
IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 1

Default ARTMAP

Gail A. Carpenter
Department of Cognitive and Neural Systems, Boston University

677 Beacon Street, Boston, MA 02215
gail@cns.bu.edu

ABSTRACT - The default ARTMAP algorithm and
its parameter values specified here define a ready-to-use
general-purpose neural network system for supervised
learning and recognition.

I. INTRODUCTION:
ART TECHNOLOGY TRANSFER

Adaptive Resonance Theory (ART) neural networks
model real-time prediction, search, learning, and recognition.
ART networks function both as models of human cognitive
information processing [1,2,3] and as neural systems for
technology transfer [4]. A neural computation central to both
the scientific and the technological analyses is the ART
matching rule [5], which models the interaction between
top-down expectation and bottom-up input, thereby creating
a focus of attention which, in turn, determines the nature of
coded memories.

Sites of early and ongoing transfer of ART-based
technologies include industrial venues such as the Boeing
Corporation [6] and government venues such as MIT
Lincoln Laboratory [7]. A recent report on industrial uses of
neural networks [8] states:

[The] Boeing … Neural Information Retrieval
System is probably still the largest-scale
manufacturing application of neural networks. It uses
[ART] to cluster binary templates of aeroplane parts
in a complex hierarchical network that covers over
100,000 items, grouped into thousands of self-
organised clusters. Claimed savings in
manufacturing costs are in millions of dollars per
annum. (p. 4)

At Lincoln Lab, a team led by Waxman developed an image
mining system which incorporates several models of vision
and recognition developed in the Boston University

This research was supported by grants from the Air Force
Office of Scientific Research (AFOSR F49620-01-1-0397
and AFOSR F49620-01-1-0423) and the Office of Naval
Research (ONR N00014-01-1-0624). I also wish to thank
and acknowledge the many BU/CNS students who have
contributed to this work, including: Suhas Chelian, Marin
Gjaja, Norbert Kopco, Natalya Markuzon, Siegfried Martens,
Tim McKenna, Boriana Milenova, Ogi Ogas, Olga Parsons,
John Reynolds, Brad Rhodes, David Rosen, Bill Ross,
Byron Shock, Bill Streilein, Ah-Hwee Tan, and Matt
Woods.

Web: http://cns.bu.edu/~gail/142_Default_ARTMAP_2003_.pdf

Department of Cognitive and Neural Systems (BU/CNS).
Over the years a dozen CNS graduates (Aguilar, Baloch,
Baxter, Bomberger, Cunningham, Fay, Gove, Ivey,
Mehanian, Ross, Rubin, Streilein) have contributed to this
effort, which is now located at Alphatech, Inc.

Customers for BU/CNS neural network technologies
have attributed their selection of ART over alternative
systems to the model’s defining design principles. In listing
the advantages of its THOT® technology, for example,
American Heuristics Corporation (AHC) cites several
characteristic computational capabilities of this family of
neural models, including fast on-line (one-pass) learning,
“vigilant” detection of novel patterns, retention of rare
patterns, improvement with experience, “weights [which] are
understandable in real world terms,” and scalability
(www.heuristics.com).

Design principles derived from scientific analyses and
design constraints imposed by targeted applications have
jointly guided the development of many variants of the basic
networks, including fuzzy ARTMAP [9], ART-EMAP [10],
ARTMAP-IC [11], Gaussian ARTMAP [12], and
distributed ARTMAP [3,13]. Comparative analysis of these
systems has led to the identification of a default ARTMAP
network, which features simplicity of design and robust
performance in many application domains [4]. Selection of
one particular ARTMAP algorithm, specified here with a
complete set of default parameter settings, is intended to
facilitate ongoing technology transfer. A user may start with
this version of the system, then, if necessary, adjust
parameters to suit individual applications.

II. WINNER-TAKE-ALL VS. DISTRIBUTED
CODE REPRESENTATIONS

The default ARTMAP algorithm (Section IV) outlines a
procedure for labeling an arbitrary number of output classes
in a supervised learning problem. A critical aspect of this
algorithm is the distributed nature of its internal code
representation, which produces continuous-valued test set
predictions distributed across output classes.

The character of their code representations, distributed
vs. winner-take-all, is, in fact, a primary factor
differentiating various ARTMAP networks. The original
models [9,14] employ winner-take-all coding during training
and testing, as do many subsequent variations and the
majority of ART systems that have been transferred to
technology. Default ARTMAP is the same as fuzzy

IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 2

ARTMAP during training, but uses a distributed code
representation during testing. ARTMAP-IC [11] equals
default ARTMAP plus instance counting, which biases a
category node’s test set output by the number of training set
inputs coded by that node. Distributed ARTMAP
(dARTMAP) employs a distributed code (and instance
counting) during both training and testing [3,13]. Versions
of these networks [4] form a nested sequence:

fuzzy ARTMAP Ã default ARTMAP Ã
ARTMAP-IC Ã distributed ARTMAP

That is, distributed ARTMAP reduces to ARTMAP-IC
when coding is set to winner-take-all during training;
ARTMAP-IC reduces to default ARTMAP when counting
weights are set equal to 1; and default ARTMAP reduces to
fuzzy ARTMAP when coding is set to winner-take-all
during testing as well as training.

ARTMAP variants with winner-take-all (WTA) coding
and discrete target class predictions have shown consistent
relative deficits in labeling accuracy and post-processing
adjustment capabilities.

III. THE DEFAULT ARTMAP SYSTEM

Default ARTMAP codes the current input as a winner-
take-all activation pattern during training and as a distributed
activation pattern during testing. For distributed coding, the
transformation of the filtered bottom-up input to an
activation pattern across a field of nodes is defined by the
increased-gradient CAM rule [13]. The default network also
implements the MT– search algorithm [11] and sets the
baseline vigilance parameter equal to zero, for maximal
code compression. Other design choices for default
ARTMAP include fast learning, whereby weights converge
to asymptote on each learning trial; single-epoch training,
which emulates on-line learning; a choice-by-difference
signal function [15] from the input field to the coding field;
and four-fold cross-validation.

ARTMAP’s capacity for fast learning implies that the
system can incorporate information from examples that are
important but infrequent and can be trained incrementally.
Fast learning also causes each network’s memory to vary
with the order of input presentation during training. Voting
across several networks trained with different orderings of a
given input set takes advantage of this feature, typically
improving performance and reducing variability as well as
providing a measure of confidence in each prediction [9].
While the number of voting systems is, in general, a free
parameter, five voters have proven to be sufficient for many
applications. Default ARTMAP thus trains five voting
networks for each training set combination.

Even with the number of voters fixed, other design
choices appear in systems where output activations may be
distributed. In particular, default ARTMAP, which produces
a continuous-valued distribution

†

sk across output classes k
for each test set item, presents options for combining

weighted predictions across voters to make a final class
choice. One strategy sums the

†

sk values of individual
networks to produce a net distributed output pattern, which
is then used to determine the predicted class. An alternative
strategy first lets each voting network choose its own
winning output class, then assigns the test set inputs on the
basis of these individual votes. In most applications, the
first of these two voting strategies produces better results.

IV. DEFAULT ARTMAP ALGORITHM

Fig. 1 and Table I summarize default ARTMAP
notation. Table II lists default parameter values. A user who
wishes to explore network variations might begin by varying
the baseline vigilance,

†

r . In some cases, higher values of

†

r increase predictive accuracy but may decrease code
compression.

Fig. 1. Default ARTMAP notation.

complement
coded
input A

j

i

k

†

a1Kai KaM()

code y

output
classes

feature
vector a

†

wij

†

W jk

net
signal

†

Tj

net
signal

†

sk

actual
output
class k = K

†

r ≥ r

matched pattern

†

A ŸwJ

a ac

code reset if

†

A ŸwJ < rM

IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 3

TABLE I
DEFAULT ARTMAP NOTATION

NOTATION DESCRIPTION

i input component index

j coding node index

k output class index

M number of input features

a feature vector

†

ai() ,

†

0 £ ai £1

†

A complement coded input vector:

†

A ≡ a,ac()
K actual output class of training input

y coding field activation pattern (CAM):

†

y j()
J chosen coding node (winner-take-all)

C number of committed coding nodes

†

L, ¢ L committed node subsets

†

Tj signal from input field to coding node j

†

sk signal from coding field to output node k

†

w j coding node weight vector j:

†

wij()

†

Wk output class weight vector k:

†

W jk()
r vigilance variable

†

Ÿ component-wise minimum (fuzzy
intersection):

†

pŸ q()i ≡ min pi ,qi()

†

⋅ vector size (

†

L1-norm):

†

p ≡ pi
i
Â

†

pc
vector complement:

†

pc()i
≡ 1- pi

TABLE II
DEFAULT PARAMETER VALUES

NAME PARA-
METER

RANGE DEFAULT

VALUE

NOTES

signal
rule
parameter

a

†

0,•() 0.01

†

a = 0+

maximizes
code
compression

learning
fraction

b

†

0,1[] 1.0

†

b = 1
implements
fast learning

match
tracking

e

†

-1,1() – 0.001

†

e < 0 (MT–)
codes
inconsistent
cases

baseline
vigilance

†

r

†

0,1[] 0.0

†

r = 0
maximizes
code
compression

CAM
rule
power

p

†

0,•(] 1.0 Increased
Gradient (IG)
CAM rule
converges to
WTA as

†

p Æ •

#
training
epochs

E ≥ 1 1 E=1
simulates on-
line learning

data
subsets

F ≥ 3 4 F-fold cross-
validation

voting
systems

V ≥ 1 5

IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 4

A. Classification Methodology

This section outlines a canonical classification procedure
for training and evaluating supervised learning systems,
including ARTMAP.

A.1. List output classes for the supervised learning
problem.

A.2. If possible, estimate an a priori distribution of output
classes.

A.3. If not provided, create a ground truth set for each class
by assigning output labels to a designated set of input
vectors.

A.4. Divide the ground truth set into F disjoint subsets.

A.5. In each of the F subsets, designate either all ground
truth inputs in that set; or P randomly chosen labeled
inputs for each output class (or all inputs in a given
class if fewer than P have been labeled). Fix random
orderings of designated inputs in each subset.

A.6. Choose one subset for validation, one for testing, and
the rest for training.

A.7. Train V systems (voters), each with E presentations of
input vectors from one of the ordered training sets
(Section IV.B).

A.8. For each voter, choose parameters by validation (if
parameter choice is required).

A.9. Present to each voter all test set inputs. Produce an
output class prediction

†

sk for each test input
(Section IV.C).

A.10. Sum the distributed output class predictions across
the V voters.

A.11. Label inputs by one of three methods (breaking ties
by random choice):

A.11.a. Baseline: Assign the input to the output
class k with the largest summed prediction.

A.11.b. Prior probabilities: Select an output class
at random according to the estimated a priori
distribution in the data set. Assign that class label to
the still-unlabeled input with the largest summed
prediction for this class.

A.11.c. Validation: Bias the summed output class
distribution, evaluating performance on the validation
set. One such method [4] selects decision thresholds
for each output class, with an upper bound of 10% set
for each false alarm rate. Alternatively, the distributed
prediction of each voter (or of the sum) could be

weighted by a steepest descent algorithm. Use the
biased summed distribution to label the input by the
baseline or prior probabilities method.

A.12. Post-training output class adjustments:

A.12.a. Standard post-processing methods:
Mapping tasks, for example, may benefit from local
image smoothing. Post-processing for speckle
removal may be implemented as a simple voting filter
which assigns to each pixel the label originally
assigned to a majority of its eight neighbors plus
three copies of itself.

A.12.b. Class distribution adjustment: Starting
with the output class predictions produced by any
method (Step A.11), target distribution percentages
may be adjusted up or down (e.g., based on
inspection of resulting classes), and class labels
recomputed by the prior probabilities method.

A.12.c. False alarm rate adjustment: A decision
threshold for an over-represented class may be
increased to reduce the validation set false alarm rate.

A.13. Classifier evaluation: Compute average performance
statistics across all combinations of training subsets
(each with V voters). Classifier evaluation measures
include test set output class distributions, hit and
false alarm rates for each class, overall accuracy on the
test set, performance variability between tasks,
product appearance (e.g., for mapping, overall and by
overlays for each class), and degree of improvement
by post-processing.

B. Default ARTMAP Training (Winner-Take-All Code)

The default ARTMAP algorithm specified here is a
special case of the distributed ARTMAP (dARTMAP)
algorithm described in [13].

B.1. Complement code M-dimensional training set feature
vectors a to produce 2M-dimensional input vectors A:

†

A ≡ a,ac() and

†

A = M

B.2. Set initial values:

†

wij = 1,

†

W jk = 0 ,

†

C = 1

B.3. Select the first input vector A, with associated actual
output class K

B.4. Set initial weights for the newly committed coding
node

†

j = C :

†

wC = A

†

WCK = 1

IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 5

B.5. Set vigilance

†

r to its baseline value:

†

r = r
and reset the code:

†

y = 0

B.6. Select the next input vector A, with associated actual
output class K (until the last input of the last training
epoch)

B.7. Calculate signals to committed coding nodes

†

j =1KC :

†

Tj = A Ÿ w j + 1-a() M - w j()
B.8. Search order: Sort the committed coding nodes with

†

Tj > aM in order of

†

Tj values (max to min)

B.9. Search for a coding node J that meets the matching
criterion and predicts the correct output class K, as
follows:

B.9.a. Code : For the next sorted coding node

†

j = J() that meets the matching criterion

†

A Ÿ wJ
M ≥ r

Ê

Ë Á
ˆ

¯ ˜ , set

†

yJ =1 (WTA)

B.9.b. Output class prediction:

†

sk = W jk y j
j=1

C
Â = WJk

B.9.c Correct prediction: If the active code J
predicts the actual output class K

†

sK = WJK =1() ,

go to Step B.11 (learning)

B.9.d Match tracking: If the active code J fails to
predict the correct output class

†

s K = 0() , raise

vigilance:

†

r =
A Ÿ wJ

M
+ e

Return to Step B.9.a (continue search).

B.10. After unsuccessfully searching the sorted list, increase
C by 1 (add a committed node).
Return to Step B.4

B.11. Learning: Update coding weights:

†

wJ
new = b A Ÿ wJ

old() + 1- b()wJ
old

.

Return to Step B.5 (next input).

C. Default ARTMAP Testing (Distributed Code)

C.1. Complement code M-dimensional test set feature
vectors a to produce 2M-dimensional input vectors A

C.2. Select the next input vector A, with associated actual
output class K

C.3. Reset the code:

†

y = 0

C.4. Calculate signals to committed coding nodes

†

j =1KC :

†

Tj = A Ÿ w j + 1-a() M - w j()
C.5. Let

†

L = l =1KC: Tl > aM{ } and

†

¢ L = l = 1KC: Tl = M{ }=

†

l =1KC: w j = A{ }
C.6. Increased Gradient (IG) CAM Rule:

C.6.a. Point box case: If

†

¢ L ≠

†

f (i.e.,

†

w j = A

for some j), set

†

y j =
1
¢ L

 for each

†

j Œ ¢ L

C.6.b. If

†

¢ L = f , set

†

y j =

1
M - Tj

È

Î
Í
Í

˘

˚
˙
˙

p

1
M - Tl

È

Î
Í

˘

˚
˙

p

lŒL
Â

 for each

†

j ŒL

C.7. Calculate distributed output class predictions:

†

sk = W jk y j
j=1

C
Â

C.8. Until the last test input, return to Step C.2

C.9. Predict output classes from

†

sk values, according to
the chosen labeling method (see Step A.11)

IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 6

REFERENCES

[1] S. Grossberg, “The link between brain, learning,
attention, and consciousness,” Consciousness and
Cognition, vol. 8, pp. 1-44, 1999.
ftp://cns-ftp.bu.edu/pub/diana/Gro.concog98.ps.gz

[2] S. Grossberg, “How does the cerebral cortex work?
Development, learning, attention, and 3D vision by
laminar circuits of visual cortex,” Behavioral and
Cognitive Neuroscience Reviews, in press, 2003.
http://www.cns.bu.edu/Profiles/Grossberg/Gro2003BCN
R.pdf

[3] G.A. Carpenter, “Distributed learning, recognition, and
prediction by ART and ARTMAP neural networks,”
Neural Networks, vol. 10, pp. 1473-1494, 1997.
http://cns.bu.edu/~gail/115_dART_NN_1997_.pdf

[4] O. Parsons and G.A. Carpenter, “ARTMAP neural
networks for information fusion and data mining: map
production and target recognition methodologies,”
Neural Networks, vol. 16, 2003.

 http://cns.bu.edu/~gail/ARTMAP_map_2003_.pdf

[5] G.A. Carpenter and S. Grossberg, “A massively parallel
architecture for a self-organizing neural pattern
recognition machine,” Computer Vision, Graphics, and
Image Processing, vol. 37, pp. 54-115, 1987.

[6] T.P. Caudell, S.D.G. Smith, R. Escobedo, and M.
Anderson, “NIRS: Large scale ART 1 neural
architectures for engineering design retrieval,” Neural
Networks, vol. 7, pp. 1339-1350, 1994.
http://cns.bu.edu/~gail/NIRS_Caudell_1994_.pdf

[7] W. Streilein, A. Waxman, W. Ross, F. Liu, M. Braun,
D. Fay, P. Harmon, and C.H. Read, “Fused multi-
sensor image mining for feature foundation data,” In
Proceedings of 3rd International Conference on
Information Fusion, Paris, vol. I, 2000.

[8] P. Lisboa, “Industrial use of saftey-related artificial
neural netoworks,” Contract Research Report 327/2001,
Liverpool John Moores University, 2001.
http://www.hse.gov.uk/research/crr_pdf/2001/crr01327.pdf

[9] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H.
Reynolds, and D.B. Rosen, “Fuzzy ARTMAP: A
neural network architecture for incremental supervised
learning of analog multidimensional maps,” IEEE
Transactions on Neural Networks, vol. 3, pp. 698-713,
1992.
http://cns.bu.edu/~gail/070_Fuzzy_ARTMAP_1992_.pdf

[10] G.A. Carpenter and W.D. Ross, “ART-EMAP: A neural
network architecture for object recognition by evidence
accumulation,” IEEE Transactions on Neural
Networks, vol. 6, pp. 805-818, 1995.
http://cns.bu.edu/~gail/097_ART-EMAP_1995_.pdf

[11] G.A. Carpenter and N. Markuzon, “ARTMAP-IC and
medical diagnosis: Instance counting and inconsistent
cases,” Neural Networks, vol. 11, pp. 323-336, 1998.
http://cns.bu.edu/~gail/117_ARTMAP-IC_1998_.pdf

[12] J.R. Williamson, “Gaussian ARTMAP: A neural
network for fast incremental learning of noisy
multidimensional maps,” Neural Networks, vol. 9, pp.
881-897, 1998.
http://cns.bu.edu/~gail/G-ART_Williamson_1998_.pdf

[13] G.A. Carpenter, B.L. Milenova, and B.W. Noeske,
“Distributed ARTMAP: a neural network for fast
distributed supervised learning,” Neural Networks, vol.
11, pp. 793-813, 1998.
http://cns.bu.edu/~gail/120_dARTMAP_1998_.pdf

[14] G.A. Carpenter, S. Grossberg, and J.H. Reynolds,
“ARTMAP: Supervised real-time learning and
classification of nonstationary data by a self-organizing
neural network,” Neural Networks, vol. 4, pp. 565-588,
1991.
http://cns.bu.edu/~gail/054_ARTMAP_1991_.pdf

[15] G.A. Carpenter and M.N. Gjaja, “Fuzzy ART choice
functions,” Proceedings of the World Congress on
Neural Networks (WCNN-94), Hillsdale, NJ: Lawrence
Erlbaum Associates, vol. I, pp. 713-722, 1994.

IJCNN’03, Portland CAS/CNS Technical Report TR-2003-008 7

