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Abstract

Ongoing research at Boston University has produced
computational models of biological vision and learning
that embody a growing corpus of scientific data and
predictions. Vision models perform long-range grouping
and figure/ground segmentation, and memory models
create attentionally controlled recognition codes that
intrinsically combine bottom-up activation and top-down
learned expectations. These two streams of research form
the foundation of novel dynamically integrated systems
for image understanding. Simulations using multi-
spectral images illustrate road completion across
occlusions in a cluttered scene and information fusion
from input labels that are simultaneously inconsistent
and correct. The CNS Vision and Technology Labs
(cns.bu.edu/visionlab and cns.bu.edu/techlab) are further
integrating science and technology through analysis,
testing, and development of cognitive and neural models
for large-scale applications, complemented by software
specification and code distribution.

1. Introduction

Parallel research streams in the Boston University
Department of Cognitive and Neural Systems (BU/CNS)
have led to the development of families of biological
models of early vision and attentive recognition. For
vision, the Boundary Contour System and Feature
Contour System (BCS/FCS) realize complementary
design principles to perform long-range boundary
completion and featural filling-in [1]. For recognition,
Adaptive Resonance Theory (ART) models create stable
recognition codes with fast or slow incremental learning
and with supervised or unsupervised training [2,3].
Examples in this paper illustrate how recent research is
moving toward the goal of providing open-source code
for flexible, user-friendly, integrated vision and

recognition systems that bring the power of cognitive and
neural computations to technological applications.

2. A default ARTMAP system for
biologically based recognition learning

ART neural networks model real-time prediction,
search, learning, and recognition. These systems have
provided both computational models of human cognitive
information processing (e.g., [4–9]) and neural methods
for technology transfer (e.g., [10-12]). Sites of early and
ongoing transfer of ART-based technologies include
industrial venues such as the Boeing Corporation and
government venues such as MIT Lincoln Laboratory. A
recent report on industrial uses of neural networks [13]
states:  “[The] Boeing … Neural Information Retrieval
System [14] is probably still the largest-scale
manufacturing application of neural networks. It uses
[ART] to cluster binary templates of aeroplane parts in a
complex hierarchical network that covers over 100,000
items, grouped into thousands of self-organised clusters.
Claimed savings in manufacturing costs are in millions of
dollars per annum.” At Lincoln Lab, a team led by
Waxman developed an image mining system which
incorporates several BU/CNS-based models of vision and
recognition [15-17]. Over the years a dozen CNS
graduates have contributed to this effort, which is now
located at Alphatech, Inc.

Design principles derived from scientific analyses and
design constraints imposed by targeted applications have
jointly guided the development of many variants of the
basic ART networks, including fuzzy ARTMAP [18],
simplified fuzzy ARTMAP [19], ART-EMAP [20],
ARTMAP-IC [21], Gaussian ARTMAP [22], and
distributed ARTMAP [23]. Across the variations of these
models, a neural computation central to both the
scientific and the technological analyses is the ART
matching rule [2], which represents the interaction
between top-down learned expectation and bottom-up
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sensory input. This interaction creates a focus of
attention which, in turn, determines the nature of stored
memories.

While the earliest unsupervised ART [2] and
supervised ARTMAP networks [3] feature winner-take-
all code representations, many of the networks developed
over the past dozen years incorporate distributed code
representations. Comparative analyses of these systems
have led to the specification of a default ARTMAP
network, which features simplicity of design and robust
performance in many application domains [24]. Like
ART-EMAP, default ARTMAP uses winner-take-all
coding during training and distributed coding during
testing. Distributed test outputs have helped improve
various methods for categorical decision-making. One
such method, in a map production application, compares
a baseline mapping procedure, which selects the class
with the largest total output, with a procedure that
enforces a priori output class probabilities and another
that selects class-specific output thresholds, via
validation [25]. Distributed coding supports each method,
but the ultimate prediction is still one output class per test
input (Figure 1, upper right). This paper also specifies a
canonical cross-validation training / testing method,
which partitions the area in question into four vertical or
horizontal strips. A given simulation takes training pixels
from two of these strips; uses the validation strip to
choose parameters, if necessary; and tests on the fourth
strip. Learning methods are thus compared with training
and test sets that are not only disjoint but drawn from
geographically distinct locations. This separation tests for
generalization to new regions, where class distributions
could typically be far from those of the training and
validation sets.

3. A default BCS/FCS system for biologically
based image reconstruction

Over the past two decades, increasingly detailed
analyses of emerging bodies of scientific data from visual
psychophysics and neuroscience have, as in the ART
domain, produced a variety of BCS/FCS models [e.g.,
26,27]. The many variations on mechanism, anatomy,
and parameter selection for these systems have impeded
the transition of their full computational capabilities for
large-scale, general-purpose image processing. Following
the default ARTMAP paradigm, a new default BCS/FCS
defines a clean, systematically analyzed core algorithm.
Default BCS/FCS performs the basic visual functions of
boundary finding, long-range grouping, and featural
filling-in of connected components. Model analyses have

also fed back to the science, introducing new hypotheses
concerning key neural mechanisms of early vision.

The Boundary Contour and Feature Contour Systems
realize computationally complementary processes of
early vision. For example, BCS stages of long-range
cooperation among orientation-sensitive units are
balanced by short-range competition among units of
different orientational preference at nearby positions. The
BCS thus seeks to find the best groupings of local
contrasts relative to the degree of variability specified by
image regions. Note that each stage of the BCS can also
be computed in several scales, as in pyramid
architectures.

Outputs of the BCS are used to contain filling-in,
whereby signals from FCS contours diffuse through
image areas that are not blocked by BCS boundary
signals. The combined result of BCS/FCS processing is a
form-sensitive set of representations of featural
information, such as brightness or color, where each
location’s value of a featural quantity has been derived
from both local bottom-up signals and from a context-
sensitive comparison of these signals with inputs from
the surrounding area.

Figure 1. Pixels of an aerial image (upper left) are first
assigned labels from one of eight classes (upper
right) by a default ARTMAP algorithm [25]. Pixels
labeled road produce collinear sections that are
interrupted by gaps caused by overhanging trees in
the original image (lower left). With this road pixel
image serving as input, default BCS performs
boundary finding and long-range completion (lower
right). Subsequent filling-in by the default FCS
produces a more meaningful labeling of the image
than was possible from local computations.



AIPR 2004 CAS/CNS Technical Report TR-2004-008 4

4. Integrating ARTMAP and BCS/FCS
models for image understanding

Figure 1 illustrates computations of a system that
integrates ARTMAP recognition with BCS image
processing. In this example, a Lincoln Lab image mining
system [15-17] produced 20-dimensional input vectors
from local neighborhoods of pixels in the image shown
at the upper left. A default ARTMAP system produced a
labeled map (upper right) after training on a subset of
labeled feature vectors [25]. This procedure typifies a
traditional approach to combining vision and recognition
systems, with preattentive computations of early vision
producing preprocessed inputs for learned recognition.

The integrated vision / recognition system illustrated
here begins with these steps, but then feeds the results of
local (pixel) recognition back to the “early” vision
system for further processing. Figure 1 indicates how  a
default BCS model can complete road boundaries across
sections occluded by overhanging trees, then, via the
FCS, return newly reconstructed featural information to
the recognition system, to improve image understanding.

Figure 2 shows details of long-range completion by
default BCS, starting with pixel inputs from one of the
occluded road segments in Figure 1.

5. A cognitive approach to information
fusion

A second type of simulation example next illustrates
how a cognitive and neural approach can define, as well
as provide solutions for, novel problem classes.

Image fusion has been defined as “the acquisition,
processing and synergistic combination of information
provided by various sensors or by the same sensor in
many measuring contexts.” [28, p. 3] When multiple
sources provide inconsistent data, fusion methods are
called upon to select the accurate information
components. As quoted by the International Society of
Information Fusion (www.inforfusion.org/terminology):
“Evaluating the reliability of different information
sources is crucial when the received data reveal some
inconsistencies and we have to choose among various
options.” For example, independent sources might label
a small area as residential or industrial or park, as in
Figure 3 (left). A fusion method could address this
problem by weighing the confidence and reliability of
each source, merging complementary information, or
gathering more data. In any case, at most one of these
answers is correct.

The methods illustrated here address a complementary

and previously unexamined aspect of the information
fusion problem, seeking to derive consistent knowledge
from sources that are inconsistent – but accurate. This is
a problem that the human brain solves very well. A
young child who hears the family pet variously called
Spot, puppy, dog, dalmatian, mammal, and animal is not
only not alarmed by these labels but readily uses them to
infer functional relationships. An analogous problem for
information fusion methods seeks to classify the terrain
and objects in an unfamiliar territory based on

Figure 2. Details of default BCS processing for a
small region of the image of Figure 1. The upper left
square shows labeled road pixels (white). Local
oriented-contrast filtering (upper middle) is
represented with each segment’s length proportional
to the degree of activation of units tuned to that
segment’s defining orientation. The bipole kernel
(upper right) displays the set of weights that express
the connection strength among units of various
orientations. The central unit of the bipole shown
here would support completion of vertical contours if
evidence from several nearby locations were
sufficiently strong. The lower left square shows the
result of one such completion event for a single
bipole of diagonal orientational preference whose
center is located midway between the pools of
activation. By the first iteration of bipole processing
(lower middle), the system has started to produce
long-range completion and strengthening of
orientations that are statistically coherent across
space. This process converges quickly (lower right).
Note that completion is influenced at the lower right
of each square by other road pixels that are beyond
the border of this detail.
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intelligence supplied by several reliable experts, as in
Figure 3 (right). Each expert labels a portion of the
region based on sensor data and observations collected at
specific times and based on individual goals and
interests. Across experts, a given area might be correctly,
though inconsistently, labeled residential and built-up
and man-made. A human mapping analyst would, in this
case, be able to apply a lifetime of experience to resolve
the paradox by placing objects in a knowledge hierarchy,
and a rule-based expert system could be constructed to
codify this knowledge.

6. Deriving consistent knowledge from
inconsistent information

An ARTMAP neural network can act as a self-
organizing expert system to derive hierarchical
knowledge structures from inconsistent training data.
This ability is implicit in the network’s learning strategy,
which creates one-to-many, as well as many-to-one,

Figure 3. Classifying novel terrain or objects from
sparse, complex data may require the resolution of
conflicting information from sensors working at
different times, locations, and scales, and from
sources with different goals and situations.
Information fusion methods can help resolve
inconsistencies, as when evidence variously
suggests that an object’s class is dog, wolf, coyote,
or fox (left). The methods summarized here consider
a complementary problem, supposing that
information from sensors and experts is reliable
though inconsistent, as when evidence suggests that
an object’s class is correctly described as canid,
wolf, art, and a Jackson Pollock (right).

maps of the input space. During training, the system can
learn that disparate pixels map to the output class
residential; but, if similar or identical pixels are later
labeled built-up or man-made, the system can learn to
associate numerous output classes with a given input
(Figure 4). During testing, distributed code activations
predict multiple output class labels. A rule-production
algorithm uses these distributed outputs to derive a
knowledge hierarchy for the output classes. The resulting
diagram of the relationships among classes can then
guide the construction of consistent layered maps.

Figure 4. During training by an ARTMAP information
fusion system, individual pixels from the Boston
image testbed (left) learned associations with
individual class labels (right). Underlying
relationships among objects are assumed to be
unknown to the automated system or the human
user. The ARTMAP information fusion system uses
distributed code representations that exploit the
neural network’s capacity for one-to-many learning in
order to produce self-organizing expert systems that
discover hierarchical knowledge structures.

The Boston  testbed was derived from a Landsat 7
Thematic Mapper (TM) image acquired on the
morning of January 1, 2001. The region includes
portions of northeast Boston and suburbs. The
resolution of the Boston image is 30m2 in six TM
bands, 60m2 in two thermal bands, and 15m2 in one
Panchromatic band. The image encompasses mixed
urban, suburban, industrial, water, and park spaces.
Landsat 7 spectral band values were acquired from
the Earth Resources Observation System (EROS)
Data Center, U.S. Geological Survey, Sioux Falls, SD
(edc.usgs.gov). Dimensions:  180 x 300 pixels 

� 

≅
5.4 km x 9 km.
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Inputs for the Boston testbed example shown in
Figure 4 were preprocessed by a version of the Lincoln
Lab image mining system [15-17], called the Neural
Fusion Module, which was developed by Waxman and
colleagues working in the CNS Technology Laboratory
during 2001-2002 [29,30]. For each pixel in the Boston
image, this Module, implemented on an ERDAS Imagine
(gis.leica-geosystems.com) platform, produced a 41-
dimensional input vector representing local contrast,
color, and texture attributes.

The ARTMAP fusion system provides a canonical
procedure for labeling an arbitrary number of output
classes in a supervised learning problem. A critical
aspect of the embedded default ARTMAP network is the
distributed nature of its internal code representation,
which produces continuous-valued test set predictions
distributed across output classes.

The information fusion techniques applied here
modify the ARTMAP baseline mapping procedure by
allowing the system to predict more than one output class
during testing. A given pixel predicts the N  classes
receiving the largest net system outputs. Here the pixel-
specific number N of predicted classes depends on the
profile of distributed output predictions made by the
feature vector for each given pixel. In this way, the
information fusion method illustrated here improves
upon the first version of the ARTMAP fusion method
[31], which used a validation procedure to select a global
number of predicted output classes (or a global activation
threshold) for all test pixels. This original method works
well when all pixels predict approximately the same
number of classes in an underlying hierarchy, but
performance would deteriorate if the correct number of
ground truth output classes varied widely across test
pixels.

Information implicit in the distributed predictions of a
trained ARTMAP network generates the hierarchy of
output class relationships. To accomplish this, each test
pixel first produces its set of output class predictions. The
resulting list of predictions across all test set pixels then
determines a list of rules   

� 

x ⇒ y , which define
relationships between pairs of output classes, with each
rule carrying a confidence value. The rules are used to
assign classes to levels, with rule antecedents x at lower
levels and consequents y  at higher levels. Classes
connected by arrows that codify the list of rules and
confidence values form a graphical representation of the
knowledge hierarchy.

The new information fusion methodologies are not
limited to the image domain illustrated here, and could be
applied, for example, to infer patterns of drug resistance
from medical data or to improve marketing suggestions
to individual consumers.

7. CLASSifier Simulation ManagER

CLASSER (CLASSifier Simulation ManagER) is a
new modular set of software tools that provide a user
with classifier implementations while handling details of
data management and collection of test results.
CLASSER provides a high-level system interface for
learning applications, allowing the user to work with
entire data sets at a time instead of individual points, and
automating the collection of output results. The software
facilitates neural algorithm implementations in both the
user’s application setting and in the Leica ERDAS
Imagine environment.

Version 1 of CLASSER is now in beta testing, along
with its first interface, CLASSER Script. The interface is
batch-mode and script-driven, which allows the user to
command a series of simulations from short scripts in a
high-level language focused on data sets and classifier
parameters, while automating the details of train/test
protocols. The planned result of this software
development effort will be a family of interconnected
open-source tools for supporting research science,
technology development, and applications of many
varieties of cognitive and neural systems.
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