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Neural Network Models for Pattern Recognition and 
Associative Memory 

1. INTRODUCTION 

Neural network analysis exists on many different lea- 
els. At the highest level (Figure 1) we study theorics. 

architectures, hierarchies for big problems such as 

early vision. speech. arm movement. reinforcement, 
cognition. Each architecture is typically constructed 
from pieces. or tn0d~r1r.s. designed to solve part\ of 

;I bigger problem. These pieces might bc used, for 
example. to associate pairs of patterns with one an- 
other or to sort a class of patterns into various cat- 
egories. In turn, for every such module there is ;I 

bewildering variety of examples, equations, simula- 
tions. theorems, and implementations, studied under 
various conditions such as fast or slow input prescn- 
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tation rates, supervised or unsupervised learning, 
real-time or off-line dynamics. These variations and 

their applications arc-now the subject of hundreds 

of talks and papers each year. In this rcvicw I will 
focus on the middle level. on some of the funda- 

mental neural network modules that carry out as- 

sociative memory. pattern recognition. and category 

Icarning. 
Even then this is ;I big subject. To help organize 

it further I will trace the historical development of 
the main ideas, grouped by theme rather than by 

strict chronological order. But keep in mind that 

there is ;I much more complex history, and many 
more contributors. than you will read about here. I 
refer you to the Bibliography section. in particular 
to the recent collection of articles in the book Nerr- 

rocotnprrtittg: Foundatiom of‘ Kcscwd~. edited by 
James A. Anderson and Edward Koscnfeld (19X8). 

2. THE McCULLOCH-PITTS NEURON 

We would probably all agree to begin with the Mc- 
Culloch-Pitts neuron (Figure 3 ). The McCulloch- 
Pit& model describes a neuron whose activity A-, is 
the sum of inputs that arrive via weighted pathways. 
The input from a particular pathway is an incoming 

signal S, multiplied by the weight M‘,, of that pathway. 
These weighted inputs are summed independently. 
The outgoing signal S, = ,f‘(x-,) is typically a nonlinear 
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FIGURE 1. Levels of neural network analysis. 

function-binary, sigmoid, threshold-linear-of the 
activity X, in that cell. The McCulloch-Pitts neuron 
can also have a bias term 0,. which is formally equiv- 
alent to the negative of a threshold of the outgoing 
signal function. 

3. ADAPTIVE FILTER FORMALISM 

There is a very convenient notation for describing 
the McCulloch-Pitts neuron, called the adaptive fii- 
ter. It is this notation that I will use to translate 
models into a common language so that we can com- 
pare and contrast them. The elementary adaptive 
filter depicted in Figure 2b has: 

1. 
2. 

3. 

a level F, that registers an input pattern vector; 
signals Sj that pass through weighted pathways: 
and 
a second level Fz whose activity pattern is here 
computed by the McCulloch-Pitts function: 

x, = 2 s,w;, + II,. (1) 

The reason that this formalism has proved so ex- 
traordinarily useful is that the F2 Ievel of the adaptive 
filter computes a pattern match, as in eqn (2): 

c SW,, = s . w, = PII llyll COSfS, 4. (2) 

The independent sum of the weighted pathways in 

(2) equals the dot product of the signal vector S times 
the weight vector w,. This term can be factored into 
the “energy,” the product of the lengths of S and w,: 

times a dimensionless measure of “pattern match,” 
the cosine of the angle between the two vectors. 
Suppose that the weight vectors w, arc normalized 
and the bias terms 0, are all equal. Then the activity 
vector x across the second level describes the degree 
of match between the signal vector S and the various 
weighted pathway vectors w,: the f:. node with the 
greatest activity -indicates the weight vector that 
forms the best match. 

4. LOGICAL CALCULUS AND 
INVARIANT PATTERNS 

The paper that first describes the McCulloch-Pit& 
model is entitled “A logical calculus of the ideas 
immanent in nervous activity” (McCulloch & Pitts, 
1943). In that paper, McCulloch and Pitts analyze 
the adaptive filter without udapfution. In their 
models, the weights are constant. There is no learn- 
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ing. The lY41 paper shows that given the linear filter 

with an absolute inhibition term: 

.Y, = 2: S,br: + 0, - [inhibition] (3) 

and binary output signals, these networks can be 

configured to perform arbitrary logical functions. 
And if you arc looking for applications of neural 
network research you need only read the memoire 

of John von Neumann (1958) to see how heavily the 
McCulloch-Pitts formalism influenced the develop- 
ment of present-day computer architectures. 

In a sense this \vas looking backwards. to the early 
20th centurv mathematics of Prittcipia Mrrflzrttzrrric~rt 

(Russell & Whitehead. IYlO. 1912. lY13). A glance 

at the 1043 McCulloch-Pitts paper shows that it is 
uritten in notation with which few of us are now 

familiar. (This is ;I good example of revolutionary 
ideas beins expressed in the language of a previous 

era. As the revolution comes about a new language 
evolves. making the seminal papers “hard lo read.“) 
McC’ulloch and Pitts also clearly looked forward to- 

ward present day neural network research. For CY- 

ample. iI Iatcr paper i\ entitled “How we know 

universals: The perception of auditory and visual 
form\” (Pitts & McCulloch. lY47). There they cx- 

amine ideas in pattern recognition and the compu- 
tation of invariants. They thus took their research 

prosram into a domain distinctly different from the 
carlicr analysis of formal network groupings and 

computation. Still they considered only models with- 
out le;irning. 

5. PERCEPTRONS AND BACK-COUPLED 
ERROR CORRECTION 

The McCulloch-Pitts papers were extraordinaril) in- 
fluential, and it was not long before the next gen- 
eration of researchers added learning and adapta- 
tion. One great figure of the next decade was Frank 
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FIGURE 3. Principal elements of a Rosenblatt perceptron: 
sensory unit(S), association unit (A), and response unit(R). 

Rosenblatt, whose name is tied with the perceptron 

model (Rosenblatt. 1958). Actually. “perceptron” 

refers to a large class of neural models. The models 
that Rosenblatt himself developed and studied are 
numerous and varied; see. for example, his book. 
Ptkiples of Newod_vnutnit:v ( 1 Y63). 

The core idea of the perceptron is the incorpo- 
ration of learning into the McCulloch-Pitts neuron 
model. Figure 3 illustrates the main elements of the 
perceptron. including, in Rosenblatt’s terminology, 

the sensory unit (S); the association unit (A), where 
the learning takes place; and the response unit (R). 

One of the many perceptrons that Rosenblatt 

studied. one that remains important to the present 
day. is the h(lck-colqled prrwtvtrot~ (Rosenblatt, 
IYQ, section IV). Figure -In illustrates ;I simple ver- 

sion of the back-coupled perceptron model, with ;I 
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FIGURE 4. Back-coupled error correction. (a) The difference 
between the target output and the actual output is fed back 
to adjust weights when an error occurs. (b) All weights w,~ 
fanning in to the jth node are adjusted in proportion to the 
error 6, at that node. 



feedforward adaptive filter and binary output signal. 
Weights MJ,, are adapted according to whether the 
actual output S, matches a target output h, imposed 
on the system. The actual output vector is subtracted 
from the target output vector: their difference is de- 
fined as the error: and that difference is then fed 
back to adjust the weights, according to some prob- 
abilistic law. Rosenblatt called this process huck-cou- 

pled error correction. It was well known at the time 
tht these two-level perceptrons could sort linearly 
separable inputs, which can be separated by a hy- 
perplane in vector space, into two classes. Figure 4b 
shows back-coupled error correction in more detail. 
In particular the error 0, is fed back to every one of 
the weights converging on the jth node. 

6. ADALINE AND MADALINE 

Research in the 1960s did not stop with these two- 
level perceptrons, and continued on to multiple-level 
pcrceptrons, as indicated below. But first let us con- 
sider another development that took place shortly 
after Rosenblatt’s perceptron formulations. This is 
the set of models used by Bernard Widrow and his 
colleagues, especially the udaline and madaline per- 
ceptrons. The adalinc model has just one neuron in 
the FZ level in Figure 5; the madaline. or many-ada- 
line, model has any number of neurons in that level. 
Figure 5 highlights the principal difference between 
the adaline/madaline and Rosenblatt’s two-level 
feedforward perceptron: an adalineimadaline model 
compares the analog outputs, with the target output 
6,. This comparison provides a more subtle index of 
error than a law that compares the binary output 
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FIGURE 5. The adall? and maddine perosptrona US+ the 
maiog output x,, rather than the binary 6utput S,, fn the beck- 
coupled error correction procedure. 

with the target output. The error b; .~ x. = tl! is fed 
back to adjust weights using a Rosenblatt back-cou- 
pled error correction rule: 

This rule minimizes the mean squared error: 

x (j- 
(5) 

averaged over all inputs (Widrow & Hoff, 1960). It 
is therefore known as the leust mew/ squared error 
correction rule, or LMS. 

Once again, adaline and madaline provide many 
examples of the technological spinoffs already gen- 
erated by neural network research. Some of these 
arc summarized in a recent article (Widrow & Win- 
ter. 1988) in a Compi4ter special issue on artificial 
neural systems. There the authors describe adaptive 
equalizers and adaptive echo cancehation in mo- 
dems, antennae. and other engineering applications. 
all directly traceable to early neural network designs. 

7. MULTILEVEL PERCEPTRONS: EARLY 
BACK PROPAG-A'fH3N 

We have so far been talking only about two-level 
perceptrons. Rosenblatt, not content withthese, also 
studied multilevel perceptrons, as described in Prirt- 

ciples of Neurodynumics. One particularly interest- 
ing section in that book is entitled ‘*Back-propagating 
error correction procedures,” The baek-propagation 
model described in that section anticipates the cur- 
rently used back-propagation model, which is also a 
multilevel perceptron. In chapter 13, RosenbIatt de- 
fines a back-propagation algorithm that has, like 
most of his algorithms, a probabilistic learning law; 
he proves a theorem about this system: and he carries 
out simulations. His chapter. “Summary of three- 
layer series-coupled systems: Capabilities and defi- 
ciencies,” is equally revealing. This chapter includes 
a hard look at what is lacking as well as what is good 
in Rosenblatt’s back-propagation algorithm, and it 
puts the lie to the myth that all of these systems were 
looked at only through rose-coloreds glasses. 

8. LATER BACK PROPAGATION 

Let us now move on to what has become one of the 
most useful and well-studied neural network algo- 
rithms, the model we now call back propagation. 
This system was first developed by Pam Werbos 
(1974), as part of his Ph.D. thesis “Beyond regres- 
sion: New tools for prediction and analysis in the 
behavioral sciences”; and independently discovered 
by David Parker (1982). (See Werbos (1988) for a 
review of the history of the development of back 
propagation.) 
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The most popular back-propagation examples 

carry out associative learning: during training, a vec- 

tor pattern a is associated with a vector pattern b; 
and subsequently b is recalled upon presentation of 
a (Rumelhart, Hinton. & Williams. 1986). The back- 
propagation system is trained under conditions of 
.slo~, /crrtwitl~~. with each pattern pair (a, b) presented 

repcatcdly during training. The basic elements of a 

typical back-propagation system are the McCulloch- 
Pitts linear filter \vith ;I sigmoid output signal func- 

tion and Rosenblatt back-coupled error correction. 
Figure h shows a block diagram of ;I back-propaga- 

tion system that is a three-level perceptron. The in- 

put signal vector converges on the “hidden unit” Fz 

level after passing through the first set of weighted 

pathways H*,~. Signals S, then fan out to the E; level. 
which generates the actual output of this fecdforM,ard 
system. A back-coupled error correction system then 

compares the actual output S, with a target output 

hi and Eeeds back their difference to all the weights 
I$‘,~ converging on the /cth node. In this process the 

differcncc hi - .Si is also multiplied by another term. 

,/“(x, ). computed in ;I “differentiator” step. One 
function of this step is to ensure that the weights 

remain in ;I bounded range: the shape of the sigmoid 

signal function implies that weights 14’,~ will stop 
growing if the magnitude of the activity _Y~ becomes 
too large. since then the derivative term ,f’(.~~) got’s 
to zero. Then there is a second way in which the 
error correction is fed back to the lower level. This 

is where the term “back propagation” enters: the 

weights 1\*11 in the feedforward pathways from FL to 

TARGET OUTPUT [ACTUAL1 

FIGURE 6. Block diagram of a back propagation algorithm 
for associative memory. Weights in the three-level feedfor- 
ward perceptron are adjusted according to back-coupled er- 
ror correction rules. Weight transport propagates error 
information in F,-to-f, pathways back to weights in F,-to-f, 
pathways. 

& are now used in a second place. to filter error 

information. This process is called weighr tramsport. 

In particular, all the weights I+‘,~ in pathways fanning 
out from the ;th F2 node are transported for multi- 
plication by the corresponding error terms 0,: and 
the sum of all these products. times the bounding 
derivative term ,f’(~~), is back-coupled to adjust all 

the weights MI,, in pathways fanning in to the jth F2 

node. 

9. HEBBIAN LEARNING 

This brings us close to the present in this particular 

line of perceptron research. I am now going to step 
back and trace another ma,jor neural network theme 

that goes under the name HcM~iml ltwrtzitzg. One 
sentence in a 1949 book, Ti~c Uymi~ution of‘ HP- 

havior. by Donald Hebb is responsible for the phrase 

Hebbian learning: 

When an axon of cell A is nc;t~- enough to cscite a ccl1 B 

and repcatedl~ or persistently takes place in firing it, some 
growth process or metabolic change takes place in one or 

both cells such that ,4’s efficiency. as one‘ of the cells firing 

B. is increared. (Hehb. 1940) 

Actually. “Hebbian learning” was not ;I new idea 
in 1949: it can be traced back to Pavlov and earlier. 

But in the decade of McCulloch and I’itts, the for- 
mulation of the idea in the above sentence crystal- 
lized the notion in such ;I way that it became widely 

influential in the emerging neural network field. 

Translated into a differential equation (Figure 7). the 
Hebbian rule computes ;I correlation between the 
presynaptic signal S, and the postsynaptic activity x,, 

with positive values of the correlation term S,X, Icad- 

ing to increases in the weight 11x,,. 
The Hebbian learning theme has since evolved in 

;I number of directions. One important development 
entailed simply adding a passive decay term to the 

t 

dw ij S, __ 
1 I 

= aSI X > 0 
dt 

FIGURE 7. Donald Hebb (1949) provided a qualitative de- 
scription of increases in path strength that occur when cell 
A helps to fire cell 9. In the adaptive filter formalism, this 
hypothesis is often interpreted as a weight change that oc- 
curs when a presynaptic signal Si is correlated with a post- 
synaptic activity xi. 



Hebbian correlation term: 

du;, 

(iI 
= as,s, - IL’,, (h) 

(Grossberg, 1968). Other developments are de- 
scribed below. In all these rules. changes in the 
weight Wi, depend upon a simple function of the pre- 
synaptic signal S,, the postsynaptic activity x,. and 
the weight itself, as in (6). In contrast, back-coupled 
error correction requires a term that must be com- 
puted away from the target node and then transmit- 
ted back to adjust the weight. 
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10. THE LEARNING MATRIX 

Many of the models that followed the perceptron in 
the 1950s and 1960s can be phrased in Hebbian (plus 
McCulloch-Pitts) language. One of the earliest and 
most important is the learning matrix (Figure 8) de- 
veloped by K. Steinbuch (1961). The function of the 
learning matrix is to sort. or partition. a set of vector 
patterns into categories. In the simple learning ma- 
trix illustrated in Figure Sa, an input pattern a is 
represented in the vertical wires. During learning a 
category for a is represented in the horizontal wires 
of the crossbar: a is placed in category J when the 
Jth component of the output vector b is set equal to 
1. During such an input presentation the weight MJ,, 
is adjusted upward by a fixed amount if u, = 1 and 
downward by the same amount if a, = 0. Then during 
performance the weights w,, are held constant; and 
an input a is deemed to be in category J if the weight 
vector w,, = (w,,. . w,,,) is closer than any other 
weight vector to a, according to some measure of 
distance. 

Recasting the crossbar learning matrix in the 
adaptive filter format (Figure 8b) helps us to see that 
this simple model is the precursor of a fundamental 
module widely used in present day neural network 
modeling, namely competitive feurning. In particular, 
activity at the top level of the learning matrix cor- 
responds to a category representation. Setting activ- 
ity xJ equal to 1, while all other x,‘s are set equal to 
0, corresponds to the dynamics of a choice, or winner- 
tuke-all, neural network. Steinbuch’s learning rule 
can also be translated into the Hebbian formalism, 
with weight adjustment during learning a joint func- 
tion of a presynaptic signal S, = (24 - 1) and a 
postsynaptic signal x, = h,. (This rule is not strictly 
Hebbian since weights can decrease as well as in- 
crease .) Then during performance, weight changes 
are prevented; a new signal function S, = a, is chosen; 
and an F2 choice rule is imposed, based, for example, 
on the dot product measure illustrated in Figure 9b. 

A model comparative analysis of the learning ma- 
trix and the madaline models and their electronic 
implementations can be found in a paper by Stein- 
buch and Widrow (1965). This paper, entitled “A 
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critical comparison of two kinds of adaptive classi- 
fication networks,” carries out a side:by-side analysis 
of the learning matrix and the madaline, tracing 
the two models’ capabilities, similarities, and differ- 
ences. 

We will now move to a different line of research. 
namely the linear associative memory (LAM) 
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models. Pioneering work on these models was done 
by Anderson (1972), Kohonen (1972), and Nakano 
(1972). Subsequently, many other linear associative 
memory models were developed and analyzed. for 
example. by Kohonen and his collaborators, who 
studied LAMS with iteratively computed weights that 
converge to the Moore-Penrose pseudoinverse (Ko- 
honen & Ruohonen, 1973). This latter system is op- 
timal with respect to the LMS error (5). and so is 
known as the optimal linear associative memory 
(OLAM) model. Variations included networks with 
partial connectivity, probabilistic learning laws. and 
nonlinear perturbations. 

At the heart of all these variations is a very simple 
idea. namely that a set of pattern pairs (a”‘). b”“) 

can be stored as ;I correlation weight matrix: 

II’., = 2:u l”‘Y”. (7) 

The LAMS have been an enduringly useful class of 
models because. in addition to their great simplicity, 
they embody a sort of perfection. Namely, perfect 
recall is achieved, provided the input vectors a”‘1 are 

mutually orthogonal. In this case, during perform- 
ance. presentation of the pattern a(“)yie an output 
vector x proportional to b(“‘, as follows: 

If, then. the vectors a”” are mutually orthogonal. 
the last sum in (8) reduces to a single term. with 

.y, z Jlal/“lJ’h:“‘, (9) 

Thus the output vector x is directly proportional to 
the desired output vector, b(“‘. Finally. if we once 
again cast the LAM in the adaptive filter framework, 
we see that it is a Hebbian learning model (Figure 

9). 

12. REAL-TIME MODELS AND 
EMBEDDING FIELDS 

Most of the models we have so far discussed require 

external control of system dynamics. In the back 
propagation model shown in Figure 6. for example, 
the initial feedforward activation of the three-level 
perceptron is followed by error correction steps that 
require either weight transport or reversing the di- 
rection of flow of activation. In the linear associative 
memory model in Figure 9, dynamics are altered as 
the system moves from its learning mode to its per- 
formance mode. During learning, activity x, at the 

“I 

lNp; /I 
LEARNING dW 
(HEBEIIAN) $= a,x, q a,b, 

Each pair ( a”’ b@’ ) presented for t time unit : 

PERFORMANCE x = xaw 
1 1 1, 

dw 
2 =(J 

dt 

FIGURE 9. A linear associative memory network, in adaptive 
filter/Hebbian learning format. 

output level F2 is set equal to the desired output h,. 
while the input L;, u,w,~ coming to that level from F, 
through the adaptive filter is suppressed. During per- 
formance. in contrast. the dynamics are reversed: 
weight changes are supresscd and the adaptive filter 

input determines s,. 
The phrase real-time describes neural network 

models that require no external control of system 
dynamics. (Red-time is alternatively used to describe 
any system that is able to process inputs as fast as 
they arrive.) Differential equations constitute the 

language of real-time models. A r-c&time model may 
or may not have an external teaching input. like the 
vector b of the LAM model; and learning may or 

may not be shut down after a finite time interval. A 
typical real-time model is illustrated in Figure 10. 

There. excitatory and inhibitory inputs could be 

either internal or external to the model, but. if pres- 
ent, the influence of a signal is not selectively ig- 
nored. Moreover the learning rate t:(t) might. say. 
be constant or decay to 0 through time, but does not 
require algorithmic control. The dynamics of per- 
formance are described by the same set of equations 
as the dynamics of learning. 

Real-time modeling has characterized the work of 
Stephen Grossberg over the past thirty years. work 
that in its early stages was called ;I theory of err&en- 
ding fields (Grossberg. 1964). These early real-time 
models. as well as the more recent systems developed 
by Grossberg and his colleagues at the Boston Uni- 
versity Center for Adaptive Systems, portray the 
inextricable linking of fast nodal activation and slow 
weight adaptation. There is no externally imposed 
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ACTIVATION EQUATION (ADDITIVE MODEL ) 

LEARNING EQUATION 

!$i = E (0 F( Si, X,, Wi,) 

FIGURE 10. Elements of a typical real-time model, with ad- 
ditive activation equations. 

distinction between a learning mode and a perform- 
ance mode. 

13. INSTARS AND OUTSTARS 

Two key components of embedding field systems are 
the instur and the outs&r. Figure 11 illustrates the 
fan-in geometry of the instar and the fan-out ge- 
ometry of the outstar. 

lnstars often appear in systems designed to carry 
out adaptive coding, or content-addressable memory 
(CAM) (Kohonen, 1980). For example, suppose that 
the incoming weight vector ( wIJ, . wN,) ap- 
proaches the incoming signal vector (S,, . , SK) 
while an input vector a is present at F,; and that the 
weight and signal vectors are normalized. Then eqn 
(2) implies that the filtered input C, S,w,] to the Jth 
F? node approaches its maximum value during learn- 
ing. Subsequent presentation of the same F, input 
pattern a maximally activates the Jth Fz node; that 
is, the “content addresses the memory,” all other 
things being equal. 

The outstar, which is dual to the instar, carries 
out spatial pattern learning. For example, suppose 
that the outgoing weight vector ( wJ ,, . , w,,~) ap- 
proaches the Fr spatial activity pattern (x,, . , x,,) 
while an input vector a is present. Then subsequent 
activation of the Jth F2 node transmits to F, the signal 
pattern (S,w,,, . . . . SJwJN) = S,(w.,,, . . , wfh), 
which is directly proportional to the prior F, spatial 
activity pattern (xl, . . . , xN), even though the input 
vector is now absent; that is, the “memory addresses 
the content .” 

The upper instar and outstar in Figure 11 are ex- 
amples of heteroassociative memories, where the 
field F, of nodes indexed by i is disjoint from the 
field F2 of nodes indexed by j. In general, these fieids 
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ADAPTIVE CODING 
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r I 

Si 6-k-A Si 

OUTSTAR (FAN - OUT) 

SPATIM PATTERN LEARNING 

INDEX SETS 

cfyj-1 

HETEROASSOCIATIVE: l n J = 0 

J AUTOASSOCIATWE: I = J 

j* ( INSTAR = OUTSTAR ) 

FIGURE 11. Heteroassociative and a+t&%aes@c iative instars 
and outstars, for atfapttve coding and spstiaf patkm ksrn- 
ing. 

can overlap. The important special case in which the 
two fields coincide is called autoassociative memory, 
also shown in Figure 11. Powerful computational 
properties arise when neural network architectures 
are constructed from a combination of instars and 
outstars. We will later see some of these designs. 

14. ADDITIVE AND S@UNTING 
ACTIVATiON EQUA’llONS 

The outstar and the instar have been studied in great 
detail and with various combinations of activation. 
or short-term memory, equations and learning, nor 
long-term memory, equations. One activation equa- 
tion, the additive model, is illustrated in Figure 10. 
There, activity at a node is proportional to the dif- 
ference between the net excitatory input and the net 
inhibitory input. Most of the models discussed so far 
employ a version of the additive activation model. 
For example, the McCulloch-Pitts activation equa- 
tion (3) is the steady-state of the.additive equation 
(10): 

LiX 
-J= -X,i- 
dt 1. 

c s,w,, + O! 
1 

- Iinhibition]. (IO) 

Grossberg (1988) reviews a number of neural models 
that are versions of the additive equation. 



An important generalization of the additive model 

is the .shurltin,q model. In a shunting network. cxci- 

tatory inputs drive activity toward a finite maximum. 

while inhibitory inputs drive activity toward a finite 
minimum. as in eqn (1 I): 

In ( 11). activity s, remains in the bounded range 

( il. A), and decays to the resting level 0 in the 
absence of all inputs. In addition, shunting equations 

display other crucial properties such as normalization 
and automatic gain control. Finally, shunting nct- 

work equations mirror the underlying physio!ogy of 
single nerve cell dynamics. as summarized by the 

Hodgkin-Huxley ( 1’_)52) equations: 

In this single nerve cell model. during depolarization, 

sodium ions entering across the membrane drive the 

potential V toward the sodium equilibrium potential 

V,,,: during repolarization, exiting potassium ions 

drive the potential toward the potassium equilibrium 
potential ~ V,: and in the balance the cell is restored 

to its rating potential, which is here set cyual to 0. 
In I963 Hodgkin and Huxley won the Nobel Prize 
for their dcvclopment of this classic neural model. 

15. LEARNING EQUATIONS 

,4 wide variety of learning laws for instars and out- 

stars have also been studied. One example is the 

Hebbian correlation + passive decay equation (6). 
There, the weight ttj,, computes a long-term weighted 

average of the product of prcsynaptic activity S, and 
postsynaptic activity .y,. 

A typical learning law for instar coding is given 

by eqn (13): 

(lll~ 
- = i:(t)(.s, - h,,].Y,. 
tlt 

(131 

Suppose. for example. that the Jth F2 node is to 

represent ;I given category. According to (13). the 
weight vector ( MJ,,. . IV,~~) converges to the sig- 
nal vector (S,. . S, ) when the Jth node is active: 
but that weight vector remains unchanged when a 
different category representation is active. The term 
X, thus buffers. or ptes, the weights MJ,, against un- 
desired changes, including memory loss due to pas- 
sive decay. On the other hand, a typical learning law 
for outstar pattern learning is given by eqn (14): 

“1; 

rlt 
= c(t)[x, - y,].S,. 

In (14). when the Jth F2 node is active the weight 
vector (w,,. . . wlv) converges to the F, activity 

pattern vector (x,, . . s,). Again, a gating term 
buffers weights against inappropriate changes. Note 
that the pair of learning laws described by (13) and 
(Id) are non-Hebbian, and are also nonsymmetric. 
That is. MI,, is generally not equal to II’,,. unless the 
F, and F, signal vectors S are identical to the cor- 

responding activity vectors x. 

A series of theorems encompassing neural net- 
work pattern learning by systems employing a large 

class of these and other activation and learning laws 

was proved by Crrossberg in the late 1960s and early 
lc)7Os. One set of results falls under the heading out- 
.stw l~~wrzir~g throret~~.s. One of the most general of 
these theorems is contained in an article entitled 
“Pattern learning by functional-differential neural 
networks with arbitrary path weights” (Grossberg. 

19721). This is reprinted in Stutiie.s of’ Mind and Bruit1 

(set Bibliography). which also contains articles that 
introduce and analyze additive and shunting equa- 

tions (IO) and (I 1); learning with passive and gated 

memory decay laws (6), (13). and (l-1): outstar and 
instar modules; and neural network architecturescon- 

strutted from these clemcnts. 

16. LEARNING SPACE-TIME PATTERNS: 
THE AVALANCHE 

While most of the neural network models discussed 
in this article arc designed to Icarn spatial patterns. 

problems such as speech recognition and motor 
Icarning require an understanding of space-time pat- 

terns as well. An early neural network model. called 
the a~vlcrtrch~~. is capable of learning and performing 
an arbitrary space-time pattern ((irossberg. lC,C,C,). 

In essence. an avalanche is ;I series of outstars (Figure 
11). During learning. the outstar active at time t 

GO \, 

t 

FIGURE 12. The avalanche: A neural network capable of 
learning and performing an arbitrary space-time pattern. 



learns the spatial pattern x(t) generated by the input 
pattern vector a(t). It is useful to think of x(t) as the 
pattern determining finger positions for a piano 
piece: the same field of cells is used over and over. 
and the sequence ABC is not the same as CBA. 
Following learning, when no input patterns are pres- 
ent, activation of the sequence of outstars reads-out, 
or “performs.” the space-time pattern it had previ- 
ously learned. In its minimal form, this network can 
be realized as a single cell with many branches. 
Learning and performance can also be supervised by 
a nonspecific GO signal. The GO signal may ter- 
minate an action sequence at any time and otherwise 
modulate the performance energy and velocity. In 
genera!, the order of activation of the outstars. as 
well as the spatial patterns themselves. need to be 
learned. This can be accomplished using autoasso- 
ciative networks, as in the theory of serial learning 
(Grossberg & Pepe, 1970) or adaptive signal pro- 
cessing (Hecht-Nielsen, 1981). 

17. ADAPTIVE CODING AND 
CATEGORY FORMATION 

Let us now return to the theme of adaptive coding 
and category formation, introduced earlier in our 
discussion of Steinbuch’s learning matrix. As shown 
in Figure gb, the learning matrix can be recast in the 
adaptive filter formalism. with the dynamics of the 
F2 level defined in such a way that only one node is 
active at a given time. The active node, or category 
representation, is selected by a “teacher” during 
learning. During performance the active node is se- 
lected according to which weight vector forms the 
best match with the input vector. Now compare the 
learning matrix in Figure gb with the instar in Figure 
11. The pictures, or network “anatomies,” seem to 
indicate that the instar is identical to the learning 
matrix. The difference between the two models lies 
in the dynamics, or network “physiology.” The fun- 
damental characteristic of the instar that distin- 
guishes it from the learning matrix and other early 
models is the constraint that instar dynamics occur 
in real time. In particular, the instar filtered input 
S . w, influences x, at al! times, and is not artificially 
suppressed during learning, However, the desire to 
construct a category learning system that can operate 
in real time immediately leads to many questions. 
The most pressing one is: how can the categories be 
represented if the dynamics are not imposed by an 
external agent? For the choice case, for example, the 
internal system dynamics need to allow at most one 
F2 node to be active, even though other nodes may 
continue to receive large inputs, either internally, via 
the filter, or externally, via the vector b. Even when 
the category representation is a distributed pattern, 
this representation is generally a compressed, or con- 

trast-enhanced, version of the highly distributed net 
pattern coming in to F2 from all sources. This 
compression is, in fact, the step that carries out the 
process wherein some or many items are grouped 
into a new unit, or category. 

18. SHUNTING COMPETITTVE NETWORKS 

Fortunately, there is a well-defined class ot neural 
networks ideally suited to play the role of the catc- 
gory representation field. This is the class of on- 
center/off-surround shunting competitive networks. 
Figure 13 illustrates one such system ,~ There. the in- 
put vector I can be the sum of inputs from one or 
more sources and is, in general, highty distributed. 
On-center here refers to the feedback process 
whereby a cell sends net excitatory signals to itself 
and to its immediate neighbors; oJ-surround refers 
to the complementary process whereby the same cell 
sends net inhibitory signals to its more distant neigh- 
bors. In an article entitled “Contour enhancement. 
short-term memory, and constancies in reverberating 
neural networks.” Grossberg (1973) carried out a 
mathematical characterization of the dynamics of 
various classes of shunting competitive networks. In 
particular he classified the systems according to the 
shape of the signal function ,f(~,). Depending upon 
whether this signal function is linear. faster-than-lin- 
ear, slower-than-linear, or sigmoid, the networks are 
shown to quench or enhance low-amplitude noise: 
and to contrast-enhance or flatten the input pattern 
I in varying degrees. In particular. a faster-than-lin- 
ear signal function implements the choice network 
needed for many models of category learning. A sig- 
moid signal function, on the other hand, suppresses 
noise and contrast-enhances the input pattern, with- 
out necessarily going to the extreme of concentrating 
all activity in one node. Thus an on-centerioff-sur- 

INPUT Ii 

dxj= 
dt 

-x, + (A-x,)[fj+f(xij]- x,~,f4Xkt 
fl 
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round shunting competitive network with a sigmoid 

signal function is shown to be an ideal design for a 

category learning system with distributed code rep- 

resentations. This parametric analysis thus provided 
the foundation for constructing larger network ar- 
chitectures that use a competitive network as a com- 
ponent with well-defined functional properties. 

19. COMPETITIVE LEARNING 

A module of fundamental importance in recent 
neural network architectures is described by the 
phrase mmprtitiw learning. This module brings the 

properties of the learning matrix into the real-time 
setting. The basic competitive learning architecture 

consists of an instar filter. from a field F, to a field 

F;. and a competitive neural network at IF; (Figure 
14). The competitive learning module can opcratc 

with or without an external teaching signal b: and 
learned changes in the adaptive filter can proceed 

indefinitely or cease after a finite time interval. If 
there is no teaching signal at a given time. then the 
net input vector to F2 is the sum of signals arriving 

via the adaptive filter. Then if the category repre- 
sentation network is designed to make a choice, the 
node that automatically becomes active is the one 

whose weight vector best matches the signal vector. 
as in eqn (2). If there is a teaching signal, the ccrtcgorj 
representation decision still depends on past learn- 

ing. but this is balanced against the external signal 
b. which may or may not overrule the past in the 

competition. In either case, an instar learning Ian 

such as eqn (13) allows ;I chosen category to encode 
aspects of the new F, pattern in its learned repre- 

sentation. 

FIGURE 14. The basic competitive learning module combines 
the instar pattern coding system with a competitive network 
that contrast-enhances its filtered input. 
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20. COMPUTATIONAL MAPS 

Investigators who have developed and analyzed the 

competitive learning paradigm over the years include 
Steinbuch (1961). Grossberg (lY7?b. lY76a, lY76b), 
von der Malsburg (lY73). Amari ( 1977), Amari and 
Takeuchi (lY78). Bienenstock. Cooper, and Munro 

(19X2). Rumelhart and Zipscr ( 1985). and many oth- 
ers. Moreover. these and other investigators pro- 

ceeded to embed the competitive learning module in 
higher order neural network systems. In particular, 
systems were designed to learn computational maps, 

producing an output vector b in response to an input 
vector a. The core of many of these computational 
map models is in instar-outstar system. Recognition 

of this common theme highlights the models’ diffcr- 
cnces as well as their similaritica. An early self-or- 
ganizing three-level instar-outstar computational 

map model was described by Grossberg ( I Y7Zb). who 
later rcplaccd the instar portion of this model with 

a competitive learning module (Grossberg. 1976b). 
The self-organizing feature map (Kohonen. IYX4) 

and the counter-propagation network (Hecht-Niel- 
scn. 1YX7) are also examples of instar-outstar com- 

petitive learning models. 
The basic instar-outstar computational 

tern is depicted in Figure 15. The first two 

INSTAR / OUTSTAR FAMILIES 

map sys- 
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bi w F3 
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FIGURE 15. A three-level, feedforward instar-outstar module 
for computational mapping. The competitive learning module 
(F, and FJ is joined with an outstar-type fan-out, for spatial 
pattern learning. 
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these systems is to slow the learning rate to such an 
extent that learned patterns are buffered against mas- 
sive recoding by any single input. Of course. then, 
each pattern needs to be presented very many times 
for adequate learning to occur, a fact that was dis- 

cussed, for example, by Rosenblatt in his critique of 
back propagation. 

and F:, form a competitive learning system. Included 
are the fan-in adaptive filter, contrast-enhancement 
at the “hidden” level F2. and a learning law for instar 
coding of the input patterns a. The top two levels 
then employ a fan-out adaptive filter for outstar pat- 
tern learning of the vector b. This three-level archi- 
tecture allows, for example, two very different input 
patterns to map to the same output pattern: each 
input pattern can activate its own compressed rep- 
resentation at F?. while each of these F2 represen- 
tations can learn a common output vector. In the 
extreme case where each input vector a activates its 
own F2 node the system learns any desired output. 
The generality of this extreme case, which imple- 
ments an arbitrary mapping from R”’ to R”, is offset 
by its lack of generalization, or continuity, as well 
as by the fact that each learned pair (a. b) requires 
its own Fz node. Distributed F2 representations pro- 
vide greater generalization and efficiency, at a cost 
in complete a priori generality of the mapping. 

21. INSTABILITY OF 
COMPUTATIONAL MAPS 

The widespread use of instar-outstar families of com- 
putational maps attests to the power of this basic 
neural network architecture. This power is, however. 
diminished by the instability of feedforward systems: 
in general, recently learned patterns tend to erode 
past learning. This instability arises from two 
sources. First. even if a chosen category is the best 
match for a given input, that match may nevertheless 
be a poor one, chosen only because all the others 
are even worse. Established codes are thus vulner- 
able to recoding by “outliers.” Second, learning laws 
such as eqn (13) imply that a weight vector tends 
toward a new vector that encodes the presently active 
pattern, thereby weakening the trace of the past. 
Thus weight vectors can eventually drift far from 
their original patterns, even if learning is very slow 
and even if each individual input makes a good match 
with the past as recorded in the weights. 

The many existing variations on the three-level 
instar-outstar theme illustrate some of the ways in 
which this family of models can be adapted to cope 
with the basic system’s intrinsic instability. One sta- 
bilization technique causes learning to slow or cease 
after an initial finite interval; but then a subsequent 
unexpected pattern cannot be encoded, and insta- 
bility could still creep in during the initial learning 
phase. Another approach is to restrict the class of 
input patterns to a stable set. This technique requires 
that the system can be sufficiently well analyzed to 
identify such a class, like the orthogonal inputs of 
the linear associative memory model (Figure 9); and 
that all inputs can be confined to this class. An often 
successful way to compensate for the instability of 

22. ADAPTIVE RESONANCE 
THEORY (ART) 

It was analysis of the instability of feedforward instar- 
outstar systems that led to the introduction of adap- 
tive resonance theory (ART) (Grossberg, 1976~) and 
to the development of the neural network systems 
ART 1 and ART 2 (Carpenter 81 Grossberg, 1987a, 
1987b). ART networks are designed, in particular. 
to resolve the stuhi6ity-plust~cit}] dilemma: they are 
stable enough to preserve significant past learning, 
but nevertheless remain adaptable enough to incor- 
porate new information whenever it might appear. 

The key idea of adaptive resonance theory is that 
the stability-plasticity dilemma can be resolved by a 
system in which the three-level network of Figure 25 
is folded back on itself, identifying the top level-( F,) 
with the bottom level (F,) of the instar-outstar map- 
ping system. Thus the minimal ART module inchrdes 
a bottom-up competitive learning sys‘tem combined 
with a top-down outstar pattern learning system. 
When an input a is presented to an ART network, 
system dynamics initially follow the course of com- 
petitive learning (Figure 14). with bottom-up acti- 
vation leading to a contrast-enhanced category 
representation at F?. in the absence of other inputs 
to FL, the active category is determined by past &earn- 
ing as encoded in the adaptive weights in the bottom- 
up filter. But now, in contrast to feedforward sys- 
tems. signals are sent from F2 back down to F, via a 
top-down adaptive filter. This feedback process al- 
lows the ART module to overcome both of the 
sources of instability described in section 21, as fol- 
lows. 

First. as in the competitive learning module, the 
category active at F2 may poorly match the pattern 
active at F,. The ART system is designed to carry 
out a matching process that asks the question: should 
this input reahy be in this category? If the answer is 
no, the selected category is quickly rendered inac- 
tive, before past learning is disrupted by the outlier, 
and a search process ensues. This search process em- 
ploys an auxiliary orienting subsystem that is con- 
trolled by the dynamics of the ART system itself. 
The orienting subsystem incorporates a dimension- 
less vigilance parameter that estabhshes the criterion 
for deciding whether the match is a good enough one 
for the input to be accepted as an exemplar of the 
chosen category. 
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Second, once an input is accepted and learning 
proceeds, the top-down filter continues to play a dif- 
ferent kind of stabilizing role. Namely, top-down sig- 
nals that represent the past learning meet the original 
input signals at F,. Thus the F, activity pattern is a 
function of the past as well as the present, and it is 
this blend of the two, rather than the present input 
alone. that is learned by the weights in both adaptive 
filters. This dynamic matching during learning leads 
to stable coding. even with fast learning. 

An example of the ART 1 class of minimal mod- 
ules is illustrated in Figure 16. In addition to the two 
adaptive filters and the orienting subsystem, Figure 
16 depicts gain control processes that actively regu- 
late learning. Theorems have been proved to char- 
actcrize the response of an ART 1 module to an 
arbitrary sequence of binary input patterns (Carpen- 
ter & Grossberg. 1987a). ART 2 systems were de- 
veloped to self-organize recognition categories for 
analog as well as binary input sequences. One prin- 
cipal difference between the ART 1 and the ART 2 
modules is shown in Figure 17. In examples so far 
developed. the stability criterion for analog inputs 
has required a three-layer feedback system within 
the F, Icvel: a bottom layer where input patterns are 
read in: a top layer where filtered inputs from F2 are 
read in: and a middle layer where the top and bottom 
patterns are brought together to form a matched pat- 
tern that is then fed back to the top and bottom F, 
layers. 

ART 1 

ATTENTIONAL ORIENTING 
SUBSYSTEM SUBSYSTEM 

gain 2 
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li nTt\,C CRITERION: 
fibI 1°C 

REG’ ” - T’nL’ ’ 
VIGILANCE 

8ULH I IUIY 
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FIGURE 16. An ART 1 module for stable, self-organizing ca- 
tegorization of an arbitrary sequence of binary input pat- 
terns. 
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FIGURE 17. Principal elements of an ART 2 module for stable, 
self-organizing categorization of an arbitrary sequence of 
analog or binary input patterns. The F, level is a competitive 
network with three processing layers. 

23. ART FOR ASSOCIATIVE MEMORY 

A minimal ART module is a category learning sys- 
tem that self-organizes a sequence of input patterns 
into various recognition categories. It is not an as- 
sociative memory system. However. like the com- 
petitive learning module in the 1970s. a minimal 
ART module can be embedded in a larger system 
for associative memory. A system such as an instar- 
outstar module (Figure 15) or a back-propagation 
algorithm (Figure 6) directly pairs sequences of in- 
dividual vectors (a. b) during learning. If an ART 
system replaces levels F, and E;‘I of the instar-outstar 
module. the associative learning system becomes 
self-stabilizing. ART systems can also be used to pair 
sequences of the categories self-organized by the in- 
put sequences (Figure 18). Moreover, the symmetry 
of the architecture implies that pattern recall can 
occur in either direction during performance. This 
scheme brings to the associative memory paradigm 
the code compression capabilities of the ART sys- 
tem, as well as its stability properties. 

24. COGNITRON AND NEOCOGNITRON 

In conclusion, we will consider two sets of models 
that are variations on the themes previously de- 
scribed. The first class, developed by Kunihiko Fu- 
kushima. consists of the cognition (Fukushima, 
1975) and the larger-scale neocognitron (Fukushima, 
1980. 1988). This class of neural models is distin- 



26. CONCLUS4ON 

We have seen how the adaptive filter formalism is 
general enough to describe a wide variety of neural 
network modules for associative memory, category 
learning, and pattern recognition. Many systems de- 
veloped and applied in recent years arc variations on 
one or more of these modular themes. This approach 
can thus provide a core vocabulary and grammar for 
further analysis of the rich and varied literature of 
the neural network field. 

ART, 
SELF - ORGANIZE 

ARTb 
SELF - ORGANIZE 

CATEGORIES a( P ) ’ CATEGOR1ES ( b(p) ) 

a b 

FIGllRE 18. Two ART systems combined to form an asso- 
ciative memory architecture. 

guished by its capacity to carry out translation-in- 
variant and size-invariant pattern recognition. This 
is accomplished by redundantly coding elementary 
features in various positions at one level; then cas- 
cading groups of features to the next level: then 
groups of these groups; and so on. Learning can 
proceed with or without a teacher. Locally the com- 
putations are a type of competitive learning that use 
combinations of additive and shunting dynamics. 

25. SIMULATED ANNEALING 

Finally, in addition to the probabilistic weight change 
laws which were a prominent feature of, for example, 
the modeling efforts of pioneers such as Rosenblatt 
and Amari, another class of probabilistic weight 
change laws appears in more recent work under the 
name simulated annealing, introduced by Kirkpa- 
trick, Gellatt, and Vecchi (1983). The main idea of 
simulated annealing is the transposition of a method 
from statistical mechanics, namely the Metropolis 
algorithm (Metropolis, Rosenbluth, Rosenbluth, 
Teller, & Teller, 1953), into the general context of 
large complex systems. The Metropolis algorithm 
provides an approximate description of a many-body 
system, namely a material that anneals into a solid 
as temperature is slowly decreased. Kirkpatrick et 
al. (1983) drew an analogy between this system and 
problems of combinatorial optimization, such as the 
traveling salesman problem, where the goai is to min- 
imize a cost function. The methods and ideas, as well 
as the large scale nature of the problem, are so closely 
tied to those of neural networks that the two ap- 
proaches are often linked. This link is perhaps closest 
in the Boltzmann machine (Ackley, Hinton, & 
Sejnowski, 1985), which uses a simulated annealing 
algorithm to update weights in a binary network sim- 
ilar to the additive model studied by Hopfield (1982). 
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