight changes
are prevented; a new signal function S; = a;ischosen;
and an F, choice rule is imposed, based, for example,
on the dot product measure illustrated in Figure 9b.

A model comparative analysis of the learning ma-
trix and the madaline models and their electronic
implementations can be found in a paper by Stein-
buch and Widrow (1965). This paper, entitled “A
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11. LINEAR ASSOCIATIVE
MEMORY- (LAM) '

We will now move to a different line of research,

namely the linear associative . memory (LAM)
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models. Pioneering work on these models was done
by Anderson (1972), Kohonen (1972), and Nakano
(1972). Subsequently, many other linear associative
memory models were developed and analyzed. for
example, by Kohonen and his collaborators, who
studied LAMs with iteratively computed weights that
converge to the Moore-Penrose pseudoinverse (Ko-
honen & Ruohonen, 1973). This latter system is op-
ttmal with respect to the LMS error (5), and so is
known as the optimal linear associative memory
(OLLAM) model. Variations included networks with
partial connectivity, probabilistic learning laws. and
nonlinear perturbations.

At the heart of all these variations 1s a very simple
idea. namely that a set of pattern pairs (a'”!. b'/")
can be stored as a correlation weight matrix:

W= 2 b (7)

o)

The LAMSs have been an enduringly useful class of
models because, in addition to their great stmplicity,
they embody a sort of pertection. Namely. perfect
recall is achieved, provided the input vectors a'*’ are
mutually orthogonal. In this case, during perform-
ance. presentation of the pattern a'”’ yields an output
vector x proportional to b'”, as follows:

- o= ) . N iy = N L0 N i
X, =ar-w = Za, W, = Zal (Za: b/ )
, ] /

i

= E(Z af”'ul“”)bf"’ — Z (at” - a“”)bf"" (8)
PR / g

If. then. the vectors a'”’ are mutually orthogonal.
the last sum in (8) reduces to a single term. with

X, = ”a(/'tuzbtrn. (9)

Thus the output vector x is directly proportional to
the desired output vector, b'?'. Finally, if we once
again cast the LAM in the adaptive filter framework.
we see that it is a Hebbian learning model (Figure
9).

12. REAL-TIME MODELS AND
EMBEDDING FIELDS

Most of the models we have so far discussed require
external control of system dynamics. In the back
propagation model shown in Figure 6. for example,
the initial feedforward activation of the three-level
perceptron is followed by error correction steps that
require either weight transport or reversing the di-
rection of flow of activation. In the linear associative
memory mode! in Figure 9, dynamics are altered as
the system moves from its learning mode to its per-
tormance mode. During learning, activity x,; at the
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FIGURE 9. A linear associative memory network, in adaptive
tilter/Hebbian learning format.

output level F, is set equal to the desired output b;.
while the input 2, ¢,w; coming to that level from F,
through the adaptive filter is suppressed. During per-
formance. in contrast, the dynamics are reversed:
weight changes are supressed and the adaptive filter
input determines ..

The phrase real-time describes neural network
models that require no external control of system
dynamics. (Real-time is alternatively used to describe
any system that is able to process inputs as fast as
they arrive.) Differential equations constitute the
language of real-time models. A real-time model may
or may not have an external teaching input, like the
vector b of the LAM model: and learning may or
may not be shut down after a finite time interval. A
typical real-time model is tllustrated in Figure 10.
There. excitatory and inhibitory inputs could be
either internal or external to the model. but. if pres-
ent, the influence of a signal i1s not selectively ig-
nored. Moreover the learning rate «(¢) might, say.
be constant or decay to 0 through time, but does not
require algorithmic control. The dynamics of per-
formance are described by the same set of equations
as the dynamics of learning.

Real-time modeling has characterized the work of
Stephen Grossberg over the past thirty years, work
that in its early stages was called a theory of embed-
ding fields (Grossberg, 1964). These early real-time
models, as well as the more recent systems developed
by Grossberg and his colleagues at the Boston Uni-
versity Center for Adaptive Systems, portray the
inextricable linking of fast nodal activation and slow
weight adaptation. There is no externally imposed



250

ACTIVATION EQUATION (ADDITIVE MODEL )

dx.
_XJ_=—xi+E{

excitatory ]_ >3 l’inhibitory ]
dt

inputs inputs

LEARNING EQUATION

dw .
_w_'1= elt) F(S,x.,w. )
di v

FIGURE 10. Elements of a typical real-time model, with ad-
ditive activation equations.

distinction between a learning mode and a perform-
ance mode.

13. INSTARS AND OUTSTARS

Two key components of embedding field systems are
the instar and the outstar. Figure 11 illustrates the
fan-in geometry of the instar and the fan-out ge-
ometry of the outstar.

Instars often appear in systems designed to carry
out adaptive coding, or content-addressable memory
(CAM) (Kohonen, 1980). For example, suppose that
the incoming weight vector (w,,. ... wy) ap-
proaches the incoming signal vector (S, . ... Sy)
while an input vector a is present at F|; and that the
weight and signal vectors are normalized. Then eqn
(2) implies that the filtered input Z; S;w, to the Jth
F, node approaches its maximum value during fearn-
ing. Subsequent presentation. of the same F; input
pattern a maximally activates the Jth F; node; that
is, the ‘“‘content addresses the memory,” all other
things-being equal.

The outstar, which is dual to the instar, carries
out spatial pattern learning. For example, suppose
that the outgoing weight vector (w,, . . . , wyy) ap-
proaches the F, spatial activity pattern (x,, . . . . Xy)
while an input vector a is present. Then subsequent
activation of the Jth F, node transmits to F, the signal
pattern (S;w;, . . ., Swy) = Si(wi, .., Wiy,
which is directly proportional to the prior F, spatial
activity pattern (x,, . . . ,Xy), even though the input
vector is now absent; that is, the ‘“‘memory addresses
the content.”

The upper instar and outstar in Figure 11 are ex-
amples of heteroassociative memories, where the
field F, of nodes indexed by i is disjoint from the
field F, of nodes indexed by j. In general; these fields

G. A.-Carpenter
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FIGURE 11. Heteroassociative and auioassociative instars
and outstars, for adaptive coding and spatial pattern fearn-
ing.

can overlap. The important special case in which the

two fields coincide is called autoassociative memory,

also shown in Figure 11. Powerful computational

properties arise when neural network architectures
are constructed from a combination of instars and
outstars. We will later see some of these designs.

14. ADDITIVE AND SHUNTING
ACTIVATION EQUATIONS

The outstar and the instar have been studied in great . -

detail and with various combinations of activation,
or short-term memory, equations and learning; or
long-term memory, equations. One activation equa-
tion, the additive model, is illustrated in Figure 10.
There, activity at a node is proportional to the dif-
ference between the net excitatory input and the net
inhibitory input. Most of the models discussed so far
employ a version of the additive activation model.
For example, the McCulloch-Pitts activation equa-
tion (3) is the steady-state of the:additive equation
(10):

dx,

=t [2 Sw, + 0, J — [inhibition). _ (10}

Grossberg (1988) reviews a number of neural models
that are versions of the additive equation.
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An important generalization of the additive model
is the shunting model. In a shunting network, exci-
tatory inputs drive activity toward a finite maximum,
while inhibitory inputs drive activity toward a finite
minimum. as in eqn (11):

dx ‘ Citatory
T P IR [ex.ut 1thy]
di — inputs

~ | inhibitory

— (B + x> [ inputs~J. (1
In (11}, activity x, remains in the bounded range
( -B. A). and decays to the resting level 0 in the
absence of all inputs. In addition, shunting equations
display other crucial properties such as normalization
and automatic gain control. Finally. shunting net-
work cquations mirror the underlying physiology of
single nerve cell dynamics, as summarized by the
Hodgkin-Huxley (1932) equations:

dV
e l/’ L Lv’ _ "
dr s )

x gomth — (Vi + Vgen'. (12)

In this single nerve cell model. during depolarization,
sodium ions entering across the membrane drive the
potential V toward the sodium equilibrium potential
V.. during repolarization, exiting potassium ions
drive the potential toward the potassium equilibrium
potential — Vo and in the balance the cell is restored
to its resting potential, which is here set equal to 0.
In 1963 Hodgkin and Huxley won the Nobel Prize
for their development of this classic neural model.

15. LEARNING EQUATIONS

A wide variety of learning laws for instars and out-
stars have also been studied. One example is the
Hebbian correlation + passive decay equation (6).
There, the weight w, computes a long-term weighted
average of the product of presynaptic activity $; and
postsynaptic activity x;.

A typical learning law for instar coding is given
by eqn (13):

dw, . )
o dOS = wylx,. (13)

Suppose. for example. that the Jth £, node is to
represent a given category. According to (13). the
weight vector (wy,. . . ., Wy ) converges to the sig-
nal vector (S,. . . . .. S+ ) when the Jth node is active:
but that weight vector remains unchanged when a
different category representation is active. The term
x; thus buffers. or gates, the weights w,; against un-
desired changes. including memory loss due to pas-
sive decay. On the other hand, a typical learning law
for outstar pattern learning is given by eqn (14):

dw,

o e(n)x, — w,]S. (4
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In (14). when the Jth F> node is active the weight
vector (wy,. . . . . wyy) converges to the F, activity
pattern vector (x,. ... .. ¥y). Again, a gating term
buffers weights against inappropriate changes. Note
that the pair of learning laws described by (13) and
(14) are non-Hebbian, and are also nonsymmetric.
That is. w, is generally not equal to wj. unless the
F, and F. signal vectors § are identical to the cor-
responding activity vectors x.

A series of thcorems encompassing neural net-
work pattern learning by svstems employing a large
class of these and other activation and learning laws
was proved by Grossberg in the late 1960s and carly
1970s. One set of results falls under the heading out-

star learning theorems. One of the most general of

these thcorems is contained in an article entitled
“Pattern lcarning by functional-differential ncural
networks with arbitrary path weights™ (Grossberg,
1972a). This is reprinted in Studies of Mind and Brain
(sec Bibliography). which also contains articles that
introduce and analyze additive and shunting equa-
tions (10) and (11): learning with passive and gated
memory decay laws (6). (13). and (14): outstar and
instar modules; and neural network architectures con-
structed from these clements.

16. LEARNING SPACE-TIME PATTERNS:
THE AVALANCHE

While most of the neural network models discussed
in this article arc designed to learn spatial patterns.
problems such as speech recognition and motor
learning require an understanding of space-time pat-
terns as well. An carly neural network model. called
the avalanche. is capable of learning and performing
an arbitrary space-time pattern (Grossberg, 1969).
In essence. an avalanche is a series of outstars (Figure
12). During lcarning, the outstar active at time ¢

1 .
NN ~—
a d \\tﬁﬁ
000000000
Yallid Wad
a (t)

FIGURE 12. The avalanche: A neural network capable of
learning and performing an arbitrary space-time pattern.
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learns the spatial pattern x(¢) generated by the input
pattern vector a(z). It is useful to think of x(¢) as the
pattern determining finger positions for a piano
piece: the same field of cells is used over and over,
and the sequence ABC is not the same as CBA.
Following learning, when no input patterns are pres-
ent, activation of the sequence of outstars reads-out,
or “performs,” the space-time pattern it had previ-
ously learned. In its minimal form, this network can
be realized as a single cell with many branches.
Learning and performance can also be supervised by
a nonspecific GO signal. The GO signal may ter-
minate an action sequence at any time and otherwise
modulate the performance energy and velocity. In
general, the order of activation of the outstars. as
well as the spatial patterns themselves, need to be
learned. This can be accomplished using autoasso-
ciative networks, as in the theory of serial learning
(Grossberg & Pepe, 1970) or adaptive signal pro-
cessing (Hecht-Nielsen, 1981).

17. ADAPTIVE CODING AND
CATEGORY FORMATION

Let us now return to the theme of adaptive coding
and category formation, introduced earlier in our
discussion of Steinbuch’s learning matrix. As shown
in Figure 8b, the learning matrix can be recast in the
adaptive filter formalism, with the dynamics of the
F; level defined in such a way that only one node is
active at a given time. The active node, or category
representation, is selected by a “‘teacher’ during
learning. During performance the active node is se-
lected according to which weight vector forms the
best match with the input vector. Now compare the
learning matrix in Figure 8b with the instar in Figure
L1. The pictures, or network “anatomies.” seem to
indicate that the instar is identical to the learning
matrix. The difference between the two models lies
in the dynamics, or network *“‘physiology.’” The fun-
damental characteristic of the instar that distin-
guishes it from the learning matrix and other early
models is the constraint that instar dynamics occur
in real time. In particular, the instar filtered input
S - w, influences x; at all times, and is not artificially
suppressed during learning. However, the desire to
construct a category learning system that can operate
in real time immediately leads to many questions.
The most pressing one is: how can the categories be
represented if the dynamics are not imposed by an
external agent? For the choice case, for example, the
internal system dynamics need to allow at most one
F, node to be active, even though other nodes may
continue to receive large inputs, either internally, via
the filter, or externally, via the vector b. Even when
the category representation is a distributed pattern,
this representation is generally a compressed, or con-
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trast-enhanced, version of the highly distributed net
pattern coming in to F, from all' sources. This
compression is, in fact, the step that carries out the
process wherein some or many items are grouped
into a new unit, or category.

18. SHUNTING COMPETITIVE NETWORKS

Fortunately, there is a well-defined class of neural
networks ideally suited to play the. role of the cate-
gory representation field. This is the -class of on-
center/off-surround shunting competitive networks.
Figure 13 illustrates one such system. There. the in-
put vector I can be the sum of inputs from one or
more sources and is, in general, highly distributed.
On-center here refers to the -feedback - process
whereby a cell sends net excitatory signals to itself
and to its immediate neighbors; off-surround refers
to the complementary process whereby the same cell
sends net inhibitory signals to its more distant neigh-
bors. In an article entitled “*Contour enhancement.
short-term memory, and constancies in reverberating
neural networks.” Grossberg (1973) carried out a
mathematical characterization of the -dynamics of
various classes of shunting competitive networks. In
particular he classified the systems.according to the
shape of the signal function f(x;). Depending upon
whether this signal function is linear, faster-than-tin-
ear, slower-than-linear, or-sigmoid; the networks are
shown to quench or enhance low-amplitude noise:
and to contrast-enhance or flatten the input pattern
I in varying degrees. In particular. a faster-than-lin-
ear signal function implements the choice network
needed for many models of category learning. A sig-
moid signal function, on the other hand. suppresses
noise and contrast-enhances the input pattern, with-
out necessarily going to the extreme of concentrating
all activity in ene node. Thus an on-center/off-sur-

x, @ [
RIRUNERE
S~ ...nlllnnmmumﬂdmmm %ﬂftm INPUT

dx,

—d—-‘-=-x + (A-X (%)

; £ x )

FIGURE 13, An on-center/off-surround shuating. competitive
network. Qualitative features of the signal function f(x,) de-
termine the way in which thé ngtmﬂ( tvansforms the input
vector | into the state vector x.




Pattern Recognition

round shunting competitive network with a sigmoid
signal function is shown to be an ideal design for a
category learning system with distributed code rep-
resentations. This parametric analysis thus provided
the foundation for constructing larger network ar-
chitectures that use a competitive network as a com-
ponent with well-defined functional properties.

19. COMPETITIVE LEARNING

A module of fundamental importance in recent
neural network architectures is described by the
phrase competitive learning. This module brings the
properties of the learning matrix into the real-time
setting. The basic competitive learning architecture
consists of an instar filter. from a field F, to a field
F.. and a competitive neural network at £ (Figure
14). The competitive learning module can opcrate
with or without an external teaching signal b: and
learned changes in the adaptive filter can proceed
indefinitely or cease after a finite time interval. If
there is no teaching signal at a given time. then the
net input vector to F, is the sum of signals arriving
via the adaptive filter. Then if the category repre-
sentation network 1s designed to make a choice, the
node that automatically becomes active is the one
whose weight vector best matches the signal vector,
asineqn (2). If there 1s a teaching signal, the catcgory
representation decision still depends on past learn-
ing. but this is balanced against the external signal
b, which may or may not overrule the past in the
competition. In either case. an instar lcarning law
such as eqn (13) allows a chosen category to encodc
aspects of the new F| pattern in its learned repre-
sentation.

FIGURE 14, The basic competitive learning module combines
the instar pattern coding system with a competitive network
that contrast-enhances its filtered input.
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20. COMPUTATIONAL MAPS

Investigators who have developed and analyzed the
competitive learning paradigm over the years include
Steinbuch (1961). Grossberg (1972b, 1976a. 1976b),
von der Malsburg (1973). Amari (1977), Amari and
Takeuchi (1978). Bienenstock. Cooper. and Munro
(1982). Rumelhart and Zipser (1985). and many oth-
ers. Moreover. these and other investigators pro-
ceeded to embed the competitive learning module in
higher order neural network systems. In particular,
systems were designed to learn computational maps.
producing an output vector b in response to an input
vector a. The core of many of these computational
map models is in instar-outstar system. Recognition
of this common theme highlights the models™ differ-
ences as well as their similaritics. An carly self-or-
ganizing three-level instar-outstar computational
map model was described by Grossberg (1972b). who
later replaced the instar portion of this model with
a competitive learning module (Grossberg. 1976b).
The self-organizing feature map (Kohonen. 1984)
and the counter-propagation network (Hecht-Niel-
sen, 1987) are also examples of instar-outstar com-
petitive learning models.

The basic instar-outstar computational map sys-
tem is depicted in Figure 15. The first two levels, F,

INSTAR / OUTSTAR FAMILIES
B

N\
1280y

o]
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OUTSTAR (FAN - OUT)
SPATIAL PATTERN LEARNING

ON - CENTER / F 2
OFF - SURROUND
COMPETITION

INSTAR (FAN - IN)
ADAPTIVE CODING

ll&/k, &

X

Cy

FIGURE 15. A three-level, feedforward instar-outstar module
for computational mapping. The competitive learning module
(F, and F,) is joined with an outstar-type fan-out, for spatial
pattern learning.
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and F;, form a competitive learning system. Included
are the fan-in adaptive filter, contrast-enhancement
at the “*hidden” level F;, and a learning law for instar
coding of the input patterns a. The top two levels
then employ a fan-out adaptive filter for outstar pat-
tern learning of the vector b. This three-level archi-
tecture allows, for example, two very ditferent input
patterns to map to the same output pattern: each
input pattern can activate its own compressed rep-
resentation at F,. while cach of these F, represen-
tations can learn a common output vector. In the
extreme case where each input vector a activates its
own F, node the system learns any desired output.
The generality of this extreme case, which imple-
ments an arbitrary mapping from R™ to R”, is offset
by its lack of generalization, or continuity, as well
as by the fact that each learned pair (a. b) requires
its own F. node. Distributed F, representations pro-
vide greater generalization and efficiency, at a cost
in complete a priori generality of the mapping.

21. INSTABILITY OF
COMPUTATIONAL MAPS

The widespread use of instar-outstar families of com-
putational maps attests to the power of this basic
neural network architecture. This power is, however.
diminished by the instability of feedforward systems:
in general, recently learned patterns tend to erode
past learning. This instability arises from two
sources. First, even if a chosen category is the best
match for a given input, that match may nevertheless
be a poor one, chosen only because all the others
are even worse. Established codes are thus vulner-
able to recoding by “outliers.” Second, learning laws
such as eqn (13) imply that a weight vector tends
toward a new vector that encodes the presently active
pattern, thereby weakening the trace of the past.
Thus weight vectors can eventually drift far from
their original patterns, even if learning is very slow
and even if each individual input makes a good match
with the past as recorded in the weights.

The many existing variations on the three-level
instar-outstar theme illustrate some of the ways in
which this family of models can be adapted to cope
with the basic system’s intrinsic instability. One sta-
bilization technique causes learning to slow or cease
after an initial finite interval; but then a subsequent
unexpected pattern cannot be encoded, and insta-
bility could still creep in during the initial learning
phase. Another approach is to restrict the class of
input patterns to a stable set. This technique requires
that the system can be sufficiently well analyzed to
identify such a class, like the orthogonal inputs of
the linear associative memory model (Figure 9); and
that all inputs can be confined to this class. An often
successful way to compensate for the instability of
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these systems is to slow the learning rate to such an
extent that learned patterns are buffered against mas-
sive recoding by any single input. Of course, then,
each pattern needs to be presented very many times
for adequate learning to occur, a fact-that was dis-
cussed, for example, by Rosenblatt in his critique of
back propagation.

22. ADAPTIVE RESONANCE.
THEORY (ART)

It was analysis of the instability of feedforward instar-
outstar systems that led to the introduction of adap-
tive resonance theory (ART) (Grossberg, 1976¢) and
to the development of the neural network systems
ART 1 and ART 2 (Carpenter & Grossberg, 1987a.
1987b). ART networks are designed, in particular,
to resolve the stability-plasticity dilemma: they are
stable enough to preserve significant past learning,
but nevertheless remain adaptable enough to .incor-
porate new information whenever it might appear.

The key idea of adaptive resonance. theory is that
the stability-plasticity dilemma can be resolved by a
system in which the three-level network of Figure 15
is folded back on itself, identifying the top level (Fy)
with the bottom level ( F)) of the instar-outstar map-
ping system. Thus the minimal ART module includes
a bottom-up competitive learning system combined
with a top-down outstar pattern learning system.
When an input a is presented to an' ART network,
system dynamics initially follow thé-course of com-
petitive learning (Figure 14). with bottom-up acti-
vation leading to a. contrast-enhanced category
representation at F5. In the absencé of other inputs
to F,, the active category is determined by past learn-
ing as encoded in the adaptive weights in the bottom-
up filter. But now, in contrast to feedforward sys-
tems, signals are sent from F; back down to F, via a
top-down adaptive filter. This feedback process ai-
lows the ART module to overcome both of: the
sources of instability described in section 21, as fol-
lows.

First. as in the competitive learning module, the -
category active at F>, may poorly match the pattern
active at F,. The ART system is designed to carry
out a matching process that asks the question: should
this input really be in this category? If the answer-is -
no, the selected category is quickly rendered inac-
tive, before past learning is disrupted by the outlier,
and a search process ensues. This search process em- -
ploys an auxiliary orienting subsystem. that is con-
trolled by the dynamics of the ART system itself.
The orienting subsystem incorporates a dimension-
less vigilance parameter that establishes the criterion
for deciding whether the match is a good enough.one
for the input to be accepted -as an exemplar of the
chosen category. ‘
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Second, once an input is accepted and learning
proceeds, the top-down filter continues to play a dif-
tferent kind of stabilizing role. Namely, top-down sig-
nals that represent the past learning meet the original
input signals at F,. Thus the F, activity pattern is a
function of the past as well as the present, and it is
this blend of the two, rather than the present input
alone. that is learned by the weights in both adaptive
tilters. This dynamic matching during learning leads
to stable coding. even with fast learning.

An example of the ART 1 class of minimal mod-
ules 1s illustrated in Figure 16. In addition to the two
adaptive filters and the orienting subsystem, Figure
16 depicts gain control processes that actively regu-
late learning. Theorems have been proved to char-
acterize the response of an ART 1 module to an
arbitrary sequence of binary input patterns (Carpen-
ter & Grossberg. 1987a). ART 2 systems were de-
veloped to self-organize recognition categories for
analog as well as binary input sequences. One prin-
cipal difference between the ART | and the ART 2
modules is shown in Figure 17. In examples so far
developed. the stability criterion for analog inputs
has required a three-layer feedback system within
the F, level: a bottom layer where input patterns are
read in: a top layer where filtered inputs from F- are
read in: and @ middle layer where the top and bottom
patterns are brought together to form a matched pat-
tern that is then fed back to the top and bottom F
lavers.

ART 1
ATTENTIONAL ORIENTING
SUBSYSTEM SUBSYSTEM
F2 reset
|Q<
4

ACTIVE INPUT VIGILANCE.
REGULATION PARAMETER

FIGURE 16. An ART 1 module for stable, self-organizing ca-
tegorization of an arbitrary sequence of binary input pat-
terns.
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FIGURE 17. Principal elements of an ART 2 module for stable,
self-organizing categorization of an arbitrary sequence of
analog or binary input patterns. The F, level is a competitive
network with three processing layers.

23. ART FOR ASSOCIATIVE MEMORY

A minimal ART module is a category learning sys-
tem that self-organizes a sequence of input patterns
into various recognition categories. It is not an as-
sociative memory system. However, like the com-
petitive learning module in the 1970s. a minimal
ART module can be embedded in a larger system
for associative memory. A system such as an instar-
outstar module (Figure 15) or a back-propagation
algorithm (Figure 6) directly pairs sequences of in-
dividual vectors (a, b) during learning. If an ART
system replaces levels F, and F, of the instar-outstar
module. the associative learning system becomes
self-stabilizing. ART systems can also be used to pair
sequences of the categories self-organized by the in-
put sequences (Figure 18). Moreover, the symmetry
of the architecture implies that pattern recall can
occur in either direction during performance. This
scheme brings to the associative memory paradigm
the code compression capabilities of the ART sys-
tem, as well as its stability properties.

24. COGNITRON AND NEOCOGNITRON

In conclusion, we will consider two sets of models
that are variations on the themes previously de-
scribed. The first class, developed by Kunihiko Fu-
kushima. consists of the cognitron (Fukushima,
1975) and the larger-scale neocognitron (Fukushima,
1980, 1988). This class of neural models is distin-
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FIGURE 18. Two ART systems combined to form an asso-
ciative memory architecture.

guished by its capacity to carry out translation-in-
variant and size-invariant pattern recognition. This
is.accomplished by redundantly coding elementary
features in various positions at one level; then cas-
cading groups of features to the next level: then
groups of these groups: and so on. Learning can
proceed with or without a teacher. Locally the com-
putations are a type of competitive learning that use
combinations of additive and shunting dynamics.

25. SIMULATED ANNEALING

Finally, in addition to the probabilistic weight change
laws which were a prominent feature of, for example,
the modeling efforts of pioneers such as Rosenblatt
and Amari, another class of probabilistic weight
change laws appears in more recent work under the
name simulated annealing, introduced by Kirkpa-
trick, Gellatt, and Vecchi (1983). The main idea of
simulated annealing is the transposition of a method
from statistical mechanics, namely the Metropolis
algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953), into the general context of
large complex systems. The Metropolis algorithm
provides an approximate description of a many-body
system, namely a material that anneals into a solid
as temperature is slowly decreased. Kirkpatrick et
al. (1983) drew an analogy between this system and
problems of combinatorial optimization, such as the
traveling salesman problem, where the goal is to min-
imize a cost function. The methods and ideas, as well
as the large scale nature of the problem, are so closely
tied to those of neural networks that the two ap-
proaches are often linked: This link is perhaps closest
in the Boltzmann machine (Ackley, Hinton, &
Sejnowski, 1985), which uses a simulated annealing
algorithm to update weights in a binary network sim-
ilar to the additive model studied by Hopfield (1982).
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26. CONCLUSION

We have seen how the adaptive filter formalism is
general enough to describe a wide variety of neural
network modules-for associative memory, category
learning, and pattern recognition. Many systems de-
veloped and applied in recent years are-variations on
one or more of these modular themes- This approach
can thus provide a core vocabulary and grammar for
further analysis of the rich and varied: literature of
the neural network field.
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