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The What-and-Where filter forms part of a neural network archi-
tecture for spatial mapping, object recognition, and image under-
standing. The Where filter responds to an image figure that has been
separated from its background. It generates a spatial map whose
cell activations simultaneously represent the position, orientation,
and size of all the figures in a scene (where they are). This spa-
tial map may be used to direct spatially localized attention to these
image features. A multiscale array of oriented detectors, followed
by competitive and interpolative interactions between position, ori-
entation, and size scales, is used to define the Where filter. This
analysis discloses several issues that need to be dealt with by a spa-
tial mapping system that is based upon oriented filters, such as the
role of cliff filters with and without normalization, the double peak
problem of maximum orientation across size scale, and the different
self-similar interpolation properties across orientation than across
size scale. Several computationally efficient Where filters are pro-
posed. The Where filter may be used for parallel transformation
of multiple image figures into invariant representations that are
insensitive to the figures’ original position, orientation, and size.
These invariant figural representations form part of a system de-
voted to attentive object learning and recognition (what it is). Unlike
some alternative models where serial search for a target occurs, a
What and Where representation can be used to rapidly search in
parallel for a desired target in a scene. Such a representation can
also be used to learn multidimensional representations of objects
and their spatial relationships for purposes of image understand-
ing. The What-and-Where filter is inspired by neurobiological data
showing that a Where processing stream in the cerebral cortex is
used for attentive spatial localization and orientation, whereas a
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1. INVARIANT FILTERING FOR OBJECT
RECOGNITION AND IMAGE

UNDERSTANDING

A typical pattern recognition problem requires that an ob-
ject be identifiable at various positions, sizes, and orientations.
A representation of the object that is invariant with respect to
these properties is often computed at a preprocessing stage. For
example, a combination of Fourier and log–polar transforms has
been used to provide translation, scale, and rotation invariance
[1, 2]. The output of log–polar-Fourier preprocessing is an in-
variant representation, but one that has lost information about
the form of the object, as well as about the object’s place in a
larger scene. This article introduces a filter-based invariant trans-
form system in which information about the position, size, and
orientation of the object is retained, and no form information is
lost.

The strategy leading to this system is suggested by the brain’s
use of parallel streams in the visual cortex to compute Where
an object is and What the object is [3, 4]. Goodale and Milner
[5] have proposed, moreover, that the Where processing stream
sets the stage for commanding motor actions towards targets.
The What processing stream includes such brain regions as the
visual cortical area V4 and inferotemporal cortex. The Where
processing stream includes visual cortical area MT and parietal
cortex.

The neural network defined below consists of a Where channel
that simultaneously computes the position, orientation, and size
of all target figures, and a What channel that uses the informa-
tion provided by the Where channel to encode invariant object
representations of all target figures. Subsequent recognition of
individual objects is based upon output from the What channel.
More global scenic interpretations, or context-sensitive recogni-
tion of ambiguous objects, may be achieved by parallel fusion of
data about multiple objects and their spatial relationships from
both the What and Where representations.
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FIG. 1. A What-and-Where filter. The Where filter generates a multiplexed
spatial map of a figure’s position, orientation, and size. This spatial map is used
by the What processing stream to generate an invariant figural representation.
This representation is used to learn a recognition category for all figures that
are sufficiently similar to one another in their form, at all possible positions,
orientations, and sizes.

The Where channel includes banks of spatial filters of vary-
ing sizes and orientations. Suitably defined competition between
filters yields a spatial map whose cell activations multiplex a
representation of the position, orientation, and size of all tar-
get figures. The What-and-Where filter may thus be realized
as a one-pass algorithm that preattentively generates informa-
tion about all the objects in a scene. Such a one-pass algo-
rithm can rapidly prepare image data for attentive recognition
and search processes that interact reciprocally with the What-
and-Where representations. In particular, the Where represen-
tation for each object is used to transform the representation
of that object within the What stream so that it is centered
at the origin with canonical size and horizontal orientation.
Figure 1 illustrates the main computations of the What-and-
Where filter.

The What-and-Where filter is one processing stage in a fam-
ily of multistage architectures that are designed to accomplish
automatic visual pattern recognition and image understanding.
Six stages of such an architecture are depicted in Fig. 2. The first
stage compensates for variable illumination in a scene. The sec-
ond stage generates a boundary segmentation of the image that
completes and regularizes incomplete figural boundaries while

suppressing image noise. The third stage separates the figures of
the image from each other and from the image background onto
slabs on which individual figures are isolated. The fourth stage
is the Where filter. Here each slab contributes to a spatial map
of its figure’s position, orientation, and size. This spatial map
is used to generate an input figure to the fifth stage, the What
representation, that is invariant under two-dimensional changes
of position, orientation, and size. This stage also consists of
multiple channels, one for each slab, that interact with a self-
organizing pattern recognition system at stage six. This system
learns to categorize the 2D invariant figures in its channel. In
particular, 2D view categories of each object can be learned and
fused into an invariant 3D object representation. The last stage
carries out more complex predictions of image understanding
by combining information about what the objects are from stage
six, with information from stage four about their spatial relations
with respect to each other.

Neural networks that realize the functional requirements of
stages one, two, three, and six have previously been developed.
These networks use a consistent computational format that will
enable them to be combined into a larger system architecture.
Each of these stages has been derived from an analysis of per-
ceptual and neural data aimed at discovering how the brain
accomplishes similar computational goals. The present article
describes a network for stage four that will provide a founda-
tion for combining stage four, five, and six computations into a
global scenic interpretation at stage seven.

FIG. 2. Processing stages of a multistage architecture for pattern recognition
and image understanding.
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In particular, compensating for variable illumination (also
called discounting the illuminant) can be carried out at stage
one by a shunting on-center off-surround network [6, 7]. The
Grossberg–Todorovi´c model has been realized as a VLSI chip
by Andreou and Boahken [8] using a retinal circuit like the one
described in Grossberg [9, Section 25]. Coherent boundary seg-
mentation and noise suppression can be accomplished at stage
two by a boundary contour system or BCS [10–14]. A simpli-
fied version of the BCS, called the CORT-X filter, accomplishes
boundary segmentation and noise suppression using only fast
feedforward operations [15, 16].

Figure–ground separation of the figures in a 2D image can be
accomplished by a model that is called an FBF filter because it
combines boundary segmentation and noise suppression opera-
tions (B) with illumination compensation and surface filling-in
operations (F) in the order FBF [16, 17]. An FBF model is cap-
able of simultaneously separating all figures with connected
boundaries from one another and the background. Figure 3 pro-
vides an example of FBF separation applied to a laser radar im-
age. Such a model is often sufficient to carry out figure–ground
separation in scenes wherein important targets are not partially
occluded by other targets. In cases wherein partial occlusions do
occur, a more general FACADE model of 3D pop-out of figures
from their backgrounds, and completion of partially occluded
targets, in response to both 2D images and 3D scenes may be
used [18–21].

The operations at stages one, two, and three may all be called
preattentivevisual mechanisms because they are applied in par-
allel to all image data, whether familiar or unfamiliar. Attentional
mechanisms select among, and bind together, various of these
image representations. Attentive object learning and categoriza-
tion can be accomplished at stage six by adaptive resonance
theory, or ART, networks that may operate either in an unsuper-

FIG. 3. An example of figure-ground separation of a target from a laser radar image using and FBF filter in stages one to three of Fig. 2. (Reprinted with
permission from Grossberg and Wyse [17].)

vised mode, as with ART 1, ART 2, and Fuzzy ART [22–25], or
a supervised mode, as with ARTMAP, Fuzzy ARTMAP, Fusion
ARTMAP, and Gaussian ARTMAP [26–30]. It has also been
shown how Fuzzy ARTMAP can be used to automatically learn
invariant 3D representations of objects from their 2D views, as in
the ART-EMAP [31, 32] and VIEWNET [33, 34] architectures.

Several properties of a What-and-Where filter make it an ap-
pealing candidate for a stage four invariant filter. For one, the
Where filter uses oriented receptive fields of multiple sizes that
compete across position, size, and orientation. Such multiscale
competitive interactions are also used in the BCS, CORT-X,
and FBF networks. The Where filter operations that determine
spatial properties of image figures are thus variations of ope-
rations used at earlier processing stages to determinevisual
properties of image figures. This computational homolog facili-
tates the choice of consistent parameters in the full multistage
architecture. It also highlights the research question of how repli-
cation of a shared set of competitive modules may be realized
in applications andin vivo to carry out both visual and spatial
computations.

A second useful property is that the filter may be designed
to operate in a one-pass mode, or an efficient serial algorithm;
hence, it is capable of fast response in image processing app-
lications. Various other recent approaches to generating spatially
invariant representations use multistage concurrent bottom-up
and top-down operations, or complex relaxation methods, that
are more computationally expensive and time-consuming. (See
Section 14 for further discussion.) Such approaches also typi-
cally attempt to focus attention upon a single target at a time
using the same operations that put it into an invariant repre-
sentation. These approaches have difficulty explaining how an
important target may be quickly recognized if the initially cho-
sen targets are the wrong ones.
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The present model generates spatial representations and in-
variant representations preattentively for all targets. Attentive
mechanisms can thus begin at once to search for any of them us-
ing higher-level knowledge. In particular, an ART architecture
can be primed to rapidly recognize a desired target on any of the
slabs. Grossberg [19] and Grossberg, Mingolla, and Ross [35]
have shown how a What-and-Where representation of the type
described here can be used in a visual search algorithm, called
the SOS, or Spatial Object Search, model that has been used
to quantitatively simulate psychophysical data from human vi-
sual search experiments. These experiments show that humans
exhibit properties of parallel search in many more viewing con-
ditions than previously realized (see Section 14).

A third useful property of a What-and-Where filter can be ex-
ploited in image understanding. The Where filter defines a spa-
tial map whose nodes multiplex information about the position,
size, and orientation of every figure in an image. In particular,
activation of a node, or cell population, in this map implicitly
represents all three spatial properties of the corresponding im-
age figure. The Where filter nodes are thus distinct channels
that each process at most one figure. Each channel, in turn, in-
puts to its own What invariant filter and recognition network.
Thus the Where map of each figure is linked, or bound, to the
corresponding What recognition of the figure, even though the
What recognition strips the figure of its spatially variant prop-
erties. Due to this linkage, the Where spatial map and the What
recognition categories can be combined into a total input vector
to the stage seven image interpretation network (Fig. 4). Such
a network can learn to combine information about the identi-
ties of each object with information about the objects’ spatial
relationships to derive a more global interpretation of scenic
meaning.

FIG. 4. Reciprocal interactions of a Where spatial map and What recogni-
tion categories with an image interpretation network can learn scenic interpreta-
tions that combine information about multiple objects and their spatial relations.
Fusion ARTMAP (see text) can be used for supervised learning of those combi-
nations of object categories and spatial relations that reliably predict a prescribed
scenic interpretation.

A supervised recognition and prediction network, called
Fusion ARTMAP, has been designed to handle such problems of
multidimensional data fusion, classification, and prediction [26].
Fusion ARTMAP autonomously searches for and learns those
combinations of input features that provide the best prediction.
In an image understanding application, Fusion ARTMAP may
be applied to learn those combinations of spatial and visual in-
formation that predict a desired image interpretation.

In the present article, the Where filter is used to generate an
invariant What representation in Cartesian coordinates. Varia-
tions on this design can also readily be used that include, say,
complex logarithmic processing to achieve partial invariance
and data compression [36] in much the same way as the cortical
magnification factor works in the mammalian visual system [37–
41]. Cartesian coordinates are used herein to demonstrate how
well the Where filter, operating alone, can create a fully invariant
What representation.

Section 2 describes the oriented filter components of the
What-and-Where system. Section 3 presents the simplest form
of the What-and-Where filter, employing normalized filter ele-
ments, or receptive fields, to determine position, orientation,
and size using a cascade of competitive parallel operations. The
number of receptive fields in the parallel system can be greatly
reduced via Gaussian interpolation across coarsely coded orien-
tations, as shown in Section 4. Section 5 presents the equations
for the parallel What-and-Where filter algorithm with orientation
interpolation, and Section 6 describes a computer simulation of
this system employing vehicle silhouette images. The role of re-
ceptive field normalization is discussed in Section 7, along with
the value of dissociating determination of figure position from
that of orientation and size when using unnormalized receptive
fields. A parallel What-and-Where filter, modified to employ un-
normalized receptive fields, is presented in Section 8. Section 9
shows how a hybrid serial-parallel system, which first calculates
orientation and then size, can dramatically reduce the compu-
tational load on the filter. Further reduction in the number of
filters can be achieved by orientation interpolation, as shown in
Section 10. Such a hybrid What-and-Where filter algorithm is
mathematically defined in Section 11. In Section 12, system re-
sponses to elliptical test images of variable elongation are used to
calibrate system parameters. Simulations demonstrating perfor-
mance of the hybrid system in response to the vehicle silhouette
images from an MIT Lincoln Laboratory database are summa-
rized in Section 13. Section 14 compares the What-and-Where
approach with alternatives. Section 15 provides concluding re-
marks and open problems.

2. THE ORIENTED CLIFF FILTER

The Where computations of the What-and-Where filter em-
ploy a spatial array of oriented receptive fields with different
sizes and orientations that are convolved with the input im-
age. Computation of orientation is based upon receptive fields
within an oblong excitatory region. As shown below, the winning



               
THE WHAT-AND-WHERE FILTER 5

orientation provides a stable measure of an object’s net orienta-
tion in response to objects of variable shape.

Reliable computation of both orientation and size depend
upon the use of a strongly inhibitory surround region around
the oblong excitatory region. Such an oriented receptive field,
centered at the origin with orientationφ degrees, sizes pixels,
and elongationa, is defined by the kernel

K (x, y, φ, s) = (1 − r 6) exp

(
− r 4

1 + r 2

)
, (1)

r 2 =
(

x′

as

)2

+
(

y′

s

)2

, (2)

x′ = x cosφ + y sinφ, (3)

and

y′ = y cosφ − x sinφ. (4)

Figure 5a depicts the geometry of an oriented receptive field
and a normalized cross section of kernel values as a function

FIG. 5. An oriented on-center off-surround receptive field with a steep cliff-like on–off border can be used as the building block of a Where filter. (a) A region
of positiveK values, in the ellipse wherer 2 ≤ 1, is surrounded by a region of negative values, as this cross section of the filter depicts. The elongation parameter
a is the ratio of thex′ axis to they′ axis of the ellipse. (b) Oriented filters at size scaless = 16 pixels ands = 8 pixels and orientationsφ = 30◦ andφ = 120◦,
each in a 128× 128 pixel square and with elongationa = 2. The ellipse in the left-hand filter shows the set of points, wherer 2 = 1 for that filter.

of r . Four examples of receptive fields (with elongationa = 2)
are shown in Fig. 5b, where white signifies large positive val-
ues ofK (x, y, φ, s) and black signifies large negative values.
The black ellipse in the left-hand receptive field indicates the set
of points wherer 2 = 1 andK = 0. As specified by Eqs. (1)–(4),
each receptive field includes a positively weighted elliptical cen-
ter area bordered by a sharp drop-off to a negatively weighted
surround field. It cannot be overemphasized that this cliff-like
surround is essential to deriving our results.

Given receptive fields such as those in Fig. 5, the greatest
response obviously results from an elliptical input oriented and
sized such that it fits perfectly within the central region (r 2 ≤ 1)
of the receptive field. On the other hand, a sizable response will
be observed for any anisotropic input that is oriented and scaled
such that it stays primarily within the central region. The steep
drop to negative values in the region wherer 2 ≈ 1 causes the
response of the receptive field to drop sharply when parts of
an image fall outside the central region. Throughout the article,
the elongation parametera is set equal to 2. The system still
performs well, however, on images whose ratio of width to height
is far from 2, as shown in Section 12.



           
6 CARPENTER, GROSSBERG, AND LESHER

3. A ONE-PASS PARALLEL WHERE FILTER

Within the Where channel, the input figure is convolved with
each oriented filter. Each filter element is identified with a point
(x, y) on a two-dimensional grid of neuron nodes, and its recep-
tive field is centered at (x, y). The activityA of a node located
at (x, y) whose receptive fieldK has orientationφ and sizes is
given by the discrete convolution

A(x, y, φ, s) =
∑

p

∑
q

K (p, q, φ, s)I (p − x, q − y), (5)

in response to an input patternI (x, y).
The convolution between input image and filters of different

orientation and size yields a four-dimensional array of neuron
nodes: two dimensions correspond to thex andy coordinates of
the receptive field center; and one dimension each corresponds
to orientationφ and sizes of the filter. Each of these nodes
provides a measure of the degree of match between the input
and the four-dimensional vector which characterizes all the spa-
tial characteristics of the node’s receptive field. A good match
implies that the node’s receptive field shares similar position,
orientation, and size with the input image. The most active of all
nodes indicates the best estimate of these spatial parameters. If
the nodes are spaced finely enough across position, orientation,
and size, the Where information of the input may be accurately
assessed by finding this maximal activity. This general strategy
for defining a multiplexed Where map is quite elementary. Its
interest lies in its simplicity and in the analysis that is required
to make sure that it works in an efficient way.

Determination of the optimal node may be achieved via a
winner-take-all competition between all nodes; that is, by a com-
petition across position, orientation, and size. Perhaps the first
winner-take-all, or WTA, network to be mathematically charac-
terized is a competitive network whose cells undergo shunting,
or divisive, inhibition and which communicate via faster-than-
linear feedback signals [42]. A number of related WTA schemes
have since been proposed; e.g., by Feldman and Ballard [43],
Hadeler [44], Koch and Ullman [45], and Tsotsoset al.[46]. The
one node which remains active after the competition carries the
necessary Where information via its receptive field geometry.
Figure location (xI , yI ), orientation (φI ), and size (sI ) are pro-
vided to the What channel to achieve invariance prior to object
recognition.

Before such a parallel Where filter can function well, the fil-
ters given by Eqs. (1)–(4) must be modified so that they provide
an unbiased measure of the size of the input figure. Consider,
for example, a small elliptical input, oriented atφ = 120◦, that
fits snugly within the central region (r 2 ≤ 1) of a filter of size
s= 8 (Fig. 5b). The corresponding map cell will react strongly
to this input, withA = 250.82. However, a nonoptimally sized
cell receptive field of larger sizes= 16 will respond even more
strongly (A= 384.11), since the input ellipse lies in the region
whereK ≈ 1 (Fig. 5). All other factors being equal, filter re-
sponse increases with filter size. There are two mechanisms

whereby this bias can be removed: normalization of the filter
weights and unbiasing of filter output via spatial competition.
The former approach is taken in this section, while the latter is
developed in Section 5. Normalization of the filter weights and
spatial competition can also be realized by the same shunting, or
divisive, competition that is used for WTA selection, if the shunt
is restricted to a single filter’s receptive field weights. These two
variants of the What-and-Where filter thus illustrate how dif-
ferent orderings of a single mechanism of shunting competition
can be used to accomplish both functional tasks.

The scale bias arises as a straightforward consequence of the
fact that larger filters have the same maximal (excitatory) value
as smaller filters, but greatly increased excitatory receptive field
area. In order to achieve unbiased scale estimation, the increase
in excitatory receptive field area of large filters can be com-
pensated for by reduced weights within this area. That is, filter
weights are normalized by the area of the excitatory receptive
field

N(s) =
∫

<
K (x, y, s, 0)dxdy, (6)

where< represents the excitatory region of the filter, at which
r < 1. With a normalized kernel

KN(x, y, s, φ) = K (x, y, s, φ)

N(s)
, (7)

the level of response of each filter to its optimal elliptical stimu-
lus is equal to 1.0. The activity of the normalized filter output
nodes is now given by

A(x, y, φ, s) =
∑

p

∑
q

KN(p, q, φ, s)I (p − x, q − y), (8)

as in Eq. (5). The maximally activated node accurately codes the
figural position, orientation, and size. A winner-take-all compe-
tition among all the nodes thus chooses the node whose spatial
position in the Where map encodes figural position, orientation,
and size. In summary, three competitive operations, acting in
parallel across the network, are competent to generate a Where
map: a cliff off-surround at each receptive field, normalization
of each kernel by the integral of the excitatory on-center of each
receptive field, and global winner-take-all competition across all
receptive fields.

Figure 6 illustrates the result of convolving a small set of cliff-
normalized filters and a vehicle silhouette image, depicted in the
lower right-hand corner of the image. Each frame represents the
output of a given filter convolution, with filter scale increasing
from top to bottom and filter orientation changing in a counter-
clockwise fashion from left to right. The receptive field of the
node with the maximal activity across position, orientation, and
size corresponds to the Where information of the input image.
In this case, the maximal activity occurs at the node marked with
an “X” in the figure, and indeed represents the correct position,
orientation, and size of the input figure, modulo the coarse filter
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FIG. 6. A parallel Where filter that uses a cliff off-surround and a normalized on-center in each receptive field, followed by winner-take-all competition across
receptive fields. Receptive field size increases from down columns (s = 4, 6, 8, 10, 12, 14) and orientation varies across rows (φ = 0, 45, 90, 135). The output of
the parallel Where filter to the figure given in the lower right-hand corner is given as a four-dimensional array of data. Each 2D subframe image represents the
output of the convolution of a single normalized filter. The “X” marks the maximal activity across position, orientation, and size and correctly provides the Where
information associated with the input image.

spacing. Tests employing finer filter spacing gave excellent qua-
litative results, but it soon became clear that a one-pass Where
filter with fine filter spacing across orientation is needlessly ex-
pensive from a computational point of view.

4. COARSE CODING AND INTERPOLATION
OF RECEPTIVE FIELD ORIENTATIONS

In order to achieve invariant image representation in the What
channel, both orientation and size determination in the Where

channel must meet high accuracy criteria. In a parallel system,
high accuracy can be achieved by fine spacing of filters across
receptive field position, orientation, and size, but at the cost of
maintaining a multitude of filters. Orientation accuracy to within
1◦ would require 90 different filter orientations, with a spacing
of 2◦ between filters at each size and at each position. Size ac-
curacy to within 2% across scales froms = 4 tos = 32 (object
length of from about 2as = 16 to 128 pixels) would require 29
different scales. Thus 2610 (90× 29) different filters at each
node of the spatial grid would be required for accurate scale and
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orientation determination. This large number of filters could be
computed in real-time in a neural tissue or a parallel computer
chip, but might prove cumbersome in applications that depend
upon a serial computer. Orientational tuning in the primate striate
visual cortex is typically much coarser, yet orientation changes
can be detected with high accuracy [47]. We now show how
coarse orientational tuning followed by an orientation interpo-
lation mechanism can achieve fine orientational discrimination
while reducing the computational load by more than an order of
magnitude.

Within each set of filters of a given sizes at a given position
(x, y), interpolation across a sparse set of six orientations that
are calibrated in degrees (θ = 0, 30, . . . , 150) can reduce the
total number of filters from 2610 to just 174 (6× 29) while
maintaining orientation accuracy. Convolving the coarse filter
activitiesA(x, y, θ, s) with a one-dimensional Gaussian kernel
across orientation only, and resampling across a finer set of ori-
entationsφ, accomplishes the interpolation. The interpolated
distribution of activity AG(x, y, φ, s) more accurately reflects
the actual orientation of the image than do the coarse filter ac-
tivities A(x, y, θ, s).

This interpolation is realized as follows. For each orientation
θ , let A(x, y, θ, s) be the output of the coarse filter bank, as
in Eq. (8). Then for anyφ ∈ [0, 180), the interpolated activity
AG(x, y, φ, s) obeys the equation

AG(x, y, φ, s) =
∑

θ

A(x, y, θ, s)G(θ − φ), (9)

whereG(ψ) is the Gaussian kernel

G(ψ) = 1√
2πσ

e−ψ2/2σ 2
. (10)

The standard deviation (σ ) of the Gaussian is taken to be a
fixed fraction of the coarse filter spacing being employed. Using
this self-similarity constraint, the wider the spacing, the greater
the standard deviation is chosen to ensure smooth interpolation.
In practice, settingσ equal to 0.7 times the coarse filter spac-
ing works well. Following interpolation, global winner-take-all
competition between all activitiesAG(x, y, φ, s) yields the posi-
tion, size, and orientation of the figure, as described in Section 5.

Interpolation could also be implemented across position and
size, leading to a four-dimensional Gaussian interpolation
kernel and appropriate convolution. In practice, however, even
with size interpolation, accuracy decreases rapidly as filter scale
spacing increases. When combined with the complexities aris-
ing in implementation, interpolation across domains other than
orientation was not deemed cost effective in this parallel Where
filter.

5. ONE-PASS WHAT-AND-WHERE
FILTER ALGORITHM

The one-pass parallel What-and-Where filter outlined in the
last three sections will now be summarized mathematically. The

input imageI = I (x, y) is convolved with each of the filters
within the oriented filter bank. Interpolation across orientation
provides a more accurate estimation of orientation. Figure po-
sition, orientation, and size are determined simultaneously via
a winner-take-all competition between all output nodes, and the
input image is centered, oriented, and scaled to form the invariant
imageICOS. The filter operations are defined as follows.

Oriented cliff filter For orientationφ ∈ [0, 180) and size
s = 4, . . . , 32 pixels, the unnormalized oriented filter with ori-
entationφ, sizes, and elongationa is defined in terms of the
cliff kernel K :

K (x, y, φ, s) = (1 − r 6) exp

(
− r 4

1 + r 2

)
, (11)

where

r 2 =
(

x′

as

)2

+
(

y′

s

)2

, (12)

x′ = x cosφ + y sinφ, (13)

y′ = y cosφ − x sinφ. (14)

The normalized filter is then given by

KN(x, y, φ, s) = K (x, y, φ, s)

N(s)
, (15)

where

N(s) =
∫

<
K (x, y, 0, s)dxdy (16)

and< represents the excitatory region of the filter.
A coarse set of filter orientations and a fine set of filter sizes

that respectively span the orientation and scale range are se-
lected. In simulations, 174 filters, with 6 orientationsθ = 0,

30, . . . , 150 (degrees), and 29 sizess = 4, 5, . . . , 32 (pixels)
were used.

Filter Each normalized filter is convolved with the input
image:

A(x, y, θ, s) =
∑

p

∑
q

KN(p, q, θ, s)I (p − x, q − y). (17)

Interpolation Gaussian interpolation provides accurate ori-
entation estimation, using

AG(x, y, φ, s) =
∑

θ

A(x, y, θ, s)G(θ − φ), (18)

whereG(ψ) is the Gaussian kernel

G(ψ) = 1√
2πσ

e−ψ2/2σ 2
. (19)
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Parameterσ was set equal to 0.7 times the angle between succes-
sive orientationsθ . In simulations,σ = 0.7× 30 = 21 degrees.
Interpolated values ofφ were computed in steps of 0.1 degrees.

Winner-take-all competition Global competition between all
nodes identifies the position (xmax, ymax), orientationφmax, and
sizesmax that maximizeA(x, y, φ, s). Thus,

A(xmax, ymax, φmax, smax) ≥ A(x, y, φ, s). (20)

These values provide all the Where information; that is, po-
sition (xI , yI ) = (xmax, ymax), orientationφI = φmax, and scale
sI = smax.

Center, orient, and scale invariant figureThe figureI was
translated by (−xI , −yI ), rotated through an angle of−φI ,
and magnified by a factor of 24/sI to obtain the invariant fig-
ure ICOS.

6. WHAT-AND-WHERE VEHICLE SIMULATIONS

The one-pass What-and-Where filter was tested quantitatively
on vehicle input images. The four prototype vehicle inputs are
shown in Fig. 7 in general position, with orientation 0◦ and scale
24 pixels. Although the What-and-Where system indicates that
each of these images in horizontal (φI = 0) the chunkier vehicles
appear slightly tilted due to asymmetries about both the horizon-
tal and vertical axes. The goal of the orientational measure is not
to determine a veridical horizontal, but rather to generate a stable
measure of canonical orientation. The actual orientation chosen

FIG. 7. Prototype vehicle images, with orientationφI = 0◦ and sizesI = 24
pixels.

will depend upon the shape of the figure, notably its anisotropy.
The image squares were 128× 128 pixels, and the prototype
vehicle images ranged from 80 to 100 pixels in length and from
30 to 60 pixels in height. To create the test input set, prototype
images were randomly rotated through angles of 0 to 180◦, mag-
nified by random factors ranging from 0.2 to 1.2 and placed at
random positions in a 30× 30 pixel area at the center of the
image square. Each of the four prototype images generated 250
such random representations. System performance was judged
by the accuracy of orientation and size determination.

Employing just 174 filters in the Where channel, as described
in Section 5, the system easily met the goal of recovering orien-
tation to within 1◦ and scale to within 2%. The mean orientation
error was 0.43◦ and the mean scale error was 1.97%. Object
localization was likewise very good. The mean error acrossx
positions ory positions, taken independently, was less than 1
pixel. The mean Euclidean error across all (x, y) pairs was 1.12
pixels. The subsampling distortion caused by reduction of scale
was the rate-limiting factor on system accuracy, as is described in
Section 12. What-and-Where filter simulations are illustrated in
Fig. 8. Column (a) shows the input image, column (b) shows the
translated imageIC, column (c) shows the translated and hori-
zontally oriented imageIC O, and column (d) shows the trans-
lated, oriented, and scaled imageIC OS. IC OSis the What channel
output figure (see Fig. 1). An XOR in column (e) between the
output imageIC OS and the prototype image indicates where er-
rors occur.

7. NORMALIZED VERSUS UNNORMALIZED
FILTERS

Filter normalization provides unbiased estimates of image
scale, but relies upon accurate calculation of filter coefficients
based on information about the entire excitatory region of the fil-
ter. Any inaccuracies or “drift” in filter coefficients could result
in scale biases which could, in turn, lead to position and orien-
tation biases as well. For this reason, an alternate, but related,
model that provides a method of eliminating scale estimation
bias is also presented. This method allows the use of unnormal-
ized filters by first translating the image so that its center-of-mass
lies at the origin. Together, these models provide a broader in-
sight into the variety of operations whereby What-and-Where
filters may be designed.

When convolving an image with unnormalized filters, it is
possible for the maximal value across all filters to occur at a
position that is distant from the actual position of the figure. If
the filter scale is much smaller than the figure, then the response
at the position of the figure will be weak due to the strong in-
hibitory troughs around the center of the figure. The response
at the periphery of the figure position, where inhibition is weak,
will be relatively strong. This can be seen in the relative re-
sponses of the smallest normalized filters of Fig. 6 (top row),
where the maximal values lie outside the area occupied by the
input figure. The same relative activations within a filter occur
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FIG. 8. Three examples of What-and-Where filter simulation results: (a) The input figure (I ). (b) The image translated to its neutral position (IC). (c) The image
translated and oriented to the horizontal (IC O). (d) The figure translated, oriented, and scaled tos= 24 pixels (ICOS). The last column indicates the degree of match
(XOR) between the output of the What channel and the corresponding prototype figure.

whether or not it is normalized. Normalization ensures that po-
sitionally mismatched activations do not win the interfilter com-
petition. Due to this problem, the next What-and-Where filter
first determines figure position, using a method that is robust in
noise, before filtering to determine orientation and size. After
the target figure has already been separated from noise and back-
ground clutter, say by a CORT-X filter [15] or by an FBF network
[16], a center-of-mass computation provides convenient and suf-
ficiently accurate localization. The center of mass (xI , yI ) may
be computed by

T =
∑

x

∑
y

I (x, y), (21)

xI = 1

T

∑
x

∑
y

x I (x, y), (22)

yI = 1

T

∑
x

∑
y

y I (x, y). (23)

The figure is translated so that the new, centered, image has its
center of mass at the origin:

IC(x, y) = I (x − xI , y − yI ). (24)

When a clean image cannot be assumed, a noise-tolerant method,
such as the diffusion-enhancement bilayer of Seibert and Wax-
man [48], can be used for target localization.

The unnormalized receptive fields of Eqs. (1)–(4) can be em-
ployed in an algorithmic manner to robustly determine figure
position. Since localization is a problem only with small scale
filters, large scale filters can be used to determine a coarse esti-
mate of figure position. That is, the position of maximal activity
within large scale filters yields figure position, but not with a
high degree of accuracy. The positional estimate can be refined
by finding the maximal activity at progressively smaller scales.
This estimate slowly varies, becoming more accurate as filters
have greater positional sensitivity due to their snugger fit around
the input, until the scale becomes significantly smaller than the
input figure, at which point the maximal activity occurs at some
distant point. The correct figure position is the last positional
estimate before this discontinuous jump.

8. AN ALTERNATIVE PARALLEL
WHAT-AND-WHERE FILTER:

THE DOUBLE PEAK PROBLEM

The centered figureIC is next presented to a bank of filters,
centered at the origin, that span all orientationsφ and sizess.
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FIG. 9. A rectangular input image is defined by settingIC(x, y) equal to 1
inside the rectangle, and 0 elsewhere. A node centered at (0, 0) with receptive
field orientationφ = 0◦ and sizes = 16 pixels has activityA(φ, s) equal to the
sum of kernel valuesK over all points (x, y) in the rectangle. Figures that fall
in the region wherer 2 > 1 tend to generate large negative responses.

Convolution of the input vector with each filter bank at each spa-
tial position (x, y) is no longer required, as the figure is already
centered. Now, a point by point multiplication between the input
image and each filter suffices; namely,

A(φ, s) =
∑

x

∑
y

K (x, y, φ, s)IC(x, y), (25)

as depicted in Fig. 9. If normalized filters are employed, then
finding the maximal activity across orientation and size would
determineφI andsI . When employing the unnormalized filters
of equations (1)–(4), it is not sufficient simply to select the filter
that gives the maximal response across allA(φ, s), since outputs
at all filter sizes larger than the figural size will tend to be greater
than the activity at the correct filter size.

This problem can be solved by utilizing thepatternof activity
across orientations at each given filter size. If the sizes of the
filter is too large, then the image tends to remain within the
excitatory central region at all filter orientations, leading to a
flat distribution of high activity. If the filter sizes is too small,
a flat distribution of low activity is observed, since then both
the excitatory and the inhibitory regions of the filter intersect
the image at all orientations. Only near the optimal size will
activation levels vary rapidly with orientation.

These observations suggest a two-stage competitive mecha-
nism that determines the optimal orientation and size of the input.
At the first stage, nodes at each fixed size compete among ori-
entations. This first competitive stage, which contrast-enhances
responses at each size, emphasizes variations in activity, as in
the BCS boundary segmentation network of Grossberg and Min-
golla [11, 12]. ActivitiesA(φ, s) that are flat across several ori-
entations are inhibited, as when filter sizes are too large or too

small. Peaks of activity in near-optimal scales are emphasized
(Fig. 10a). After first-stage competition, the new activity profile
B(φ, s) at each size measures how well both filter orientation
and size fit the figure. A second competitive stage acts between
all output nodes of the first competitive stage to select the node
with maximum activityB (Fig. 10b). The image orientationφI

and sizesI are estimated by the orientation and size of the se-
lected node.

Figure 11 shows the simulation output of the first competi-
tive stage (Fig. 10a). FunctionB(θ (s), s) is plotted to graph the
output at the maximally activated orientation as a function of
scale. InputI (x, y) represents a car that is 112 pixels long and
38 pixels high, oriented in a horizontal direction and centered
at the origin. Peak activity (Fig. 11a) occurs at scales = 25.
The second competitive stage thus estimates the height to be
about 2s = 50 pixels and the width to be about 2as = 100
pixels. The filter corresponding to this peak hasφ = 0, the
correct image orientation. A second peak in the maximal ac-
tivity profile occurs in small-scale filters with orientationφ⊥

I
perpendicular to the correct orientationφI . In fact, the scale of
the lower peak is approximately equal to the scale of the first
peak divided by the filter elongation parametera = 2 (Fig. 5a).
The lower peak occurs where the major axis of a small-scale
filter senses the height, rather than the width, of the input im-
age (Fig. 11b). Since the peak occurring at the larger scale is
always the “correct” one, this double peak effect does not cause
errors after competition acts at the second competitive stage of
the parallel network. As seen below, however, double peak un-
certainty leads to a design constraint on a more efficient serial
system.

9. PARALLEL VERSUS SERIAL FILTERING STAGES

As discussed in Section 4, a fully parallel system without in-
terpolation requires a large number of filters to estimate figural
orientation and size accurately. While interpolation similar to
that of Section 5 could be employed with unnormalized filters
to greatly reduce the number of these filters, a more fundamen-
tal alteration in Where channel structure may also be used to
further reduce computational load in applications wherein algo-
rithmic operations can be performed serially. In particular, the
total number of filters is reduced by using two serial filtering
stages, one to determine orientation and one to determine size.
Such a serial system can determine orientationφI , using 90 ori-
ented filters, and can then determine sizesI , using 29 additional
scaled filters, rather than the 90×29 filters that would be needed
by a parallel system with comparable performance. In the serial
system, the image is first centered, say by (21)–(24). The orien-
tation of the image is then determined via competition among
the 90 oriented filters. This information is used to orient the im-
age to a canonical (horizontal) direction, after which the second
bank of 29 filters determine the image scale. Figure 12 depicts a
Where filter that computes position, orientation, and size in serial
stages.
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FIG. 10. Fully parallel filter. (a) At the first competitive stage, for each size scales, competition contrast enhances node responses across orientations. Competition
for network activityB enhances the peak response at the optimal scale (s= 8). (b) The second competitive stage, among all output neurons of the first stage, selects
a filter whose orientationφI and scalesI fit the input image.

Whether unnormalized or normalized filters are employed
within the Where channel, a great computational savings can
be realized by serializing orientation and size determination.
The following discussion outlines some problems and solutions
inherent in the general case of unnormalized filters. At the end
of the discussion, the system simplifications resulting from the
use of normalized filters will be presented.

The theoretical ideal of a complete serialization of Where fil-
ter modules with unnormalized filters, with a single size scale in
the orientation filter bank and a single orientation in the size scale
filter bank would not produce accurate results. The double peak
in maximal first-stage outputB(φ(s), s) across scales (Fig. 11a)
implies that a range of sizes must be employed for accurate ori-
entation determination. If only a single size were employed, the
system would tend to choose the orthogonal orientation for im-
ages much larger than this size. For example, if the fixed size

scale weres = 10, the system would incorrectly predict a ver-
tical orientation for the large car shown in Fig. 11b. Employing
a single large size scale solves this problem, but creates a new
one of small-image inaccuracy. Namely, since small images of
all orientations would fit in the central region of all the large
filters, orientation would be indeterminate. A compromise can
be achieved by using a sparse set of approximately eight scales
which span the range of possible figure sizes. The correspond-
ing oriented filters provide enough information to disambiguate
the double peaks without sacrificing accuracy. In this hybrid
serial-parallel configuration, the orientation determination mod-
ule is essentially the same as in the parallel system described in
Section 8, but with fewer scales. As in Fig. 10, competition be-
tween orientations within each size scale (first competitive stage)
is followed by competition between orientations and sizes (sec-
ond competitive stage). The second competitive stage hereby
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FIG. 11. Double peak effect. (a) Maximum output activityB(φ(s), s) of the first competitive stage for each size scales. The global maximum across all scales
occurs ats= 25, where the orientationφ(s) = 0◦ gives the maximal responseB(φ, s) across orientations. A second peak in the graph ofB(φ(s), s) occurs at scale
s= 10, whereφ(s) = 90◦. (b) At small scales competition between orientations tends to select the orientation that matches the height of the image, yielding the
orientationφ⊥

I that is perpendicular toφI . At larger scales the filter that best matches the full test image yields the correct orientation.

yields the orientation of the image (φI ) and a rough estimate
of its size. The former is applied to orient the centered image
(IC → ICO) prior to subsequent filtering for more accurate size
determination. The coarsely determined scalecouldbe used to
narrow down the range of filter scales in the next stage. How-
ever, the likelihood that the computed scale is erroneous, due to
the double peak effect (Fig. 11a), makes it prudent to ignore this
information.

Instead, the horizontal imageICO next becomes the input to
the size determination module, where the Where filter again
employs a reduced parallel system. Although the orientation
ICO is known, a bank of filters of many scales but only hori-
zontal orientation is still inadequate. As in Fig. 10a, it is the
variation in activity across orientations that indicates how well
a particular filter scale matches that of the image, rather than the
absolute size of a node’s response. In practice, just two orienta-
tions (horizontal and vertical) provide enough information about
activity variations to give an accurate estimate of scale. If a scale
matches that of the image, the difference between the horizontal
and vertical filter responses will be large at that scale (Fig. 10a).
In contrast, if the filter scale is too large, both horizontal and

vertical responses will be large; if the filter scale is too small,
both horizontal and vertical responses will be small; and in either
case thedifferencebetween the horizontal and vertical responses
will be small. In summary, the hybrid serial–parallel system uses
eight scales at the orientation determination stage and two ori-
entations at the size determination stage. The total number of
filters is hereby reduced to a total of 778 (90× 8 + 2 × 29),
compared to the 2610 (90× 29) filters in the fully parallel
system.

The use of normalized filters eliminates the need for compe-
tition between orientations at each scale (the first competitive
stage). Either competition between orientations or filter normal-
ization can be used to derive a goodness-of-fit measure that
works across filter sizes. Thus orientation determination that
uses normalized filters consistssolelyof winner-take-all com-
petition between orientations and sizes (the second competitive
stage). After reorienting of the input image (IC → ICO), size de-
termination in a normalized filter system progresses in the same
manner as above, with the first competitive stage again being
skipped. Note that, as above, the filter bank can be reduced to
different sizes at asingleorientation.
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FIG. 12. The serial or serial-parallel What-and-Where system with dissociated
orientation and scale filtering.

10. ORIENTATION INTERPOLATION
IN A SERIAL ALGORITHM

Interpolation within the orientation determination module can
further decrease the number of filters required within the Where
channel, just as it did for the parallel system in Section 4. Interpo-
lation across a sparse set of six orientations (θ = 0, 30, . . . , 150)
can reduce the total number of filters to just 106 (6×8+2×29),
rather than the 2610 filters of a fully parallel system or the 778
filters of the serial algorithm without interpolation, while main-
taining orientation accuracy. Again, this process can be applied
to the system regardless of the type of filter (normalized or un-
normalized) being employed. Initial discussion below of how
this is done assumes unnormalized filters.

In the orientation determination module, for each orientation
θ , let A(θ, s) be the output of the coarse filter bank, as in (25).
Then for anyφε[0, 180), the interpolated activityAG(φ, s) is
given by

AG(φ, s) =
∑

θ

A(θ, s)G(θ − φ), (26)

whereG(ψ) is the Gaussian kernel given by Eq. (10). As before,
a self-similar selection orσ is made to be a fixed fraction of the
filter spacing. Following interpolation, the activitiesAG(φ, s)

compete across scales and orientations, as in the second com-
petitive stage of Fig. 10.

A similar interpolation can also be performed in the size deter-
mination module. Because interscale size comparisons are not
made until after the first competitive stage (Fig. 10), interpola-
tion across scales is performed on first competitive stage output
B. For a sparse set of size scalest, B(0, t) is the first competitive
stage output for the canonical orientationφ = 0. Then for any
scales, the interpolated activityBG(0, s) is given by

BG(0, s) =
∑

t

B(0, t)G(t − s), (27)

as in Eq. (26). Following interpolation, global competition
among all outputsBG(0, s) yields the image scalesI . In sum-
mary, interpolation in the orientation stage typically permits a
coarse filter spacing of up to 30◦ (rather than 2◦), while maintain-
ing a mean orientation error of less than 1%. Size interpolation
proved less valuable, still requiring scale (t) filter spacing of one
pixel to maintain accuracy.

Employing normalized filters removes the first competitive
stage. Interpolation within both orientation and size determina-
tion modules occurs before the second competitive stage, but is
otherwise the same as above.

11. SERIAL WHAT-AND-WHERE
FILTER ALGORITHM

The serial What-and-Where filter implementation algorithm
will now be summarized mathematically using unnormalized fil-
ters. The algorithm using normalized filters will then be given.
The algorithm first computes the position (xI , yI ) of an input
figure I = I (x, y). After translation, the new figureIC is cen-
tered at the origin. A bank of oriented filters then determines the
image orientation to beφI degrees. After rotation, the centered
and oriented imageICO is horizontal. Finally, a second bank of
filters determines the image scale to besI pixels.

Step 1: Determining Position(xI , yI )

For pixel valuesx, y = −64, . . . ,+64, a gray-scale figureI
is described by inputI (x, y) ∈ [0, 1]. In a noise-free setting,
figure position (xI , yI ) corresponds to the center of mass:

T =
∑

x

∑
y

I (x, y), (28)

xI = 1

T

∑
x

∑
y

x I (x, y), (29)

yI = 1

T

∑
x

∑
y

y I (x, y). (30)

Centered image IC

IC(x, y) = I (x − xI , y − yI ). (31)
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Oriented receptive fieldsFor orientationφ ∈ [0, 180) and
scales = 4, . . . , 32 pixels, the unnormalized oriented receptive
field with sizes, orientationφ, and elongationa is defined in
terms of the kernelK :

K (x, y, φ, s) = (1 − r 6) exp

(
− r 4

1 + r 2

)
, (32)

where

r 2 =
(

x′

as

)2

+
(

y′

s

)2

, (33)

x′ = x cosφ + y sinφ, (34)

y′ = y cosφ − x sinφ. (35)

Step 2: Determining OrientationφI

First stage (Competition across orientations)A coarse set
of scales that span the range of input scale values is selected. In
simulations, eight scales,s = 4, 8, . . . , 32, were used. Similarly
a coarse set of orientationsθ that span the range [0, 180) is
selected. In simulations, 10 orientations,θ = 0, 18, . . . , 162◦,
were used.

Filter.

A(θ, s) =
∑

x

∑
y

K (x, y, θ, s)IC(x, y). (36)

Interpolation.

AG(φ, s) =
∑

θ

A(θ, s)G(θ − φ), (37)

where

G(ψ) = 1√
2πσ

e−ψ2/2σ 2
. (38)

Parameterσ was set equal to 0.7 times the angle between succes-
sive orientationsθ . Thus, in simulations,σ = 0.7×18 = 12.6◦.
Interpolated values ofφ were computed in steps of 0.1◦.

Competition.Normalization is achieved using competition
across orthogonal orientations, as in

B(φ, s) = AG(φ, s) − AG(φ⊥, s), (39)

whereφ⊥ is the orientation perpendicular toφ.

Second stage (Competition across scales and orientations)
Competition across size scales and orientations identifies the
orientationφmax and sizesmax that maximizeB(φ, s). That is,

Maximum B.

B(φmax, smax) ≥ B(φ, s) (40)

across all interpolated orientationsφ ∈ [0, 180) and scaless =
4, 8, . . . , 32.

Optimal orientation.Let the optimal orientation be

φI = φmax. (41)

Center and orient figure ICO. Figure IC was rotated through
an angle of−φI degrees to obtain the centered and oriented
figure ICO.

Step 3: Determining Size Scale sI

First stage (Competition across orientations)A set of size
scales was again selected. In simulations, 29 scalest = 4, 5, . . . ,

32 pixels were used.
Filter. For orientationsφ = 0= φI and φ = 90= φ⊥

I , first-
stage output was computed as

A(φ, t) =
∑

x

∑
y

K (x, y, φ, t)IC O(x, y), (42)

Competition.Normalization is achieved using competition
across orthogonal orientations, as in

B(0, t) = A(0, t) − A(90, t). (43)

Interpolation.

BG(0, s) =
∑

t

B(0, t)G(t − s). (44)

The GaussianG was defined as in (38) and the standard devia-
tion σ was set equal to 0.7 times the number of pixels between
successive scalest . In simulationsσ = 0.7(1) = 0.7 pixels, and
interpolated values ofs were computed in steps of 0.1 pixels.

Second stage (Competition across scales)Competition iden-
tifies the scalesmax that maximizesBG(0, s). That is,

Maximum BG.

BG(0, smax) ≥ BG(0, s) (45)

for all interpolateds ∈ [4, 32].
Optimal size.Denote the optimal size scale by

sI = smax. (46)

Center, orient, and scale figure IC OS. The figure ICO was
magnified by a factor of 24/sI to obtainIC OS.

Using normalized filters, the algorithm is modified as follows.
ReplaceK in (32) by

KN(x, y, φ, s) = K (x, y, φ, s)

N(s)
, (47)
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FIG. 13. Coarse filter spacing tests with elliptical input images: (a) Mean size of orientation error as a function of orientation spacing in the first filter bank,
before interpolation. (b) Mean scale error|sI − sactual|s−1

I as a function of scale spacing in the second filter bank.

where

N(s) =
∫

<
K (x, y, φ, s)dxdy. (48)

The competitive interactionB across orientations in (39) is un-
necessary. It is replaced by

B(φ, s) = AG(φ, s). (49)

The competitive interactionB in (43) is likewise replaced by

B(0, t) = A(0, t). (50)

Note that, when determining size, only a single orientationφ =
0 = φI is needed.

12. PARAMETER DETERMINATION

Serial What-and-Where filter parameters were selected
through studies of system response to a simple elliptical input
image. In this way, the number of orientations and the number
of scales for each of the two Where filter banks (Fig. 12) were
chosen. Preliminary testing had fixed the value of the standard
deviationσ of the Gaussian interpolation kernel in (44) at 0.7
times the distance between coarse orientation or scale values
(Section 4). The effects of figure elongation and scale were also
examined. Parameters were determined using unnormalized fil-
ters, but carried over well to tests employing normalized filters.

A prototype elliptical test image, within a 128× 128 pixel
square, was defined by the inequality:

1 ≥
(

x

a∗ × 24

)2

+
(

y

24

)2

. (51)

With a∗ = 2, this ellipse fits exactly within the central excitatory
region of a filter of sizes= 24, orientationφ = 0, and elongation
a = 2, as defined in Eqs. (32)–(35).

Orientation (θ ) filter spacing of 18◦ (10 filters) was found to
achieve an optimal balance between system accuracy and num-
ber of filters, although good performance was maintained at least

to spacings of 30◦ (6 filters). For the simulations, 500 elliptical
images were randomly generated from the prototype ellipse (51).
Orientations ranged from 0 to 180◦, while magnifications ranged
from 0.2 to 1.2. Thus the scale factor, which was 24 pixels in the
prototype, ranged from 4.8 to 28.8 pixels. These inputs were pre-
sented to different What-and-Where filters, each with a different
orientation filter spacing, resulting in the mean orientation error
plot of Fig. 13a. Eight scales were employed at each orientation
to prevent errors due to the double peak problem (Fig. 11a). In
Fig. 13a, the best performance occurred at a filter spacing of
18◦. Both the exact spacing at which this optimal performance
occurs and the minimum error level can be shifted by altering
the interpolationσ . However, an orientation spacing of 18◦, with
σ = 0.7(18)= 12.6 degrees, provided excellent results.

Within the size determination module, horizontal test images
with magnifications from 0.2 to 1.2 were used to determine mean
scale error as a function of the coarse scale (t) filter spacing.
Accuracy steadily decreases with increased filter scale spacing
(Fig. 13b). This illustrates that scale interpolation does not com-
pensate for missing scales in the way orientation interpolation
compensates for missing orientations.

The use of a fixed eccentricity (a = 2) in Eq. (33) for all What-
and-Where filter elements raises the question of how well the
system would perform with inputs that do not fit well within
any central excitatory region. This question was examined by
varying the elongationa∗ in (51) of the prototype elliptical in-
put, with results depicted in Fig. 14. The “optimal” coarse filter
spacings of 18◦ and 1 pixel of scale were employed for a total
of 138 (10× 8 + 2 × 29) filters. As the image approaches cir-
cularity (a∗ → 1) the accuracy decreases, as expected from the
reduced degree of orientation information in the input itself. Ac-
curacy increases monotonically with increasing elongation, even
though very elongated elliptical inputs do not fit any of the filters
well.

Although the error rates for orientation and size determination
do not depend upon the initial orientation of the image, both
orientation and size accuracy deteriorate for small inputs. This is
due to subsampling effects in the input and the filters, a problem
inherent in invariant preprocessing of digital images. This was
demonstrated in a What-and-Where filter simulation test of 5000
elliptical inputs, with orientation and size ranges and optimal
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FIG. 14. Mean orientation error as a function of elliptical input elongationa∗.

filter spacing as above. Figure 15 shows that orientation and
size errors become significant when the input image is small.

13. SERIAL WHAT-AND-WHERE
VEHICLE SIMULATIONS

The What-and-Where system was tested extensively on the
vehicle input images (Fig. 7), using parameters derived from
elliptical input image studies (Section 12) and using both un-
normalized and normalized filters. For the parallel system, pro-
totype images were randomly rotated through angles of 0 to
180◦, magnified by random factors ranging from 0.2 to 1.2 and
placed at random positions in the square to create a test set.
Each of the four prototype images generated 1000 such random
representations.

For both unnormalized and normalized filters or unnormal-
ized filters, In all cases, the network recovered orientation to
within 1◦ and size to within 2%. The mean orientation error
was 0.42◦ and the mean size error was 1.8%. The subsam-
pling distortion caused by reduction of size was the limiting
factor on system accuracy, as in Fig. 15. Increasing the orienta-
tion filter spacing from 18 to 30◦ increases the orientation error
mean to 1.00◦ while maintaining the same size error mean of
1.8%. The equivalent test was performed with normalized fil-
ters, yielding a mean orientation error of 0.51◦ and a magnitude
error of 1.97%. These systems, with only 106 (6× 8 + 2 ×
29) unnormalized filters or 77 (6× 8 + 29) normalized filters,
meet the original performance criteria with far fewer than the
2610 filters required by the parallel system of Section 3, or the

FIG. 15. What-and-Where filter output error as a function of input figure scale. (a) Mean size of orientation error. (b) Mean scale error. System performance
deteriorates for small figures.

274 filters required by the parallel system with interpolation of
Section 5.

14. ALTERNATIVE WHAT-AND-WHERE MODELS

The present model differs in several notable ways from al-
ternative approaches to the What-and-Where problem. An early
model, that of Koch and Ullman [45], includes: (1) an early
parallel representation of several stimuli and their featural char-
acteristics; (2) a mapping from these representations into a non-
topographic representation which contains properties of only
one stimulus at a time; (3) a winner-take-all, or WTA, network
that implements stimulus selection based on salience of each
location; (4) inhibition of the selected location that causes a
shift to the next most conspicuous location. Properties (1), (3),
and (4) were introduced in Grossberg [9, 49] as part of a bio-
logical model of working memory, wherein multiple items are
simultaneously stored in a spatial map, as in property (1). In
this model, items are rehearsed, as in property (2), from the
most to the least active, and use a self-inhibiting feedback, as in
property (4), to prevent perseverative performance of the most
active item. A Where map is a type of attentive working mem-
ory whose activities happen to code object properties (e.g., size
and orientation) at prescribed spatial locations. A neural model
of how such a Where map may be used to control sequences
of saccadic eye movements was described in Grossberg and
Kuperstein [50]. This model clarifies how Where properties can
give rise to actions, or How properties, as proposed by Goodale
and Milner [5].

WTA circuits are ubiquitous in models of this type. A rigor-
ously characterized WTA neural network based upon competi-
tive feedback between nodes or cells was described in
Grossberg [42]. Hadeler [44] proposed a related network. An
iterative formulation of a competitive WTA was provided by
Feldman and Ballard [43]. By now, there are many variants of
such circuits in use; e.g., by Cohen and Grossberg [51, 52],
Coultrip, Granger, and Lynch [53], Ellias and Grossberg [54],
Ermentrout [55], Grossberg [56], Grossberg and Levine [57],
and Tsotsoset al.[46]. For purposes of biological modeling, the
Grossberg [42] model and later elaborations thereof use cells that
obey membrane, or shunting, equations and recurrent on-center
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off-surround interactions. For image processing applications,
any efficient algorithm will do.

The Koch and Ullman [45] algorithm differs from the present
one in its processing stages and operations. The present model
focuses uponpreattentivemechanisms whereby all the figures
in a scene can be transformed, in parallel, into invariant rep-
resentations that are suitable for pattern recognition. Attentive
mechanisms modulate these preattentive stages via nonlinear
feedback. For example, Carpenter and Grossberg [58, 27, 59]
have described how ART modules can autonomously learn ob-
ject categories that fit their size, shape, and number to the statis-
tics of a nonstationary environment. An ART module can sample
each What representation for this purpose. In ART, activation
of a top-down learned prototype primes its target cells so that
they respond only when a target that matches the prototype well
enough is presented. In this way, such a system can perform a
fast parallel search for desired targets across a scene. In contrast,
the Koch and Ullman [45] algorithm relies upon primitive ob-
ject properties, such as object brightness, to select a target via a
form of serial processing in which no high-level target priming
is possible. The same limitations hold for all the models that are
surveyed below.

Several alternative models comment upon how the brain may
accomplish search tasks. Explaining human psychophysical data
and animal neurobiological data is the ultimate test of such a pro-
posal. The ART model has elsewhere been shown to have proper-
ties that qualitatively match neurophysiological recordings from
cells in monkey inferotemporal cortex during behavioral tasks
[59, 60]. These results concern how recognition categories of
variable generality are learned, matched, and reset. In particu-
lar, the same ART top-down expectations that prime the system
to respond selectively to desired targets also generate a match-
ing rule whereby irrelevant target features are suppressed and
primed target features are supported. Several investigators have
reported neurophysiological evidence for such a matching rule in
extrastriate and temporal cortex (e.g., [61, 62]). Reynoldset al.
[63, 64] have performed experiments that support the simplest
version of this ART matching rule as a substrate for spatial at-
tention in extrastriate visual cortex, a version that seems also
to occur in several other visual, auditory, and motor representa-
tions [65].

These models of What processing stream recognition are men-
tioned for three reasons. First, they illustrate the utility of a
preattentive What-and-Where model of the type that we have
described as a front end for fast parallel search of desired tar-
gets. Second, they support the biological relevance of the ART
learning and categorization modules that are proposed to help
carry out these tasks. Third, they illustrate a key difference with
models that carry out serial search based on low-level features.

Grossberg, Mingolla, and Ross [35] and Grossberg [19] have
combined What and Where properties in an algorithm that clar-
ifies a large search database, including recent data concerning
how humans carry out fast parallel search for complex 3D ob-
ject properties, as in the work of Bravo and Blake [66], Cohen

and Ivry [67], Enns and Resnick [68], He and Nakayama [69],
Mordkoff, Yantis, and Egeth [70], Wolfe, Cave, and Franzel [71],
and Wolfe and Friedman-Hill [72]. This SOS, or spatial object
search, algorithm suggests how 3D boundary and surface rep-
resentations of a scene interact reciprocally with learned object
categories (What stream) and spatial maps (Where stream) to fo-
cus attention upon desired objects in a 3D scene and to search for
targets amid distractors. Alternative What-and-Where models
have typically ignored 3D boundary and surface properties and
have not analysed how object categories can be autonomously
learned in real time. Earlier work from our group proposed neu-
ral models of 3D boundary and surface representation (e.g., [19])
and object category learning (e.g., [58, 59]). The present model
analyses some of the computational problems that the Where
filter needs to solve when it is embedded into a larger visual
recognition and search architecture like SOS.

Olshausen, Anderson, and van Essen [73] have proposed a
shifter circuit model whereby an attended object can be trans-
formed into a representation that is invariant under translation
and size, but not rotation. As in the Koch and Ullman [45] model,
targets are selected based on low-level features such as bright-
ness or size, and these objects can be searched one at a time
in a serial manner. The model assumes that each figure to be
recognized at the lowest level is matched by an invariant repre-
sentation of itself at the top level through a clever, but complex,
multistage routing circuit. The model does not propose how this
invariant exemplar is generated at the top level, and thus faces
the challenge that it cannot self-organize its object recognition
codes. Indeed, the authors admit that “it remains to be seen
whether such a system can self-organize... with experience.” If
this is so, then the model cannot operate in an unsupervised way
because it has no way to generate the invariant representation
on which the algorithm feeds.

The shifter circuit connections are derived by using a Lia-
punov, or energy, method of the type proposed by Cohen and
Grossberg [51] and Hopfield [74] to link the lowest and top
layers via selected pathways. It is not stated how the proposed
energy function could be implemented by the brain. It is also
unclear how such a mechanism, being a relaxation algorithm,
could work in real time to recognize an object with the speed
that is needed in realistic human or technological image process-
ing applications. Thus the Olshausenet al. [73] model, despite
the ingenuity of its bottom-up and top-down interactions, faces
a serious challenge from the present approach, wherein slow
relaxation algorithms are replaced by fast competitive and inter-
polation operations, and a theory is developed of how attentive
recognition categories are self-organized.

Tsotoset al. [46] have elaborated a “selective tuning” model
of visual attention. Their spatial selection (Where stream) is
realized by inhibition of irrelevant connections within a visual
pyramid. Their feature selection (What stream) is realized by
inhibition of units that compute irrelevant features. A search
process operates recursively using WTA operations that move
from the globally winning unit in the top layer downwards. The
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search process inhibits all the connections that do not contribute
to the winner. After recursive processing, the cause of the max-
imal response at the top layer is isolated at the bottom layer.
The algorithm operates through two traversals of the pyramid.
The search is set up by a bottom-up sweep through the pyramid
to select the global winner which, in turn, drives the top-down
search.

This algorithm bypasses the problem of using a relaxation
algorithm, but it substitutes a considerable machinery of inter-
pretive units, gating units, bias units, and gating control units
to do attentional selection. The Tsotsoset al. [46] algorithm
represents a significant advance over the Koch and Ullman [45]
algorithm. As in that algorithm, however, attention operates se-
rially on only one target at a time. Although the authors note that
the WTA can, in principle, be biased in favor of some features
over others, they do not say how such priming, or more generally
how category learning and recognition, can be accomplished in
a self-organizing way.

Attentional selection within the Tsotsos model uses an array
of gating and bias units that selectively inhibit unwantedcon-
nectionsthroughout the pyramid. A large auxiliary network of
highly specific connections is needed to inhibite the unwanted
connections. An ART network, in contrast, achieves attentional
selection by inhibiting the activities of unmatchednodes, not
the much larger number of connections that feed these nodes.
No auxiliary gating system is required within the ART model.
Instead, top-down nonspecific inhibitory signals combine with
excitatory top-down prototype signals at target nodes. These
simple operations help to explain large behavioral and neural
databases [58, 59, 65] and have been used in large-scale pattern
recognition applications in technology, ranging from the design
of the Boeing 777 and the control of nuclear reactors to medi-
cal database analysis, Landsat satellite image analysis, and the
analysis of multispectral infrared, LADAR, and SAR imagery;
see Carpenter and Grossberg [75] for some references.

The Tsotsoset al.[46] model incorporates a discussion of how
saccades can move an eye or a camera to foveate a particular
object in a scene. A full analysis of this issue would take us
too far afield, but some comparative remarks may be helpful.
The authors summarize psychophysical data, such as that of
Remington and Pierce [76] and Kr¨ose and Julesz [77] showing
that attentional shifts can occur over variable distances in equal
time, and that such rapid time-invariant attention shifts would
be needed to control saccadic eye movements during reading.
The authors note that this property is inconsistent with the Koch
and Ullman [45] WTA algorithm and develop a new one to
replace it.

We have elsewhere proposed an alternative solution.
Grossberg and Rudd [78, 79] and Francis and Grossberg [80]
have modeled the cortical dynamics of apparent motion by propos-
ing how a wave of apparent motion can interpolate spatially sep-
arated and temporally staggered flashes of light. This wave can
travel at a variable speed to join an earlier flash with one that
occurs a fixed time later, even if the second flash is at variable

distances from the first. This classical equal-time property of ap-
parent motion [81] is simulated along with beta motion, gamma
motion, delta motion, split motion, Ternus motion, and Korte’s
laws, among other data.

Such a traveling wave has been proved to occur in any system
wherein the effects of each input are Gaussianly filtered across
space, and the activity due to one input is waning while that due
to the next input is waxing, within prescribed spatiotemporal
bounds. Such a wave is therefore called a G-wave. The peak of
the wave is chosen by a WTA operation.

Grossberg [82] suggested that G-waves carry spatial attention
shifts via the magnocellular visual cortical processing stream
that feeds the parietal cortex of the brain’s Where system; see
also [83]. By the equal-time property, a spatial attention shift
due to a G-wave can occur over variable distances in equal time.
G-waves are proposed to solve the ecologically ubiquitous prob-
lem of continuously tracking a prey or predator as it moves at
variable speed between dense occluding cover. The intermit-
tently occluded target produces a series of temporally discrete
“flashes” that the G-wave continuously interpolates. Grossberg
[19] outlined how this attentional tracking mechanism can be
joined to SOS-type search mechanisms so that static 3D bound-
ary and surface properties can compete with target motion prop-
erties to control attention shifts.

These motion mechanisms automatically realize an “atten-
tion capture” mechanism by enhancing transient responses to
flashed events. The interaction of these transient enhancement
effects with SOS mechanisms helps to explain how competition
can occur between top-down priming and bottom-up energetic
demands for attention. Tsotsoset al. [46] construct a special
algorithm to enhance abrupt image events. Although this algo-
rithm includes some of the properties of the Grossberg–Rudd
motion model, it does not include the key operations that are
needed to explain psychophysical data about motion percepts.

Finally, Tsotsoset al. [46] discuss a possible algorithm for
causing saccadic eye movements to points of interest, but they
do not analyse how the brain achieves its self-organizing control
and calibration of eye movements. Such a theory was developed
by Grossberg and Kuperstein [50].

Another connection of the present model is with work on steer-
able filters [84]. This work proves some nice theorems about the
circumstances under which one can synthesize filters of arbitrary
orientation from linear combinations of basis filters so as to adap-
tively steer a filter to any orientation. The goal of steerable filters
is somewhat different from our use of Gaussian interpolation of
oriented filters. Our goal herein is partly based on computa-
tional efficiency and partly on biological plausibility. Freeman
and Adelson [84] demonstrate steerability of the directional
derivatives−2x exp[−(x2 + y2)] and −2y exp[−(x2 + y2)] of
the Gaussian exp[−(x2 + y2)] by using sins, cosines, and more
complex trigonometric functions to interpolate across orien-
tations. This approach does not yet seem to have biological
support, and was not needed to achieve the computational com-
pression that we found using Gaussian interpolation.
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In summary, alternative models either have different goals
or different computational properties than the What-and-Where
filter that is proposed herein. These differences can ultimately
be traced to our group’s focus onself-organizingmodules for
invariant pattern recognition, 3D boundary and surface represen-
tation, motion analysis, and visual search. The What-and-Where
filter adds a component to this emerging architecture that enables
fast, parallel search to occur for desired targets in a scene. None
of the algorithms reviewed above yet seem able to do this.

15. CONCLUSION

The parallel and hybrid serial–parallel What-and-Where fil-
ters use a combination of cliff-like oriented filters, Gaussian
interpolation, and suitably organized competitive interactions
across orientation and size to produce an output image that is
invariant under translation, rotation, and scaling of the input. By
breaking this preprocessing stage into What-and-Where chan-
nels, the amount of information that is lost about the figure’s
form is minimized. The What channel provides invariant form
information for purposes of pattern learning and recognition.
The Where channel retains the location, orientation, and size
of the image for use in applications such as the allocation of
spatial attention, image understanding, and the planning of mo-
tor trajectories to contact the figure in space. This analysis has
disclosed some of the computational issues, uncertainties, and
trade-offs, such as the role of cliff-receptive fields to achieve
good positional localization, competition across scales to deal
with the double peak problem, self-similar interpolation across
orientation but not scale, and compensations for normalized or
unnormalized filters, that are needed for accurate and efficient
computation. In particular, for image processing applications
carried out in software, partial serialization of the Where chan-
nel, combined with Gaussian interpolation across orientation,
achieves accurate invariance using a relatively small number of
filters.

The present algorithm has a number of limitations that need
to be overcome by future research. When a target has an almost
symmetric shape, it may generate an ambiguous rotational esti-
mate, even though its features are not symmetrically distributed
over its surface. This degenerate case may most simply be han-
dled by generating multiple rotated images of objects that fail to
activate a winning orientation. If the target is partially occluded
by a nearer object, the present 2D algorithm may generate a bi-
ased representation of its position and orientation. To overcome
this problem, a prior stage of 3D figure–ground separation would
be needed to separate the occluding and occluded objects onto
different depth planes, and complete the boundary and surface
representations of the occluded objects on its own depth plane.
Such 3D algorithms are presently under development [19–21].
They highlight other problems that an image preprocessor must
handle in order to process realistic 3D scenes.

More generally, primate brains use a What-and-Where strat-
egy to divide the cortical processing load between object recog-

nition and spatial localization tasks (see Section 1). Carpenter
and Grossberg [59], Grossberg [19], and Grossberg, Mingolla,
and Ross [35] have modeled how the brain’s What-and-Where
strategy may be embedded in a larger image processing archi-
tecture wherein 3D boundary and surface representations of a
scene interact reciprocally with attentive learned object cate-
gories (What stream) and spatial maps (Where stream) to fo-
cus attention upon desired objects in a 3D scene and to search
for such targets amid various types of distractors. These stud-
ies indicate how a multiplexed spatial map, such as the Where
filter described herein, may organize the interactions between
spatial and object representations that are used to interpret and
understand the visual world. Future research will work to further
develop these models into an autonomous architecture for im-
age understanding and to explain progressively larger databases
about primate 3D vision, visual search, and object recognition.
The present research contributes to this task by disclosing some
of the computational problems that need to be solved by a Where
system that is based upon oriented filters and by defining several
efficient algorithms that solve them.

The present work does not, however, show how the brain uses
Where information to generate a representation of objects in the
What stream that is invariant under changes in position, size, and
orientation. This process is handled here, for purposes of short-
term application, by simply shifting the object into a canonical
representation using the Where information. The present work
also does not integrate the Where process into the larger image
understanding architecture that is summarized in Figs. 2 and 4.
Further study is needed of how a self-organizing algorithm like
Fusion ARTMAP can autonomously learn which combinations
of What and Where information predict a particular interpreta-
tion of a scene. On the other hand, as noted above, models of
each stage in this architecture are now available, so the process
of system synthesis can begin.
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