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Markram and Tsodyks, by showing that the elevated synaptic ef�cacy
observed with single-pulse long-term potentiation (LTP) measurements
disappears with higher-frequency test pulses, have critically challenged
the conventional assumption that LTP re�ects a general gain increase.
This observed change in frequency dependence during synaptic potenti-
ation is called redistribution of synaptic ef�cacy (RSE). RSE is here seen
as the local realization of a global design principle in a neural network
for pattern coding. The underlying computational model posits an adap-
tive threshold rather than a multiplicative weight as the elementary unit
of long-term memory. A distributed instar learning law allows thresh-
olds to increase only monotonically, but adaptation has a bidirectional
effect on the model postsynaptic potential. At each synapse, threshold
increases implement pattern selectivity via a frequency-dependent sig-
nal component, while a complementary frequency-independent compo-
nent nonspeci�cally strengthens the path. This synaptic balance produces
changes in frequency dependence that are robustly similar to those ob-
served by Markram and Tsodyks. The network design therefore suggests
a functional purpose for RSE, which, by helping to bound total memory
change, supports a distributed coding scheme that is stable with fast as
well as slow learning. Multiplicative weights have served as a corner-
stone for models of physiological data and neural systems for decades.
Although the model discussed here does not implement detailed physiol-
ogy of synaptic transmission, its new learning laws operate in a network
architecture that suggests how recently discovered synaptic computations
such as RSE may help produce new network capabilities such as learning
that is fast, stable, and distributed.
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1 Introduction

The traditional experimental interpretation of long-term potentiation (LTP)
as a model of synaptic plasticity is based on a fundamental hypothesis:
“Changes in the amplitude of synaptic responses evoked by single-shock
extracellular electrical stimulation of presynaptic �bres are usually consid-
ered to re�ect a change in the gain of synaptic signals, and are the most
frequently used measure for evaluating synaptic plasticity” (Markram &
Tsodyks, 1996, p. 807). LTP experiments tested only with low-frequency
presynaptic inputs implicitly assume that these observations may be ex-
trapolated to higher frequencies. Paired action-potential experiments by
Markram and Tsodyks (1996) call into question the LTP gain-change hy-
pothesis by demonstrating that adaptive changes in synaptic ef�cacy can
depend dramatically on the frequency of the presynaptic test pulses used
to probe these changes. In that preparation, following an interval of pre-
and postsynaptic pairing, neocortical pyramidal neurons are seen to exhibit
LTP, with the amplitude of the post-pairing response to a single test pulse
elevated to 166% of the pre-pairing response. If LTP were a manifestation
of a synaptic gain increase, the response to each higher-frequency test pulse
would also be 166% of the pre-pairing response to the same presynaptic
frequency. Although the Markram–Tsodyks data do show an ampli�ed re-
sponse to the initial spike in a test train (EPSPinit), the degree of enhancement
of the stationary response (EPSPstat) declines steeply as test pulse frequency
increases (see Figure 1). In fact, post-pairing ampli�cation of EPSPstat dis-
appears altogether for 23 Hz test trains and then, remarkably, reverses sign,
with test trains of 30–40 Hz producing post-pairing stationary response am-
plitudes that are less than 90% the size of pre-pairing amplitudes. Pairing is
thus shown to induce a redistribution rather than a uniform enhancement
of synaptic ef�cacy.

As Markram, Pikus, Gupta, and Tsodyks (1998) point out, redistribution
of synaptic ef�cacy has profound implications for modeling as well as ex-
perimentation: “Incorporating frequency-dependent synaptic transmission
into arti�cial neural networks reveals that the function of synapses within
neural networks is exceedingly more complex than previously imagined”
(p. 497). Neural modelers have long been aware that synaptic transmission
may exhibit frequency dependence (Abbott, Varela, Sen, & Nelson, 1997;
Carpenter & Grossberg, 1990; Grossberg, 1968), but most network models
have not so far needed this feature to achieve their functional goals. Rather,
the assumption that synaptic gains, or multiplicative weights, are �xed on
the timescale of synaptic transmission has served as a useful cornerstone
for models of adaptive neural processes and related arti�cial neural net-
work systems. Even models that hypothesize synaptic frequency depen-
dence would still typically have predicted the constant upper dashed line
in Figure 1 (see section 2.1), rather than the change in frequency dependence
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Figure 1: Relative amplitude of the stationary postsynaptic potential EPSPstat
as a function of presynaptic spike frequency (I) (adapted from Markram &
Tsodyks, 1996, Figure 3c, p. 809). In the Markram–Tsodyks pairing paradigm,
suf�cient current to evoke 4–8 spikes was injected, pre- and post-, for 20 msec;
this procedure was repeated every 20 sec for 10 min. Data points show the
EPSPstat after pairing as a percentage of the control EPSPstat before pairing, for
I D 2, 5, 10, 23, 30, 40 Hz; plus the low-frequency “single-spike” point, shown
as a weighted average of the measured data: 2 £ 0.25 and 17 £ 0.067 Hz. If
pairing had produced no adaptation, EPSPstat would be a function of I that was
unaffected by pairing, as represented by the lower dashed line (100% of con-
trol). If pairing had caused an increase in a gain, or multiplicative weight, then
EPSPstat would equal the gain times a function of I, which would produce the
upper dashed line (166%of control). Markram and Tsodyks �t their data with an

exponential curve, approximately (1 C 0.104[e¡
¡

I¡14.5
7.23

¢
¡ 1])100%, which crosses

the neutral point at I D 14.5 Hz.

observed in the Markram-Tsodyks redistribution of synaptic ef�cacy (RSE)
experiments.

A “bottom-up” modeling approach might now graft a new process, such
as redistribution of synaptic ef�cacy, onto an existing system. While such a
step would add complexity to the model’s dynamic repertoire, it may be dif-
�cult to use this approach to gain insight into the functional advantages of
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the added element. Indeed, adding the Markram–Tsodyks effect to an exist-
ing network model of pattern learning would be expected to alter drastically
the dynamics of input coding—but what could be the bene�t of such an ad-
dition? A priori, such a modi�cation even appears to be counterproductive,
since learning in the new system would seem to reduce pattern discrimi-
nation by compressing input differences and favoring only low-frequency
inputs.

A neural network model called distributed ART (dART) (Carpenter, 1996,
1997; Carpenter, Milenova, & Noeske, 1998) features RSE at the local synap-
tic level as a consequence of implementing system design goals at the pat-
tern processing level. Achieving these global capabilities, not the �tting of
local physiological data, was the original modeling goal. This “top-down”
approach to understanding the functional role of learned changes in synap-
tic potentiation suggests by example how the apparently paradoxical phe-
nomenon of RSE may actually be precisely the element needed to solve a
critical pattern coding problem at a higher processing level.

The dART network seeks to combine the advantages of multilayer per-
ceptrons, including noise tolerance and code compression, with the com-
plementary advantages of adaptive resonance theory (ART) networks (Car-
penter & Grossberg, 1987, 1993; Carpenter, Grossberg, & Reynolds, 1991;
Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992). ART and dART
models employ competitive learning schemes for code selection, and both
are designed to stabilize learning. However, because ART networks use a
classical steepest-descent paradigm called instar learning (Grossberg, 1972),
these systems require winner-take-all coding to maintain memory stability
with fast learning. A new learning law called the distributed instar (dInstar)
(see section 2.1) allows dART code representations to be distributed across
any number of network nodes.

The dynamic behavior of an individual dART synapse is seen in the
context of its role in stabilizing distributed pattern learning rather than
as a primary hypothesis. RSE here re�ects a trade-off between changes
in frequency-dependent and frequency- independent postsynaptic signal
components, which support a trade-off between pattern selectivity and
nonspeci�c path strengthening at the network level (see Figure 2). Models
that implement distributed coding via gain adaptation alone tend to suffer
catastrophic forgetting and require slow or limited learning. In dART, each
increase in frequency-independent synaptic ef�cacy is balanced by a pro-
portional decrease in frequency-dependent ef�cacy. With each frequency-
dependent element assumed to be stronger than its paired frequency-inde-
pendent element, the net result of learning is redistribution rather than
nonspeci�c enhancement of synaptic ef�cacy. The system uses this mecha-
nism to achieve the goal of a typical competitive learning scheme, enhancing
network response to a given pattern while suppressing the response to mis-
matched patterns. At the same time, the dART network learning laws are
designed to preserve prior codes. They do so by formally replacing the mul-
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tiplicative weight with a dynamic weight (Carpenter, 1994), equal to the rec-
ti�ed difference between target node activation and an adaptive threshold,
which embodies the long-term memory of the system. The dynamic weight
permits adaptation only at the most active coding nodes, which are limited
in number due to competition at the target �eld. Replacing the multiplica-
tive weight with an adaptive threshold as the unit of long-term memory
thus produces a coding system that may be characterized as quasi-localist
(Carpenter, 2001) rather than localist (winner-take-all) or fully distributed.
Adaptive thresholds, which are initially zero, become increasingly resistant
to change as they become larger, a property that is essential for code stability.

Both ART and dART also employ a preprocessing step called comple-
ment coding (Carpenter, Grossberg, & Rosen, 1991), which presents to the
learning system both the original external input pattern and its comple-
ment. The system thus allocates two thresholds for coding each component
of the original input, a device that is analogous to on-cell/off-cell coding
in the early visual system. Each threshold can only increase, and, as in the
Markram-Tsodyks RSE experiments, each model neuron can learn to en-
hance only low-frequency signals. Nevertheless, by treating high-frequency
and low-frequency component of the original input pattern symmetrically,
complement coding allows the network to encode a full range of input fea-
tures.

Elements of the dART network that are directly relevant to the discussion
of Markram-Tsodyks RSE during pairing experiments will now be de�ned
quantitatively.

2 Results

2.1 Distributed ART Model Equations. A simple, plausible model of
synaptic transmission might hypothesize a postsynaptic depolarization T
in response to a presynaptic �ring rate I as T D weff ¤ I, where the effective
weight weff might decrease as the frequency I increases. Speci�cally, if:

T D [ f (I) ¤ w] ¤ I,

where w is constant on a short timescale, then the ratio of T before versus af-
ter pairing would be independent of I. An LTP experiment that employsonly
single-shock test pulses relies on such a hypothesis for in vivo extrapolation
and therefore implicitlypredicts the upper dashed line in Figure 1. However,
this synaptic computation is completely at odds with the Markram-Tsodyks
measurements of adaptive change in frequency dependence.

The net postsynaptic depolarization signal T at a dART model synapse is
a function of two formal components with dual computational properties:
a frequency-dependent component S, which is a function of the current
presynaptic input I, and a frequency-independent component H, which is
independent of I. Both components depend on the postsynaptic voltage y
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Figure 2: During dART learning, active coding nodes tend simultaneously
to become more selective with respect to a speci�c pattern and to become
more excitable with respect to all patterns. This network-level trade-off is
realized by a synaptic-level dynamic balance between frequency-dependent
and frequency-independent signal components. During learning, “disused”
frequency-dependent elements, at synapses where the dynamic weight exceeds
the input, are converted to frequency-independent elements. This conversion
will strengthen the signal transmitted by the same path input (or by a smaller
input), which will subsequently have the same frequency-dependent compo-
nent but a larger frequency-independent component. Network dynamics also
require that an active frequency-dependent (pattern-speci�c) component con-
tribute more than the equivalent frequency-independent (nonspeci�c) compo-
nent, which is realized as the hypothesis that parameter a is less than 1 in equa-
tion 2.1. This hypothesis ensures that among those coding nodes that would
produce no new learning for a given input pattern, nodes with learned patterns
that most closely match the input are most strongly activated.

and the adaptive threshold t :

Frequency dependent: S D I ^ [y ¡ t ]C

Frequency independent: H D y ^ t

Total postsynaptic signal: T D S C (1 ¡ a) H D I ^ [y ¡ t ]C

C (1 ¡ a)y ^ t.

(2.1)
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In 2.1, a ^ b ´ minfa, bg and [a]C ´ maxfa, 0g. Parameter a is assumed to be
between 0 and 1, corresponding to the network hypothesis that the pattern-
speci�c component contributes more to postsynaptic activation than the
nonspeci�c component, all other things being equal. The dynamic weight,
de�ned formally as [y ¡ t ]C , speci�es an upper bound on the size of S; for
smaller I, the frequency-dependent component is directly proportional to I.
Note that this model does not assign a speci�c physiological interpretation
to the postsynaptic signal T. In particular, T cannot simply be proportional
to the transmitted signal, since T does not equal 0 when I D 0.

The adaptive threshold t , initially 0, increases monotonically during
learning, according to the dInstar learning law:

dInstar:
d
dt

t D
£
[y ¡ t ]C ¡ I

¤C

D [y ¡ t ¡ I]C . (2.2)

The distributed instar represents a principleof atrophydue to disuse, where-
by a dynamic weight that exceeds the current input “shrinks to �t” that input
(see Figure 2). When the coding node is embedded in a competitivenetwork,
the bound on total network activation across the target �eld causes dynamic
weights to imposean inherited bound on the total learned change any given
input can induce, with fast as well as slow learning. Note that t remains
constant if y is small or t is large and that

d
dt

t D [y ¡ t ]C ¡ [y ¡ t ]C ^ I

D y ¡ y ^ t ¡ [y ¡ t ]C ^ I

D y ¡ H ¡ S.

When a threshold increases, the frequency-independent, or nonspeci�c,
component H (see equation 2.1) becomes larger for all subsequent inputs,
but the input-speci�c component S becomes more selective. For a high-
frequency input, a nonspeci�cally increased component is neutralized by a
decreased frequency-dependent component. The net computational effect
of a threshold increase (e.g., due to pairing) is an enhancement of the total
signal T subsequently produced by small presynaptic inputs, but a smaller
enhancement, or even a reduction, of the total signal produced by large
inputs.

2.2 Distributed ART Model Predicts Redistribution of Synaptic Ef-
�cacy. Figure 3 illustrates the frequency-dependent and frequency-inde-
pendent components of the postsynaptic signal T and shows how these two
competing elements combine to produce the change in frequency depen-
dence observed during pairing experiments. In this example, model ele-
ments, de�ned by equation 2.1, are taken to be piecewise linear, although
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this choice is not unique. In fact, the general dART model allows a broad
range of form factors that satisfy qualitative hypotheses. The model pre-
sented here has been chosen for minimality, including only those compo-
nents needed to produce computational capabilities, and for simplicity of
functional form.

Throughout, the superscript b(before) denotes values measured before
the pairing experiment, and the superscript a (after) denotes values mea-
sured after the pairing experiment. The graphs show each system variable
as a function of the presynaptic test frequency (I). Variable I is scaled by
a factor ( NI Hz), which converts the dimensionless input (see equation 2.1)
to frequency in the experimental range. The dimensionless model input
corresponds to the experimental test frequency divided by NI.
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In the dART network, postsynaptic nodes are embedded in a �eld where
strong competitiontypically holds a pattern of activation as a working mem-
ory code that is largely insensitive to �uctuations of the external inputs.
When a new input arrives, an external reset signal brie�y overrides inter-
nal competitive interactions, which allows the new pattern to determine its
own unbiased code. This reset process is modeled by momentarily setting
all postsynaptic activations y D 1. The resulting initial signals T then lock in
the subsequent activation pattern, as a function of the internal dynamics of
the competitive �eld. Thereafter, signal components S and H depend on y,
which is small at most nodes due to normalization of total activation across
the �eld. The Markram-Tsodyks experiments use isolated cells, so network

Figure 3: Facing page. dART model and Markram–Tsodyks data. (A) The dART
postsynaptic frequency-dependent component S increases linearly with the
presynaptic test spike frequency I, up to a saturation point. During pairing, the
model adaptive threshold t increases, and the saturation point of the graph of S
is proportional to (1 ¡ t ) . The saturation point therefore declines as the coding
node becomes more selective. Pairing does not alter the frequency-dependent
response to low- frequency inputs: Sa D Sb for small I. For high-frequency in-
puts, Sa is smaller than Sb by a quantity D , which is proportional to the amount
by which t has increased during pairing. (B) The dART frequency-independent
component H, which is a constant function of the presynaptic input I, increases
by D during pairing. (C) Combined postsynaptic signal T D S C (1 ¡ a) H,
where 0 < a < 1. At low presynaptic frequencies, pairing causes T to increase
(Ta D Tb C (1 ¡ a)D ) , because of the increase in the frequency-independent sig-
nal component H. At high presynaptic frequencies, pairing causes T to decrease
(Ta D Tb ¡ aD ) . (D) For presynaptic spike frequencies below the post-pairing
saturation point of Sa, Ta is greater than Tb . For frequencies above the pre-pairing
saturation point of Sb , Ta is less than Tb. The interval of intermediate frequencies
contains the neutral point where Ta D Tb .

Parameters for the dART model were estimated byminimizing the chi-squared

(Press, Teukolski, Vetterling, & Flannery, 1994) statistic: Â2 D
NX

iD1

³
yi ¡ Oyi

si

´2

,

where yi and si are the mean value and standard deviation of the ith measure-
ment point, respectively, while Oyi is the model’s prediction for that point. Four
parameters were used: threshold before pairing (t b D 0.225) , threshold after
pairing (t a D 0.39) , a presynaptic input scale (NI D 33.28 Hz), and the weight-
ing coef�cient (a D 0.6) , which determines the contribution of the frequency-
dependent component S relative to the frequency-independent component H.
The components of the dimensionless postsynaptic signal T D S C (1 ¡a) H, for
a system with a single node in the target �eld (y D 1) , are S D (I/NI) ^ (1 ¡ t ) and
H D t . The dART model provides a good �t of the experimental data on changes
in synaptic frequency dependence due to pairing (Â2 (3) D 1.085, p D 0.78) .
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properties are not tested, and Figures 3 and 4 plotdART model equations 2.1
with y D 1.

Figure 3A shows the frequency-dependent component of the postsynap-
tic signal before pairing (Sb) and after pairing (Sa). The frequency-dependent
component is directly proportional to I, up to a saturation point, which is
proportional to (1 ¡ t ). Tsodyks and Markram (1997) have observed a sim-
ilar phenomenon: “The limiting frequencies were between 10 and 25 Hz.
. . . Above the limiting frequency the average postsynaptic depolarization
from resting membrane potential saturates as presynaptic �ring rates in-
crease” (p. 720). The existence of such a limiting frequency con�rms a pre-
diction of the phenomenological model of synaptic transmission proposed
by Tsodyks and Markram (1997), as well as the predictionof distributed ART
(Carpenter, 1996, 1997). The dART model also predicts that pairing lowers
the saturation point as the frequency-dependent component becomes more
selective.

Figure 3B illustrates that the frequency-independent component in the
dART model is independent of I and that it increases during training.
Moreover, the increase in this component (D ´ Ha ¡ Hb D t a ¡ t b ) bal-
ances the decrease in the frequency-dependent component at large I, where
Sb ¡ Sa D D .

Figure 3C shows how the frequency-dependent and frequency- indepen-
dent components combine in the dART model to form the net postsynaptic
signal T. Using the simplest form factor, the model synaptic signal is taken
to be a linear combination of the two components: T D S C (1 ¡ a) H (see
equation 2.1). For small I (below the post-pairing saturation point of Sa),
pairing causes T to increase, since S remains constant and H increases. For
large I (above the pre-pairing saturation point of Sb), pairing causes T to
decrease: because (1 ¡ a) < 1, the frequency-independent increase is more
than offset by the frequency-dependent decrease. The neutral frequency, at
which the test pulse I produces the same postsynaptic depolarization before
and after pairing, lies between these two intervals.

Figure 3D combines the graphs in Figure 3C to replicate the Markram-
Tsodyks data on changes in frequency dependence, which are redrawn on
this plot. The graph of Ta/Tb is divided into three intervals, determined by
the saturation points of S before pairing (I D NI (1 ¡ t b) D 25.8 Hz) and after
pairing (I D NI (1 ¡t a ) D 20.3 Hz) (see Figure 3A). The neutral frequency lies
between these two values.

System parameters of the dART model were chosen, in Figure 3, to obtain
a quantitative �t to the Markram-Tsodyks (1996) results concerning changes
in synaptic potentiation, before pairing versus after pairing. In that prepa-
ration, the data exhibit the reversal phenomenon where, for high-frequency
test pulses, post-pairing synaptic ef�cacy falls below its pre-pairing value.
Note that dART system parameters could also be chosen to �t data that
might show a reduction, but not a reversal, of synaptic ef�cacy. This might
occur, for example, if the test pulse frequency of the theoretical reversal point
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Figure 4: Transitional RSE ratios. The dART model predicts that if postsynap-
tic responses were measured at intermediate numbers of pairing intervals, the
location of the neutral point, where pairing leaves the ratio Ta /Tb unchanged,
would move to the left on the graph. That is, the cross-over point would occur
at lower frequencies I.

were beyond the physiological range. Across a wide parameter range, the
qualitative properties illustrated here are robust and intrinsic to the internal
mechanisms of the dART model.

Analysis of the function T D S C (1 ¡a) H suggests how this postsynaptic
signal would vary with presynaptic spike frequency if responses to test
pulses were measured at transitional points in the adaptation process (see
Figure 4), after fewer than the 30 pairing intervals used to produce the
original data. In particular, the saturation point where the curve modeling
Ta/Tb �attens out at high presynaptic spike frequency depends on only
the state of the system before pairing, so this location remains constant as
adaptation proceeds. On the other hand, as the number of pairing intervals
increases, the dART model predicts that the neutral point, where the curve
crosses the 100% line and Ta D Tb, moves progressively to the left. That
is, as the degree of LTP ampli�cation of low-frequency inputs grows, the
set of presynaptic frequencies that produce any increased synaptic ef�cacy
shrinks.
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3 Discussion

3.1 Redistribution of Synaptic Ef�cacy Supports Stable Pattern Learn-
ing. Markram and Tsodyks (1996) report measurements of the initial, tran-
sient, and stationary components of the excitatory postsynaptic potential
in neocortical pyramidal neurons, bringing to a traditional LTP pairing
paradigm a set of nontraditional test stimuli that measure postsynaptic re-
sponses at various presynaptic input frequencies. The dART model analysis
of these experiments focuses on how the stationary component of the post-
synaptic response is modi�ed by learning. This analysis places aspects of
the single-cell observations in the context of a large-scale neural network
for stable pattern learning.

While classical multiplicative models are considered highly plausible,
having succeeded in organizing and promoting the understanding of vol-
umes of physiological data, nearly all such models failed to predict adaptive
changes in frequency dependence. Learning laws in the dART model op-
erate on a principle of atrophy due to disuse, which allows the network to
mold parallel distributed pattern representations while protecting stored
memories. The dynamic balance of competing postsynaptic computational
components at each synapse dynamically limits memory change, enabling
stable fast learning with distributed code representations in a real-time neu-
ral model. To date, other competitive learning systems have not realized this
combination of computational capabilities.

Although dART model elements do not attempt to �t detailed physiolog-
ical measurements of synaptic signal components, RSE is the computational
element that sustains stable distributed pattern coding in the network. As
described in section 2.2, the network synapse balances an adaptive increase
in a frequency-independent component of the postsynaptic signal against
a corresponding frequency-dependent decrease. Local models of synaptic
transmission designed to �t the Markram-Tsodyks data are reviewed in
section 3.2. These models do not show, however, how adaptive changes
in frequency dependence might be implemented in a network with useful
computational functions.

In the dART model, the synaptic location of a frequency-independent
bias term, realized as an adaptive threshold, leads to dual postsynaptic
computations that mimic observed changes in postsynaptic frequency de-
pendence, before versus after pairing. However, producing this effect was
not a primary design goal; in fact, model speci�cation preceded the data
report. Rather, replication of certain aspects of the Markram-Tsodyks ex-
periments was a secondary result of seeking to design a distributed neural
network that does not suffer catastrophic forgetting. The dInstar learning
law (see equation 2.2) allows thresholds to change only at highly active
coding nodes. This rule stabilizes memory because total activation across
the target �eld is assumed to be bounded, so most of the system’s mem-
ory traces remain constant in response to a typical input pattern. De�ning
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long-term change in terms of dynamic weights thus allows signi�cant new
information to be encoded quickly at any future time, but also protects the
network’s previous memories at any given time. In contrast, most neural
networks with distributed codes suffer unselective forgetting unless they
operate with restrictions such as slow learning.

The �rst goal of the dART network is the coding process itself. In partic-
ular, as in a typical coding system, two functionally distinct input patterns
need to be able to activate distinct patterns at the coding �eld. The network
accomplishes this by shrinking large dynamic weights just enough to �t the
current pattern (see Figure 2). Increased thresholds enhance the net excita-
tory signal transmitted by this input pattern to currently active coding nodes
because learning leaves all frequency-dependent responses to this input
unchanged while causing frequency-independent components to increase
wherever thresholds increase. On the other hand, increased thresholds can
depress the postsynaptic signal produced by a different input pattern, since
a higher threshold in a high-frequency path would now cause the frequency-
dependent component to be depressed relative to its previous size. If this
depression is great enough, it can outweigh the nonspeci�c enhancement of
the frequency-independent component. Local RSE, as illustrated in Figure 3,
is an epiphenomenon of this global pattern learning dynamic.

A learning process represented as a simple gain increase would only
enhance network responses. Recognizing the need for balance, models dat-
ing back at least to the McCulloch-Pitts neuron (McCulloch & Pitts, 1943)
have included a nodal bias term. In multilayer perceptrons such as back-
propagation (Rosenblatt, 1958, 1962; Werbos, 1974; Rumelhart, Hinton, &
Williams, 1986), a single bias weight is trained along with all the pattern-
speci�c weights converging on a network node. The dART model differs
from these systems in that each synapse includes both frequency-dependent
(pattern-speci�c) and frequency-independent (nonspeci�c bias) processes.
All synapses then contribute to a net nodal bias. The total increased frequen-
cy-independent bias is locally tied to increased pattern selectivity. Although
the adaptation process is unidirectional, complement coding, by represent-
ing both the original input pattern and its complement, provides a full
dynamic range of coding computations.

3.2 Local Models of the Markram-Tsodyks Data. During dInstar learn-
ing, the decrease in the frequency-dependent postsynaptic component S
balances the increase in the frequency-independent component H. These
qualitative properties subserve necessary network computations. However,
model perturbations may have similar computational properties, and sys-
tem components do not uniquely imply a physical model. Models that fo-
cus more on the Markram- Tsodyks paradigm with respect to the detailed
biophysics of the local synapse, including transient dynamics, are now re-
viewed.
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In the Tsodyks-Markram (1997) model, the limiting frequency, beyond
which EPSPstat saturates, decreases as a depletion rate parameter USE (uti-
lization of synaptic ef�cacy) increases. In this model, as in dART, pairing
lowers the saturation point (see Figure 3C). Tsodyks and Markram discuss
changes in presynaptic release probabilities as one possible interpretation
of system parameters such as USE.

Abbott et al. (1997) also model some of the same experimental phenom-
ena discussed by Tsodyks and Markram, focusing on short-term synaptic
depression. In other model analyses of synaptic ef�cacy, Markram, Pikus,
Gupta, & Tsodyks (1998) and Markram, Wang, and Tsodyks (1998) add a
facilitating term to their 1997 model in order to investigate differential sig-
naling arising from a single axonal source. Tsodyks, Pawelzik, and Markram
(1998) investigate the implications of these synaptic model variations for a
large-scale neural network. Using a mean-�eld approximation, they “show
that the dynamics of synaptic transmission results in complex sets of regular
and irregular regimes of network activity” (p. 821). However, their network
is not constructed to carry out any speci�ed function; neither is it adaptive.
Tsodyks et al. (1998) conclude “An important challenge for the proposed
formulation remains in analyzing the in�uence of the synaptic dynamics
on the performance of other, computationally more instructive neural net-
work models. Work in this direction is in progress” (pp. 831–832). Because
the Markram-Tsodyks RSE data follow from the intrinsic functional design
goals of a complete system, the dART neural network model begins to meet
this challenge.
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