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Abstract

Adaptive resonance is a theory of cognitive information processing which has been realized as a
family of neural network models. In recent years, these models have evolved to incorporate new
capabilities in the cognitive, neural, computational, and technological domains. Minimal models
provide a conceptual framework, for formulating questions about the nature of cognition; an
architectural framework, for mapping cognitive functions to cortical regions; a semantic
framework, for precisely defining terms; and a computational framework, for testing hypotheses.
These systems are here exemplified by the distributed ART (dART) model, which generalizes
localist ART systems to allow arbitrarily distributed code representations, while retaining basic
capabilities such as stable fast learning and scalability. Since each component is placed in the
context of a unified real-time system, analysis can move from the level of neural processes,
including learning laws and rules of synaptic transmission, to cognitive processes, including
attention and consciousness. Local design is driven by global functional constraints, with each
network synthesizing a dynamic balance of opposing tendencies. The self-contained working
ART and dART models can also be transferred to technology, in areas that include remote
sensing, sensor fusion, and content-addressable information retrieval from large databases.

When we go to the movies, we expect to relax. Here, nonetheless, even the adult moviegoer
performs formidable feats of memorization. After leaving the theatre with friends, we can
discuss details from all the scenes, and compare these with images from movies we saw only
once years earlier. This nearly effortless blend of perception, attention, learning, and memory —
the heart of cognitive science — is the subject of adaptive resonance theory (ART). In the mid-
1970s, ART was introduced as a theory of human cognitive information processing *%. Starting
in the mid-1980s, a series of neural network models have added new principles to the cognitive
theory, and have embodied these principles in quantitative systems that have been applied to
problems of learning, recognition, and prediction. Each network realizes a set of goals as a
minimal real-time system, a design process that helps the user to define terms and ideas as well
as suggesting explicit links between brain and behavior and allowing ready testing in
applications. Analysis of the limitations of each system often leads to a new design stage, within
a unified framework. The first such model, ART 13, was an unsupervised learning system

designed to categorize binary input patterns, with ART 2 4 and fuzzy ART ° then extending the
domain to include continuous-valued inputs. In recent years, the family of networks has
continued to evolve in response to conceptual and computational demands of problems from
cognitive and neural sciences and technology. This evolutionary development is here

exemplified by the recently introduced distributed ART (dART) model ®7 (Fig. 1), with
illustrative examples drawn from the movie-going experience.

Figure 1: Distributed ART network

Functional objectives of the ART variations developed over the years have ranged from
the cognitive (e.g., variable-rate speech and word recognition 8) to the technological (e.g., sensor
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fusion in sonar applications 9). Enduring goals in this series have included the design of a system
that can, as needed, maintain permanent codes (stable learning) or incorporate large quantities of
new information on one trial (fast learning); that can represent either prototypes or exemplars;
that can focus attention on critical features or quickly reset an erroneously activated code before
spurious associations are learned. Each model realizes a dialectical synthesis of such competing
goals (Table 1). The resulting network embodies a dynamic balance, rather than a “correct”
resolution, of opposites. For example, the system adjusts levels of generalization, from coarse to
fine, according to context, just as we can recall details of a heroine’s expressions while only
vaguely remembering the appearance of a minor character. The degree of generalization is
determined by a parameter p, called vigilance: low vigilance permits broad categories, while
raising vigilance moves the system from prototype learning toward exemplar learning. Choosing
a value for p may present a formidable problem for an unsupervised ART network, which does
not, by itself, determine a useful level of generalization. However, when this module is
embedded in a supervised ARTMAP network 10-12 " the nature of p changes, from a fixed
parameter to an internally controlled variable whose value may vary from moment to moment,
based on the predictive success of the overall system. The larger network thereby balances the
design goal of maximizing generalization, which is fostered by low p values, against the
complementary goal of minimizing predictive error, which may require higher p values.

Table 1: Dynamic balance

Distributed coding

In traditional ART networks, localist, or winner-take-all (WTA), competitive activation supports
stable coding by limiting learned changes to memory traces that project to or from the one active
category node. However, this maximally compressed activation pattern may cause category
proliferation when noisy inputs are trained with fast learning. In contrast, multilayer perceptrons
(MLPs) feature distributed McCulloch-Pitts 13 activation, which promotes noise tolerance and
code compression, but which is prone to catastrophic forgetting. (See Ref. 14: French, Trends in

Cognitive Science, 1999, for a review of catastrophic interference in neural networks; and see

Ref. 15: Page, Behavioral and Brain Sciences, 2000, for a review and discussion of localist vs.
distributed computation in neural modeling of cognition.)

. Figure 2: Distributed coding in a traditional ART architecture

Distributed ART models seek to combine the best of these two worlds: distributed
activation enhances noise tolerance and code compression while new system dynamics retain the
stable fast learning capabilities of WTA ART systems. An obvious possible design solution
would simply distribute activation across the ART coding field 7 while retaining other features
of the network architecture and dynamic laws (Fig. 2). However, this approach encounters
serious problems at the outset. First, without slow learning, the system would suffer an
unavoidable type of catastrophic forgetting: according to the gated steepest descent learning
laws, all active nodes would code the same pattern. Second, feedback activation in the / & F,
loop could keep the system from ever establishing orderly code representations.
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The dART network '© solves the second problem by reconfiguring the network (Fig. 1) to
eliminate the feedback loop while retaining primary ART computations, such as top-
down/bottom-up pattern matching at /. In fact, with WTA coding and fast learning, distributed
ART reduces computationally to a fuzzy ART algorithm. With distributed coding, the dART
network automatically apportions learned changes according to the degree of activation of each
node, which permits fast as well as slow learning without catastrophic forgetting. A parallel
distributed match-reset-search process also helps stabilize memory.

Figure 3: Local computation: dART coding neuron

The critical new element that allows dART to solve the catastrophic forgetting problem is
the dynamic weight (C, 1994), which replaces the traditional neural network path weight. This
quantity equals the rectified difference between coding node activation and an adaptive
threshold, combining short-term memory (STM) with long-term memory (LTM) in the basic unit
of memory (Fig. 3). Thresholds increase monotonically during learning according to a principle
of atrophy due to disuse. However, in the code selection paths from Fy to 5, monotonic change

at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result
of adaptation resembles long-term potentiation (LTP) for single-pulse or low-frequency test
inputs but can resemble long-term depression (LTD) for higher frequencies. This dynamic is
traced to dual computational properties of frequency-dependent and frequency-independent
components of the coding signal. During learning, the frequency-independent component
increases nonspecifically, for all inputs, while the frequency-dependent component becomes
more selective, maximally favoring the current input (Fig. 4). Seemingly paradoxical, the
disappearance of LTP enhancement for high-frequency test inputs is similar to the phenomenon
of redistribution of synaptic efficacy, as observed by Markram and Tsodyks 17 in the neocortex.
Analysis of the dART learning system indicates how these dynamics are related to the
computational components needed to support stable coding in a real-time neural network.

Figure 4: Global computation: dART code selection
Features present and features absent

From 101 Dalmatians, we recall that there were lots of dogs, but no elephants; and we probably
have no clear recollection of the colors of the cars. Similarly, ART memories represent both
critical features that are consistently present (dogs) with respect to a given code (that movie) and
critical features that are consistently absent (elephants); and inconsistent features are treated as
uninformative (car colors). To carry out this construction, ART and dART employ a

preprocessing step called complement coding >, which presents to the learning system both the
original input pattern and its complement. This formal device, which corresponds to on-cell/off-
cell coding in the early visual system, allows the learning system to encode critical features that
are normally absent in the input environment, in addition to features that are normally present.
When features are represented formally as a vector of component values, a pattern of descending
values in the original input would be presented to the learning system along with its mirrored
pattern of ascending values, as in the F, activation pattern shown in Fig. 1. Note, then, that the

input (I) to the learning system now has twice as many components as the original input. Note,
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too, that the learned prototype pattern of critical features, which is a function of top-down as well
as bottom-up inputs (the F activation pattern) is no longer complement coded. In Figure 1,
strong activation in the left portion of the matched pattern at F{ denotes features that are not only
present in the current input but are also encoded as having been consistently present in the
prototype memory of the active code y; and strong activation in the right portion of the A
pattern denotes features that are absent in the current input and encoded as having been
consistently absent. The network inhibits representation of features of the current input that have
been inconsistently present and absent during learning of the critical feature pattern of the active
code. The system thereby carries out a type of large-amplitude noise suppression: car colors
might be salient features of an environment, but we are hard pressed to remember or even notice
them, unless we direct our attention to do so.

As part of the global system dynamics, complement coding solves a category
proliferation problem 18 It also suggests a computational solution to the tendency of
redistribution of synaptic efficacy to enhance only low-frequency inputs: if an input component
is consistently large with respect to a given code, then the network can embody this fact in the
complementary component, which can be enhanced since it will be consistently small.

Cognitive and neural systems

ART models and concepts have provided a context for analyzing cognitive and neural data from

many sources. Pollen Y ina wide-ranging review of the neural correlates of visual perception,
resolves various past and current views of cortical function by placing them in a framework he
calls “adaptive resonance theories.” This unifying perspective postulates resonant feedback loops
as the substrate of phenomenal experience. Interpreting ART network components in a cortico-
hippocampal system integrates diverse studies of normal and amnesic learning and memory 20,

Recent work concerning how the neocortex is organized into layers 2! suggests how laminar
computing leads to intelligent behavior by modeling how bottom-up, top-down, and horizontal
interactions are organized within the cortical layers. Figure 4 of Ref. 22 (Trends in Cognitive
Sciences, 2000) shows network design elements which are repeated in a hierarchical structure in
this model system.

Figure 5: dART and cortical layers

Figure 5 shows how the laminar model of visual cortex might be augmented to include
learning, by identifying key components of that model with corresponding components of
distributed ART. The laminar model at V2 layer 4 matches signal patterns from V2 layer 6 and
from V1 layer 2/3, just as the dART model at F} matches signal patterns from the coding field

F, and from the input field F. In the laminar model, signals from V1 layer 2/3 also project to
V2 layer 4, just as the dART input pattern projects directly from Fjy to F,. A similar modular

configuration appears in the laminar model between LGN and V1. These similarities suggest
new roles, in learning, for the layers of the cortical architecture. In particular, since the dInstar
and dOutstar laws permit fast, stable, distributed learning in this network configuration, these
properties would be inherited by a cortical model that adopts them. The dART learning laws

]
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therefore suggest how the laminar model may be extended to cortical areas that participate in
recognition learning and categorization, including inferotemporal cortex.

Technology transfer

ART and dART systems are part of a rapidly growing family of attentive self-organizing systems
that have evolved from the biological theory of cognitive information processing. These modules

have found their way into such diverse applications as industrial design and manufacturing 2 the

control of mobile robots 2%, automatic target recognition 2528, medical imaging *°,
30,31

electrocardiogram wave recognition , air quality monitoring 32 strength prediction for

concrete mixes >, signature verification >, tool failure monitoring >*>, frequency selective
38

surface design for electromagnetic system devices 37 analysis of musical scores °°, power
transmission line fault diagnosis >, and satellite mapping *°.

Figure 6: Supervised ARTMAP architectures

Many of these applications use supervised ART architectures, called ARTMAP systems (Fig. 6).
These networks self-organize arbitrary mappings from input vectors, representing features such
as spectral values and terrain variables, to output vectors, representing predictions such as
vegetation classes in a remote sensing application. Recent research for technology transfer, as in
the cognitive and neural domains, seeks to extend to earlier localist constructions to include the

possibility of stable distributed coding in a network hierarchy 4,
A moment of conscious experience

Adaptive resonance offers a core module for the representation of hypothesized processes
underlying learning, memory, attention, search, recognition, and prediction. At the model’s field
of coding neurons, the continuous stream of information pauses for a moment, holding a fixed
activation pattern long enough for attention and memory to proceed. Feedback loops fixing the
moment are broken only by active reset, which flexibly segments the flow of experience
according to the demands of perception, memory, and environmental feedback. As Pollen
suggests (Ref. 19, pp. 15-16): “it may be the consensus of neuronal activity across ascending
and descending pathways linking multiple cortical areas that in anatomical sequence subserves
phenomenal visual experience and object recognition and that may underlie the normal unity of
conscious experience.”
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Outstanding questions

« What might be the global anatomical representations of learning systems?

¢ Where does memory consolidation, on a time scale of hours or years, fit in a
real-time learning system?

» What might be the local physiological representations of activation and
learning laws, at presynaptic and postsynaptic sites?

» What rules of synaptic transmission support global computational goals in
model systems and in their physiological counterparts?

* How should results of recent studies that demonstrate learning as a
redistribution of synaptic efficacy, rather than a nonspecific gain increase, be
incorporated into neural network models?

 In a distributed system, how can an efficient search process be designed to
learn from its mistakes even though, when the system makes an error, it does
not yet know where it should be heading?

* How should an on-line learning system distinguish between important rare .
cases and outliers?

 How can a network with distributed activations retain stable codes and fast
learning without locking in early memories too soon?

+ What feedback loop designs permit orderly information processing and

learning in a neural network?

e
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Table 1: Dynamic balance of design elements

Each ART or dART model defines a host of design tradeoffs, and each network example

embodies a set of choices that represent a synthesis of complementary properties.

System dynamics and design

Bottom-up signals
Feedforward inflow
Code learning
Perception

Localist activation
Rules and symbols
Specific signals
Signal
Environmental input
Prototypes
Generalization
Present features
On-cells

Search

Attention
Familiarity
Match

Learning

Stability

Unlimited capacity to learn
essential new information

Invariance

Limited capacity of STM

Dynamic weight

On-line, incremental learning

Unsupervised learning

Fast learning

Top-down signals
Feedback outflow
Prototype learning
Expectation
Distributed activation
Real-time processing
Nonspecific signals
Noise

Critical features
Exemplars

Encoding rare cases
Absent features
Off-cells

Orientation
Novelty
Reset

Plasticity
Catastrophic forgetting

Change

Unlimited capacity of LTM
Fixed weight

Off-line, batch learning
Supervised learning

Slow adaptation

Cognition

Consciousness
Coding

One-to-many maps
Consistent worldview
Lifetime memory

Real-time flow of activation
Action

Many-to-one maps
Inconsistent perceptions
Amnesia
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PREDICTION

dART

CODE
SEARCH
X
F, MATCH
-
Fo INPUT I

Fig. 1. dART model diagram. In the distributed ART (dART) network 67 the N nodes of a
coding field F, receive a net signal pattern T = (71 Ty ..TN) directly from an input field Fy.
A CAM (content-addressable memory) rule transforms these signals to an F, code, or activation

pattern, y=(y1... Yj--r yN). Total F, activation is normalized (Ej.vzlyj :1), but may be

distributed across arbitrarily many nodes. Activity X = (xl...xi...xM) at the field Fp reflects a
match between the input pattern I:(Il...li...IM) from F, and the net signal pattern

o= (0'1~--0'i---0'M) from F,. The active code y is reset when x fails to meet the vigilance
matching criterion, determined by parameter p. Long—term memory is stored as Fy — F»
thresholds 7;, which adapt according to a distributed instar (dInstar) learning law; and as
Fj — Fy thresholds 7 j;, which adapt according to a distributed outstar (dOutstar) learning

law 16
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Design goals

FAST LEARNING
- on-line adaptation to rapid change
- encoding rare cases in one trial

- large databases

DISTRIBUTED CODING
- noise tolerance

- code compression

Why not distribute the code representation
in a traditional ART architecture?

S
—§—§——‘—— . EMS
F 5 5 ‘ PROBLEMS

2 CODE
y 2N\ [1] fast learning =
A J catastrophic
X MATCH i
F, O O\Q 0O forgetting
4 [2] feedback =>
I | INPUT coding design
B OOOOO questions

Figure 2




BE. A E A R E R R R R B BB DB BB D

|
l
,1

Adaptive resonance: an emerging neural theory of cognition CAS/CNS Technical Report TR-2000-010 14

F1g 2. Distributed coding causes problems in a traditional ART architecture. In ART
models, the input, match, and coding fields are configured as Fy — Fj <> F», respectively, in

contrast to dART, where input signals flow directly from Fy to Fp (Fig. 1). In both ART and
dART, the field Fj matches the input pattern from F| against a learned expectation pattern
generated by the code active at F;. In an ART network, winner-take-all (WTA) coding helps

preserve code stability by restricting learned changes to paths projecting to and from the single
active F» node. Moreover, instar learning laws, in paths from Fj to F,, and outstar learning laws,

in paths from F, to Fi, ensure that the F, coding node chosen by the original bottom-up input I
is the same as the one that would be chosen by the matched pattern X that becomes active at Fj

after F, sends top-down feedback 3. This property, where top-down expectation confirms the

original bottom-up choice, is essential for producing orderly real-time dynamics within the
feedback loop. Code stability and consistent feedback may fail in a network that seeks to combine
the advantages of fast learning and distributed coding simply by distributing activation across the
ART coding field F5.
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Local computation : dART coding neuron

DYNAMIC WEIGHT [ Yj— T ]+

TOTAL

STM: LIMITED CAPACITY BOUNDS
D CHANGE

LTM: UNLIMITED CAPACIT

15

synapse-specific
pattern signal Sij

synapse-specific |

blaS (h")l‘i \ | fe

frequency- frequency-
independent dependent
Tjj=Sij +(1-0)©; |
— I; INPUT
— (frequency)

Figure 3
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Fig. 3. A dART coding neuron. The dART architecture solves the feedback design problem
(Fig. 2) by sidestepping it: the new dInstar and dOutstar learning laws allow the network to
function without the F; <> F, feedback loop (Fig. 1), while retaining computational properties

that are algorithmically equivalent to fuzzy ART when coding is winner-take-all. In dART, the
dynamic weight [yj —T,-J-]+ in the path from the i Fy node to the jth F5 node equals the

rectified difference between the target coding node activation y ; and the adaptive threshold 7y,

ie., max{(y ;- Tl-j),O}. With WTA coding, where yy =1 at the single active F, node, a formal

identification of the dynamic weight [y, —T,-J]+ =(1-17;7) with the fuzzy ART weight w;;
reduces the dART algorithm to fuzzy ART, in the fast-learn limit. With distributed coding,
dART solves the catastrophic forgetting problem by enlisting the limited capacity of STM at F,

to bound learned changes. The Fjy — F signal Tj; is a weighted sum of a frequency-dependent
component S;;, which depends on the current input /;; and a frequency-independent component
© . Both §; and © ; depend on the dynamic weight. In Ref. 7, the dART threshold 7 ij>
associated signal components S; and © ;, are visualized as ligand-gated and voltage-gated

and

membrane channels. In this representations, as 7;; increases via dInstar learning, “disused”

ligand-gated channels are converted to voltage-gated channels, which are weaker but input-
independent. However, the dART model does not, by itself, uniquely specify either a presynaptic
or a postsynaptic locus of the long-term memory trace.
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Global computation: dART code selection
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Fig. 4. dART code selection. The dynamic behavior of an individual dART synapse is viewed in
the context of its role in stabilizing distributed pattern learning, rather than as a primary
hypothesis. Redistribution of synaptic efficacy here reflects a local tradeoff between frequency-
dependent and frequency-independent synaptic signal components which support a global
tradeoff between pattern selectivity and a nonspecific path strengthening at the network level.
Models that implement distributed coding via gain adaptation alone tend to suffer catastrophic
forgetting and require slow or limited learning. In dART, each increase in frequency-independent
synaptic efficacy is balanced by a corresponding decrease in frequency-dependent efficacy. With
each frequency-dependent unit assumed to be stronger than each frequency-independent unit, the
net result of learning is redistribution, rather than nonspecific enhancement, of synaptic efficacy.
The system uses these complementary mechanisms to enhance network response to a given
pattern while suppressing the response to mismatched patterns. At the same time, the dInstar
learning law protects prior codes against catastrophic forgetting.
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Fig. 5. dJART and cortical layers. The dART network configuration (a) is isomorphic to
modular components of a laminar model of visual cortex (b). (See Figure 4 of Ref. 20: Trends in
Cognitive Sciences, 2000.) Comparing dART with the first level of the laminar computing model
hierarchy, the input field /) may be identified with LGN, the coding field 7 with V1 cortical
layer 6, and the match field K with the V1 cortical layer 4. This anatomical equivalence
indicates how learning laws and other dynamic components of the dART network may be
incorporated into the cortical model in such a way as to achieve key design goals, including code
stability, and suggests new functional roles for the various layers. Since the laminar computing
model features isomorphic structures in the cortical hierarchy, the dART function may be tested
at each corresponding level. Note that the reconfiguration of the dART architecture from (a) to
(b) blurs the distinction between “top-down” and “bottom-up” matching, expectation, and
attentional focusing at 7. In addition, the laminar cortex model also includes other top-down
attentional signals (e.g., from V2 layer 6 to V1 layer 6) as part of a “folded-feedback” circuit.




—dk il B E E A E EEEEEEEREEEEESs

Adaptive resonance: an emerging neural theory of cognition CAS/CNS Technical Report TR-2000-010 20

SUPERVISED LEARNING

ARTMAP — FUZZY ARTMAP C dARTMAP
(1991) (1992) (1998)

¢ |MAPFIELD

o«

Fig. 6. Supervised ARTMAP. In most applications, unsupervised ART networks serve as
modular components of a supervised system, where the system learns an input—to-output map
(a — b) during training. Following an evolutionary development like that of the unsupervised
systems, distributed ARTMAP *I reduces to fuzzy ARTMAP ! when coding is WTA, and
further reduces to ARTMAP '® when inputs are binary.




