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Abstract

For complex database prediction problems such as medical diagnosis, the ARTMAP-IC neural network adds distributed prediction and
category instance counting to the basic fuzzy ARTMAP system. For the ARTMAP match tracking algorithm, which controls search
following a predictive error, a new version facilitates prediction with sparse or inconsistent data. Compared to the original match tracking
algorithm (MT þ ), the new algorithm (MT¹ ) better approximates the real-time network differential equations and further compresses
memory without loss of performance. Simulations examine predictive accuracy on four medical databases: Pima Indian diabetes, breast
cancer, heart disease, and gall bladder removal. ARTMAP-IC results are equal to or better than those of logistic regression, K nearest
neighbour (KNN), the ADAP preceptron, multisurface pattern separation, CLASSIT, instance-based (IBL), and C4. ARTMAP dynamics are
fast, stable, and scalable. A voting strategy improves prediction by training the system several times on different orderings of an input set.
Voting, instance counting, and distributed representations combine to form confidence estimates for competing predictions.q 1998 Elsevier
Science Ltd. All rights reserved.
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1. Neural networks and medical diagnosis

Neural networks, statistical methods, and machine learn-
ing algorithms are currently being tested on many medical
prediction problems, with the goal of developing algorithms
for accurate automatic diagnostic assistants. Generally,
neural networks have performed at least as well as other
methods, with coronary artery disease and breast cancer
among the most widely studied databases. For example, in
a well publicized study, Baxt (1991) used backpropagation
to identify myocardial infarction; on a coronary artery
disease database, Rosenberg et al. (1993) found per-
formance of a radial basis function network to be com-
parable with that of human experts and superior to various
backpropagation methods; and for breast cancer detection,
researchers have successfully applied backpropagation
(Floyd et al., 1994; Sahiner et al., 1995), ART 2 and fractal

analysis (Downes, 1994), the neocognitron (Lo et al., 1995),
convolution neural networks (Petrick et al., 1995), and
decision trees (Bohren et al., 1995).

ARTMAP neural networks (Carpenter & Grossberg,
1991; Carpenter et al., 1991a, 1992) for supervised learning,
recognition, and prediction have recently been used in a
wide variety of applications. This paper introduces ART-
MAP-IC, which adds to the basic ARTMAP system new
capabilities designed to solve computational problems that
frequently arise in medical database prediction. One such
problem is inconsistent cases, where identical input vectors
correspond to cases with different outcomes. ARTMAP-IC
modifies the ARTMAP search algorithm to allow the net-
work to encode inconsistent cases, and combines instance
counting during training with distributed category repre-
sentation during testing to obtain probabilistic predictions,
even with fast learning and only one training epoch. Per-
formance of ARTMAP-IC, named for instance counting and
inconsistent cases, is tested on medical prediction problems
by comparing results with those reported in four benchmark
database studies. Methods compared include logistic

* Requests for reprints should be sent to G. A. Carpenter. E-mail:
gail@cns.bu.edu.

0893–6080/98/$19.00q 1998 Elsevier Science Ltd. All rights reserved
PII S0893-6080(97)00067-1

Neural Networks 11 (1998) 323–336

Neural
Networks

Pergamon



regression (Howell, 1992), the preceptron-like ADAP
model (Smith, 1962), K nearest neighbor (KNN) (Duda &
Hart, 1973), multisurface pattern separation (Mangasarian,
1968), the unsupervised CLASSIT algorithm (Gennari et al.,
1989), the instance-based classifiers IB1, IB2, and IB3 (Aha
et al., 1991), and the decision tree C4 (Quinlan, 1986).
Medical records used in these studies are the Pima Indian
diabetes data set (Smith et al., 1988), a University of
Wisconsin breast cancer data set, a V.A. Hospital heart
disease data set, and a Medicare cholecystectomy (gall
bladder removal) data set.

Section 2 introduces the family of ARTMAP archi-
tectures, including fuzzy ARTMAP, ART-EMAP, and
ARTMAP-IC. Section 3 analyzes the match tracking search
process, comparing the new algorithm (MT¹) with the
original (MTþ). Voting (Section 4), distributed prediction
by aQ-max rule (Section 5), and instance counting (Section
6) augment computational capabilities of the basic ART-
MAP network. Complete ARTMAP-IC implementation
algorithms for training and testing (Section 7) characterize
the network used in the simulations (Section 8) that compare
performance of ARTMAP variations with benchmark
results on four medical database problems.

2. ART and ARTMAP neural networks

ARTMAP networks for supervised learning self-organize
mappings from input vectors, representing features such as
patient history and test results, to output vectors, represent-
ing predictions such as the likelihood of an adverse outcome
following an operation. The original binary ARTMAP
(Carpenter et al., 1991a) incorporates two unsupervised
ART 1 modules (Carpenter & Grossberg, 1987), ARTa

and ARTb, that are linked by amap field Fab. At the map
field the network forms associations between categories via
outstar learning and triggers search, via the ARTMAP
match tracking rule, when a training set input fails to
make a correct prediction. Match tracking increases the
ARTa vigilance parameterra in response to predictive
error at ARTb. Fuzzy ARTMAP (Carpenter et al., 1992)
substitutes fuzzy ART (Carpenter et al., 1991b) for ART 1
(Fig. 1). ART-EMAP (Carpenter & Ross, 1993, 1995) uses
distributed category representation to improve fuzzy ART-
MAP performance. ARTMAP-IC extends this sequence
with an instance counting procedure and a new match
tracking algorithm that consistently improve both predictive
accuracy and code compression, compared to the basic

Fig. 1. ARTMAP architecture. The ARTa complement coding preprocessor transforms theMa-vectora into the 2Ma-vectorA ¼ða,acÞ at the ARTa field F0
a. A

is the input vector to the ARTa field Fa
1. Similarly, the input toFb

1 is the 2Mb-vectorB ¼ðb, bcÞ. When ARTb disconfirms a prediction of ARTa, map field
inhibition induces the match tracking process. Match tracking raises the ARTa vigilancera to just above theFa

1-to-F0
a match ratiolxal/lAl. This triggers an

ARTa search which leads either to an ARTa category that correctly predictsb or to a previously uncommitted ARTa category node (Carpenter et al., 1991).
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ARTMAP and ART-EMAP networks. These added cap-
abilities also allow ARTMAP-IC to encode predictions of
inconsistent cases in the training set, giving good test set
performance on various medical diagnosis problems.

Many applications of supervised learning systems such as
ARTMAP are classification problems, where the trained
system tries to predict a correct category given a test set
input vector. A prediction might be a single category or
distributed as a set of scores or probabilities. The ART-
MAP-IC algorithm below (Section 7) outlines a procedure
for applying ART learning and prediction to this problem,
which does not require a full ARTb architecture (Fig. 2). In
the algorithm an inputa ¼ (a1…ai…aM) learns to predict an
outcomeb ¼ (b1…bk…bL). A classification problem would
set one componentbK ¼ 1 during training, placing the input
a in classK. Each ARTa input is complement coded, withI
¼ A ¼ (a,ac), where 0# ai # 1 andac

i ; 1¹ ai . Note then
that the dimension of the input vectorA equals 2M and the
city-block norm ofA, defined by

lAl ;
∑2M

i ¼ 1
Ai ;

equalsM. The outputb is normalized to 1:

lbl ;
∑L

k¼ 1
bk ¼ 1

corresponding to a category probability distribution. During
testing, search may occur if the baseline vigilance parameter
(r̄) is positive. In ARTa, each top-down weightwji is
identically equal to the bottom-up weightwij, and the
weight vector w j represents both (w1j…wij …w2M, jÞ and
ðwj1…wji …wj,2MÞ. Instance counting enumerates the num-
ber of times a category is activated during training. With
category choice during testing as well as training, instance
counting does not affect prediction and the ARTMAP-IC
algorithm is equivalent to an ARTMAP algorithm.

3. Match tracking and inconsistent cases

Inconsistent cases, where identical input feature sets cor-
respond to patients with different outcomes, often appear in
medical databases. The basic ARTMAP network, run in the

Fig. 2. ARTMAP-IC adds an instance counting layerF3 to the ARTMAP network. Training is the same as for ARTMAP, except that a counting weightcj

enumerates the number of instances placed in each categoryj.
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fast learning mode, would learn the first such instance and
its predicted outcome, but would then be unable to encode
the inconsistent cases. Slow learning would average across
cases and provide a more probabilistic outcome estimate,
but would sacrifice the network’s ability to encode rare
cases. A small modification of the ARTMAPmatch tracking
search algorithm allows the network to encode inconsistent
cases and make distributed probability estimates during test-
ing, even when training employs fast learning. In addition,
the new algorithm has been found in a number of database
examples to compress memory by a factor of 50–100%
compared to the original algorithm, without loss of predic-
tive accuracy. Finally, it is actually a better approximation
to the real-time ARTMAP network differential equation
model, as follows.

In ART models, avigilance parameterr establishes a
network matching criterion that, if not met, leads to category
reset and search. In ARTMAP networks, match tracking is
the process that raises the ARTa vigilancer to correct pre-
dictive errors. Vigilance becomes an internally controlled
variable that obeys the differential equation:

d
dt

r ¼ ¹ (r ¹ r̄) þGRrc: (1)

In Eq. (1), r̄ is a baseline vigilance parameter,R is a pre-
dictive error indicator signal fromFab to ARTa, r/r c are
complementary ARTa reset/resonance indicator signals,
andG @ 1 (Fig. 2). The vigilance relaxation rate is O(1),
which is assumed to be slow on the time scale of search and
fast on the time scale of learning. Thus, during learning,
whenr c ¼ 1 andR ¼ 0, r decreases toward̄r.

The activity vectorx atF1 represents a match between the
input A and theF2 → F1 signal, which equals the weight
vectorwJ whenF2 makes a choice. When theJth F2 node is
chosen

xi ¼ Ai ∧ wJi; (2)

where the fuzzy intersection∧ (Zadeh, 1965) is defined by

(p ∧ q)i ; (pi ∧ qi) ; min(pi , qi): (3)

Thus, x ¼ A ∧ wJ. Similarly, the F ab activity vector z
represents a match between the outputb and the total signal
U ; (U1…Uk…ULÞ from ARTa to Fab, so

zk ¼ bk ∧ Uk (4)

andz ¼ b ∧ U.
In the ARTMAP-IC algorithm (Section 7), the network

detects a predictive error when

lzl , rablbl¼ rab; (5)

where rab is the map field vigilance parameter. Then
R¼ rc ¼ 1 and r begins to rise rapidly, according to Eq.
(1). However, as soon asr becomes just large enough to
satisfy the inequality:

lxl¼ lA ∧ wJl , rlAl¼ rM (6)

the network resets ARTa. While the reset indicator signal

(r ¼ 1) triggers a search for a newF2 coding node, the
complementary resonance indicator shuts off (r c ¼ 0), halt-
ing the rise ofr, by Eq. (1). A predicted error thus causes
vigilance to "track theF1 match", sincer increases until it
has reached the ARTa match valuelA ∧ wJllAl

¹ 1.
ARTa search selects a newF2 node whiler remains large.

A newly active node must thereby meet a stricter matching
criterion to establish resonance and maintain stable activity
long enough to generate a new map field prediction. The
original ARTMAP simulations approximated this process
with a match tracking algorithm (MTþ) that did not allow
r to decayat all during search, as if the search cycle were
infinitely fast. AfterJ is reset, then

r ¼ lA ∧ wJllAl¹ 1
þ e (7)

where 0, e p 1. A modified match tracking algorithm
(MT¹) postulates a rapid but finite search rate, allowingr

to decay slightly before the next chosen node is tested
against the matching criterion. In Eq. (7), then, MT¹ sets
e # 0, which allows identical inputs that predict different
outcomes to establish distinct recognition categories.

Search ends when the active patterns meet the vigilance
matching criterion at ARTa:

lxl $ rlAl (8)

and at the map field:

lzl $ rablbl: (9)

With category choice at ARTa, Uk ¼ wJk for k¼ 1…L,
whereJ is the chosen node atF2. Thus, by Eqs. (8) and
(9), sincelAl ¼ M andlbl ¼ 1, search ends when:∑2M

i ¼ 1
Ai ∧ wiJ $ rM (10)

and∑L

k¼ 1

bk ∧ wJk $ rab: (11)

Whenb represents a single output classK, bK ¼ 1 so the map
field matching criterion (Eq. (11)) reduces to the criterion
wJK $ rab.

Setting the baseline vigilancer̄¼ 0 maximizes code com-
pression. Settinḡr . 0 establishes a minimum matching
criterion that must be met before a chosen node can make
a prediction. Thus,̄r can serve as a predictiveconfidence
threshold.

4. Voting

ARTMAP fast learning typically produces different adap-
tive weights and ARTa recognition categories for different
orderings of a given training set, even when the overall
predictive accuracy of each such trained network is similar.
The different category structures cause variations among the
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locations of test set errors as training set input orderings
vary. A voting strategy uses several ARTMAP systems
that are separately trained on one input set with different
orderings. The final prediction for a given test set item is
based on predictions of networks in a voting "committee".
Since the set of items making erroneous predictions varies
from one ordering to the next, voting serves both to cancel
some of the errors and to assign confidence estimates to
competing predictions. A committee of about five to ten
voters has proved suitable in many examples, and the mar-
ginal benefits of voting are most apparent when the number
of training samples is limited.

5. ART-EMAP distributed prediction by the Q-max
rule

To improve performance in a noisy or ambiguous input
environment, ART-EMAP adds spatial and temporal
evidence accumulation processes to the basic ARTMAP

system (Carpenter & Ross, 1993, 1995). ART-EMAP
(Stage 1) distributes activity across category representations
during performance. In a variety of studies, this device
improves test-set predictive accuracy compared to ART-
MAP, which is the same network with category choice
during testing. Distributed test-set category activation
also improves performance accuracy on the medical
database simulations below (Section 8). Further improve-
ment is achieved by the addition of an instance counting
measure (Section 6) that weights distributed predictions
according to the number of training set inputs placed in
each category.

ART-EMAP training is the same as ARTMAP training,
with ARTa category choice. During ART-EMAP testing,
the degree of contrast enhancement at the competitive
field F2 is reduced, allowing distributed category activities
yj to form a combined prediction. TheQ-max rule is a simple
algorithm that approximates competitive contrast enhance-
ment. TheQ-max rule distributesF2 activity yj across theQ
nodes that receive the largestF1 → F2 inputs Tj, with yj

Fig. 3. During testing, an input activatesQ category nodes, in proportion to the input fromF1 to the category fieldF2. After multiplication by the instance
counting weights to produce distributed activationYj at F3, theQ active nodes project to the map fieldFab via the map field weightswjk to form a distributed
prediction vectorU. The network then computes classification probabilities, withlbl ¼ 1 at an output fieldF0

b.
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proportional toTj. That is,

Q ¹ max rule : yj ¼

Tj∑
l[L

Tl

if j [ L

0 if j Ó L

8>><>>: (12)

whereL is the set ofQ nodes with the largestTj values
(Fig. 3). The way aQ-max rule makes test set predictions
is analogous to a K nearest neighbor (KNN) algorithm with
K ¼ Q. WhenQ ¼ 1, theQ-max rule reduces to category
choice. In the simulations below both ART-EMAP and
ARTMAP-IC use theQ-max rule during testing.

Fair use of aQ-max rule, for ART-EMAP, ARTMAP-IC,
or KNN, requires a priori selection ofQ, without knowledge
of the test set exemplars. A general parameter selection
method divides the original training set into a new training
set and a complementary verification set, which can then be
used to examine performance of the trained network for
various parameters. Once parameters are selected by this
method, the network can then start over, learning from the
entire training set with the fixed set of parameters before
making test set predictions. In choosingQ, the optimal value
tends to scale with the size of the training set, so the optimal
verification set value should be increased somewhat for test-
ing. A second way to estimateQ is by a simple rule of
thumb. ARTMAP, ART-EMAP, and ARTMAP-IC all
employ the same training regime, using category choice.
ART-EMAP and ARTMAP-IC then apply aQ-max rule
during testing. Once a network is trained, the number (C)
of committedF2 category nodes is known, with each node
having learned to predict one of theL possible output
classes. On average, then,C/L category nodes predict each
class. A reasonable a priori estimate setsQ equal to half that
number, up to some maximum, say 30 category nodes. In
other words:

Rule¹ of ¹ thumbQ value : Q ¼ min
C
2L

,30

� �
: (13)

This estimate requires no separate verification step and
gives good results on the four sets of medical database
simulations (Section 8), where the number of output classes
is L ¼ 2, corresponding to good or bad outcomes. In the end,
test set results can also be examined over a range ofQ values
to check for parameter sensitivity.

6. Instance counting

Instance counting biases distributed predictions accord-
ing to the number of training set inputs classified by eachF2

node. Fig. 3 illustrates how an ARTMAP network with an
extra fieldF3 can implement instance counting. During test-
ing theF2 → F3 inputyj is multiplied by the counting weight
cj to produce normalizedF3 activity Yj, which projects to the
map fieldFab for prediction. That is, forj ¼ 1,…,N, activity

at the counting fieldF3 is:

Yj ¼
cjyj∑N

h ¼ 1
chyh

: (14)

The inputUk from F3 to thekth map field node is then:

Uk ¼
∑N
j ¼ 1

wjkYj ¼

∑N
j ¼ 1

wjkcjyj

∑N
j ¼ 1

cjyj

(15)

for k ¼ 1,…,L. With choice atF2,

Yj ¼ yj ¼
1 if j ¼ J

0 if j Þ J

(
(16)

soUk ¼ wJk. With choice, map field activation and learning
proceed as characterized in the training algorithm
(Section 7.1).

The basic instance counting (IC) algorithm simply
enumerates the training set inputs that activate each
category, following search:

c(new)
j ¼ c(old)

j þ yj (17)

with cj(0) ¼ 0. In the simulations below,cj counts the num-
ber of times inputs select categoryj during training. Alter-
natives to this basic instance counting algorithm could be
adapted to specific problems. One variation would train the
entire network without instance counting, as a basic ART-
MAP network; then calculate the counting weight vectorc
by re-presenting the training set, with either choice orQ-
max distributed activation atF2, and lettingc enumerate the
activation vectorsy, summed across all training inputs. With
large training sets, it may also be useful to moderate the
influence of some nodes that acquire an overwhelming num-
ber of training set instances. This could be accomplished by
setting an upper bound on thecj values or by havingcj grow
logarithmically rather than linearly.

During testing (Section 7.2), when distributedF2 activa-
tion is determined by aQ-max rule (Eq. (12)), the map field
input is

Uk ¼

∑N
j ¼ 1

wjkcjyj

∑N
j ¼ 1

cjyj

¼

∑
j[L

wjkcjTj∑
j[L

cjTj

(18)

whereL is the index set of theQ nodes with maximalF1 →
F2 input Tj. The net output probability distribution thus
combines learned measures of pattern match (Tj),
instance frequency (cj), and class predictions (wjk) for
each categoryj.
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7. ARTMAP-IC algorithm

The algorithms below summarize ARTMAP-IC
dynamics during training (Section 7.1) and testing (Section
7.2). During training, ARTa makes a category choice.
During testing, a distributed ARTa category representation
generates an output class probability vectorb. When ARTa

makes a choice during testing (Q ¼ 1), the ARTMAP-IC
algorithm is equivalent to a fuzzy ARTMAP algorithm.
However, the original ARTMAP notation has been changed
somewhat to clarify network functions and for consistency
with a family of more general ART systems (Carpenter,
1997).

7.1. ARTMAP-IC training algorithm

During training, input–output pairs a(1),b(1)ÿ �
,

a(2), b(2)ÿ �
, …, a(n),b(n)ÿ �

, … are presented for equal time
intervals. With complement coding, the ARTa input A ¼

(a,ac). Voting would repeat the training procedure several
times, each with a different ordering of the input–output
sequence.

1. Variables:i ¼ 1…2M, j ¼ 1…N, k ¼ 1…L

Activation Weights F1 → F2

signals
F3 → Fab

signal
xi—F1

(matching)
wij —F1 ↔ F2 Sj—Phasic Uk—Total

yj—F2

(coding)
cj—F2 → F3 Q j—Tonic r—ARTa

vigilance
Yj—F3

(counting)
wjk—F3 → Fab Tj—Total C—no. of

committed nodes
zk—Fab

(map field)

2. Notation

Minimum—a ∧ b ; min{a,b}

3. Signal rule: Define theF1 → F2 signal function
Tj ¼ g(Sj , Qj), whereg(0,0) ¼ 0 and

]g
]Sj

.
]g
]Qj

. 0

for Sj . 0 andQ j . 0.
E.g. Tj ¼ Sj þ (1¹ a)Qj with a [ (0,1) (choice-by-differ-
ence) orTj ¼ Sj =(a þ 2M ¹ Qj) with a . 0 (Weber law). In
ARTMAP, ART-EMAP, and ARTMAP-IC, thephasic sig-
nal componentSj is defined by

Sj ¼
∑2M

i ¼ 1
Ai ∧ wij

and thetonic signalcomponentQ j is defined by

Qj ¼
∑2M

i ¼ 1
(1¹ wij ):

E.g. Tj ¼ lA ∧ wj lþ (1¹ a)(2M ¹ lwj l) with a [ (0,1)
(choice-by-difference) or

Tj ¼
lA ∧ wj l
a þ lwj l

with a . 0 (Weber law).
4. Parameters

Number of input components—i ¼ 1…2M
Number of coding nodes—j ¼ 1…N
Number of output components—k ¼ 1…L
Signal rule parameters—e.g.a [ (0,1) (choice-by-
difference) ora . 0 (Weber law)
Learning rate—b [ [0,1], with b ¼ 1 for fast learning
Baseline vigilance (ARTa)—r̄ [ [0,1], with r̄¼ 0 for
maximal code compression
Map field vigilance—rab [ [0,1], with rab > 1 for
maximal output separation
Match tracking—e, with lel small.

MT þ : e . 0
MT ¹ : e # 0

F2 order constants—0, FN , … , Fj , … , F1,
g(M,0), with all F j > g(M,0).

5. First iteration:n ¼ 1

F1 ↔ F2 ARTa weights—wij ¼ 1, i ¼ 1…2M, j ¼ 1…N
F2 → F3 counting weights—cj ¼ 0, j ¼ 1…N
F3 → Fab map field weights—wjk ¼ 1, j ¼ 1…N,
k¼ 1…L
Number of committed nodes—C ¼ 0
Signal to uncommitted nodes—Tj ¼ F j, j ¼ 1…N

ARTa vigilance—r¼ r̄

Input:

Ai ¼
a(1)

i if 1 # i # M

1¹ a(1)
i if M þ 1 # i # 2M

(
Output:

bk ¼ b(1)
k ; k¼ 1…L;

6. Reset: New steady state atF2 andF1

Choose a category—LetJ be the index of theF2 node
with maximal inputTj, i.e. TJ ¼ max{T1…TN}
Number of committed nodes—IfJ . C, setC ¼ J
F1 activation—xi ¼ Ai ∧ wiJ i ¼ 1…2M

7. Refractory signal:F1 → F2 signal is deactivated on the
time scale of search

TJ ¼ 0

8. Reset or prediction: Check theF1 matching criterion

If

∑2M

i ¼ 1
xi , rM
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go to (6) Reset
If

∑2M

i ¼ 1
xi $ rM

go to (9) Prediction

9. Prediction:

Fab activation—zk ¼ bk ∧ wJk k ¼ 1…L

10. Match tracking or resonance: Check theFab matching
criterion

If

∑L

k¼ 1
zk , rab

go to (11) Match tracking
If

∑L

k¼ 1
zk $ rab

go to (12) Resonance

11. Match tracking: Raiser to the point of ARTa reset

r
¼ 1

M

∑2M

i ¼ 1
xi þ e

Go to (6) Reset

12. Resonance: New weights on the time scale of learning

Old weights—wold
iJ ¼ wiJ i ¼ 1…2M

cJ
old ¼ cJ

wJk
old ¼ wJk k ¼ 1…L

Decrease F1 → F2 weights—wiJ ¼ (1¹b)wold
iJ

þb(Ai ∧ wold
iJ ) i ¼ 1…2M

IncreaseF2 → F3 counting weight—cJ
old ¼ cJ þ 1

Decrease F2 → Fab weights—wJk ¼ (1¹ b)wold
Jk

þb(bk ∧ wold
Jk ) k ¼ 1…L

ARTa vigilance recovery—r¼ r̄

13. Next iteration: Increasen by 1

New input:

Ai ¼
a(n)

i if 1 # i # M

1¹ a(n)
i if M þ 1 # i # 2M

(

New output:bk ¼ b(n)
k k¼ 1…L

New F1 activation:xi ¼ Ai ∧ wiJ i ¼ 1…2M
New F1 → F2 signal to committed nodes

Phasic:

Sj ¼
∑2M

i ¼ 1
Ai ∧ wij j ¼ 1…C

Tonic:

Qj ¼
∑2M

i ¼ 1
(1¹ wij ) j ¼ 1…C

Total:

Tj ¼ g(Sj , Qj) j ¼ 1…C

Go to (6) Reset

7.2. ARTMAP-IC testing

During ARTMAP-IC testing,F1 ↔ F2 categorization
weightswij , F2 → F3 counting weightscj, and F3 → Fab

prediction weightswjk are fixed, and the baseline vigilance
parameterr̄¼ 0, so no search occurs. A test-set inputa
activates a distributed category representation at ARTa, by
the Q-max rule, whereQ is a fixed number ofF2 nodes.
SettingQ ¼ 1 reduces ARTMAP-IC to an ARTMAP algo-
rithm with category choice and settingQ ¼ N engages the
entire trained system in the net prediction. Filtered through
the instance counting weightscj and the map field weights
wjk, the distributed category representation produces a nor-
malized distributed output probability vectorb.

In the medical database problems in Section 8, the output
b represents two classes corresponding to good (k ¼ 1) or
bad (k ¼ 2) outcomes. With two such classes, the prediction
"bad" could be made wheneverb2 $ 0.5. However, instance
counting tends to weigh against rare cases, which often
correspond to bad outcomes. To offset this bias, a good/
bad decision thresholdt may be set below 0.5, with a
"bad" prediction wheneverb2 $ t. In all four sets of ART-
MAP-IC simulations below,t ¼ 0.4.

For voting, the network generates a set of prediction vec-
tors for each of the trained networks produced by several
different orderings of the training set inputs. The voting net-
works may average their output vectorsb for each inputa or
each voting network may choose one output class, with the
predicted class being the one that receives the most votes.
Simulations in Section 8 employ the former voting method.

1. Test set input

Input:

Ai ¼
ai if 1 # i # M

1¹ ai if M þ 1 # i # 2M

(
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2. F1 → F2 signal

Phasic:

Sj ¼
∑2M

i ¼ 1
Ai ∧ wij j ¼ 1…C

Tonic:

Qj ¼
∑2M

i ¼ 1
(1¹ wij ) j ¼ 1…C

Total:

Tj ¼
g(Sj , Qj) j ¼ 1…C (signal rule)
Fj j ¼ Cþ 1…N

�

3. F2 activation by theQ-max rule:

Let L be the index set of theQ F2 node with maximal
input Tj.
That is,L # {1…N}, lLl¼ Q , andTJ $ Tj for J [ L

and j Ó L.
SettingQ ¼ 1 gives choice, or winner-take-all, activa-
tion at F2.

4. Output prediction:

bk ¼

∑
j[L

wjkcjTj

∑L

k ¼ 1

∑
j[L

wjkcjTj

k¼ 1…L

8. Comparative simulations

Benchmark medical database studies examine the bene-
fits of distributed prediction and instance counting in the
ARTMAP-IC network. ARTMAP-IC performance is com-
pared to that of the basic ARTMAP network, with category
choice, and ART-EMAP, which uses distributed category
prediction but not instance counting. The various ARTMAP
networks are also compared with logistic regression, ADAP,
and KNN on a Pima Indian diabetes database (Section 8.1);
with logistic regression, a multisurface method of pattern
separation, and KNN on a breast cancer database
(Section 8.2); and with logistic regression, CLASSIT,
instance-based (IBL) classifiers, C4, and KNN on a heart
disease database (Section 8.3). In nearly every case, ART-

MAP-IC with instance counting has the best performance
statistics. A fourth study shows how the modified match
tracking algorithm MT¹ combines withQ-max distributed
prediction and instance counting to allow ARTMAP-IC to
encode inconsistent cases. On this gall bladder removal
(cholecystectomy) database, ARTMAP-IC performance is
just above that of logistic regression and better than ART-
EMAP, KNN, and basic fuzzy ARTMAP (Section 8.4).

Table 1 shows the basic ARTMAP, ART-EMAP, and
ARTMAP-IC network simulation parameters and the
instance counting and match tracking rules and Table 2
compares database characteristics. A preliminary study led
to network parameter estimates, then the ARTMAP system
definition was held constant across all simulations and all
four databases. The Pima Indian diabetes study uses the
same training and testing sets as in the benchmark ADAP
simulations and the heart disease study uses the same train-
ing and testing sets as in the benchmark IBL simulations.
The other two studies use five-fold cross validation (Mosier,
1951) which divides the input set into five parts, each of
which serves, in turn, as a test set, with average results
reported. In all ART-EMAP and KNN simulations, the sys-
tem predicts whichever of the two outcomesk (good or bad)
receives the larger net inputUk from ARTa at the map field
Fab. Since ARTMAP-IC reduces the influence of rare cases,
which usually represent bad outcomes, a large majority of
evidence for a bad outcome was considered noteworthy
enough to adjust the decision boundary somewhat toward
this prediction. Thus the network predicts a bad outcome
when the net input to the corresponding node is at least 40%
of the total input toFab. These decision thresholds (0.4 for
ARTMAP-IC and 0.5 for all other systems) are held con-
stant across the four sets of studies. All ARTMAP results
reflect the participation of ten voters.

Simulation results report the C-index (Harrell et al., 1984,
1985) as well as the correct prediction rate. The C-index is a
measure of predictive score that is independent of both the
mixture of good/bad test set cases and the bad-case decision
threshold. In an ARTMAP network, the C-index measures
the probability that, for any randomly selected pair of bad/
good test set cases, the signal sent by the bad case to the
"bad" map field node will be larger than the signal sent by
the good case to that node. The C-index is equivalent to the
area under the Receiver Operating Characteristic (ROC)
curve, which plots the true positive (bad case) prediction

Table 1
ARTMAP, ART-EMAP, and ARTMAP-IC simulation parameters

Choice parameter a ¼ 0.1
Learning rate parameter b ¼ 1.0
Baseline vigilance r̄¼ 0:0
Bad-case decision threshold t ¼ 0.5 ARTMAP, ART-EMAP, KNN

t ¼ 0.4 ARTMAP-IC
Signal rule Tj ¼ Sj =ða þ 2M ¹ Qj Þ (Weber law)
F2 order constants 0, FN , … , Fj , … , F1 , gðM, 0Þ

with F j > g(M,0)
Number of voters 10
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rate against the false positive rate for a given test. Logistic
regression simulations use the standard SAS PROC Logistic
statistical package (SAS Institute, 1990).

8.1. Pima Indian Diabetes database

The Pima Indian diabetes (PID) data set (Smith et al.,
1988) was obtained from the UCI repository of machine
learning databases (Murphy & Aha, 1992). The database
task is to predict whether a patient will develop diabetes,
based on eight clinical findings: age, the diabetes pedigree
function, body mass, 2-hour serum insulin, triceps skin fold
thickness, diastolic blood pressure, plasma glucose con-
centration, and number of pregnancies. Each patient

represented in the database is a female of Pima Indian
heritage who is at least 21 years old.

Smith et al. (1988) used the PID data set to evaluate the
preceptron-like ADAPtive learning routine (ADAP). This
study had 576 cases in the training set and 192 cases in
the test set, and comparative simulations in this section all
use the same training and test sets. About 34.9% of patients
in the sample developed diabetes. Table 3 compares ADAP
test set performance with that of logistic regression, KNN,
and three ARTMAP networks. ARTMAP-IC uses the
instance counting (IC) rule (Eq. (17)) and theQ-max rule
(Eq. (12)) for distributed prediction. Comparative simula-
tions show results for ART-EMAP (Stage 1), which is
equivalent to ARTMAP-IC without instance counting; and

Table 2
Database characteristics

No. training No. input Match No. ARTMAP Rule-of-
Data set % bad components tracking categories (C) thumb
set inputs outcomes (M) rule average [range] Q values

Diabetes 576 34.9 8 MTþ 62 [50–74] 15 [12–19]
e ¼ þ 0.0001
MT ¹ 62 [53–68] 15 [13–17]
e ¼ ¹ 0.0001
MT ¹ 45 [31–54] 11 [8–14]
e ¼ ¹ 0.01

Breast cancer 559 34.5 9 MTþ 14 [8–20] 3–4 [2–5]
e ¼ þ 0.0001

Heart disease 250 45.9 13 MTþ 26 [20–33] 6 [5–8]
e ¼ þ 0.0001

Gall bladder 2546 16.4 16 MT¹ 450 [375–594] 30
e ¼ ¹ 0.0001
MT ¹ 286 [209–335] 30
e ¼ ¹ 0.01

Table 3
Pima Indian Diabetes (PID) simulation results

Correct C-index Compression
Model predictions factor

Logistic regression 77% 0.84 –
ADAP 76% – –
ARTMAP (Q ¼ 1) 66% 0.76 9.3
[MT þ : e ¼ þ 0.0001]

Q ¼ 15 12# Q # 19 Peak % [C-index,Q] Compression

KNN 77% 76–77% 77% [0.80,Q ¼ 13–15] 1
ART-EMAP 76% 76–78% 78% [0.87,Q ¼ 13] 9.3
[MT þ : e ¼ þ 0.0001]
ARTMAP-IC
[MT þ : e ¼ þ 0.0001]

79% 79–80% 80% [0.87,Q ¼ 9–13] 9.3

Q ¼ 15 13# Q # 17

ARTMAP-IC 81% 80–81% 81% [0.88,Q ¼ 15] 9.3
[MT ¹ : e ¼ ¹ 0.0001]

Q ¼ 11 8# Q # 14

ARTMAP-IC 79% 78–81% 81% [0.87,Q ¼ 9] 12.8
[MT ¹ : e ¼ ¹ 0.01]
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for basic ARTMAP, which setsQ ¼ 1 for category choice
during testing. With the original match tracking rule MTþ ,
the various ARTMAP networks share a common training
regime. On average, these networks produced 62 committed
category nodes (C ¼ 62), with this number ranging from
C ¼ 50 toC ¼ 74 across simulations, depending on training
set input presentation order (Table 2). The average and
range of values ofC provide a priori rule-of-thumb esti-
mates (Eq. (13)) for the number of active nodesQ in a
distributed category representation. With two output classes
(L ¼ 2), the target value isQ ¼ 15, with an expected range of
values fromQ ¼ 12 to Q ¼ 19.

Table 3 shows that the basic ARTMAP network (Q ¼ 1)
does not perform well on the PID database problem, but that
the same trained network with distributed test set prediction
(ART-EMAP) brings performance up to the level of logistic
regression, ADAP, and KNN. Instance counting (ART-
MAP-IC) improves performance even further, both in
terms of the C-index and the number of correct test set
predictions. Table 3 shows that the rule-of-thumb estimate
identifies Q values that are nearly optimal, and that per-
formance is robust across a range ofQ values. Compared
to KNN, ARTMAP networks withe ¼ 6 0.0001 compress
memory by a factor of 9.3:1. Although the PID database has
no inconsistent cases, the MT¹ match tracking rule (e ¼

¹0.01) compresses memory even more than the same
network withe ¼ 6 0.0001, reducing the number of com-
mitted nodes fromC ¼ 62 toC ¼ 45, with no deterioration
in predictive accuracy.

8.2. Breast cancer database

The University of Wisconsin breast cancer database
(Wolberg & Mangasarian, 1990) provides laboratory data
from 699 patients with tumors, of which 458 (65.5%)
proved to be benign and 241 (34.5%) malignant. A patient
record from a breast fine-needle aspirate lists nine cytologi-
cal characteristics: clump thickness, uniformity of cell size,
uniformity of cell shape, marginal adhesion, single epi-
thelial cell size, bare nuclei, bland chromatin, normal

nucleoli, and mitoses. The data set labels each cytological
characteristic from 1 (benign) to 10 (malignant), although
no one characteristic was considered a reliable predictor.

Wolberg and Mangasarian (1990) applied a multisurface
method of pattern separation, training on 246 of the 369
inputs available at that time to obtain 96% test set predictive
accuracy. Training on 80% of the current data set (559
inputs) for five-fold cross validation, the ARTMAP, KNN,
and logistic regression classifiers performed comparably
well (Table 4). Compared to KNN, the ARTMAP networks
compressed the training set by a factor of 40, storing from
eight to 20 category nodes, with an average of 14, for each
simulation. As in the PID database, the rule-of-thumb esti-
mate (Eq. (13)) provided a goodQ value. In this case, where
all classifiers seem to reach near-optimal performance
levels, instance counting provides no marginal benefits.

8.3. Heart disease database

The Cleveland heart disease database from the UCI
repository (Murphy & Aha, 1992), was gathered from 303
cardiology patients at the Long Beach V.A. Medical Center
and the Cleveland Clinic Foundation. Each record stores
13 attributes: age, sex, chest pain type, blood pressure,
cholesterol level, fasting blood sugar, resting electro-
cardiograph results, maximum heart rate, angina, ST
depression induced by exercise relative to rest, the slope
of the peak exercise ST segment, the number of major
vessels colored by fluoroscopy, and thalassemia. Six patient
records have many missing values. In the current simula-
tions (logistic regression, KNN, and all ARTMAP systems),
values of the missing components are set to 0, which
denotes a normal attribute value. Of the 303 patients, 164
(54.1%) were diagnosed as healthy and 139 (45.9%) as
having heart disease, defined as blood vessels narrowed
by more than 50%. The database author, R. Detrano, esti-
mates that the class labels have an error rate of about 20%.

Benchmark studies of the heart disease database apply the
unsupervised CLASSIT algorithm (Gennari et al., 1989);
instance-based (IBL) classifiers, which are similar to KNN

Table 4
Breast cancer simulation results

Correct Compression
Model predictions C-index factor

Logistic regression 97% 0.993 –
Multisurface pattern separation (trained on 234 inputs) 96% – –
ARTMAP (Q ¼ 1) 96% 0.987 40
[MT þ : e ¼ þ 0.0001]

Q ¼ 3–4 2# Q # 5 Peak % [C-index,Q] Compression

KNN 96% 96% 97% [0.958,Q ¼ 1] 1
ART-EMAP 97% 97% 97% [0.994,Q ¼ 3] 40
[MT þ : e ¼ þ 0.0001]
ARTMAP-IC 96% 96% 96% [0.992,Q ¼ 3] 40
[MT þ : e ¼ þ 0.0001]
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(Aha et al., 1991); and the decision tree algorithm C4
(Quinlan, 1986). Simulations here used the same training
set of 250 inputs as in the benchmark studies. Table 5 shows
that KNN does not perform well on this problem and that
logistic regression, CLASSIT, IB3, and ARTMAP-IC
perform near the estimated optimal level of 80% correct
prediction rate.

8.4. Cholecystectomy (gall bladder removal) database

The cholecystectomy database represents 3182 randomly
selected Medicare patients from seven states. The prediction
task is to estimate the likelihood of an adverse event, defined
as the occurrence of at least one of 16 possible types of
severe complications. Adverse events occurred in 16.4%
of the cases. Each input was derived from 62 features
recorded from pre-admission testing, admission history,
and laboratory and procedure results. Preprocessing reduced
the number of input components to 16 after features signifi-
cantly associated (p , 0.5) with each of the 16 types of
adverse events were merged.

The cholecystectomy database contains 59 pairs of incon-
sistent data vectors. That is, for each pair, identical inputs
predict opposite outcomes. The database can thus be used to
examine the effect of the new ARTMAP match tracking
algorithm, MT¹ . Recall that MT¹ allows a network to
learn from inconsistent cases during training (Section 3).
During testing, then, distributed category activation, with
instance counting, can provide a likelihood estimate of an
adverse event that benefits from the knowledge of
inconsistent training set pairs. To train basic ARTMAP
and ART-EMAP with the original MTþ algorithm, incon-
sistent inputs were recast by small random perturbations.
Even with the recast data, ARTMAP can still choose only
the one maximally activated category during testing. ART-
EMAP prediction would reflect the competing category pre-
dictions, but would not reflect the number of training set
instances coded by each category.

Table 6 compares the C-index performance measures for
logistic regression and basic ARTMAP with those of KNN,
ART-EMAP, and ARTMAP-IC. The overall predicted
accuracy of all the classifiers is low, but differences between

Table 5
Heart disease simulation results

Correct C-index Compression
Model predictions factor

Logistic regression 79.0% 0.88 –
CLASSIT 78.9% – 101
IB1 75.76 0.8% – 1
IB2 71.46 0.8% – 3.3
IB3 78.06 0.8% – 13
C4 75.56 0.7% – –
ARTMAP (Q ¼ 1) 74% 0.84 9.6
[MT þ : e ¼ þ 0.0001]

Q ¼ 6 5 # Q # 8 Peak % [C-index,Q] Compression

KNN 67% 66–68% 68% [0.69,Q ¼ 5] 1
ART-EMAP 76% 75–76% 77% [0.84,Q ¼ 9–11] 9.6
[MT þ : e ¼ þ 0.0001]
ARTMAP-IC 78% 78% 81% [0.84,Q ¼ 19] 9.6
[MT þ : e ¼ þ 0.0001]

Table 6
Gall bladder removal (cholecystectomy) results

C-index Compression
Model factor

Logistic regression 0.68 –
ARTMAP (Q ¼ 1) 0.63 5.7
[MT þ : e ¼ þ 0.0001]

Q ¼ 30 Peak C-index, [Q] Compression

KNN 0.65 0.67, [Q ¼ 55–60] 1
ART-EMAP 0.66 0.66, [Q ¼ 22–58] 5.7
[MT þ : e ¼ þ 0.0001]
ARTMAP-IC 0.69 0.69, [Q ¼ 9–35] 5.7
[MT ¹ : e ¼ ¹ 0.0001]
ARTMAP-IC 0.68 0.69, [Q ¼ 5–9] 8.9
[MT ¹ : e ¼ ¹ 0.01]
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classifiers are still apparent. With distributed prediction,
ART-EMAP and ARTMAP-IC perform consistently better
than ARTMAP with category choice. The ARTMAP net-
works with e 6 0.0001 create about 450 categories during
training and so compress the input data by about 5.7:1. KNN
does not compress the data, and the algorithm does not per-
form well until Q exceeds 20. After that it is comparable to
ART-EMAP with theQ-max category activation rule. ForQ
greater than 10, ARTMAP-IC consistently outperforms
logistic regression by a small margin.

With e ¼ ¹0.0001, MT¹ does not increase code com-
pression compared to MTþ. However, decreasinge to
¹0.01 during training allows MT¹ to search a large
number of nearby categories following a predictive error.
This reduces the number of committed nodes fromC ¼ 450
to C ¼ 286, thus increasing the compression ratio from 5.7:1
to 8.9:1, with little effect on performance. Similarly, on the
PID data set (Table 3), which has no inconsistent inputs, the
MTþ and MT¹ rules with e ¼ 6 0.0001 have similar
performance rates and numbers of learned categories,
while decreasinge to ¹001 reduces the number of learned
categories from 62 to 45.

9. Conclusion

This study provides a self-contained description of ART-
MAP neural networks in the context of medical database
prediction problems. Instance counting and a modified
match tracking algorithm, new components of the ART-
MAP family of networks, are introduced and used in
combination with ART-EMAP distributed test set pre-
diction. The enhanced ARTMAP networks perform better
than the basic ARTMAP system, which uses category
choice during both training and testing, and performs as
well as or better than a variety of methods applied to
benchmark medical prediction problems.
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