
Self-organizing information fusion and hierarchical knowledge discovery:

a new framework using ARTMAP neural networks

Gail A. Carpenter*, Siegfried Martens, Ogi J. Ogas

Department of Cognitive and Neural Systems, Center for Adaptive Systems, 677 Beacon Street, Boston University, Boston, MA 02215, USA

Received 8 December 2003; revised 14 December 2004; accepted 14 December 2004

Abstract

Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors working

at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve

inconsistencies, as when evidence variously suggests that an object’s class is car, truck, or airplane. The methods described here address a

complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that

an object’s class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the automated system

or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network’s capacity

for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The fusion

system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure

is illustrated with two image examples, but is not limited to the image domain.
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1. Introduction: deriving consistent knowledge from

inconsistent information

Image fusion has been defined as “the acquisition,

processing and synergistic combination of information

provided by various sensors or by the same sensor in

many measuring contexts.” (Simone, Farina, Morabito,

Serpico, & Bruzzone, 2002, p. 3) When multiple sources

provide inconsistent data, such methods are called upon to

select the accurate information components. As quoted by

the International Society of Information Fusion (http://

www.inforfusion.org/terminology.htm): “Evaluating the

reliability of different information sources is crucial when

the received data reveal some inconsistencies and we have

to choose among various options.” For example, indepen-

dent sources might label an identified vehicle car or truck or
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airplane. A fusion method could address this problem by

weighing the confidence and reliability of each source,

merging complementary information, or gathering more

data. In any case, at most one of these answers is correct.

The methods developed here address a complementary

and previously unexamined aspect of the information fusion

problem, seeking to derive consistent knowledge from

sources that are inconsistent—yet accurate. This is a

problem that the human brain solves well. A young child

who hears the family pet variously called Spot, puppy, dog,

dalmatian, mammal, and animal is not only not alarmed by

these conflicting labels but readily uses them to infer

functional relationships. An analogous problem for infor-

mation fusion methods seeks to classify the terrain and

objects in an unfamiliar territory based on intelligence

supplied by several reliable sources. Each source labels a

portion of the region based on sensor data and observations

collected at specific times and based on individual goals and

interests. Across sources, a given pixel might be correctly

but inconsistently labeled car, vehicle, and man-made.
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A human mapping analyst would, in this case, be able to

apply a lifetime of experience to resolve the paradox by

placing objects in a knowledge hierarchy, and a rule-based

expert system could be constructed to codify this knowl-

edge. Alternatively, an analyst could be faced with complex

or unfamiliar labels, or the structure of object relationships

may vary from one region to the next.

The current study shows how an ARTMAP neural

network can act as a self-organizing expert system to derive

hierarchical knowledge structures from inconsistent training

data. This ability is implicit in the network’s learning

strategy, which creates one-to-many, as well as many-to-

one, maps of the input space. During training, the system

can learn that disparate pixels map to the output class car;

but, if similar or identical pixels are later labeled vehicle or

man-made, the system can associate multiple classes with a

given input. During testing, distributed code activations

predict multiple output class labels. A rule production

algorithm uses the pattern of distributed predictions to

derive a knowledge hierarchy for the output classes. The

resulting diagram of the relationships among classes can

then guide the construction of consistent layered maps.

Section 2 outlines how distributed coding in the

default ARTMAP network supports multi-class prediction.

Section 3 describes two remote sensing testbed examples,

with sensor data from Monterey, CA, and from the Boston

area. Section 4 specifies the algorithm that derives

hierarchical knowledge structures from distributed class

label predictions, and Section 5 demonstrates system

performance of the ARTMAP information fusion system

on the Monterey and Boston testbed examples. Section 6

points to the use of the new methods in other application

domains. A software implementation of both default

ARTMAP and the complete ARTMAP information fusion

system is available from http://cns.bu.edu/techlab.
2. Multi-class predictions by ARTMAP neural networks

Adaptive Resonance Theory (ART) neural networks

model real-time prediction, search, learning, and recog-

nition. ART networks function both as models of human

cognitive information processing (e.g. Carpenter, 1997;

Carpenter & Grossberg, 1993; Grossberg, 1980, 1999, 2003;

Page, 2000) and as neural systems for technology

transfer (e.g. Aggarwal, Xuan, Johns, Li, & Bennett,

1999; Gopal, Woodcock, & Strahler, 1999; Griffith &

Todd, 1999; http://cns.bu.edu/techlab). Sites of early and

ongoing transfer of ART-based technologies include

industrial venues such as the Boeing Corporation and

government venues such as MIT Lincoln Laboratory. A

review of industrial uses of neural networks (Lisboa, 2001)

states: “[The] Boeing.Neural Information Retrieval Sys-

tem (Caudell, Smith, Escobedo, & Anderson, 1994) is

probably still the largest-scale manufacturing application of

neural networks. It uses [ART] to cluster binary templates of
aeroplane parts in a complex hierarchical network that

covers over 100,000 items, grouped into thousands of self-

organised clusters. Claimed savings in manufacturing costs

are in millions of dollars per annum.” At Lincoln Lab, a

team led by Waxman developed an image mining system

which incorporates a number of models of vision and

recognition introduced in the Boston University Department

of Cognitive and Neural Systems (BU/CNS) (Streilein et al.,

2000; Waxman et al., 2001, 2002). Over the years a dozen

CNS graduates have contributed to this effort, which is now

located at Alphatech, Inc.

Design principles derived from scientific analyses and

design constraints imposed by targeted applications have

jointly guided the development of many variants of the

basic networks, including fuzzy ARTMAP (Carpenter,

Grossberg, Markuzon, Reynolds, & Rosen, 1992), simpli-

fied fuzzy ARTMAP (Kasuba, 1993), ART-EMAP (Car-

penter & Ross, 1995), ARTMAP-IC (Carpenter &

Markuzon, 1998), Gaussian ARTMAP (Williamson,

1998), and distributed ARTMAP (Carpenter, 1997; Car-

penter, Milenova, & Noeske, 1998). Across many variations

of these models, a neural computation central to both the

scientific and the technological analyses is the ART

matching rule (Carpenter & Grossberg, 1987), which

represents the interaction between bottom-up sensory inputs

and on-center/off-surround top-down learned expectations.

This interaction creates a focus of attention which, in turn,

determines the nature of stored memories.

While the earliest unsupervised ART (Carpenter &

Grossberg, 1987) and supervised ARTMAP networks

(Carpenter, Grossberg, & Reynolds, 1991) feature winner-

take-all code representations, many of the networks

developed since the mid-1990s incorporate distributed

code representations. Comparative analyses of these

systems have led to the specification of a default ARTMAP

network, which features simplicity of design and robust

performance in many application domains (Carpenter,

2003). Selection of one particular a priori algorithm is

intended to facilitate technology transfer. This network,

which here serves as the recognition engine of the

information fusion system, uses winner-take-all coding

during training and distributed coding during testing.

Distributed test outputs have helped improve various

methods for categorical decision-making. One such method,

in a map production application, compares a baseline

mapping procedure, which selects the class with the largest

total output, with a procedure that enforces a priori output

class probabilities and another one that selects class-specific

output thresholds via validation (Parsons & Carpenter,

2003).

Distributed coding supports each method, but the

ultimate prediction is one output class per test input. This

procedure also specifies a canonical training/testing method

which partitions the area in question into four vertical or

horizontal strips. A given simulation takes training pixels

from two of these strips; uses the validation strip to choose

http://cns.bu.edu/techlab
http://cns.bu.edu/techlab
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parameters, if necessary; and tests on the fourth strip.

Methods are thus compared with training and test sets that

are not only disjoint but drawn from geographically separate

locations. This separation tests for generalization to new

regions, where output class distributions could typically be

far from those of the training and validation sets.

The information fusion techniques developed in the

current study modify the baseline mapping procedure by

allowing the system to predict more than one output class

during testing. A given test pixel either predicts the

N classes receiving the largest net system outputs or

predicts all classes whose net output exceeds a designated

threshold G. A preliminary version of the ARTMAP

information fusion system (Carpenter, Martens, & Ogas,

2004) chose a global selection parameter N or G based on

analysis of the validation strip. This method succeeds when

most validation and test items share a common number of

correct output classes. The new procedure introduced here

allows each test exemplar to choose its own number N of

output class predictions. This per-pixel filtering method thus

does not rely on the strong assumption that the correct

number of output classes per item is approximately uniform

across the test set.
Fig. 1. Testbed images for ARTMAP information fusion methods. (a) Monterey

(b) Boston image, in false color representation of preprocessed inputs: The city of

of Winthrop, East Boston, Chelsea, Everett, Malden, Melrose, Saugus, and Lynn

Revere Beach and the Atlantic Ocean at the right. The Saugus and Pines Rivers me

Dimensions: 360!600 pixels (15 m resolution) y5.4!9 km. Each testbed ima

(if needed), and one for testing. This protocol produces geographically distinct tr

label distributions vary substantially across strips.
3. Monterey and Boston testbed examples

An image of the Monterey Naval Postgraduate School

(Fig. 1a) has previously served (Parsons & Carpenter, 2003)

as the basis of a benchmark testbed developed for classifier

comparisons within the context of the Lincoln Lab spatial

data mining system (Section 2). Ground truth construction

for this supervised learning example specified eight target

output classes (red car, other car, roof, road, foot path,

grass, tree, other), with pixel subsets located by observation

of the Monterey image. In order to maintain a valid

comparison of candidate recognition networks, this testbed

retained the same feature vectors and some of the target

classes (esp. red car) that had previously been used in

Lincoln Lab demonstrations of the Monterey image (Ross

et al., 2000).

The present study extends the Monterey testbed by

designating multiple labels for each ground truth pixel.

Namely, red car and other car pixels are also labeled

vehicle; road and foot path pixels are also labeled pavement;

grass and tree pixels are also labeled vegetation;

vehicle, roof, and pavement pixels are also labeled man-

made; and vegetation pixels are also labeled natural.
image. Dimensions: 987!1510 pixels (0.5 m resolution) y500!750 m.

Revere is at the center, surrounded by (clockwise from lower right) portions

. Logan Airport runways and Boston Harbor are at the lower center, with

et in the upper right, and the Chelsea River is in the lower left of the image.

ge is divided into four vertical strips: two for training, one for validation

aining and testing areas, to assess regional generalization. Typically, class
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Two or three output class labels were thus assigned to each

pixel in the ground truth set. During training, however, the

ARTMAP network is never given any information about

relationships among the target classes.

A second testbed demonstrates the robustness of the

ARTMAP information fusion procedure (Fig. 1b). This

example was derived from a Landsat 7 Thematic Mapper

(TM) image acquired on the morning of January 1, 2001 by

the Earth Resources Observation System (EROS) Data

Center, US Geological Survey, Sioux Falls, SD (http://edc.

usgs.gov). The 5.4! 9 km area includes portions of

northeast Boston and suburbs. Whereas the resolution of

the Monterey image is approximately 0.5 m2 in each

spectral band, the resolution of the Boston image is 30 m2

in six TM bands, 60 m2 in two thermal bands, and 15 m2 in

one Panchromatic band. Urban ground truth labels are

therefore necessarily coarser in the Boston example.

The Boston region encompasses mixed urban, suburban,

industrial, water, and park spaces. Ground truth pixels are

labeled ocean, ice, river, beach, park, road, residential,

industrial, water, open space, built-up, natural, man-made. As

in the Monterey example, ARTMAP is given no information

about relationships among the Boston target classes during

training. Note that class relationships may vary from one

image to another. In Monterey, for example, natural is

equivalent to vegetation. In Boston, the class natural includes

water (which in turn includes ocean, ice, and river) and open

space (which in turn includes beach and park).

In the Monterey example, the Lincoln Lab preprocessor

transformed the spectral bands of the original image into a

20-dimensional input vector for the recognition system.

Inputs for the Boston example were similarly generated by a

more recent version of this system, called the Neural Fusion

Module, which was developed by Waxman and colleagues

working in the CNS Technology Laboratory during 2001–

2002 (Fay, Ivey, Bomberger, & Waxman, 2003; Waxman et

al., 2002). For the Boston image, this Module, implemented

on an ERDAS Imagine (http://gis.leica-geosystems.com)

platform, produced 41-dimensional input vectors represent-

ing local contrast, color, and texture attributes at each pixel.
4. Deriving a knowledge hierarchy from a trained

network: predictions, rules, and graphs

The ARTMAP fusion system provides a canonical

procedure for assigning to each input an arbitrary number

of output classes in a supervised learning setting. Information

implicit in the distributed predictions of a trained ARTMAP

network (Section 4.1) can be used to generate a hierarchy of

output class relationships. To accomplish this, each test pixel

first produces a set of output class predictions (Section 4.2).

The resulting list of test predictions determines a list of rules

x0y which define relationships between pairs of output

classes, with each rule carrying a confidence value (Sec-

tion 4.3). The rules are then used to assign classes to levels,
with rule antecedents x at lower levels and consequents y at

higher levels (Section 4.4). Classes connected by arrows that

codify the list of rules and confidence values form a graphical

representation of the knowledge hierarchy.

4.1. ARTMAP fusion system training protocol

Although learning in the ARTMAP information fusion

system is carried out by a previously defined neural network

(Section 2), a number of additional design elements need to

be specified to complete the training protocol. This section

describes the cross-validation, training set selection, post-

processing, and voting procedures employed in the

simulation examples reported below.

According to a standardized cross-validation procedure

(Section 2), each image is divided into four vertical strips

(Fig. 1). In the Boston and Monterey examples, training

pixels are drawn from two of the strips and test pixels from

another strip. A single system would be trained, for instance,

on pixels from Strips 1 and 4 and tested on pixels from Strip 2.

Note the challenge presented by the different distributions of

classes, such as water, across vertical strips in the Boston

image. The strip reserved for validation is not used in the

Boston and Monterey examples because the current version

of the rule production algorithm has no free parameters that

need selection. The simulations reported here are the result of

cross-validation across the 12 possible train/test strip combi-

nations for each image. The training/testing protocol also

allows for dramatic disparities between class percentages

across the whole image. In Monterey, for example, the impor-

tant class vehicle is sparsely represented compared to tree.

Ground truth labels typically reflect inequities in class

distribution across image regions. For example, Strip 1 (left)

of the Boston image contains 75 pixels labeled road and no

pixels labeled ocean, while Strip 4 (right) contains 19,919

pixels labeled ocean and only 4 pixels labeled road in the

ground truth set. In order for the learning system to encode

imbalanced exemplars, the training protocol imposes a cap

(here set equal to 250) on the maximum number of labels

from each class. Early in training, a chosen pixel is

associated with each one of its output class labels, presented

sequentially in random order. Once a class reaches the cap,

however, no more pixels are associated with the label of this

class. In the Boston image, for example, road pixels also

carry the ground truth label of the highly represented class

man-made. Once 250 pixels of any sort have been labeled

man-made during training, all subsequent road pixels can be

labeled only road.

When an ARTMAP training input activates a coding node

j for the first time, this node is said to become committed, and

the output weight Wjk from node j to the associated output

class k is set equal to 1 for the duration of training (Fig. 2). This

procedure partitions the coding nodes according to the output

class to which they were first linked. A post-processing

training step, which was tested with the distributed ARTMAP

network (Carpenter et al., 1998), presents the input-output

http://edc.usgs.gov
http://edc.usgs.gov
http://gis.leica-geosystems.com


Fig. 2. Default ARTMAP notation: An M-dimensional feature vector a is

complement coded to form the 2M-D ARTMAP input A. Vector y

represents a winner-take-all code during training, when a single category

node (jZJ) is active; and a distributed code during testing. With fast

learning, bottom-up weights wij equal top-down weights wji, and the weight

vector wj represents their common values. When a coding node j is first

selected during training, it is connected to the output class k of the current

input (WjkZ1). During testing, a distributed code y produces predictions sk

distributed across output classes. In all simulations reported here, the

baseline vigilance matching parameter �rZ0. (Carpenter, 2003).
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pairs once more, this time distributing the activations y at the

coding field and hence also distributing the output predic-

tions. The output weights Wjk are then retrained to minimize

the total least-squared error between predicted and

actual outputs. This procedure is akin to the second stage of

training in a radial basis function network (Moody & Darken,

1989). Final weights Wjk are here computed in batch mode

using the Matlab pseudo-inverse function pinv (Moore, 1920;

Penrose, 1955).

Finally, many applications benefit from voting across

several ARTMAP systems produced by a given training set.

This feature derives from the fact that fast learning produces

different networks, and hence different error patterns, for

different input orderings. Simple voting procedures typi-

cally produce improved accuracy compared to that of any

single network, with five voters normally serving as a good

default choice. Here, the Monterey and Boston examples

show results using only one voter per train/test strip
combination, both because of the size of the simulations

and the accuracy of single-voter networks. Increasing the

number of voters remains an option for systems that need to

improve test-set predictive accuracy.

4.2. Predictions

A critical aspect of the default ARTMAP network is the

distributed nature of its internal code representation, which

produces continuous-valued predictions across output

classes during testing. In response to a test input, distributed

activations in the default ARTMAP coding field send a net

signal sk to each output class k (Fig. 2). A winner-take-all

method predicts the single output class kZK receiving the

largest signal sk. Alternatively, a single test input can

predict multiple output classes. The per-pixel filtering

method employed here allows the output activation pattern

produced by each test pixel to determine the number of

predicted classes. Namely, if the net signals sk projecting to

the output classes k are arranged from largest to smallest, the

system predicts all the classes up to the point of maximum

decrease in the signal size from one class to the next. This

strategy is motivated by the behavior of a hypothetical

system that accurately represents all the output classes. In

such a system, if a pixel should predict three classes (e.g.

road, pavement, man-made), then the output signals sk to

each of these classes would typically be large compared to

those of the remaining classes. The maximum decrease in

size would then occur between the third and fourth largest

signal, and the per-pixel filtering method would predict

three classes.

4.3. Rules

Once each test pixel has produced a set of output class

predictions {x,y,.} from its distributed signals sk, according

to the per-pixel selection method, the list of multi-valued test

set predictions is then used to deduce a list of output class

implications of the form x0y, each carrying a confidence

value C%. This rule creation method is related to the Apriori

algorithm in the association rule literature (Agrawal,

Imielinski, & Swami, 1993; Agrawal & Srikant, 1994).

The steps listed below produce the list of rules that label

class relationships. The algorithm introduces an equivalence

parameter e% and a minimum confidence parameter c%.

Rules with low confidence (C!c) are ignored, with one

exception: if all rules that include a given class have

confidence below c, then the list retains the rule derived

from the pair predicted by the largest number of pixels.

Although this ‘no extinction’ clause may produce low-

confidence rules, these may occasionally correspond to

cases that are rare but important. The user can easily take

these exceptions under advisement, since the summary

graph displays each confidence value. Two classes x and y

are treated as equivalent (xhy) if both rules x0y and y0x

hold with confidence greater than e. In this case, the class
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predicted by fewer pixels is ignored in subsequent

computations, but equivalent classes are displayed as a

single node on the final rule summary graph.

Reasonable default values set the equivalence parameter

e in the range 90–95% and the minimum confidence

parameter c in the range 50–70%. In all simulations reported

here, parameter values were set a priori to eZ90% and cZ
50%. Alternatively, e and c may be chosen by validation.

The rule creation method below includes illustrative

computations from the test set pixels of the Boston example.

Pixel numbers, which are averages across the 12 train/test

strip combinations, indicate the wide range of predicted

output class fractions. The complete Boston rule graph will

be seen in Section 5.2.

Step 1: List the number of test set pixels predicting each

output class x. Order this list from the classes with the

fewest predictions to the classes with the most.

Boston Classes x #(x)

Beach 182

Ice 1489

Industrial 2179

Open space 3742

Road 7046

Water 13,395

Built-up 18,456

Natural 19,625

Man-made 37,917.
Boston
 Rules x0y

Beach0open space

Beach0natural

Beach0man-made

Ice0water

Ice0natural

Ice0man-made

Industrial0road

Industrial0built-up

Industrial0man-made
Confidenc

C Z
#ðbea

C Z
#ðbea

C Z
#ðbea

C Z
#ðice

C Z
#ðice

C Z
#ðice

C Z
#ðind

C Z
#ðind

C Z
#ðind
Step 2: List the number of test set pixels #(x and y)

simultaneously predicting each pair of distinct output

classes. Omit pairs with no such pixels. Order the list so

that #(x)%#(y): classes x observe the order established in

Step 1; and for each such class x, classes y observe the same

order.

Boston Class pairs x and y # (x and y)

Beach and open space 160

Beach and natural 158

Beach and man-made 32

Ice and water 1285

Ice and natural 1394

Ice and man-made 439

Industrial and road 249

Industrial and built-up 1962

Industrial and man-made 2102.
e x0y

ch and open spaceÞ

#ðbeachÞ
Z

ch and naturalÞ

#ðbeachÞ
Z

158

182

ch and man–madeÞ

#ðbeachÞ
Z

and waterÞ

#ðiceÞ
Z

1; 285

1; 489
Z

and naturalÞ

#ðiceÞ
Z

1; 394

1; 489

and man–madeÞ

#ðiceÞ
Z

4

1;

ustrial and roadÞ

#ðindustrialÞ
Z

2

2;

ustrial and built–upÞ

#ðindustrialÞ
Z

ustrial and man–made

#ðindustrialÞ
C

160

182
Z 88% 4

Z 87% 0

32

182
Z 18% 0

86% 1

Z 94% 7

39

489
Z 29% 1

49

179
Z 11% 4

1; 962

2; 179
Z 90% 1

Þ
Z

2; 102

2; 179
Z 96% 6
Step 3: Identify equivalent classes, where xhy if [#(x

and y)/#(y)]Re%. Remove from the list all class pairs that

include x (where #(x)%#(y), as in Step 2).

Step 4: Each pair remaining on the list produces a rule

x0y with confidence C%Z ½#ðx and yÞ=#ðxÞ�. If Step 3

determined that xhy, record the confidence CRe of each

rule in the pair {x0y, y0x}.
onverse y0x (%)

.8

.1

0

1
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Step 5: Remove from the list all rules with confidence

C!c. Exception (no extinction): If all rules that include a

given class have confidence below the minimum confidence

c, then retain the rule or rules x0y with maximal #(x and y)

pixels.

Boston High confidence rules x0y C (%)

Beach0open space 88

Beach0natural 87

Ice0water 86

Ice0natural 94

Industrial0built-up 90

Industrial0man-made 96.
Fig. 3. Graphs represe

shown here, the graph

confidence in the ran

relations: road0pave
nt rules, confidence values, and k

displays all the correct rules, equ

ge 20%%C!c: grass0tree (CZ
ment (CZ91%)/pavement0road
Step 6: The following optional information may be

useful for purposes of analysis.
(a)
 List rules removed in Step 5 that have confidence in a

marginal range, say 20%%C!c.
Boston: As computed in Step 4, the (incorrect) marginal

rule ice0manKmade has confidence CZ29%.
(b)
 List class pairs x and y (from Step 2) with equivalence

values in a marginal range. For example, list the rule

pairs {x0y, y0x} for class pairs x and y for which

c%[#(x and y)/#(y)]!e.
4.4. Graphs

A directed graph summarizes the list of implication rules

derived in Section 4.3. These rules suggest a natural

hierarchy among output classes, with antecedents sitting

below consequents. For each rule x0y, class x is located at

a lower level of the hierarchy than class y, according to the

iterative algorithm below. Once each class is situated on its

level, a listed rule x0y produces an arrow from x to y. Each

rule’s confidence is indicated on the arrow, with lower-

confidence rules (say C!90%) having dashed arrows. For

arrows with no displayed confidence values, CZ100%.

The following procedure assigns each output class to a

level.
Top level:
 Items that appear only as consequents y.
nowledge hierarchies deriv

ivalence relations, and cla

42%), other car0roof (C

(CZ83%) and tree0nat
Level 1:
ed by the ART

ss levels. The o

Z34%), and v

ural (CZ98%)
Classes that do not appear as consequents in

any rule.
Remove from the list all rules x0y where x is

in Level 1.
Next level:
 Classes that do not appear as consequents in

any remaining rule.
Remove from the list all rules x0y where x is

in this level.
Iterate:
 Repeat until all rules have been removed from

the list.
Note that Level 1 includes classes that do not appear in

any rule as well as those that appear only as antecedents.
5. Graphical representations of knowledge hierarchies

Graphs in Figs. 3 and 4 depict the implication rules,

hierarchy levels, and confidence values derived for the

Monterey and Boston examples.
5.1. Monterey testbed

Fig. 3 depicts the graph of the Monterey example. The

ARTMAP fusion system here produces the complete set of

correct rules, each with confidence values at least 67%. The

next lower confidence (for the rule grass0tree) is CZ42%.

This indicates that any value of the minimum confidence

parameter c between 42 and 67% would have given

identical results. Note that the sparsest classes (red car,

other car, path) produce rules that carry the lowest

confidence values.

Note, too, that the class natural is correctly identified as

equivalent to vegetation in the Monterey testbed, a result

that would be the same for any value of the equivalence

parameter e between 83 and 95%. A value of e below 83%

would have equated road with pavement and tree with

natural. That is, a higher-level class tends to merge with a

lower-level class that represents a large relative majority of

that class within this image.
MAP information fusion system. For the Monterey example

ptional Rule Step 6a also points to three marginal rules with

ehicle0road (CZ27%); and to two marginal equivalence

/natural0tree (CZ83%).



Fig. 4. For the Boston example, the ARTMAP fusion system correctly produces all class rules and levels, and no equivalence relations. Rule Step 6a points to

eight marginal rules with confidence 20%%C!c, the two with confidence CR30% being: open space0man-made (CZ38%) and park0man-made (CZ
36%); and to three marginal equivalence relations: park0open space (CZ86%)/open space0park (CZ85%), residential0built-up (CZ82%)/built-

up0residential (CZ78%), and water0natural (CZ99%)/natural0water (CZ68%).
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5.2. Boston testbed

Fig. 4 shows that for the Boston testbed ARTMAP

information fusion again places each class in its correct

level and discovers all the correct rules. This example

illustrates the robustness of the method across scales of

pixel resolution.

Note that, while the classes natural and vegetation are

equivalent in the Monterey example, in the Boston image,

natural includes water, ice, beach, etc. in addition to

vegetation, here called park. This difference illustrates that

the correct class label hierarchy may be image-specific and

cannot necessarily be defined by an analyst without ad hoc

knowledge of the location. In the Boston example, if the

equivalence parameter e were below 85%, then park would

become equivalent to open space. As in the Monterey

example, as e is reduced, lower level classes reasonably

begin to merge with higher level classes in which they

represent large relative majorities.

In the Boston graph, the rule with lowest confidence is

residential0built-up (CZ82%). The marginal rule with

next lowest confidence is open space0man-made (CZ
38%). This again indicates the robustness of the minimum

confidence parameter c, which is set equal to 50%

throughout: any value of c between 38 and 82% would

have produced an identical class hierarchy and rule set for

the Boston image.
6. Conclusion: ARTMAP information fusion

The ARTMAP neural network produces one-to-many

mappings from input vectors to output classes, as well as the

more traditional many-to-one mappings, as the normal

product of its supervised learning laws. During training, a

given input may learn associations to more than one output

class. Some of these associations could be erroneous: when

different observers label an image dog, coyote, or wolf, at

most one of these classes is correct. Inconsistent data may,

however, be completely correct, as when observers
variously label the image wolf, mammal, and carnivore.

By resolving such paradoxes during everyday knowledge

acquisition, humans naturally infer complex, hierarchical

relationships among classes without explicit specification of

the rules underlying these relationships. One-to-many

learning allows the ARTMAP information fusion system

to associate any number of output classes with each input.

Although inter-class information is not given with the

training inputs, the system readily derives knowledge of the

rules, confidence estimates, and multi-class hierarchical

relationships from patterns of distributed test predictions.

The testbed examples from the Monterey and Boston

images demonstrate how ARTMAP information fusion

resolves apparent contradictions in input pixel labels by

assigning output classes to levels in a knowledge hierarchy.

This methodology is not, however, limited to the image

domain illustrated here, and could be applied, for example,

to infer patterns of drug resistance or to improve marketing

suggestions to individual consumers. One such pilot study

has created a hypothetical set of relationships among

protease inhibitors, based on resistance patterns from

genome sequences of HIV patients.
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