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Abstract—A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily
distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning
capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer
perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model
dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes
according to the degree of activation of each coding node, which permits fast as well as slow learning without
catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic
weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase
monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the
synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles
long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD)
for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic
coding signal components. A parallel distributed match—reset—search process also helps stabilize memory. Without the
match—reset—search system, dART becomes a type of distributed competitive learning network. © 1997 Elsevier Science
Ltd.
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1. INTRODUCTION: ART, ARTMAP, AND
DISTRIBUTED CODES

Adaptive resonance theory (ART) and ARTMAP neural
networks feature winner-take-all competitive activation,
which permits fast learning and stable coding but which
causes category proliferation with noisy inputs. In con-
trast, multilayer perceptron models feature distributed
McCulloch-Pitts activation, which enables good noise
tolerance and code compression but which causes cata-
strophic forgetting with fast learning. This paper intro-
duces a family of neural networks, called distributed
ART models, that combine the best of these two worlds:
distributed activation provides noise tolerance and code
compression while new system dynamics retain stable
fast learning capabilities, as follows.
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1.1. ART and ARTMAP Networks

The theory of adaptive resonance began with an analysis
of human cognitive information processing and stable
coding in a complex input environment (Grossberg,
1976a, 1980). ART neural network models have added
a series of new principles to the original theory and have
realized these principles as quantitative systems that can
be applied to problems of category learning, recognition,
and prediction. Applications of unsupervised ART net-
works (Carpenter & Grossberg, 1987, 1991; Carpenter,
Grossberg & Rosen, 1991b) and supervised ARTMAP
networks (Carpenter, Grossberg, Markuzon, Reynolds
& Rosen, 1992; Carpenter, Grossberg & Reynolds,
1991a) include a Boeing parts design retrieval system
(Caudell, Smith, Escobedo & Anderson, 1994), satellite
remote sensing (Baraldi & Parmiggiani, 1995; Gopal,
Sklarew & Lambin, 1994), robot sensory motor control
(Bachelder, Waxman & Seibert, 1993; Baloch &
Waxman, 1991; Dubrawski & Crowley, 1994; Srinivasa
& Sharma, 1996), robot navigation (Racz & Dubrawski,
1995), machine vision (Caudell & Healy, 1994), three-
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dimensional object recognition (Seibert & Waxman,
1992), face recognition (Seibert & Waxman, 1993), auto-
matic target recognition (Bernardon & Carrick, 1995;
Koch, Moya, Hostetler & Fogler, 1995; Waxman et
al., 1995), medical imaging (Soliz & Donohoe, 1996),
electrocardiogram wave recognition (Ham & Han, 1996;
Suzuki, 1995), prediction of protein secondary structure
(Mehta, Vij & Rabelo, 1993), strength prediction for
concrete mixes (Kasperkiewicz, Racz & Dubrawski,
1995), signature verification (Murshed, Bortozzi &
Sabourin, 1995), tool failure monitoring (I.y & Choi,
1994; Tamng, Li & Chen, 1994; Tse & Wang, 1994),
chemical analysis from UV and IR spectra (Wienke,
1994), digital circuit design (Kalkunte, Kumar & Pat-
naik, 1992), frequency selective surface design for elec-
tromagnetic system devices (Christodoulou, Huang,
Georgiopoulos & Liou, 1995), Chinese character recog-
nition (Gan & Lua, 1992; Kim, Jung, Kim & Kim, 1995),
and analysis of musical scores (Gjerdingen, 1990).
Despite the growing number of applications, category
proliferation from noisy training sets limits the useful
domain of fast-learn, winner-take-all (WTA) systems
such as ART or ARTMAP. On the other hand, fast
learning is often essential for online adaptation to rapidly
changing circumstances and for encoding rare cases and
large databases.

Variants of the basic ART and ARTMAP networks
have acquired some of the advantages of distributed
coding while maintaining the fast learning capability.
For example, ART-EMAP, which uses WTA codes for
learning and distributed codes for testing, can signifi-
cantly improve ARTMAP performance, especially
when the size of the training set is small (Carpenter &
Ross, 1993, 1995; Rubin, 1995). In medical database
prediction problems, which often feature inconsistent
training input predictions, ARTMAP-IC improves per-
formance with a combination of distributed prediction,
category instance counting, and a new match tracking
search algorithm (Carpenter & Markuzon, 1996). A
voting strategy further increases predictive accuracy by
training the system several times on different orderings
of an input set. Voting, instance counting, and distributed
representations combine to form confidence estimates for
competing predictions. However, since these and most
other ART and ARTMAP variants use WTA coding
during learning, they do not solve the primary problem
of category proliferation with noisy training sets, unless
learning is slow.

The new family of distributed ART models retains
stable coding, recognition, and prediction, but allows
arbitrarily distributed code representation during learn-
ing as well as performance. When the code is winner-
take-all, the unsupervised dART model is computation-
ally equivalent to fuzzy ART and the supervised dART-
MAP model is equivalent to fuzzy ARTMAP.
Distributed ART networks automatically apportion
learned changes according to the degree of activation
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of each coding node. This permits fast as well as slow
learning without catastrophic forgetting. Many variations
of the basic dART system may be devised but, for clarity,
one specific network from the larger class is developed
here.

1.2. Neural Analogues of dART Network Components

Distributed ART (dART) derives primarily from a com-
putational analysis of design principles for constructing a
learning system that is fast, stable, and distributed.
Nevertheless, many network elements can also be visua-
lized as physical processes with neural interpretations. In
distributed ART, the fundamental synaptic memory unit
is an adaptive threshold that increases during learning
according to a principle of atrophy due to disuse. A
dynamic weight that depends on both the coding node
activation and the adaptive threshold then replaces the
fuzzy ART path weight in the dART algorithm. In con-
trast, the fundamental synaptic memory unit in nearly all
other neural networks is assumed axiomatically to be a
multiplicative weight. This view of adaptation is also
prevalent in the experimental literature: ‘‘Changes in
the amplitude of synaptic responses evoked by single-
shock extracellular electrical stimulation of presynaptic
fibres are usually considered to reflect a change in the
gain of synaptic signals, and are the most frequently used
measure for evaluating synaptic plasticity’” (Markram &
Tsodyks, 1996, p. 807). That is, when long-term poten-
tiation (LTP), or enhanced postsynaptic response to a
single test pulse, is observed, the strength, or gain, of a
synapse is normally interpreted as having increased.
Similarly, long-term depression (LTD) is usually thought
of as a weight decrease.

While the multiplicative weight model helps explain
classical LTP and LTD experiments, limitations of this
hypothesis are beginning to become apparent. Describing
their experiments on layer-5 pyramidal neurons in the
neocortex, Markram and Tsodyks point out that the
enhanced response to single-spike ( =< 0.25 Hz) test
probes in an LTP experiment vanishes with 23 Hz test
stimuli: ‘‘Potentiation of synaptic responses therefore
only occurred when the presynaptic frequency was
below 20Hz” (p. 809). In fact, the Markram and
Tsodyks data [Figure 3(c), p. 809] actually show
depressed postsynaptic responses to higher frequency
(30 Hz and 40 Hz) test stimuli. They conclude: ‘‘The
physiological implications of redistribution of efficacy
are also entirely different from unconditional potentia-
tion or depression’” (p. 810).

The dynamic coding behavior of distributed ART
model neurons closely resembles this paradoxical
“‘redistribution of efficacy.”” In dART, adaptive thresh-
olds increase monotonically during learning, but an
increased threshold produces postsynaptic potentiation
for lower frequency test inputs and postsynaptic depres-
sion for higher frequencies. These bidirectional



Distributed ART

dynamics are traced to the form of the signal that acti-
vates the dART distributed code. This signal is a function
of two components with dual computational properties: a
phasic component that depends on the transmitted input
(ligand) and a tonic component that is independent of the
current input. Both phasic and tonic components depend
on the size of the adaptive threshold for the synapse and
on the degree of activation of the target node (voltage).
Phasic and tonic components can thus be visualized as
postsynaptic membrane processes with phasic terms
mediated by voltage- and ligand-gated receptors and
tonic terms mediated by voltage-gated receptors
(Nicholls, 1994). At each synapse, phasic and tonic
terms dynamically balance one another. During adapta-
tion, phasic terms remain constant while tonic terms may
grow. Tonic components then become larger for all
inputs, but phasic components become more selective.
The net effect is to enhance the total coding signal sub-
sequently sent by input components that are the same as
or smaller than the one experienced during training
(potentiation) but to reduce the total coding signal sent
by input components that are substantially larger than
those experienced during training (depression).

Analysis of the Markram and Tsodyks data illustrates
how computational modeling of distributed pattern
coding by neural network architectures is connected to
important current questions concerning the underlying
neural mechanisms of learning and memory. Phasic
and tonic signals in the dART model, originally derived
from a formal analysis of distributed pattern learning,
demonstrate how: ‘‘Redistribution of synaptic efficacy
may therefore serve as a powerful mechanism to alter
the dynamics of synaptic transmission in subtle ways
and hence to alter the content rather than the gain of
signals conveyed between neurons’”’ (Markram &
Tsodyks, 1996, p. 810). The remainder of this paper
will henceforth focus primarily on the design of distrib-
uted ART.

1.3. Outline

Section 2 introduces the dART architecture and formally
defines dynamic weights, adaptive thresholds, and phasic
and tonic signal components, and characterizes the dis-
tributed code that a given input will activate. Section 3
describes a parallel distributed match-reset—search
process. Section 4 outlines the distributed outstar used
for top—down dART learning and introduces the distrib-
uted instar used for bottom—up learning. Dynamics of a
distributed competitive learning module are also
characterized. Section 5 summarizes a dART algorithm
for simulation implementation. With winner-take-all
dynamics at the coding field F,, the dART algorithm
reduces to a fuzzy ART algorithm, and further reduces
to an ART 1 algorithm with binary inputs. Section 6
provides a geometric representation of distributed ART
and Section 7 includes numerical examples of dART
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activation, search, and learning. Finally, Section 8
describes distributed ARTMAP.

2. DISTRIBUTED ACTIVATION

Over the past decade, an evolving series of neural net-
work models has progressively expanded the domain and
function of ART systems. The first model, ART 1
(Carpenter & Grossberg, 1987), is an unsupervised learn-
ing system that self-organizes recognition categories for
binary input patterns. Fuzzy ART (Carpenter et al.,
1991b) generalizes binary ART 1 to the analog input
domain, formally replacing set-theoretic intersections
with fuzzy set-theoretic intersections [Figure 1(a)].
These and most other ART models use choice, or
winner-take-all (WTA), dynamics at the category repre-
sentation field. Distributed ART (dART) continues the
series, generalizing fuzzy ART to permit arbitrarily dis-
tributed code representations [Figure 1(b)]. For continuity,
dART retains fuzzy ART notation wherever possible.

2.1. dART Network Architecture

Although dART with winner-take-all coding is compu-
tationally equivalent to fuzzy ART, the dART architec-
ture differs from the standard ART architecture. Namely,
an ART input from a field F passes through a matching
field F; before activating a coding field F,. Activity at F,
feeds back to F;, forming a resonant loop [Figure 1(a)].
ART networks thus encode matched F, patterns, rather
than the F, inputs themselves, a key feature for code
stability. With WTA coding, the matched F, pattern con-
firms the original category choice when it feeds back up
to F,. The critical code confirmation property may not
persist in this architecture, however, when F, activation
is distributed. In contrast, in the distributed ART net-
work, the coding field F, receives input directly from
Fy, retaining the bottom—up/top—down matching process
at F'| only to determine whether an active code meets the
vigilance matching criterion [Figure 1(b)]. Nevertheless,
dART dynamic weights maintain code stability when F,
coding is winner-take-all. When the matching process is
disabled by setting the vigilance parameter to 0, dART
becomes a type of feedforward ART network that can
also be viewed as a new type of distributed competitive
learning architecture.

2.2. Activity Vectors

A dART system includes a field of nodes F that repre-
sents a current input vector; a field F; that represents the
active code; and a field F, that represents a matched
pattern determined by bottom-up input from F, and
top—down input from F,. Vector I = (I,... I... Iy)
denotes Fy activity, X = (xi... X;... xy) denotes F activ-
ity, and y = (... y;... yn) denotes F, activity. Each
component of I, x, and y is contained in the interval
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FIGURE 1. Fuzzy ART and distributed ART: (a) in fuzzy ART, the F, the node (j = J) that receives the largest input T,from F; becomes
active. Activity x at the fieid F; refiects the match between the bottom—up input | and the top—down input o, which is equal to the weight
vector w . When x fails to meet the vigilance matching criterion, reset leaves node J refractory on the time scale of search. Refractory
nodes recover on the time scale of learning; (b} like fuzzy ART, distributed ART computes a matched pattern x at F, and resets F, if x fails
to meet the vigilance matching criterion. In dART, however, F, receives input directly from F,. The code y, which is a function of phasic
components S, and tonic components © j, may be arbitrarily distributed. The ™ F, node receives a positive signal from each F, node at
which activity y; exceeds an F, — F, adaptive threshold 7j;. With choice at F, and fast learning, distributed ART is computationally

equivalent to fuzzy ART.

{0,1]. The number of input components (M) and the num-
ber of coding nodes (¥) may be arbitrarily large.
Although the matched F, activity vector x does not
feed back to F, (Figure 1), dART still performs compu-
tations that are equivalent to those of fuzzy ART in the
special case of category choice at F,. The input I and the
matched pattern X may be continuously varying functions
of time 7, but the code y acts as a content-addressable
memory (CAM) that is held constant between resets by
strong competition at F,.

2.3. Dynamic Weights

In fuzzy ART the path from the i™ F; node to the j™ F,
node contains an adaptive weight w;, and the path from
the j'h F, node to the i"F | node contains a weight w.
With fast learning, w; = wj;. Nearly all neural network
models hypothesize such a weight as the unit of long-
term memory (LTM). In contrast, in the distributed

outstar network (Carpenter, 1994a) the unit of long-
term memory is an adaptive threshold 7. Formally,

Tji =1- Wji' (1)

The distributed outstar signal from the j® F, node to the
i™ Fy node is [y; — 7;:]*, where [...]" denotes the recti-
fication operator:

[£]" = max {£,0}. 2

This path signal helps avoid catastrophic forgetting
because [y; — ;1" = [w; — (1 — y))]” = 0 when wj; is
small, unless y; = 1. Other types of signals such as the
product y;w; remain positive when y; is positive, no
matter how small the weight has become, leaving w;;
subject to erosion. When the j® F, node is chosen,
wi=(1—13) =y, — 7"

Distributed ART takes this idea one step further,
replacing each fuzzy ART weight with a dynamic weight
that is a joint function of coding node activation and an



Distributed ART

adaptive threshold. The formal substitution:

wi = [y =i " &)
and

wy— [y —ry] " “)
is the key step in converting fuzzy ART to distributed
ART. Thresholds 7 in paths from the j ® F, node to the i®
F| node adapt according to a distributed outstar learning
law (Section 4.1), while thresholds 7; in paths from the
i" Fy node to the jth F, node obey a distributed instar
learning law (Section 4.2). Adaptive thresholds remain in
the range [0,1], starting at or near 0 and increasing mono-
tonically during learning.

2.4. Signal Functions

For each input I and j = 1... N, the total signal T; from
the dART input field F, to the j* F; node is a function of
the form:

T; = Ti(y,) = gi(S;()), ©,0)). )

For §; > 0 and ©; > 0,

=L> 1>, 6
35, ” 30, ©

and
8i(0,0)=0. Q)

The definition of the Fy — F, signal T; at first appears to
be circular: T; determines the F, code y (Figure 1), but y
in turn determines T; [eqn (5)]. However, this circularity
does not actually occur in distributed ART dynamics.
Because the competitive field F, acts as a content-
addressable memory, the network holds y constant
between resets (Section 2.2). Upon reset, a large non-
specific arousal signal breaks the CAM competitive
feedback loop, momentarily sending all y; values to 1
(Section 2.5). The code y at any given time is therefore
fully determined by the value of the signals T,(1) at the
time of the previous reset. T)(y,) represents the synaptic
processes that, having survived the competition at reset,
determine the dynamics of search (Section 3.3) and
learning (Section 4.2) between resets. Since total F,
activity is normalized to 1 (Section 2.5), active nodes
typically represent a concentrated subset of the field’s
total capacity (N), which can be arbitrarily large.
Correspondingly, the signal Ti(y;) between resets is on
average a small fraction of the signal T(1) at the time of
reset.

In eqn (5) the phasic component S;, which depends on
the input I, is a sum:

M
Si=Si0p)= D S0 )

i=1
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A term S;(y;) in the sum may be visualized as a certain
fraction of the membrane sites at the i™ synapse of the j&
F, node (Figure 2). After a new input I establishes an F,
code y at the time of reset, phasic sites primed by the
dynamic weight [y; — T,-j]+ can remain activated by the
input I;, although a number of these sites (A;) may be
refractory, or depleted, due to their recent activation
during search (Section 3). Formally,

S =LA [y~5] " — a7, )

where A represents the fuzzy intersection, or compo-
nent-wise minimum:

(a Ab); = (a; A b)) = min(a;, b;) (10)
(Zadeh, 1965). For ye[0,1],
M M

0=8500=> -] =D y=My. (D

i=1 i=1

In eqn (5), the tonic component ®; is a sum:

M
6;=8,0)= 2 0;() (12)

i=1

where:
00 =y A1y ~8;] " (13)

The sum ©;(y;), which is independent of the input I,
plays the role of a nodal bias term that increases during
learning. Once y is established following a reset, a frac-
tion of membrane sites 7 are primed by the node’s activ-
ity (y;), but recently active sites (6,) may be refractory
during search. Like S{(y;, ®(y,) lies in the interval
[0,My;] since:

M
0=0,0p)= D y=My, (14)

i=1

Refractory sites accumulate during a rapid series of
resets. On the time scale of learning, the terms Aj; and
6 decay to 0.

By design, the phasic and tonic components of the F,
input signal T; play complementary roles in dART net-
works. Each phasic term is an increasing function of I;.
However, when I and y remain constant during a learning
interval, the phasic terms Sy(y) = I; A [y; — 741" and
Si(1) =I; A (1 — 7;) remain constant (Section 4.2). In
contrast, each tonic term is, by definition, independent of
I. However, the tonic terms ® (y;) =y; A 7;and @ (1) =
7; increase during learning, when y; is large enough.
Thus by eqns (5) and (6), T; is an increasing func-
tion of each component of I and T; increases during
learning.

A distributed version of the fuzzy ART choice-by-
difference (CBD) function (Carpenter & Gjaja, 1994)
defines one signal rule for 7; by:

T;=5;+ (1 — )@, (15)
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FIGURE 2. Visual representation of distributed instar signal components as a fraction of total membrane sites. The phasic term Sy and
the tonic term O j{y)) depend on the adaptive threshold 7 jjat the ™ synapse of the /" F, node. At reset, nonspecific arousal momentarily
sends all y;— 1. The terms S (1) and @ j{1) at the time of reset then determine the next code y. A given y;value gates membrane sites, so
that S(y) and @ j{y)) may be large for large y; but must be small for small y;. Phasic and tonic terms thus correspond to membrane
processes that are gated by postsynaptic voltage (y)), and the phasic term S is also gated by the released presynaptic transmitter, or
ligand (/). After mismatch reset, previously active sites A ij (phasic) and 4 jj (tonic) are depleted, or refractory, and remain so on an MTM
time scale. During a search, phasic and tonic terms S,(1) and © j{1) can be large only if y; has recently remained small.

with 0 < a < 1. Like S; and ©, the CBD signal function
T; € [0,My;]since:

0 = Tj(y)) =S5;0;) + (1 — a)®;(y;) = 5;,(3)) + ©,(y)
(16)

M M
=D LAly—mt+ D yA
i=1

i=1

M
= ;([Yj—fij]+ +; A Ty)

M M
= D (= Am)+y A= D y=My,
i=1 i=1
A distributed version of the Weber law signal function
(Carpenter & Grossberg, 1987) defines a different signal
rule for 7} by:

T,= 5 17
with o > 0. For the Weber law coding function [eqn
(I7N)], T; € [0,1)since:

S

/ a+Myj——®j ( )
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In the case where y; = 1, A; = §; = 0, and wy =
(1 - T,‘j):

Si=8()= IIijl (19)
and
®j= ®j(1)= (M— ijl), (20)

where |...| represents the city block norm. In this case the
distributed choice-by-difference eqn (15) reduces to:

T,=T{()=TAwl+(1—a)(M-Ilwl), 21

which is equivalent to the fuzzy ART choice-by-
difference function. The distributed Weber law eqn
(17) reduces to:

LA w;l

T,=T(l)= — I
=T o+ lwl

(22)

which is equivalent to the Weber law choice rules
originally used in fuzzy ART and, when I is binary,
ART 1.

2.5. Code Representation

In distributed ART networks, activity ¥y = (y1... yj... y»)
at a competitive coding field F, is stored as a content-
addressable memory. An algorithm that approximates the
dynamics of strong competition postulates that external
inputs initially determine y, but then internal feedback
holds y constant until F, is actively reset. Except during
reset, y is normalized:

N
lyl=> y=1 (23)
J=1

In ART models, F, reset occurs when the bottom—up/
top—down matched pattern x at F'; fails to meet a match-
ing criterion defined by a vigilance parameter p. Reset is
effected by a large nonspecific arousal signal. In the
dART model, reset momentarily sends all y; to 1 at a
time ¢ = r. This allows the values T{(1)!,=,... Ta(D)l .-,
to determine which y will be established next. Until the
next reset,

Y =HTO). T @4)
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Realizing F', as an on-center off-surround shunting com-
petitive network suggests the hypothesis:
3
— = (. 2
o, 0 (25)

One class of functions that satisfy this hypothesis sets:

TLCTED BN
Y= é\f(Tx(l)) 26)
0 if j&A

where Aisasubsetof {1...N}suchthat T,=T;forJ€ A
and j & A; and where {0) = 0 and f'(¢§) = 0 for £ > 0.
Grossberg (1976b) used a similar class of functions to
approximate the dynamics of on-center off-surround
shunting competitive networks. The index subset A
might be the indices of T; values that are greater than
or equal to the collective average (above-average-T;
rule); or A might be the indices of the Q largest 7;
values (Q-max rule). Setting Q = 1 corresponds to
choice, or winner-take-all, coding and setting 0 = N
makes all y; proportional to {T(1)). The function f
might realize a power law, with:

f&=¢ @n

for p > 0. Setting p = 1 makes y; proportional to 7,(1) for
j € A, and increasing the power p models progressively
stronger internal network competition, producing
increasingly compressed F, codes. In the limit as p —
oo, the system [eqns (26) and (27)] converges to the
choice rule. Other types of coding fields could, for
example, represent cooperative or spatially defined inter-
actions as well as competition. Compared to ART and
ARTMAP networks, where the coding rule is fixed,
applications of JART and dARTMAP networks typically
require comparative studies to help choose rules that give
the best performance in particular cases.

3. DISTRIBUTED SEARCH

The distributed ART match-reset—search process is
similar to that of other ART networks. When an F,
code y becomes active, the activity pattern x at F' repre-
sents a match between the current bottom—up input I and
a top—down input o(y). If these inputs fail to meet the
vigilance matching criterion, a nonspecific reset signal
shuts off the code y. Reset also leaves an enduring trace
of y, or the network would simply reactivate the same
code.

The search process plays a variety of roles in ART and
ARTMAP systems. Since F, is typically a strongly com-
petitive network, active reset of a stored code is needed
for each new input to select a code that is not severely
distorted by the previous steady-state at F,. An input
reset allows an input to register its own code when it
fails to match an active top—down signal o(y).
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Alternatively, a novelty signal can automatically trigger
a reset when a new input is presented. Input resets
segment a continuously varying input I(#) with a
discrete series of recognition codes y,y®,.... While
one code remains active, the subset of input features
active at F'; represents a focus of attention. Reset defines
the boundary between one attended feature set and the
next.

Search also helps to stabilize memory. Immediately
after an input activates a code, a mismatch reset will
quickly shut off y if it fails to meet the vigilance match-
ing criterion. Since reset is rapid on the time scale of
learning (LTM), an outlier that incorrectly activates a
learned code does not disrupt memory. Traces of prior
resets should endure on the time scale of short-term
memory (STM) and search but should fade on the time
scale of learning, since a reset code that was incorrect for
one input may be correct for the next. Traces of search
are thus a type of medium-term memory (MTM).

Even if I and y are constant and x meets the matching
criterion, an increase in the vigilance parameter p can
trigger search. Such a vigilance reset corresponds to
increased ‘‘attentiveness’’ due, for example, to a predic-
tion made by y having led to an error. In fact, when an
ARTMAP network makes a predictive error during train-
ing, the match tracking process raises vigilance until the
matching criterion fails, thus triggering a vigilance reset
and search. In ARTMAP the vigilance parameter there-
fore becomes an internally controlled variable that may
increase on the MTM time scale but that relaxes to a
baseline vigilance level (p) on the LTM time scale.
Finally, reset waves might also refresh F, periodically,
to keep the system from locking into a fixed state even if
vigilance is low.

3.1. Match Representation

While y is fixed between resets, the total input ¢; from F,
to the i* F, node equals the sum of dynamic weights
projecting to that node. That is:

N
o;=0;(y)= Z -] " (28)

j=1

where 7; € [0,1] is an adaptive threshold that starts at 0
and may increase during distributed outstar learning
(Section 4.1). Since 3 y;=1,0; € [0,1]. Activity x at

F then equals the fuz}zy intersection of I and o(y), so:
xi=1; A oy(y) 29

for i = 1...M. Signals from F, thereby prime F; in the
sense that ¢;(y) imposes an upper bound on inputs /; that
can be fully represented at the i F, node.

3.2. Resonance or Reset

Resonance occurs if the matched pattern I A o (y) meets
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the vigilance criterion:

x| A a(y)l
T (30)

that is, resonance occurs if
x| =T A o(y)l = plIl. (31)

Learning then ensues, as defined below. During a learn-

ing interval, y remains constant but the input I(¢) and the

vigilance parameter p may vary continuously, as long as

the network continues to meet the matching criterion.
Mismatch reset occurs if:

| l
1!
that is, if:
IxI =T A a(y)l <plIl. 33)

A nonspecific signal to F, then momentarily resets all y;
to 1, until the signal vector T establishes a new code y
(Section 2.5). The search process must be rapid, so that
no significant learning can occur with an incorrect code.
Mismatch reset must also selectively bias the network
against previously active codes or T, the same as
before, will reactivate the reset code.

3.3. Medium-Term Memory

When the F'; code makes a choice, reset needs simply to
deactivate the previously active node J for the duration of
the MTM time scale. When y is distributed, a graded bias
against the j™ node needs to reflect how large y ; has been
in previously reset codes, so that highly active nodes can
give way to nodes that originally received smaller inputs.
Figure 3 shows how such a parallel search process can
explore various F, code combinations until one is found
that satisfies the vigilance criterion. During a rapid series
of mismatch—reset events, refractory sites accumulate
[Figure 3(a)-(c)]. During a learning interval, refractory
sites recover [Figure 3(d)].

Distributed ART realizes the search process by
assuming that, when a code y is active, sites correspond-
ing to the phasic component Si(y;) [eqn (8)] and the tonic
component O (y;) [eqn (12)] become refractory on the
MTM time scale. On the time scale of search,

d

280 = S0 = [l A [y — 73] M-V A €T
and:
d
0~ 0,00 =[y Ary— 8] " (35)

Each term S;(y;) [eqn (9)] and ®(y;) [eqn (13)] then
quickly converges to 0. When the next reset occurs,
§i(1) and ®«1) are reduced by the previous quantities
Si(y;) and O,(y;) (Figure 2). By eqn (6), T(1) is also
reduced; with distributed choice-by-difference, Tj(1) is
reduced by the previous quantity 7(y,). Nodes where y; is
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FIGURE 3. Parallel distributed search, with the F; code y; propor-
tional to T(1) for j€ A C {1...N} and a choice-by-difference signal
rule: (a) T{y) = 0 for j & A; (b) after reset, T(1) is diminished by
the previous value of T(y). A new set A of F, nodes where T(1)is
maximal leads to a new active code y; (c) following another reset
on the time scale of search, T(1) is further reduced by the pre-
vious value of T(y)); (d) refractory sites recover on the time scale
of learning, so T{1) reverts to its original value at inactive sites
while T(1) may increase where y; > 0. These values of T(1)
would determine the next code y if another reset should then
occur with the same | due, say, to a sudden increase in vigilance.

large tend to have the largest signals and hence the great-
est reduction of the subsequent signals after a reset.
When y; =0, §; = ©; = T; = 0, so the signal T(1) at
the next reset will be the same as it was before.

Since recovery is slow on the time scale of search,
across a rapid series of resets the phasic depletion
term A; [eqn (9)] is approximately equal to the largest
value I; A [y; — 'r,«j]Jr has recently attained. The phasic
term S;(y;) can then be positive for a new code y only if
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yj is larger than it has yet been during the search. Simi-
larly, the tonic depletion term &; [eqn (13)] is approxi-
mately equal to the largest value y; A 7; has recently
attained. Refractory sites recover on the time scale of
learning. For a search where code selection is unbiased
by the previous choice, the model assumes that A; and &
converge to 0 during learning. When F; makes a
choice, with y; = 1, S{1) and ® «1) are reduced to 0
asAy—I; A(1 — 1) and 8;; — 7;; during search. Since
£/0,0) =0 [eqn (7)], TA1) is then also reduced to 0 until
it can recover on the time scale of learning.

4. DISTRIBUTED LEARNING

Catastrophic forgetting is a problem faced by all neural
networks with distributed activation especially in the
fast-learn limit where LTM variables go to asymptote
with each input presentation. The instar and outstar learn-
ing laws used in previous ART networks would cause
catastrophic forgetting if transferred to a network with a
distributed code y. Stable distributed coding with fast
learning requires internal or external control of the
learned changes that one input can induce.

The distributed outstar (Carpenter, 1994a) solves the
catastrophic forgetting problem for learning in paths that
originate from the coding field F,. The distributed instar,
introduced here, solves the problem in paths that project
to F,. During distributed outstar learning, the total signal
from the coding field to a target node can only decrease,
by a principle of atrophy due to disuse. During distrib-
uted instar learning, the total signal to a target coding
node can only increase, as the tonic component of the
signal increases while the phasic component remains
constant for a given input. Both learning laws bound
the total learned change any one input can impose
upon the system.

4.1. Distributed Outstar Learning

Dynamic weights in paths that originate from an ¥, cod-
ing node adapt according to a principle of atrophy due to
disuse. The total top—down priming signal o(y) to the i
F node equals the sum of dynamic weights projecting
to that node [eqn (28)]. During distributed outstar learn-
ing, each signal o,(y) that exceeds the input /; shrinks
until it just ‘‘covers’ I, Each dynamic weight
by — 7l * falls by an amount that depends upon its con-
tribution to o,(y) as the threshold 7;; rises according to the
equation:

d

pr =] " (0:¥) — ;) (36)

= [)’j - Tji] * (o(y)—L; A Ui(Y))

= [)’j - Tji] * [Ui(Y) - Ii] * »
by eqn (29). Initially, 7; (0) = 0. By eqn (36), the sum of
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all thresholds to the i™ F node increases according to:

d,Z -3h

ji=1 j=1

— 7] * (0:y) — x;) = 0:(¥) (0:(y) — x,)
37D

=0i(y)(0:(y) — i A ai(y)) = oY) [oi(y) — 1] *
As long as I; remains constant,

ai(Y) lIl A Ui(y)|t=rs (38)

where ¢ = r at the time of the previous reset. That is,
either o,(y) decreases toward /; by atrophy due to disuse;
or oy) is smaller than /; to begin with and so remains
constant until the next reset. Activity x = I A o(y) at the
matching field F, thus remains constant during learning,
as long as I and y remain constant.

The distributed outstar equation is simple enough to be
solved directly, and its solutions are piecewise linear. If I
and y remain constant during a time interval [r,f], then:

Old I +
7;i(t) = °‘d+¢(t)~["—-aoT]—[yj 297 (39)

old old __

where 7;;° = 7;(r)and 07" = 0,(y), = ,» and where ¢(¢) is
an exponentlal that goes from O to 1 as ¢ goes from r to
(Carpenter, 1994b). For input presentations of fixed

duration, the F, — F; threshold 7; increases during
old

learning from 73 to 7}, where:
old
1d [ — 4 ] 17 +
R A0
]

for a learning rate parameter 3 € [0,1]. Setting 8 = 1
gives the fast-learn limit, where all variables reach
asymptote during each input presentation. Eqn (39)
also provides a formula for the dynamic weight
by~ T,-,»(t)]*, which decreases during learning so that:

b — 70

With category choice at F', and fast learning, the distrib-
uted outstar reduces to the fuzzy ART outstar, as follows.
In the original outstar (Grossberg, 1968, 1970), weights
wj; in paths from a source node with activity y; track
target node activities x;. The specific outstar equation
used in fuzzy ART is:

d
i =i = wi). (42)

In fuzzy ART, with y, = 1 at the chosen F, node, x; = I;
A wy; at the i"™ F, node. Initially, all w;; (0) = 1, and top—
down weights wj; remain constant for j # J. For j = J,
weights decrease by outstar learning:

+ 7o +1i A aold
1[ i~ Tji ] old
l

(4D

d

Wi = (xi - Wji) =

7 (I Awy —wy) (43)

= — (Wji“li Aw],-) =- [w,,-—l,-] ’
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Correspondingly, in the distributed outstar [eqn (36)]

with the code y representing choice at F,, dt-r], = 0 for
jFJ.
Forj=J,
d__ s +
= Vs —7s] 7 [o:y) — L] (44)

=lyr—7n] T [r—7s] " 1) "

=(1=7) [(1=7) = 1] "
Setting wj; = (1 — 7;) [eqn (1)] converts eqn (44) into:
Ed;wj,- = —wylwy; —L]", (45)
with dl( w;;)=0 for j # J. Thus, except for the conver-
gence rate, the distributed outstar [eqn (36)] with choice
at F, reduces to the fuzzy ART outstar [eqn (42)]. With
fast learning, the two algorithms are equivalent.
In the fuzzy ART outstar, for fixed I and a chosen node
J, the total change in the set of weights from F, to the i"
F| node is bounded above by 1 — I

}: law;l = Wi~ 1] " =11, (46)
j=1

where w34 = w(r). In the distributed outstar, the same
bound applies, with y arbitrarily distributed across F:

— [ P I']Jr old] +
Z |A7(0)] = Z ¢(t)——om——[y,-—r,,- 17 @

j= j=1

Thus, distributed outstar learning preserves dynamic
range and avoids catastrophic forgetting.

4.2. Distributed Instar Learning

Distributed instar learning is designed to enhance the com-
petitive advantage of highly active coding nodes with
respect to the current input. At the same time, learning
makes these nodes more selective, so that different inputs
will tend to activate distinct codes. During distributed
instar learning a large dynamic weight [y; — 7;]* decreases
toward a smaller input /; according to the equation:

d
27 =D AN (48)

=[ly-m) " ~1)"

= ([yj—r,-,-]+ —hiA [YJ—TZId.+)’

where ‘r,jld = 7;(r), at the time of the previous reset.
Initially:

7(0)=7,;=0", (49)
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where the values n; are small random numbers needed to
break the tie among the first F, inputs 7,(1). As long as I
and y remain constant, the threshold 7; increases:

51 (; -L)Vv Tgld, (50)
where V represents the fuzzy union, or component-wise
maximum:

(aVb); = (a; V b;) = max(a;,b;) (51)

(Zadeh, 1965). As 7; increases, the dynamic weight
[y;— 741" decreases:

=) " UL A [y =739 (52)
Solving eqn (48) gives:
1O =70+ o) [y — 73— L) " (53)
750 if 70¢= (y;—I)
B { (1-6M) 1+ o)y — L) if 75° < (y—1)

where ¢(7) is an exponential that goes from 0 to 1 as ¢
goes from r to . In addition, the maximum total increase
across all the MN thresholds during one input presenta-
tion is bounded above by M.

> Ylanl=y 3 ly-4-1T 64
: “

For input presentations of fixed duration, 7; increases

from Tﬁ-}ld to 7y where:

Y= (1 -+ By - L) vyt (59

=gy = -]
for the learning rate parameter 3 € [0,1]. In the fast-learn
limit, 8 = 1.

Note that, by eqns (9) and (13), Sy(y) =i Aly; — 7"
and @,(y;) = y; A 7; during learning, since then A; =
8;=0. The distributed instar learning law can thus be
written in terms of the phasic and tonic signals, since:

d
pi A -] " =1 ' (56)

=[y—r] T —hA )

=y =y A=A =) "

=y — 050, = S30)-
The term Sy (y;) can be thought to represent a set of
synaptic sites that are phasically activated by the input
I;, while ©(y;) represents sites that are tonically acti-
vated, independent of ;. By eqn (6), a phasically active
site makes a larger contribution to the overall signal than
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does a tonically active site. However, the term
[y; — S;(3;)] then represents “‘disused’’ sites that are
primed by postsynaptic activation y; but are not
phasically activated by the current input. During learn-
ing, 7; remains constant if the 7™ node is relatively
inactive (y; = 7; + I)). Otherwise, ®;(y;) increases
toward [y; — S;(y;)] as disused phasic sites revert to
tonic sites.

With category choice at F,, the distributed instar
reduces to the fuzzy ART instar, as follows. In the
original instar (Grossberg, 1972), weights w; in paths
projecting to an active target node j track activity x; in
the incoming paths. The specific instar equation used
in fuzzy ART is:

d

In fuzzy ART, the path signal from Fis x; = I; A wy;,
where y; = 1 at the chosen F; node. With fast learning,
w; = wj except initially, when w;; (0) =1 — 95 = 1"
Bottom—up weights w; remain constant for j # J. For j =
J, weights decrease by instar learning:

d

7= (xi—wy) =L Awy;— wiz) (58)

= — (wij_IiAwij)z — [Wd—ll] +.

Correspondingly, setting w; = (1 — 7;) in the distributed
instar [eqn (48)] with choice at F, gives:

d d

= T guT T s —7u—1)" (59
= - [I—Ti]—li]+ . [WU—I,-]+

and 4(w;;)=0for j # J. Thus, the distributed instar with
choice at F, and fast learning reduces to the fuzzy ART
instar [eqn (57)].

4.3. Distributed Competitive Learning

In a competitive learning network (Grossberg, 1972,
1976b; Malsburg, 1973) inputs /; filtered through adap-
tive pathways produce activations y; at nodes of a target
competitive field F,. At active F, nodes, instar learning
[eqn (57)] strengthens the net signal sent by the active
input L. In general, codes generated by competitive learn-
ing networks are unstable, never converging to a consis-
tent representation for certain repeated input sequences
(Grossberg, 1976a; Carpenter & Grossberg, 1987). In
particular, with fast learning and activation y distributed
across all F, nodes, all the weights w; would converge to
the same value, I,, with each input presentation, a form of
catastrophic forgetting.

The F,— F, portion of the JART network, with dis-
tributed instar learning [eqn (48)] and with F, signals and
activation as described in Section 2, constitutes a distrib-
uted competitive learning system. This network is, in
fact, equivalent to the dART network with vigilance
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FIGURE 4. Distributed instar learning at synapse i of the /* F, node: disused phasic channels (pattern) that are primed by y; but not
occupied by /;revert to tonic channels; (a) a large y; may permit the threshold r jjto increase during learning. When 7jjis increasing, the
tonic terms increase because then @ j{y)) = @ j{1) = 7jj while the phasic terms remain constant because then S(y) = S(1)=I; (b) a
small y, tends to leave 7 jj constant during learning because then ® j{y) = y;and S{y) = 0.

p =0, which eliminates the match/reset/search cycle.
The Fy — F, competitive network is thus a special
case of a distributed ART network. The key to this
distributed competitive learning design is the dynamic
weight [y; — 1'1-,-]+ that replaces the traditional multipli-
cative weight wy. The distributed instar learning law
[eqn (48)] holds constant all thresholds 7; greater than
(y; — I,). Adaptive increase of a threshold 7; requires a
combination of a relatively small starting value 7;(r), a
small path input /;, and large coding node activation y;.
Since lyl = 1 but each I; € [0,1], most thresholds will
remain unchanged during learning. When the inequality
7#{r) < (y; — I;) permits adaptation, 7 rises only toward
the upper limit (y; — I;), where the dynamic weight
[y; — 751" equals the input I;. In contrast, instar learning
[eqn (57)] permits adaptation for all positive y;.

During distributed instar learning with a given input I,
the F, code y remains constant. However, learning
may alter the code that this same input will activate
later, as follows. Recall that y is determined by the size
of the Fy — F; signal T; (1) at the time ¢ = r of the
previous reset. By eqns (24) and (25), each y; is an
increasing function of T; (1)!,—,. During learning, the
quantity I; A [y; — T,,(t)]+ in the phasic term S(y))
[eqn (9)] remains constant, since [y; — ,,(t)] decreases
only if it is greater than /; (Figure 4). In contrast, the
quantity y; A 7,(?) in the tonic term @ (y;) [eqn (13)]
increases whenever 7;(f) increases, since 7;(f) can
increase only if y; > 7;(t) [eqn (48)]. If I is presented
again at a later time with no other learned changes having
occurred, each term S; (1) = I; A (1 — 7;) will be the
same as it had been when I was previously presented and
each term ®; (1) = 7; will be the same or larger. Thus by
eqns (5) and (6), each increase in a threshold 7; increases

the net signal 7; (1) produced by the same input I, all
other things being equal. Since y is normalized, learning
tends to contrast enhance the F', coding pattern activated
by a given input: learned changes tend to occur at nodes
where y;is large, so T; (1) becomes larger and the j ® node
will tend to gain an advantage the next time I is presented.

Whereas learning can only increase the Fy — F,
signals 7} (1) for the active input I, subsequent learned
changes associated with different inputs could cause
either an increase or a decrease in T; (1) the next time I
is presented. Note that 7; increases when an active F,
node j is coding an input in which the i component is
small [eqn (48)]. The computations below show that, if
this happens, the next time input I is presented the larger
threshold 7; will cause a larger signal 7; (1) where /; is
small but will cause a smaller T; (1) where I; is large.
That is, learning has caused node j to become more
responsive to the set of all inputs where the i™ component
is small.

Suppose that the last time I was presented, 7jj was
equal to rfj]d but that 7; has, in the mean time, risen to
7 . Suppose that I is now presented again. If /; is small
(I = 1—7"), then the phasic term S; (1) will be the
same as before but the tonic term @ (1) will have
increased from 73 to 7} [Figure 5(a)] Thus, when I;
is small an increased threshold 7;; leads to a larger signal 7;
(1), by eqns (5), (6) and (12). With choice-by-difference
[eqn (15)], T; (1) increases by (1 — a)(75™ — 75%). If I, is
large (1; =1~ T,} ) then S (1) will have decreased from
(1—79% to (1—75") whlle ©,; (1) will have increased
by the same amount, from ‘r,] to 7;7" [Figure 5(c)]. Thus,
eqn (6) implies that when /; is large an increased thresh-
old 7 leads to a smaller signal 7; (1). With choice-by-
difference, T; (1) decreases by a(r“ew - T°ld) If I;is in
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FIGURE 5. Effect of learned changes on coding signals: an increase in the threshold r jj between presentations of an input | may make
T;(1) larger or smaller the next time | is presented, depending on the size of /;. That is, although learning causes a monotonic change in
the LTM representation at the level of receptors (7 jj), this change can resemble either LTP (for a single test pulse or small /;) or LTD (for
larger /i) at the level of the postsynaptic potential (y,): (a) when /, is small, a higher threshold 7 jimakes the tonic term 6 ijlarger while the
phasic term S stays the same, so T,(1) is larger; (b) when /;is neither large nor small, a higher threshold makes ® ijlarger and S, smaller,
and T,;(1) may be larger or smaller, depending on the signal rule that defines it; (¢) when /;is large, a higher threshold increases ® ijand

decreases S by equal amounts, making T,(1) smaller.

between (1 — T =L <1-— Tf-}ld), an increased thresh-
old 7; may lead either to a smaller or a larger signal T;
(1), depending on the function g;(5;,®;) that defines T
[eqn (5)]. The phasic term §; (1) will have decreased
from /; to (1~7}") while the tonic term @, (1) will
have increased from 7{¢ to 7™ [Figure 5(b)]. With
choice-by-difference, the change in T; (1) is:

AT()=(1- 75 L)+ (1 —a) (7" —754)  (60)

= (1= = 1) — (™ = 139).

Thus, the increased threshold 7; leads to a larger signal 7
(1) only if the choice parameter « is small enough; that is if:

(1 — )7 +arf™ < (1-1,). (61)

5. A DISTRIBUTED ART ALGORITHM

The algorithm below summarizes distributed ART [Fig-
ure 1(b)] computations with inputs 10,19 1?,..
presented for equal time intervals. An algorithm to
approximate dART dynamics for a continuously
varying input I(r) would set I = I(nAf), with the time
step At and the learning rate parameter 8 small. Other
dART variations are implemented with appropriate
substitutions.

(1) Variables: i = 1..M,j=1...N

STM MTM LT™ Fo— Fy Fa— F,
signal signal
1 — Fo (input) Ay rj— Fo— F» S~ o, — Total
Phasic Phasic
x; — Fy (matching) 85— 7~ Fo— Fy ©, — Tonic
Tonic
¥; — F2 (coding) T; - Total

(2) Signal rule: define the Fy— F, signal function 7; =
g;(S;, ©)), where g;(0,0) =0 and dg;/3S; > 6g;/ 00, >0
for §; > 0 and ©®; > 0.

For example, T; = §; + (1 — @)®; with « € (0,1)
(choice-by-difference) or T; = S;/ (a0 + My; — ©)) with
a > 0 (Weber law).

(3) CAM rule: define the F'; steady-state function y; =
fi (T...Ty), where of;/T; = 0.

For example, for a power p > 0 (power law)

TP
_E_._f_)_ ifjeA
y=l 2 @)
J AEA
0 if j&A

where

. .
A:{]:T}ET}WlmT=N;7}
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(above average—T7)); or A = the set of Q indices j where
T; is maximal (Q-max).

(4) Parameters:

Number of input components, i = 1..M

Number of coding nodes, j=1...N

Signal rule, e.g., « € (0,1) {choice-by-difference) or o >> 0 (Weber law)
CAM rule, e.g., p (power law) and Q (Q-max), with p — o« or

Q = 1 for choice

Learning rate, 8 € [0,1], with 8 = 1 for fast learning

Vigilance, p € [0,1]

A set of small, positive, random numbers, for initial 7; values,
nij= 0+

(5) First iteration: n = 1

MTM depletion Aj=8;=0
Fo - Fg threshold Ti="nj
F» — F; threshold r,, =0
Input =1

(6) Reset: new STM steady-state at F'; and F

Fo — F signal M
Phasic Si= LA Q-7)—a]"
M
: +
Tonic @1 = igl [T,]‘ - 61]]
Total T; = g;(S; ©) [(2) Signal rule]
F, activation yi=1£ (T1 .Tw) [(3) CAM rule]
F, — F; signal Z [ ~73] "
j=1
F; activation i=1liA

(7) MTM depletion: F, sites refractory on the time
scale of search

Phasic A=A,
By =A3(L A [y =] ")
Tonic a°“’ =6,

1]

6‘—601‘1 v (y; ATy)

(8) Reset or resonance: check the Fy matching criterion

If Z x<p Z I;, go to (6) Reset

l—]

If Z Xx=p Z I;, go to (9) Resonance
i=1 i=1

(9) Resonance: new LTM thresholds and MTM recov-
ery on the time scale of learning

old

old old
Old values T =Ty T =T O =04

Increase Fo — F, threshold old old

=15 + B[y, — 75 LN

[old _]_” v OM]

—Tj

Increase F, — F, threshold

ld
Tj,':Tﬁ +B

1
g = o —5[0?“ - Iz':] *

Aj=58;=0

Decrease F, — F, signal
MTM recovery

(10) Next iteration: increase n by 1

I; =I£")

Xi=1; A o;

New input
New F; activation
Go to (6) Reset

G. A. Carpenter

6. DISTRIBUTED ART GEOMETRY

A geometric interpretation of fuzzy ART represents cate-
gories as boxes in input space that expand during learn-
ing (Carpenter et al., 1991b). A generalized version of
this geometric representation illustrates dART dynamics,
as follows.

6.1. Complement Coding

In fuzzy ART, input normalization prevents a type of
category proliferation that could otherwise occur when
weights erode. Complement coding doubles the dimen-
sion of an input vector a = (a;...a,) by concatenating a
and its complement a®. The input to a fuzzy ART net-
work is then a 2M-dimensional vector:

I=A= (a,a), (62)
where
(a%); = (1 —a). (63)

Complement coded inputs are normalized because

M M
Al=l(a,a%)= > a+ D> (1-a)=M. (64
i=1 i=1
If a represents input features, then complement coding
allows a learned category representation to encode the
degree to which each feature is consistently absent as
well as the degree to which it is consistently present
when that category is active. Because of its computa-
tional advantages, complement coding is used in nearly
all fuzzy ART and fuzzy ARTMAP applications. Similar
advantages can be expected for dART and dARTMAP
applications. Except for changing the number of compo-
nents of I, x, and the corresponding LTM vectors from M
to 2M, the description of network dynamics is unchanged
since complement coding is only a preprocessing step.
A dART algorithm with complement coding can be
embedded in an ARTMAP network to form the basis
of a AARTMAP algorithm (Section 8).

6.2. Fuzzy ART Category Boxes

A geometric interpretation of fuzzy ART associates with
each weight vector w; = (w1, Wy, ) a box R; in M-
dimensional space In the i™ dimension (i = 1.. M) the
side of the j" box is defined by the interval [w;, wi, x|
That is, R; is the set of points q for which:

W,jﬂqls (l_wi+M,j)' (65)
The size of R; is defined as the sum of these intervals:
M

Ril= D ((1=wipm) —wy)

i=1

oM
=M- Z wy =M —lw,l.

i=1

(66)






