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The What-and-Where filter forms part of a neural network archi-
tecture for spatial mapping, object recognition, and image under-
standing. The Where filter responds to an image figure that has been
separated from its background. It generates a spatial map whose
cell activations simultaneously represent the position, orientation,
and size of all the figures in a scene (where they are). This spa-
tial map may be used to direct spatially localized attention to these
image features. A multiscale array of oriented detectors, followed
by competitive and interpolative interactions between position, ori-
entation, and size scales, is used to define the Where filter. This
analysis discloses several issues that need to be dealt with by a spa-
tial mapping system that is based upon oriented filters, such as the
role of cliff filters with and without normalization, the double peak
problem of maximum orientation across size scale, and the different
self-similar interpolation properties across orientation than across
size scale. Several computationally efficient Where filters are pro-
posed. The Where filter may be used for parallel transformation
of multiple image figures into invariant representations that are
insensitive to the figures’ original position, orientation, and size.
These invariant figural representations form part of a system de-
voted to attentive object learning and recognition (what it is). Unlike
some alternative models where serial search for a target occurs, a
What and Where representation can be used to rapidly search in
parallel for a desired target in a scene. Such a representation can
also be used to learn multidimensional representations of objects
and their spatial relationships for purposes of image understand-
ing. The What-and-Where filter is inspired by neurobiological data
showing that a Where processing stream in the cerebral cortex is
used for attentive spatial localization and orientation, whereas a

What processing stream is used for attentive object learning and
recognition. 1998 Academic Press

1. INVARIANT FILTERING FOR OBJECT
RECOGNITION AND IMAGE
UNDERSTANDING

A typical pattern recognition problem requires that an ob-
ject be identifiable at various positions, sizes, and orientation:
A representation of the object that is invariant with respect tc
these properties is often computed at a preprocessing stage. |
example, a combination of Fourier and log—polar transforms ha
been used to provide translation, scale, and rotation invarianc
[1, 2]. The output of log—polar-Fourier preprocessing is an in-
variant representation, but one that has lost information abot
the form of the object, as well as about the object’s place in
larger scene. This article introduces a filter-based invariant tran:
form system in which information about the position, size, anc
orientation of the object is retained, and no form information is
lost.

The strategy leading to this system is suggested by the brain
use of parallel streams in the visual cortex to compute Wher
an object is and What the object is [3, 4]. Goodale and Milnel
[5] have proposed, moreover, that the Where processing stree
sets the stage for commanding motor actions towards target
The What processing stream includes such brain regions as t
visual cortical area V4 and inferotemporal cortex. The Where
processing stream includes visual cortical area MT and pariet:
cortex.
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suppressing image noise. The third stage separates the figures
the image from each other and from the image background ontc
slabs on which individual figures are isolated. The fourth stage
is the Where filter. Here each slab contributes to a spatial maj
of its figure’s position, orientation, and size. This spatial map

is used to generate an input figure to the fifth stage, the Wha
representation, that is invariant under two-dimensional change!
of position, orientation, and size. This stage also consists of
multiple channels, one for each slab, that interact with a self-
organizing pattern recognition system at stage six. This systen
learns to categorize the 2D invariant figures in its channel. In
particular, 2D view categories of each object can be learned an
fused into an invariant 3D object representation. The last stage
carries out more complex predictions of image understanding
by combining information about what the objects are from stage
six, with information from stage four about their spatial relations

with respect to each other.

Neural networks that realize the functional requirements of
stages one, two, three, and six have previously been develope
These networks use a consistent computational format that wil
enable them to be combined into a larger system architecture
Each of these stages has been derived from an analysis of pe
ceptual and neural data aimed at discovering how the brair
accomplishes similar computational goals. The present article
describes a network for stage four that will provide a founda-

FIG. 1. A What-and-Where filter. The Where filter generates a multiplexetion for combining stage four, five, and six computations into a
spatial map of a figure’s position, orientation, and size. This spatial map is “Wbéﬂ scenic interpretation at stage seven.

by the What processing stream to generate an invariant figural representation.
This representation is used to learn a recognition category for all figures that
are sufficiently similar to one another in their form, at all possible positions,
orientations, and sizes.

The Where channel includes banks of spatial filters of vary-

ing sizes and orientations. Suitably defined competition betweerstage 6

filters yields a spatial map whose cell activations multiplex a
representation of the position, orientation, and size of all tar-
get figures. The What-and-Where filter may thus be realized

as a one-pass algorithm that preattentively generates informaStage 5

tion about all the objects in a scene. Such a one-pass algo
rithm can rapidly prepare image data for attentive recognition
and search processes that interact reciprocally with the What
and-Where representations. In particular, the Where represer
tation for each object is used to transform the representatior
of that object within the What stream so that it is centered
at the origin with canonical size and horizontal orientation.
Figure 1 illustrates the main computations of the What-and-
Where filter.

The What-and-Where filter is one processing stage in a fam-
ily of multistage architectures that are designed to accomplish
automatic visual pattern recognition and image understanding
Six stages of such an architecture are depicted in Fig. 2. The firs
stage compensates for variable illumination in a scene. The sec-

ond stage generates a boundary segmentation of the image g#@ty. processing stages of a multistage architecture for pattern recognitior

Stage 7 Image Interpretation
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completes and regularizes incomplete figural boundaries whalel image understanding.
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In particular, compensating for variable illumination (als@ised mode, as with ART 1, ART 2, and Fuzzy ART [22-25], ol
called discounting the illuminant) can be carried out at stagesupervised mode, as with ARTMAP, Fuzzy ARTMAP, Fusior
one by a shunting on-center off-surround network [6, 7]. THEBRTMAP, and Gaussian ARTMAP [26-30]. It has also beel
Grossberg—Todorogimodel has been realized as a VLSI chighown how Fuzzy ARTMAP can be used to automatically lear
by Andreou and Boahken [8] using a retinal circuit like the oniavariant 3D representations of objects from their 2D views, as
described in Grossberg [9, Section 25]. Coherent boundary stéte ART-EMAP [31, 32] and VIEWNET [33, 34] architectures.
mentation and noise suppression can be accomplished at staggeveral properties of a What-and-Where filter make it an a|
two by a boundary contour system or BCS [10-14]. A simplpealing candidate for a stage four invariant filter. For one, th
fied version of the BCS, called the CORT-X filter, accomplishé&/here filter uses oriented receptive fields of multiple sizes th
boundary segmentation and noise suppression using only fa@npete across position, size, and orientation. Such multisc:
feedforward operations [15, 16]. competitive interactions are also used in the BCS, CORT-)

Figure—ground separation of the figures in a 2D image can&ed FBF networks. The Where filter operations that determir
accomplished by a model that is called an FBF filter becausesiatial properties of image figures are thus variations of ope
combines boundary segmentation and noise suppression opeaens used at earlier processing stages to determimal
tions (B) with illumination compensation and surface filling-irproperties of image figures. This computational homolog facil
operations (F) in the order FBF [16, 17]. An FBF model is capates the choice of consistent parameters in the full multistag
able of simultaneously separating all figures with connectedchitecture. Italso highlights the research question of how rep
boundaries from one another and the background. Figure 3 pcation of a shared set of competitive modules may be realiz
vides an example of FBF separation applied to a laser radar im-applications andh vivo to carry out both visual and spatial
age. Such a model is often sufficient to carry out figure—grousdmputations.
separation in scenes wherein important targets are not partiallyA second useful property is that the filter may be designe
occluded by other targets. In cases wherein partial occlusionstdmperate in a one-pass mode, or an efficient serial algorithi
occur, a more general FACADE model of 3D pop-out of figurdsence, it is capable of fast response in image processing aj
from their backgrounds, and completion of partially occludeitations. Various other recent approaches to generating spatic
targets, in response to both 2D images and 3D scenes mayrivariant representations use multistage concurrent bottom-
used [18-21]. and top-down operations, or complex relaxation methods, th

The operations at stages one, two, and three may all be calbed more computationally expensive and time-consuming. (S
preattentivevisual mechanisms because they are applied in p&ection 14 for further discussion.) Such approaches also ty,
allelto allimage data, whether familiar or unfamiliar. Attentionatally attempt to focus attention upon a single target at a tin
mechanisms select among, and bind together, various of thasing the same operations that put it into an invariant repr
image representations. Attentive object learning and categorigantation. These approaches have difficulty explaining how
tion can be accomplished at stage six by adaptive resonaimogortant target may be quickly recognized if the initially cho-
theory, or ART, networks that may operate either in an unsupeen targets are the wrong ones.

FIG. 3. An example of figure-ground separation of a target from a laser radar image using and FBF filter in stages one to three of Fig. 2. (Reprint
permission from Grossberg and Wyse [17].)
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The present model generates spatial representations and ifA supervised recognition and prediction network, called
variant representations preattentively for all targets. Attentivaision ARTMAP, has been designed to handle such problems o
mechanisms can thus begin at once to search for any of themmsittidimensional data fusion, classification, and prediction [26].
ing higher-level knowledge. In particular, an ART architecturBusion ARTMAP autonomously searches for and learns those
can be primed to rapidly recognize a desired target on any of t@mbinations of input features that provide the best prediction.
slabs. Grossberg [19] and Grossberg, Mingolla, and Ross [38]an image understanding application, Fusion ARTMAP may
have shown how a What-and-Where representation of the typeapplied to learn those combinations of spatial and visual in-
described here can be used in a visual search algorithm, calieanation that predict a desired image interpretation.
the SOS, or Spatial Object Search, model that has been uselth the present article, the Where filter is used to generate ar
to quantitatively simulate psychophysical data from human viavariant What representation in Cartesian coordinates. Varia-
sual search experiments. These experiments show that huntans on this design can also readily be used that include, say
exhibit properties of parallel search in many more viewing comomplex logarithmic processing to achieve partial invariance
ditions than previously realized (see Section 14). and data compression [36] in much the same way as the cortice

A third useful property of a What-and-Where filter can be extnagnification factor works in the mammalian visual system [37—
ploited in image understanding. The Where filter defines a spkt]. Cartesian coordinates are used herein to demonstrate ho
tial map whose nodes multiplex information about the positiomell the Where filter, operating alone, can create a fully invariant
size, and orientation of every figure in an image. In particuldiyhat representation.
activation of a node, or cell population, in this map implicitly Section 2 describes the oriented filter components of the
represents all three spatial properties of the corresponding What-and-Where system. Section 3 presents the simplest forn
age figure. The Where filter nodes are thus distinct channelfsthe What-and-Where filter, employing normalized filter ele-
that each process at most one figure. Each channel, in turn,riments, or receptive fields, to determine position, orientation,
puts to its own What invariant filter and recognition networkand size using a cascade of competitive parallel operations. Th
Thus the Where map of each figure is linked, or bound, to tiember of receptive fields in the parallel system can be greatly
corresponding What recognition of the figure, even though theduced via Gaussian interpolation across coarsely coded orier
What recognition strips the figure of its spatially variant progations, as shown in Section 4. Section 5 presents the equatior
erties. Due to this linkage, the Where spatial map and the Wiiatthe parallel What-and-Where filter algorithm with orientation
recognition categories can be combined into a total input vectoterpolation, and Section 6 describes a computer simulation o
to the stage seven image interpretation network (Fig. 4). Suttiis system employing vehicle silhouette images. The role of re-
a network can learn to combine information about the identieptive field normalization is discussed in Section 7, along with
ties of each object with information about the objects’ spatisthe value of dissociating determination of figure position from
relationships to derive a more global interpretation of scericat of orientation and size when using unnormalized receptive
meaning. fields. A parallel What-and-Where filter, modified to employ un-
normalized receptive fields, is presented in Section 8. Section ¢
shows how a hybrid serial-parallel system, which first calculates
orientation and then size, can dramatically reduce the compu
° iy tgtional load on t.he filter. Fgrther_ redyction in_the number o_f
Interpretation fllter§ can be achieved by orientation mterpola'tlon, as shown.m

Section 10. Such a hybrid What-and-Where filter algorithm is
mathematically defined in Section 11. In Section 12, system re-
sponses to elliptical testimages of variable elongation are used t

I JI JI JI
Stage 5 * ® | Recognition Calibrate system parameters. Simulations demonstrating perfor
L L Categories mance of the hybrid system in response to the vehicle silhouett

Stage 6

images from an MIT Lincoln Laboratory database are summa-
rized in Section 13. Section 14 compares the What-and-Wher

approach with alternatives. Section 15 provides concluding re-

“ HEEEL marks and open problems.
Stage 4 @ Spatial

Map

2. THE ORIENTED CLIFF FILTER

FIG. 4. Reciprocal interactions of a Where spatial map and What recogni- The Where computations of the What-and-Where filter em-

tion categories with an image interpretation network can learn scenicinterprﬁ&qaoy a spatial array of oriented receptive fields with different
tions that combine information about multiple objects and their spatial relations.

Fusion ARTMAP (see text) can be used for supervised learning of those comBiZ €S and orientations that are convolved with the input im-

nations of object categories and spatial relations that reliably predict a prescrigéde- Computation O_f orientati_on is based upon recePtiV_e ﬁ_e|d5
scenic interpretation. within an oblong excitatory region. As shown below, the winning
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orientation provides a stable measure of an object’s net orientdi+ . Four examples of receptive fields (with elongatiog: 2)
tion in response to objects of variable shape. are shown in Fig. 5b, where white signifies large positive va
Reliable computation of both orientation and size depengs of K(X, y, ¢, s) and black signifies large negative values
upon the use of a strongly inhibitory surround region arourthe black ellipse in the left-hand receptive field indicates the s
the oblong excitatory region. Such an oriented receptive fielof, points where 2 =1 andK = 0. As specified by Egs. (1)—(4),
centered at the origin with orientati@gndegrees, size pixels, each receptive field includes a positively weighted elliptical cer
and elongatior, is defined by the kernel ter area bordered by a sharp drop-off to a negatively weighte
surround field. It cannot be overemphasized that this cliff-lik

K(X.y. 6.8 = (1— ) exp(— r4 ) ) surrpund is essgntia}l to deriving our resu!ts. .
AR 14r2) Given receptive fields such as those in Fig. 5, the greate
N2 N2 response obviously results from an elliptical input oriented an
r2 = <i> + <¥> , (2) sized such thatitfits perfectly within the central regioh € 1)

as s of the receptive field. On the other hand, a sizable response w
X' = X 0S¢ + ysing, (3) be observed for any anisotropic input that is oriented and scal
such that it stays primarily within the central region. The stee

and drop to negative values in the region whefe~ 1 causes the

response of the receptive field to drop sharply when parts
y = ycos¢ — xsing. (4) animage fall outside the central region. Throughout the articl

the elongation parameteris set equal to 2. The system still
Figure 5a depicts the geometry of an oriented receptive figdgrformswell, however, onimages whose ratio of width to heigf
and a normalized cross section of kernel values as a functigrfar from 2, as shown in Section 12.

4
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FIG.5. An oriented on-center off-surround receptive field with a steep cliff-like on—off border can be used as the building block of a Where filter. (a) A
of positiveK values, in the ellipse wheré < 1, is surrounded by a region of negative values, as this cross section of the filter depicts. The elongation para
a is the ratio of thex’ axis to they’ axis of the ellipse. (b) Oriented filters at size scales 16 pixels ands = 8 pixels and orientationg = 30° and¢ = 120,
each in a 128 128 pixel square and with elongatian= 2. The ellipse in the left-hand filter shows the set of points, whéee 1 for that filter.
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3. A ONE-PASS PARALLEL WHERE FILTER whereby this bias can be removed: normalization of the filter
o ) ) ) _weights and unbiasing of filter output via spatial competition.
Within the Where channel, the input figure is convolved withhg former approach is taken in this section, while the latter is
each oriented f|IFer. Eaph f||ter.element is identified W|th a po“Efeveloped in Section 5. Normalization of the filter weights and
(x, y) on a two-dimensional grid of neuron nodes, and its recegxaia| competition can also be realized by the same shunting, @
tive field is centered ax( y). The activity A of a node located jyisive, competition that is used for WTA selection, if the shunt
at x,y) whosej receptive er|K' has orientation and sizesis 5 rastricted to a single filter's receptive field weights. These two
given by the discrete convolution variants of the What-and-Where filter thus illustrate how dif-
ferent orderings of a single mechanism of shunting competition
AX.Y.¢.9)=) > K(p.a.6.91(P=x.a=Y). (5) canbeusedto accomplish both functional tasks.
P a The scale bias arises as a straightforward consequence of tf
fact that larger filters have the same maximal (excitatory) value

in response to an input pattekr(x, y). - ) . S
The convolution between input image and filters of differerds smaller filters, but greatly increased excitatory receptive field

orientation and size yields a four-dimensional array of neurﬁeeiclirt]act)(r)?errgoczcgl/eeviiglgbzzzdoiclif (eesftillrtz":lgocr;r:hbe(amgfna‘
nodes: two dimensions correspond to xrendy coordinates of y P 9

the receptive field center; and one dimension each correspoﬂagsﬁfed for by recil_uc?jdbwetﬁ;hts W'th'fn t:]h's are_ta.tThat 'S, flltt_er
to orientationg and sizes of the filter. Each of these nodes/ €19NtS are normalized by the area ot the excitatory receplive

provides a measure of the degree of match between the inB%ltd
and the four-dimensional vector which characterizes all the spa-

tial characteristics of the node’s receptive field. A good match N(s) = /) K(x,y, s, 0)dxdy, (6)
implies that the node’s receptive field shares similar position, N

orientation, and size with the inputimage. The most active of allhered)i represents the excitatory region of the filter, at which
nodes indicates the best estimate of these spatial parametens.<f1. With a normalized kernel

the nodes are spaced finely enough across position, orientation, K(X, Y. S, 6)

and size, the Where information of the input may be accurately Kn(x, ¥, s, ¢) = —————=,
assessed by finding this maximal activity. This general strategy N(s)

for defining a multiplexed Where map is quite elementary. I{ﬁe level of response of each filter to its optimal elliptical stimu-

interest lies in its §implicit¥ andin fch.e analysis that is requireﬂs is equal to 1.0. The activity of the normalized filter output
to make sure that it works in an efficient way. né)des is now given by

Determination of the optimal node may be achieved via
winner-take-all competition between all nodes; thatis, byacom-px vy ¢ s) = Z Z Kn(p, 9, 6, )l (p—X,q—Y), (8)
petition across position, orientation, and size. Perhaps the first r 9
winner-take-all, or WTA, network to be mathematically charac-
terized is a competitive network whose cells undergo shuntirag in Eq. (5). The maximally activated node accurately codes the
or divisive, inhibition and which communicate via faster-tharfigural position, orientation, and size. A winner-take-all compe-
linear feedback signals [42]. A number of related WTA schemé#étion among all the nodes thus chooses the node whose spati:
have since been proposed; e.g., by Feldman and Ballard [48}sition in the Where map encodes figural position, orientation,
Hadeler [44], Koch and Ullman [45], and Tsotsi®l.[46]. The and size. In summary, three competitive operations, acting in
one node which remains active after the competition carries tharallel across the network, are competent to generate a Whei
necessary Where information via its receptive field geometmap: a cliff off-surround at each receptive field, normalization
Figure location X, y;), orientation ¢,), and size g ) are pro- of each kernel by the integral of the excitatory on-center of each
vided to the What channel to achieve invariance prior to objeceptive field, and global winner-take-all competition across all
recognition. receptive fields.

Before such a parallel Where filter can function well, the fil- Figure 6 illustrates the result of convolving a small set of cliff-
ters given by Egs. (1)—(4) must be modified so that they providermalized filters and a vehicle silhouette image, depicted in the
an unbiased measure of the size of the input figure. Considewyer right-hand corner of the image. Each frame represents th
for example, a small elliptical input, oriented@at= 120, that output of a given filter convolution, with filter scale increasing
fits snugly within the central regiom{ < 1) of a filter of size from top to bottom and filter orientation changing in a counter-
s=28 (Fig. 5b). The corresponding map cell will react stronglglockwise fashion from left to right. The receptive field of the
to this input, withA = 250.82. However, a honoptimally sizednode with the maximal activity across position, orientation, and
cell receptive field of larger size= 16 will respond even more size corresponds to the Where information of the input image.
strongly (A=38411), since the input ellipse lies in the regiorn this case, the maximal activity occurs at the node marked with
whereK =~ 1 (Fig. 5). All other factors being equal, filter re-an “X” in the figure, and indeed represents the correct position,
sponse increases with filter size. There are two mechanisangentation, and size of the input figure, modulo the coarse filter

()
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FIG. 6. A parallel Where filter that uses a cliff off-surround and a normalized on-center in each receptive field, followed by winner-take-all competition a
receptive fields. Receptive field size increases from down colusas4, 6, 8, 10, 12, 14) and orientation varies across rows= 0, 45, 90, 135). The output of
the parallel Where filter to the figure given in the lower right-hand corner is given as a four-dimensional array of data. Each 2D subframe image repres
output of the convolution of a single normalized filter. The “X” marks the maximal activity across position, orientation, and size and correctly provides the \
information associated with the input image.

spacing. Tests employing finer filter spacing gave excellent qudrannel must meet high accuracy criteria. In a parallel systen
litative results, but it soon became clear that a one-pass Whhigh accuracy can be achieved by fine spacing of filters acro:
filter with fine filter spacing across orientation is needlessly ereceptive field position, orientation, and size, but at the cost c

pensive from a computational point of view. maintaining a multitude of filters. Orientation accuracy to within
1° would require 90 different filter orientations, with a spacing
4. COARSE CODING AND INTERPOLATION of 2° between filters at each size and at each position. Size a

OF RECEPTIVE FIELD ORIENTATIONS curacy to within 2% across scales frams= 4 tos = 32 (object

length of from about @s = 16 to 128 pixels) would require 29
In order to achieve invariantimage representation in the Whdifferent scales. Thus 2610 (80 29) different filters at each
channel, both orientation and size determination in the Wharede of the spatial grid would be required for accurate scale ar
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orientation determination. This large number of filters could baput imagel = I (x, y) is convolved with each of the filters
computed in real-time in a neural tissue or a parallel computeithin the oriented filter bank. Interpolation across orientation
chip, but might prove cumbersome in applications that depeptbvides a more accurate estimation of orientation. Figure po-
upon a serial computer. Orientational tuning in the primate striatition, orientation, and size are determined simultaneously via
visual cortex is typically much coarser, yet orientation changasvinner-take-all competition between all output nodes, and the
can be detected with high accuracy [47]. We now show hawputimage is centered, oriented, and scaled to form the invarian
coarse orientational tuning followed by an orientation interpamagelcos. The filter operations are defined as follows.

Iatlpn mech.amsm can ach|eye fine orientational d|scr|m|nat|onOriented cliff filter For orientationg e [0, 180) and size
while reducing the computational load by more than an order of . : . . . .
magnitude. S=4,..., 32 pixels, the unnormalized oriented filter with ori-

Within each set of filters of a given sizat a given position er_1tat|on¢, 5|_zes, and elongatiora is defined in terms of the
) ) B . cliff kernel K:

(x, y), interpolation across a sparse set of six orientations tha

are calibrated in degree8 & 0, 30, ..., 150) can reduce the . r4

total number of filters from 2610 to just 174 ¢629) while K(X,y,¢,8)=(1-r )eXD(—m) (11)

maintaining orientation accuracy. Convolving the coarse filter

activities A(x, y, 6, s) with a one-dimensional Gaussian kerne}nere

across orientation only, and resampling across a finer set of ori-

entationsg, accomplishes the interpolation. The interpolated ) X\ 2 y 2

distribution of activity Ag(x, Y, ¢, S) more accurately reflects re= <a_s;) + <§> ; (12)

the actual orientation of the image than do the coarse filter ac- ) .

tivities A(x, y, 6, S). X' = XCO0S¢ + ysing, (13)
This interpolation is realized as follows. For each orientation y = ycosp — xsing. (14)

0, let A(x,y,0,s) be the output of the coarse filter bank, as

in Eq. (8). Then for any < [0, 180), the interpolated activity The normalized filter is then given by
Ac(X, Y, ¢, s) obeys the equation

K(x,y, ¢.5)
A(,9.9 = D AX.Y. 0,960 —9). () Kn(xy. ¢ 8) = =5~ (15)
whereG(v) is the Gaussian kernel where
1 202 N(s)=/ K(x,y,0,s)dxdy (16)
G(y) = Vi, 10
(¥) «/Zoe (10) %

The standard deviatiorns| of the Gaussian is taken to be @#Nd% represents the excitatory region of the filter. ,
fixed fraction of the coarse filter spacing being employed. Usin A coarse ;et of filter orlentqtlons.and a fine set of filter sizes
this self-similarity constraint, the wider the spacing, the greatt}at réspectively span the orientation and scale range are s¢
the standard deviation is chosen to ensure smooth interpolati§i§i€d- In simulations, 174 filters, with 6 orientatiofs= 0,
In practice, setting equal to 0.7 times the coarse filter spac3®: - - -» 150 (degrees), and 29 sizes= 4,5, ..., 32 (pixels)
ing works well. Following interpolation, global winner-take-alivere used.
competition between all activitieSg(x, y, ¢, s) yieldsthe posi-  Filter Each normalized filter is convolved with the input
tion, size, and orientation of the figure, as described in Sectionfage:

Interpolation could also be implemented across position and
size, leading to a four—dimengional Gaus;ian interpolationa(x, vy, 6, s) = Z Z Kn(p,a.6,9)1(p—x.q—1y). (17)
kernel and appropriate convolution. In practice, however, even P
with size interpolation, accuracy decreases rapidly as filter scale
spacing increases. When combined with the complexities arisinterpolation Gaussian interpolation provides accurate ori-
ing in implementation, interpolation across domains other th&ntation estimation, using
orientation was not deemed cost effective in this parallel Where

filter. Ac(X.y.¢.5) =D AKX.y.0.9G(0 —¢).  (18)
[
5. ONE-PASS WHAT-AND-WHERE , .
FILTER ALGORITHM whereG(v) is the Gaussian kernel
The one-pass parallel What-and-Where filter outlined in the G(y) = g V?/20% (19)

last three sections will now be summarized mathematically. The V2ro
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Parametes was set equal to 0.7 times the angle between succes depend upon the shape of the figure, notably its anisotropy.
sive orientation®. In simulationsg = 0.7 x 30 = 21 degrees. The image squares were 128128 pixels, and the prototype
Interpolated values af were computed in steps of 0.1 degreesehicle images ranged from 80 to 100 pixels in length and from
30 to 60 pixels in height. To create the test input set, prototype
images were randomly rotated through angles of 0 t6 18ag-
nified by random factors ranging from 0.2 to 1.2 and placed at
random positions in a 3& 30 pixel area at the center of the
image square. Each of the four prototype images generated 2&
AlXmax, Ymax: $max, Sma) = A(X, Y, . 9). (20) such random representations. System performance was judge
) . . . by the accuracy of orientation and size determination.
These values provide all the Where information; that is, PO~ ynioying just 174 filters in the Where channel, as describec
sition (X1, y1) = (Xmax Ymax), Orientationg| = ¢max and scale i, gection 5, the system easily met the goal of recovering orien.
SI = Smax- tation to within T and scale to within 2%. The mean orientation
Center, orient, and scale invariant figureThe figurel was €rror was 043" and the mean scale error was 1.97%. Object
translated by €£x,, —y;), rotated through an angle of¢,, localization was likewise very good. The mean error acboss

and magnified by a factor of 24 to obtain the invariant fig- POsitions ory positions, taken independently, was less than 1
ure lcos. pixel. The mean Euclidean error across ally) pairs was 1.12

pixels. The subsampling distortion caused by reduction of scale
6. WHAT-AND-WHERE VEHICLE SIMULATIONS was the rate-limiting factor on system accuracy, asis described il
Section 12. What-and-Where filter simulations are illustrated in
The one-pass What-and-Where filter was tested quantitativ&iig. 8. Column (a) shows the inputimage, column (b) shows the
on vehicle input images. The four prototype vehicle inputs atéanslated imagéc, column (c) shows the translated and hori-
shown in Fig. 7 in general position, with orientatiohedd scale zontally oriented imagéco, and column (d) shows the trans-
24 pixels. Although the What-and-Where system indicates tHated, oriented, and scaled imag® s. Ic osis the What channel
each ofthese images in horizonigj (= 0) the chunkier vehicles output figure (see Fig. 1). An XOR in column (e) between the
appear slightly tilted due to asymmetries about both the horizagHtput imagd c os and the prototype image indicates where er-
tal and vertical axes. The goal of the orientational measure is fi@fS Occur.
to determine a veridical horizontal, but rather to generate a stable
measure of canonical orientation. The actual orientation chosen

Winner-take-all competition Global competition between all
nodes identifies the positioX{ax, Ymax), Orientationgmax, and
Sizesnax that maximizeA(x, vy, ¢, s). Thus,

7. NORMALIZED VERSUS UNNORMALIZED
FILTERS

Filter normalization provides unbiased estimates of image
scale, but relies upon accurate calculation of filter coefficients
based on information about the entire excitatory region of the fil-
ter. Any inaccuracies or “drift” in filter coefficients could result
in scale biases which could, in turn, lead to position and orien-
tation biases as well. For this reason, an alternate, but relatec
model that provides a method of eliminating scale estimation
bias is also presented. This method allows the use of unnorma
ized filters by first translating the image so that its center-of-mas:
lies at the origin. Together, these models provide a broader in
sight into the variety of operations whereby What-and-Where
filters may be designed.

When convolving an image with unnormalized filters, it is
possible for the maximal value across all filters to occur at a
position that is distant from the actual position of the figure. If
the filter scale is much smaller than the figure, then the respons
at the position of the figure will be weak due to the strong in-
hibitory troughs around the center of the figure. The response
at the periphery of the figure position, where inhibition is weak,
will be relatively strong. This can be seen in the relative re-
sponses of the smallest normalized filters of Fig. 6 (top row),
FIG.7. Prototype vehicle images, with orientation — 0° and sizes; — 24 Where the maximal values lie outside the area occupied by th
pixels. input figure. The same relative activations within a filter occur
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a b c d e
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e |~ R D)

Input Centered Centered Centered Error
Image Image Oriented Oriented
I I Image Scaled
Ico IImage
CcoSs

FIG.8. Three examples of What-and-Where filter simulation results: (a) The input figur@) The image translated to its neutral positibg)( (c) The image
translated and oriented to the horizontal4). (d) The figure translated, oriented, and scalesit®4 pixels (cos). The last column indicates the degree of match
(XOR) between the output of the What channel and the corresponding prototype figure.

whether or not it is normalized. Normalization ensures that pg/hen a cleanimage cannot be assumed, a noise-tolerant metho
sitionally mismatched activations do not win the interfilter comsuch as the diffusion-enhancement bilayer of Seibert and Wax
petition. Due to this problem, the next What-and-Where filtanan [48], can be used for target localization.
first determines figure position, using a method that is robust inThe unnormalized receptive fields of Egs. (1)—(4) can be em-
noise, before filtering to determine orientation and size. Aftgtoyed in an algorithmic manner to robustly determine figure
the target figure has already been separated from noise and badisition. Since localization is a problem only with small scale
ground clutter, say by a CORT-X filter [15] or by an FBF networfilters, large scale filters can be used to determine a coarse est
[16], a center-of-mass computation provides convenient and sufate of figure position. That is, the position of maximal activity
ficiently accurate localization. The center of mass ;) may within large scale filters yields figure position, but not with a
be computed by high degree of accuracy. The positional estimate can be refine
by finding the maximal activity at progressively smaller scales.
_ This estimate slowly varies, becoming more accurate as filters
T= ZX: Zy: H(x.Y), (21) have greater positional sensitivity due to their snugger fit arounc
the input, until the scale becomes significantly smaller than the
X = % Z Z x1(x, y), (22) input figurg, at which point the maxim.ql acFivity occurs at'siome
raly distant point. The correct figure position is the last positional
estimate before this discontinuous jump.

yi=2 3 Yyl (23)
x y

8. AN ALTERNATIVE PARALLEL
WHAT-AND-WHERE FILTER:

The figure is translated so that the new, centered, image has its
THE DOUBLE PEAK PROBLEM

center of mass at the origin:

The centered figuréc is next presented to a bank of filters,
lc(X, V) =1(X=X,y—V). (24) centered at the origin, that span all orientatignand sizess.
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'y small. Peaks of activity in near-optimal scales are emphasize
' (Fig. 10a). After first-stage competition, the new activity profile
B(¢, s) at each size measures how well both filter orientatior
and size fit the figure. A second competitive stage acts betwee
all output nodes of the first competitive stage to select the nod
with maximum activityB (Fig. 10b). The image orientatiaf
Wil Pt and sizes, are estimated by the orientation and size of the se
\,) lected node.
! v g Figure 11 shows the simulation output of the first competi-
. tive stage (Fig. 10a). FunctidB(6(s), s) is plotted to graph the
output at the maximally activated orientation as a function o
scale. Inputl (x, y) represents a car that is 112 pixels long and
38 pixels high, oriented in a horizontal direction and centere
at the origin. Peak activity (Fig. 11a) occurs at scale 25.
—64 _ X The second competitive stage thus estimates the height to |

-

—64 0 +64 about 2 = 50 pixels and the width to be aboua®2 = 100

FIG 0. A rect ar inout i is defined by setting(x, y) o1 pixels. The filter corresponding to this peak hias= 0, the
9. rectangular input image is defined by settihg(x, y) equal to . : . . .
inside the rectangle, and 0 elsewhere. A node centered @} {@th receptive correct image orientation. A second peak in the maximal ac

field orientationp = 0° and sizes = 16 pixels has activityA(¢, s) equal to the tiVity prOﬁIe occurs in small-scale filters with Oriemati(mL

sum of kernel value& over all points K, y) in the rectangle. Figures that fall perpendicular to the correct orientatign. In fact, the scale of

in the region where? > 1 tend to generate large negative responses. the lower peak is approximately equal to the scale of the firs
peak divided by the filter elongation paramedet 2 (Fig. 5a).

) ) ) ) The lower peak occurs where the major axis of a small-scal
Convolution of the input vector with each filter bank at each spaper senses the height, rather than the width, of the input im

tial position &, y) is no longer required, as the figure is aIreadggge (Fig. 11b). Since the peak occurring at the larger scale
centered. Now, a point by point multiplication between the inpWy ays the “correct” one, this double peak effect does not caus
image and each filter suffices; namely, errors after competition acts at the second competitive stage
the parallel network. As seen below, however, double peak ur
Al¢.s) = ; ; KXy, 9.8)lc(xy), (25)  certainty leads to a design constraint on a more efficient seri
system.

+64

as depicted in Fig. 9. If normalized filters are employed, then
finding the maximal activity across orientation and size woul@), pARALLEL VERSUS SERIAL FILTERING STAGES
determinep, ands;. When employing the unnormalized filters
of equations (1)—(4), it is not sufficient simply to select the filter As discussed in Section 4, a fully parallel system without in-
that gives the maximal response acros#\él, s), since outputs terpolation requires a large number of filters to estimate figure
at all filter sizes larger than the figural size will tend to be greaterientation and size accurately. While interpolation similar to
than the activity at the correct filter size. that of Section 5 could be employed with unnormalized filters
This problem can be solved by utilizing thatternof activity  to greatly reduce the number of these filters, a more fundamel
across orientations at each given filter size. If the sinéthe tal alteration in Where channel structure may also be used t
filter is too large, then the image tends to remain within thfarther reduce computational load in applications wherein algo
excitatory central region at all filter orientations, leading to athmic operations can be performed serially. In particular, the
flat distribution of high activity. If the filter size is too small, total number of filters is reduced by using two serial filtering
a flat distribution of low activity is observed, since then botktages, one to determine orientation and one to determine siz
the excitatory and the inhibitory regions of the filter interse@uch a serial system can determine orientagigrusing 90 ori-
the image at all orientations. Only near the optimal size wilinted filters, and can then determine sizaising 29 additional
activation levels vary rapidly with orientation. scaled filters, rather than the Q@9 filters that would be needed
These observations suggest a two-stage competitive medhaa parallel system with comparable performance. In the seri
nism that determines the optimal orientation and size of the inpaystem, the image is first centered, say by (21)—(24). The oriel
At the first stage, nodes at each fixed size compete among tation of the image is then determined via competition amon
entations. This first competitive stage, which contrast-enhandhe 90 oriented filters. This information is used to orient the im-
responses at each size, emphasizes variations in activity, aage to a canonical (horizontal) direction, after which the secon
the BCS boundary segmentation network of Grossberg and Mbank of 29 filters determine the image scale. Figure 12 depicts
golla 11, 12]. ActivitiesA(¢, s) that are flat across several ori-Where filter that computes position, orientation, and size in serié
entations are inhibited, as when filter sizes are too large or tsiages.



12 CARPENTER, GROSSBERG, AND LESHER

a First stage: Competition between orientations within each scale

0 .

Scale s=8 29 @ A
O

Before competition

O B(¢.8)

After competition

3\ 111

@ @ A1)

Before competition

c') B($.16)

After competition

Scale s=16

b Second stage: Competition between all scales and orientations

Scale s=4

FIG.10. Fully parallelfilter. (a) At the first competitive stage, for each size sgalempetition contrast enhances node responses across orientations. Competiti
for network activityB enhances the peak response at the optimal ssal@). (b) The second competitive stage, among all output neurons of the first stage, selec
a filter whose orientatiogh; and scales; fit the input image.

Whether unnormalized or normalized filters are employextale weres = 10, the system would incorrectly predict a ver-
within the Where channel, a great computational savings ctical orientation for the large car shown in Fig. 11b. Employing
be realized by serializing orientation and size determinatioa single large size scale solves this problem, but creates a ne
The following discussion outlines some problems and solutionse of small-image inaccuracy. Namely, since small images of
inherent in the general case of unnormalized filters. At the eatl orientations would fit in the central region of all the large
of the discussion, the system simplifications resulting from thiters, orientation would be indeterminate. A compromise can
use of normalized filters will be presented. be achieved by using a sparse set of approximately eight scale

The theoretical ideal of a complete serialization of Where fiwhich span the range of possible figure sizes. The correspond
ter modules with unnormalized filters, with a single size scale ing oriented filters provide enough information to disambiguate
the orientation filter bank and a single orientation in the size scdle double peaks without sacrificing accuracy. In this hybrid
filter bank would not produce accurate results. The double pesdrial-parallel configuration, the orientation determination mod-
in maximal first-stage outpB(¢(s), s) across scales (Fig. 11a)ule is essentially the same as in the parallel system described i
implies that a range of sizes must be employed for accurate @ection 8, but with fewer scales. As in Fig. 10, competition be-
entation determination. If only a single size were employed, thween orientations within each size scale (first competitive stage
system would tend to choose the orthogonal orientation for ins-followed by competition between orientations and sizes (sec:
ages much larger than this size. For example, if the fixed siaed competitive stage). The second competitive stage hereb
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a Global maximum at
100 | i orientation ¢,
. |
Maximum 8.0 Local maximum at | |
First Stage orientation ¢ | |
Output 6.0 | :
Activity 4 | i : |
: | I i
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B(q) (S),S) 20} : I I
. : : : : :
5 10 15 20 25 30
Scale s
Strong Weak Strong
b Inhibitory ~ Inhibitory Excn@
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FIG. 11. Double peak effect. (a) Maximum output activiB(¢(s), s) of the first competitive stage for each size scl&he global maximum across all scales
occurs as = 25, where the orientatiop(s) = 0° gives the maximal respon®{¢, s) across orientations. A second peak in the grapB(@f(s), s) occurs at scale
s=10, wherep(s) =90°. (b) At small scales competition between orientations tends to select the orientation that matches the height of the image, yieldin
orientatiom&f— that is perpendicular tg, . At larger scales the filter that best matches the full test image yields the correct orientation.

yields the orientation of the image,() and a rough estimate vertical responses will be large; if the filter scale is too small,
of its size. The former is applied to orient the centered imadpth horizontal and vertical responses will be small; and in eithel
(Ic — lco) prior to subsequent filtering for more accurate sizease thelifferencébetween the horizontal and vertical responses
determination. The coarsely determined saaeldbe used to will be small. In summary, the hybrid serial—parallel system uses
narrow down the range of filter scales in the next stage. Howight scales at the orientation determination stage and two ori
ever, the likelihood that the computed scale is erroneous, duetdations at the size determination stage. The total number c
the double peak effect (Fig. 11a), makes it prudent to ignore thilsers is hereby reduced to a total of 778 (208 + 2 x 29),
information. compared to the 2610 (98 29) filters in the fully parallel
Instead, the horizontal imadeo next becomes the input to system.
the size determination module, where the Where filter againThe use of normalized filters eliminates the need for compe-
employs a reduced parallel system. Although the orientatitition between orientations at each scale (the first competitive
Ico is known, a bank of filters of many scales but only horistage). Either competition between orientations or filter normal-
zontal orientation is still inadequate. As in Fig. 10a, it is thization can be used to derive a goodness-of-fit measure the
variation in activity across orientations that indicates how wellorks across filter sizes. Thus orientation determination that
a particular filter scale matches that of the image, rather than tiees normalized filters consigtelely of winner-take-all com-
absolute size of a node’s response. In practice, just two orienpetition between orientations and sizes (the second competitiv
tions (horizontal and vertical) provide enough information abostage). After reorienting of the input imagde (— lco), size de-
activity variations to give an accurate estimate of scale. If a scédgmination in a normalized filter system progresses in the sam
matches that of the image, the difference between the horizontelnner as above, with the first competitive stage again bein
and vertical filter responses will be large at that scale (Fig. 108kipped. Note that, as above, the filter bank can be reduced t
In contrast, if the filter scale is too large, both horizontal andifferent sizes at aingleorientation.
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compete across scales and orientations, as in the second cor
: \ petitive stage of Fig. 10.

A similar interpolation can also be performed in the size deter-
mination module. Because interscale size comparisons are nc
made until after the first competitive stage (Fig. 10), interpola-

Center of Mass Translation

x5 y) tion across scales is performed on first competitive stage outpu
B. For a sparse set of size scaleB(0, t) is the first competitive
stage output for the canonical orientatién= 0. Then for any
I \ \ I, scales, the interpolated activityBs (O, S) is given by
Bc(0.5) = > B(0.1)G(t —s), (27)
/—L\ o, t
Olgliel:?eﬁggn Orienting
\T/ as in Eq. (26). Following interpolation, global competition
among all outputdBg (0, s) yields the image scalg . In sum-
| . — I mary, interpolation in the orientation stage typically permits a
o co coarse filter spacing of up to 3(rather than 2), while maintain-
ing a mean orientation error of less than 1%. Size interpolation
' proved less valuable, still requiring scat§f{lter spacing of one
Flslf:& ] 5y @ pixel to maintain accuracy.
Employing normalized filters removes the first competitive
stage. Interpolation within both orientation and size determina-
“ I tion modules occurs before the second competitive stage, but i
€08 otherwise the same as above.

11. SERIAL WHAT-AND-WHERE
FILTER ALGORITHM

FIG.12. The serial or serial-parallel What-and-Where system with dissociated
orientation and scale filtering.

The serial What-and-Where filter implementation algorithm
will now be summarized mathematically using unnormalized fil-

10. ORIENTATION INTERPOLATION ters. The algorithm using normalized filters will then be given.
IN A SERIAL ALGORITHM The algorithm first computes the positiox (y;) of an input
figurel = I(x, y). After translation, the new figurk: is cen-

Interpolation within the orientation determination module catered at the origin. A bank of oriented filters then determines the
further decrease the number of filters required within the Wheraage orientation to be, degrees. After rotation, the centered
channel, justasitdid for the parallel systemin Section 4. Interpand oriented imagéco is horizontal. Finally, a second bank of
lation across a sparse set of six orientatiehs Q, 30, . . ., 150) filters determines the image scale todixels.
can reduce the total number of filters to just 10& @+ 2 x 29),
rather than the 2610 filters of a fully parallel system or the 778tep 1: Determining Positiofx; , y|)
filt.ers of the ser.ial algorithm withqut inFerpoIation, while main.— For pixel valuesx, y = —64, ..., +64, a gray-scale figure
taining orientation accuracy. Again, this process can be appligtyescribed by input(x, y) € [0, 1]. In a noise-free setting,

to the system regardless of the type of filter (normalized or URgure position &, y;) corresponds to the center of mass:
normalized) being employed. Initial discussion below of how

this is done assumes unnormalized filters. T= Z Z 1(X, y) (28)
In the orientation determination module, for each orientation ol T

0, let A(@, s) be the output of the coarse filter bank, as in (25). 1

Then for any¢¢[0, 180), the interpolated activiths (¢, ) is X = — x1(x 29

given by [ T XX:; (X, y), (29)

Ac9.9) = 3 AG. 95 — ) (26) yi=2 Y vy (30)
0 X oy

whereG(v) is the Gaussian kernel given by Eq. (10). As before, Centered imaged
a self-similar selection ar is made to be a fixed fraction of the
filter spacing. Following interpolation, the activitiess (¢, S) lc(X, V) =1(X=X%X,y—V). (31)
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Oriented receptive fieldsFor orientationp € [0, 180) and across all interpolated orientatiops= [0, 180) and scales =
scales = 4, ..., 32 pixels, the unnormalized oriented receptivé, 8, . . ., 32.
field with sizes, orientationg, and elongatiora is defined in Optimal orientationLet the optimal orientation be

terms of the kerneK:

r4 ®1 = Pmax- (41)

K(Xv Y, ¢s S)=(1_r6)exp<_—2>’ (32)
1+r Center and orient figurech. Figure |c was rotated through

where an angle of—¢, degrees to obtain the centered and oriented

figurelco.
X' 2 y/ 2 L .
r2 — <_) 4 (_> , (33) Step 3: Determining Size Scale s
as S
First stage (Competition across orientationsi set of size
X' = xcosp + ysing, (34) scaleswasagainselected. Insimulations, 29 state4, 5, .. .,
_ 32 pixels were used.
y' = ycosp — xsing. (35)  Filter. For orientationsp =0=¢, and ¢ =90= ¢, first-
stage output was computed as
Step 2: Determining Orientatiog,
First stage (Competition across orientationsi\ coarse set Ap.1) =YY K(X. Y. 6. t)lco(X. y). (42)
of scales that span the range of input scale values is selected. In Y
simulations, eightscales= 4, 8, ..., 32, were used. Similarly . . , . .
a coarse set of orientatioristhat span the range [0, 180) is Competmon.Norm_allzau_on is ac_h|eved using competition
selected. In simulations, 10 orientatios= 0, 18, ..., 162, acrossorthogonal orientations, as in
were used.
Filter. B(0,t) = A0, t) — A(90, t). (43)
AB.s) =YY K(x.y.0.9)lc(X. y). (36) Interpolation.
X y
Interpolation. Bs(0.9) = ) | B(0.1)G(t —s). (44)
t
Ac(p,s) = Z A, 5)G(6 — ¢), (37) The Gaussia® was defined as in (38) and the standard devia-
0 tion o was set equal to 0.7 times the number of pixels betweer
successive scalésin simulationsy = 0.7(1) = 0.7 pixels, and
where interpolated values of were computed in steps of 0.1 pixels.
G(y) = V207 (38) Second stage (Competition across scale€pmpetitioniden-
V2rno tifies the scaleax that maximizeBg (0, s). That is,
Maximum B.
Parametes was set equal to 0.7 times the angle between succes-
sive orientation$. Thus, in simulationsyr = 0.7 x 18 = 12.6°. Bg (0, Snay) > Ba(0, 8) (45)

Interpolated values ap were computed in steps of 0.
Competition.Normalization is achieved using competitio

. . . Yor all interpolateds € [4, 32].
across orthogonal orientations, as in

Optimal sizeDenote the optimal size scale by

B(6.9) = Ac(9. ) — Aa(#".S), (39) o s “6)

whereg! is the orientation perpendicular #o ) ! !
Center, orient, and scale figure:bs. The figurelco was
Second stage (Competition across scales and orientationsagnified by a factor of 24 to obtainlcos.
Competition across size scales and orientations identifies th&Jsing normalized filters, the algorithm is modified as follows.
orientationgmax and sizesmax that maximizeB(¢, s). Thatis,  ReplaceK in (32) by
Maximum B
KX, y.¢.5)
B(émax Srad = B(. ) (40) A e T 4N
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FIG. 13. Coarse filter spacing tests with elliptical input images: (a) Mean size of orientation error as a function of orientation spacing in the first filter b
before interpolation. (b) Mean scale erfer — sactua|s|‘1 as a function of scale spacing in the second filter bank.

where to spacings of 30(6 filters). For the simulations, 500 elliptical
images were randomly generated from the prototype ellipse (51)
N(s) = / K(X, Y, ¢, s)dxdy. (48) Orientations ranged from O to 18@vhile magnifications ranged
90 from 0.2 to 1.2. Thus the scale factor, which was 24 pixels in the
o ) _ ) _ _ prototype, ranged from 4.8 to 28.8 pixels. These inputs were pre
The competitive interactioB across orientations in (39) is Un-gented to different What-and-Where filters, each with a different

necessary. Itis replaced by orientation filter spacing, resulting in the mean orientation error
plot of Fig. 13a. Eight scales were employed at each orientatior
B(¢. ) = Ac(¢.9). (49)  to prevent errors due to the double peak problem (Fig. 11a). Ir

Fig. 13a, the best performance occurred at a filter spacing o
The competitive interactioB in (43) is likewise replaced by 18>, Both the exact spacing at which this optimal performance
occurs and the minimum error level can be shifted by altering
B(0,t) = A0, t). (50)  theinterpolatior . However, an orientation spacing o1 @ith
o = 0.7(18)= 12.6 degrees, provided excellent results.
Note that, when determining size, only a single orientafiea  Within the size determination module, horizontal test images

0 = ¢, is needed. with magnifications from 0.2 to 1.2 were used to determine mean
scale error as a function of the coarse scé)dilter spacing.
12. PARAMETER DETERMINATION Accuracy steadily decreases with increased filter scale spacini

(Fig. 13b). This illustrates that scale interpolation does not com-
Serial What-and-Where filter parameters were selectgénsate for missing scales in the way orientation interpolation
through studies of system response to a simple elliptical infdmpensates for missing orientations.
image. In this way, the number of orientations and the numberThe use of a fixed eccentricitg & 2) in Eq. (33) for all What-
of scales for each of the two Where filter banks (Fig. 12) wekhd-Where filter elements raises the question of how well the
chosen. Preliminary testing had fixed the value of the standaggstem would perform with inputs that do not fit well within
deviationo of the Gaussian interpolation kernel in (44) at 0.4ny central excitatory region. This question was examined by
times the distance between coarse orientation or scale valygsjing the elongatioa* in (51) of the prototype elliptical in-
(Section 4). The effects of figure elongation and scale were alsg, with results depicted in Fig. 14. The “optimal” coarse filter
examined. Parameters were determined USing UnnOfma”ZEdgﬂacings of 18and 1 pixe| of scale were empk)yed for a total
ters, but carried over well to tests employing normalized filtergf 138 (10x 8 + 2 x 29) filters. As the image approaches cir-
A prototype elliptical test image, within a 128 128 pixel cularity (@* — 1) the accuracy decreases, as expected from the

square, was defined by the inequality: reduced degree of orientation information in the input itself. Ac-
) ) curacy increases monotonically with increasing elongation, ever
1> ( ) <l> (51) though very elongated elliptical inputs do not fit any of the filters
~\a*x 24 24) well.

Although the error rates for orientation and size determination

With a* = 2, this ellipse fits exactly within the central excitatorydo not depend upon the initial orientation of the image, both
region of a filter of sizes = 24, orientatiory = 0, and elongation orientation and size accuracy deteriorate for small inputs. This is
a=2, as defined in Egs. (32)—(35). due to subsampling effects in the input and the filters, a problerr
Orientation @) filter spacing of 18 (10 filters) was found to inherent in invariant preprocessing of digital images. This was
achieve an optimal balance between system accuracy and ndemonstrated in a What-and-Where filter simulation test of 5000
ber offilters, although good performance was maintained at lea#iiptical inputs, with orientation and size ranges and optimal
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D o ] 274 filters required by the parallel system with interpolation of
§ 12 \\ Mean Orientation Error ] Section 5.
o0 - -
()
~ 0‘8: \ ] 14. ALTERNATIVE WHAT-AND-WHERE MODELS
4 I— The present model differs in several notable ways from al
00k ‘ ‘ , ‘ = ternative approaches to the What-and-Where problem. An ear
Lo 20 30 40 50 60 model, that of Koch and Ullman [45], includes: (1) an early

Input Elongation a* . . . .
P £ parallel representation of several stimuli and their featural chal

FIG.14. Mean orientation error as a function of elliptical input elongatisn ~ @cteristics; (2) a mapping from these representations into a no
topographic representation which contains properties of onl
one stimulus at a time; (3) a winner-take-all, or WTA, network

filter spacing as above. Figure 15 shows that orientation atiht implements stimulus selection based on salience of ea

size errors become significant when the input image is smalllocation; (4) inhibition of the selected location that causes «
shift to the next most conspicuous location. Properties (1), (3

13. SERIAL WHAT-AND-WHERE and (4) were introduced in Grossberg [9, 49] as part of a bio
VEHICLE SIMULATIONS logical model of working memory, wherein multiple items are
simultaneously stored in a spatial map, as in property (1). |

The What-and-Where system was tested extensively on this model, items are rehearsed, as in property (2), from th
vehicle input images (Fig. 7), using parameters derived fromost to the least active, and use a self-inhibiting feedback, as
elliptical input image studies (Section 12) and using both uproperty (4), to prevent perseverative performance of the mo:
normalized and normalized filters. For the parallel system, praetive item. A Where map is a type of attentive working mem:-
totype images were randomly rotated through angles of 0 doy whose activities happen to code object properties (e.g., si:

180, magnified by random factors ranging from 0.2 to 1.2 arahd orientation) at prescribed spatial locations. A neural mode

placed at random positions in the square to create a test séthow such a Where map may be used to control sequenc

Each of the four prototype images generated 1000 such randofvsaccadic eye movements was described in Grossberg a

representations. Kuperstein [50]. This model clarifies how Where properties car

For both unnormalized and normalized filters or unnormagive rise to actions, or How properties, as proposed by Gooda

ized filters, In all cases, the network recovered orientation &md Milner [5].

within 1° and size to within 2%. The mean orientation error WTA circuits are ubiquitous in models of this type. A rigor-

was 042 and the mean size error was 1.8%. The subsamwusly characterized WTA neural network based upon compet

pling distortion caused by reduction of size was the limitingive feedback between nodes or cells was described i

factor on system accuracy, as in Fig. 15. Increasing the orienGrossberg [42]. Hadeler [44] proposed a related network. Al

tion filter spacing from 18 to 30increases the orientation erroriterative formulation of a competitive WTA was provided by

mean to 100° while maintaining the same size error mean dfeldman and Ballard [43]. By now, there are many variants o

1.8%. The equivalent test was performed with normalized fiuch circuits in use; e.g., by Cohen and Grossberg [51, 52

ters, yielding a mean orientation error o6@° and a magnitude Coultrip, Granger, and Lynch [53], Ellias and Grossberg [54],

error of 1.97%. These systems, with only 1068 + 2 x  Ermentrout [55], Grossberg [56], Grossberg and Levine [57]

29) unnormalized filters or 77 (& 8 + 29) normalized filters, and Tsotsost al.[46]. For purposes of biological modeling, the

meet the original performance criteria with far fewer than th@rossberg [42] model and later elaborations thereof use cells th

2610 filters required by the parallel system of Section 3, or thibey membrane, or shunting, equations and recurrent on-cent

a Scale (pixels) b Scale (pixels)
6 12 18 24 6 12 18 24
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FIG. 15. What-and-Where filter output error as a function of input figure scale. (a) Mean size of orientation error. (b) Mean scale error. System perfor|
deteriorates for small figures.
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off-surround interactions. For image processing applicatioremd Ivry [67], Enns and Resnick [68], He and Nakayama [69],
any efficient algorithm will do. Mordkoff, Yantis, and Egeth [70], Wolfe, Cave, and Franzel [71],
The Koch and Uliman [45] algorithm differs from the preserdind Wolfe and Friedman-Hill [72]. This SOS, or spatial object
one in its processing stages and operations. The present maéealch, algorithm suggests how 3D boundary and surface ref
focuses upomreattentivemechanisms whereby all the figuregesentations of a scene interact reciprocally with learned objec
in a scene can be transformed, in parallel, into invariant repategories (What stream) and spatial maps (Where stream) to fc
resentations that are suitable for pattern recognition. Attentigas attention upon desired objects in a 3D scene and to search fi
mechanisms modulate these preattentive stages via nonlirteagets amid distractors. Alternative What-and-Where models
feedback. For example, Carpenter and Grossberg [58, 27, B&ye typically ignored 3D boundary and surface properties anc
have described how ART modules can autonomously learn ditave not analysed how object categories can be autonomous!
ject categories that fit their size, shape, and number to the stasrned in real time. Earlier work from our group proposed neu-
tics of a nonstationary environment. An ART module can samplal models of 3D boundary and surface representation (e.g., [19]
each What representation for this purpose. In ART, activati@md object category learning (e.qg., [58, 59]). The present mode
of a top-down learned prototype primes its target cells so theatalyses some of the computational problems that the Wher
they respond only when a target that matches the prototype wi#ter needs to solve when it is embedded into a larger visual
enough is presented. In this way, such a system can performeeognition and search architecture like SOS.
fast parallel search for desired targets across a scene. In contragdlshausen, Anderson, and van Essen [73] have proposed
the Koch and Uliman [45] algorithm relies upon primitive obshifter circuit model whereby an attended object can be trans.
ject properties, such as object brightness, to select a target viaraned into a representation that is invariant under translation
form of serial processing in which no high-level target primingnd size, but notrotation. As in the Koch and Uliman [45] model,
is possible. The same limitations hold for all the models that ai@rgets are selected based on low-level features such as brigh
surveyed below. ness or size, and these objects can be searched one at a tir
Several alternative models comment upon how the brain mizya serial manner. The model assumes that each figure to b
accomplish search tasks. Explaining human psychophysical deeognized at the lowest level is matched by an invariant repre:
and animal neurobiological data is the ultimate test of such a pgentation of itself at the top level through a clever, but complex,
posal. The ART model has elsewhere been shown to have propeultistage routing circuit. The model does not propose how this
ties that qualitatively match neurophysiological recordings froinvariant exemplar is generated at the top level, and thus face
cells in monkey inferotemporal cortex during behavioral tasltke challenge that it cannot self-organize its object recognition
[59, 60]. These results concern how recognition categoriesaufdes. Indeed, the authors admit that “it remains to be seel
variable generality are learned, matched, and reset. In partisthether such a system can self-organizwith experience.” If
lar, the same ART top-down expectations that prime the systéhis is so, then the model cannot operate in an unsupervised wa
to respond selectively to desired targets also generate a matwcause it has no way to generate the invariant representatio
ing rule whereby irrelevant target features are suppressed andwvhich the algorithm feeds.
primed target features are supported. Several investigators havéhe shifter circuit connections are derived by using a Lia-
reported neurophysiological evidence for such a matching rulgganov, or energy, method of the type proposed by Cohen anc
extrastriate and temporal cortex (e.g., [61, 62]). Reynetdd. Grossberg [51] and Hopfield [74] to link the lowest and top
[63, 64] have performed experiments that support the simpléayers via selected pathways. It is not stated how the propose
version of this ART matching rule as a substrate for spatial anergy function could be implemented by the brain. It is also
tention in extrastriate visual cortex, a version that seems alsaclear how such a mechanism, being a relaxation algorithm
to occur in several other visual, auditory, and motor representauld work in real time to recognize an object with the speed
tions [65]. thatis needed in realistic human or technological image process
These models of What processing stream recognition are mamg applications. Thus the Olshausetral. [73] model, despite
tioned for three reasons. First, they illustrate the utility of the ingenuity of its bottom-up and top-down interactions, faces
preattentive What-and-Where model of the type that we haaeserious challenge from the present approach, wherein slov
described as a front end for fast parallel search of desired tataxation algorithms are replaced by fast competitive and inter-
gets. Second, they support the biological relevance of the ARR®dlation operations, and a theory is developed of how attentive
learning and categorization modules that are proposed to hedpognition categories are self-organized.
carry out these tasks. Third, they illustrate a key difference with Tsotoset al.[46] have elaborated a “selective tuning” model
models that carry out serial search based on low-level feature$.visual attention. Their spatial selection (Where stream) is
Grossberg, Mingolla, and Ross [35] and Grossberg [19] haxealized by inhibition of irrelevant connections within a visual
combined What and Where properties in an algorithm that clgoyramid. Their feature selection (What stream) is realized by
ifies a large search database, including recent data concernimigbition of units that compute irrelevant features. A search
how humans carry out fast parallel search for complex 3D oprocess operates recursively using WTA operations that move
ject properties, as in the work of Bravo and Blake [66], Coheénom the globally winning unit in the top layer downwards. The
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search process inhibits all the connections that do not contribdistances from the first. This classical equal-time property of ap-
to the winner. After recursive processing, the cause of the maarent motion [81] is simulated along with beta motion, gamma
imal response at the top layer is isolated at the bottom layerotion, delta motion, split motion, Ternus motion, and Korte’s
The algorithm operates through two traversals of the pyramidws, among other data.
The search is set up by a bottom-up sweep through the pyramicduch a traveling wave has been proved to occur in any syster
to select the global winner which, in turn, drives the top-dowwherein the effects of each input are Gaussianly filtered acros
search. space, and the activity due to one input is waning while that due
This algorithm bypasses the problem of using a relaxatido the next input is waxing, within prescribed spatiotemporal
algorithm, but it substitutes a considerable machinery of intdseunds. Such a wave is therefore called a G-wave. The peak c
pretive units, gating units, bias units, and gating control unitse wave is chosen by a WTA operation.
to do attentional selection. The Tsotsatsal. [46] algorithm Grossberg [82] suggested that G-waves carry spatial attentio
represents a significant advance over the Koch and Ullman [45iifts via the magnocellular visual cortical processing stream
algorithm. As in that algorithm, however, attention operates siitat feeds the parietal cortex of the brain’'s Where system; se
rially on only one target at a time. Although the authors note thalso [83]. By the equal-time property, a spatial attention shift
the WTA can, in principle, be biased in favor of some featurehie to a G-wave can occur over variable distances in equal time
over others, they do not say how such priming, or more generadywaves are proposed to solve the ecologically ubiquitous prob
how category learning and recognition, can be accomplished@m of continuously tracking a prey or predator as it moves at
a self-organizing way. variable speed between dense occluding cover. The intermit
Attentional selection within the Tsotsos model uses an arrggntly occluded target produces a series of temporally discret:
of gating and bias units that selectively inhibit unwanted- “flashes” that the G-wave continuously interpolates. Grossber
nectionsthroughout the pyramid. A large auxiliary network of19] outlined how this attentional tracking mechanism can be
highly specific connections is needed to inhibite the unwant@ined to SOS-type search mechanisms so that static 3D bounc
connections. An ART network, in contrast, achieves attentioratly and surface properties can compete with target motion prop
selection by inhibiting the activities of unmatchaddes not erties to control attention shifts.
the much larger number of connections that feed these nodeslhese motion mechanisms automatically realize an “atten-
No auxiliary gating system is required within the ART modetion capture” mechanism by enhancing transient responses t
Instead, top-down nonspecific inhibitory signals combine witttashed events. The interaction of these transient enhanceme
excitatory top-down prototype signals at target nodes. Thesiects with SOS mechanisms helps to explain how competitior
simple operations help to explain large behavioral and neucaln occur between top-down priming and bottom-up energetic
databases [58, 59, 65] and have been used in large-scale patlemands for attention. Tsotses al. [46] construct a special
recognition applications in technology, ranging from the desigagorithm to enhance abrupt image events. Although this algo:
of the Boeing 777 and the control of nuclear reactors to medithm includes some of the properties of the Grossberg—Rudc
cal database analysis, Landsat satellite image analysis, andisdion model, it does not include the key operations that are
analysis of multispectral infrared, LADAR, and SAR imageryneeded to explain psychophysical data about motion percepts.
see Carpenter and Grossberg [75] for some references. Finally, Tsotsoset al. [46] discuss a possible algorithm for
The Tsotsost al.[46] model incorporates a discussion of hovcausing saccadic eye movements to points of interest, but the
saccades can move an eye or a camera to foveate a particddanot analyse how the brain achieves its self-organizing contro
object in a scene. A full analysis of this issue would take wnd calibration of eye movements. Such a theory was develope
too far afield, but some comparative remarks may be helpfoly Grossberg and Kuperstein [50].
The authors summarize psychophysical data, such as that oAnother connection of the present model is withwork on steer-
Remington and Pierce [76] and #&€ and Julesz [77] showingable filters [84]. This work proves some nice theorems about the
that attentional shifts can occur over variable distances in eqaatumstances under which one can synthesize filters of arbitrar:
time, and that such rapid time-invariant attention shifts wouldtientation from linear combinations of basis filters so as to adap:
be needed to control saccadic eye movements during readimgely steer a filter to any orientation. The goal of steerable filters
The authors note that this property is inconsistent with the Kochsomewhat different from our use of Gaussian interpolation of
and Ullman [45] WTA algorithm and develop a new one toriented filters. Our goal herein is partly based on computa-
replace it. tional efficiency and partly on biological plausibility. Freeman
We have elsewhere proposed an alternative solutiand Adelson [84] demonstrate steerability of the directional
Grossberg and Rudd [78, 79] and Francis and Grossberg [8@}ivatives—2x exp[—(x2 + y?)] and —2y exp[-(x? + y?)] of
have modeled the cortical dynamics of apparent motion by progios-Gaussian exp|(x? + y?)] by using sins, cosines, and more
ing how a wave of apparent motion can interpolate spatially seggmplex trigonometric functions to interpolate across orien-
arated and temporally staggered flashes of light. This wave dations. This approach does not yet seem to have biologica
travel at a variable speed to join an earlier flash with one thatipport, and was not needed to achieve the computational con
occurs a fixed time later, even if the second flash is at varialgeession that we found using Gaussian interpolation.
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In summary, alternative models either have different goatétion and spatial localization tasks (see Section 1). Carpente
or different computational properties than the What-and-Wheaead Grossberg [59], Grossberg [19], and Grossberg, Mingolla,
filter that is proposed herein. These differences can ultimatelpd Ross [35] have modeled how the brain’s What-and-Where
be traced to our group’s focus @elf-organizingmodules for strategy may be embedded in a larger image processing arch
invariant pattern recognition, 3D boundary and surface repres#zgcture wherein 3D boundary and surface representations of
tation, motion analysis, and visual search. The What-and-Wheene interact reciprocally with attentive learned object cate-
filter adds a component to this emerging architecture that enabdesies (What stream) and spatial maps (Where stream) to fo.
fast, parallel search to occur for desired targets in a scene. Nans attention upon desired objects in a 3D scene and to searc
of the algorithms reviewed above yet seem able to do this. for such targets amid various types of distractors. These stud

ies indicate how a multiplexed spatial map, such as the Where
15. CONCLUSION filter described herein, may organize the interactions betweer
spatial and object representations that are used to interpret ar

The parallel and hybrid serial—parallel What-and-Where fijinderstand the visual w_orld. Future research willworkto furth_er
ters use a combination of cliff-like oriented filters, Gaussiaficvelop these models Into an autonomous architecture for im
interpolation, and suitably organized competitive interactio € undt_erstandlng gnd to (_axplaln progresswely_ Iargerdatgt?ase
across orientation and size to produce an output image th ut primate 3D vision, V"?’ual search, and Ob]e(?t recqgnltlon.

e present research contributes to this task by disclosing som

invariant under translation, rotation, and scaling of the input. B h tational probl that dtob ived by aWh
breaking this preprocessing stage into What-and-Where ch F] € computationa’problems that need to be solved by a Wher
stem that is based upon oriented filters and by defining severe

nels, the amount of information that is lost about the figuresé'

form is minimized. The What channel provides invariant forne?ffICIent algorithms that solve them. .
The present work does not, however, show how the brain use

information for purposes of pattern learning and recognition. X X : . .
The Where channel retains the location. orientation. and si2d'€re information to generate a representation of objects in the
; ' at stream that is invariant under changes in position, size, an

of the image for use in applications such as the allocation 6T, tation. Thi i handled h ‘ ¢ short
spatial attention, image understanding, and the planning of nppgLentation. 1his process IS handied nere, for purposes ot shor

tor trajectories to contact the figure in space. This analysis HEEM apphcgmon, by simply Sh'ft”.]g the ol:_)Ject into a canonical

disclosed some of the computational issues, uncertainties, gﬂaresentatlor! using the Where mformatlor?. The present.work
trade-offs, such as the role of cliff-receptive fields to achie\?dso does npt mtegr_ate the Whe_re process_lnto _the _Iarger 'mag
good positional localization, competition across scales to d derstandmg architecture that is summanz_e_d n Flgs_. 2 an_d 4
with the double peak problem, self-similar interpolation acro rt.her study is needed of how a self-organlz!ng algon.thm. like
orientation but not scale, and compensations for normalized jston ARTMAP can autonomously learn which combinations

unnormalized filters, that are needed for accurate and effici€) tWhat and Where information predict a particular interpreta-
computation. In particular, for image processing applicatiorlilé)n ofa scgne..On the other hand, as notgd above, models ¢
carried out in software, partial serialization of the Where chaﬁ—aCh stage in this _arch|tectur_e are now available, so the praces
nel, combined with Gaussian interpolation across orientatio?{syStem synthesis can begin.

achieves accurate invariance using a relatively small number of
filters.

The present algorithm has a number of limitations that needrhe authors thank Cynthia E. Bradford for her valuable assistance inthe prepa
to be overcome by future research. When a target has an almasn of the manuscript. Dr. Courosh Mehanian participated in the specification
symmetric shape, it may generate an ambiguous rotational egtibe oriented filters defined by Egs. (1)-(4).
mate, even though its features are not symmetrically distributed
over its surface. This degenerate case may most simply be han- REFERENCES
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