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Abstract 

ARTMAP-FD extends fuzzy A R T M A P  t o  perform famal- 
iarity discrimination. That is ,  the network learns to ab- 
stain from meaningless guesses on patterns not belonging 
to a class represented in the training set. ARTMAP-FD 
can also be applied in conjunction with sequential evi- 
dence accumulation. Its performance is illustrated here 
on simulated radar range profile data .  

1 Introduction 

The recognition process involves both identification and 
familiarity discrimination. Consider, for example, a neu- 
ral network designed to  identify aircraft based on their 
radar reflections and trained on sample reflections from 
ten types of aircraft A . .  , J. After training;, the net- 
work should correctly classify radar reflections belong- 
ing to the familiar classes A .  . . J ,  but it should also ab- 
stain from making a meaningless guess when presented 
with a radar reflection from an object belonging to  a 
different, unfamiliar class. Many neural networks car- 
ry out pattern recognition, but most perforim identifi- 
cation without first estimating whether a tesi, set input 
belongs to a class that became familiar during train- 
ing. Supervised and unsupervised networks that carry 
out familiarity discrimination [1]-[13] include some that  
use a positive ARTMAP baseline vigilance value dur- 
ing testing. In the benchmark application developed 
here, however, this approach was not as successful as the 
ARTMAP-FD method, that  instead uses the ARTMAP 
choice function to  estimate familiarity. This paper de- 
scribes ARTMAP-FD, an extension of fuzzy ARTMAP 
that performs familiarity discrimination. ARTMAP-FD 

capabilities are demonstrated on data sets consisting of 
simulated radar range profiles from aircraft targets, with 
performance evaluated using receiver operating charac- 
teristic (ROC) curves. Section 2 summarizes the dynam- 
ics of a fuzzy ARTMAP system for classification. Section 
3 defines a familiarity function and describes its role in 
the ARTMAP-FD network, both for individual inputs 
and for input sequences associated with a given target. 
Section 4 describes the radar range profiles that  are used 
as simulation inputs in Section 5. In these simulations, 
multiwavelength input vectors can have as many as 2400 
components, so the application uses the ARTMAP prop- 
erties of scalability and fast learning in an essential way. 
Finally, Section 6 discusses selection of the familiarity 
threshold. 

2 Fuzzy AR,TMAP 

Fuzzy ARTMAP [14:] is a self-organizing neural net- 
work for learning, recognition, and prediction. Fig- 
ure 1 illustrates a fuzzy ARTMAP system for classifi- 
cation problems, where each input a learns to  predict 
an output class I<'. ]During training, the network cre- 
ates internal recognition categories, with the number 
of categories determiined on-line by predictive success. 
Components of the vector a are scaled so that each 
a; E [0,1] ( i  = 1 . .  . M ) .  Complement coding [15] 
doubles the number of components in the input vector, 
which becomes A E (a, a'), where the ith component of 
ac is a: (1 - ui ) .  With fast learning, the weight vector 
wj records the largest and smallest component values 
of input vectors placed in the j t h  category. The 2M- 
dimensional vector w.y may be visualized as the hyper- 
box Rj that just encloses all the vectors a that  selected 
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category j during training. 

Weber law choice function T j :  
Activation of the coding field F2 is determined by the 

2M 
where (P A Q)i = min(Pi,&i) and I P 1s I Pi 1. 
With winner-take-all coding, the F2 node J that receives 
the largest F1 ---$ F2 input T j  becomes active. Node J 
remains active if it satisfies the matching criterion: 

where p E [0,1] is the dimensionless vigilance parameter. 
Otherwise, the network resets the active F2 node and 
searches until J satisfies (2). If node J then makes an 
incorrect class prediction, a match tracking signal raises 
vigilance just enough to induce a search, which continues 
until either some F2 node becomes active for the first 
time, in which case J learns the correct output class 
label k ( J )  = I<; or a node J that has previously learned 
to predict K becomes active. During testing, a pattern 
a that activates node J is predicted to  belong to  the 
class K = k ( J ) .  

3 Familiarity discriminat ion 
with ARTMAP-FD 

3.1 Familiarity measure 
During testing, an input pattern a is defined as famil- 
iar when a familiarity function d(A) is greater than a 
decision threshold y. Section 6 discusses how to choose 
y for a given application. Once a category choice has 
been made by the winner-take-all rule, fuzzy ARTMAP 
ignores the size of the input TJ .  In contrast, ARTMAP- 
FD uses TJ to define familiarity, taking 

where TYAX -1 - WJ I /(a+ I WJ I). This value is at- 
tained by each input a that lies in the hyperbox R J ,  
since I A A WJ I = ]  W J  I for these points. An input that 
chooses category J during testing is then assigned the 
maximum familiarity value 1 if and only if a lies within 
RJ. 

Note that the choice parameter a in equation (1) is 
usually taken to  be small since the conservative limit, 
where a = O + ,  minimizes the number of category nodes 

formed during training. When a M 0, TYAX M 1, 
so $(A) M Tj (A) .  Simulations below set Q = 0.0001. 
Then, setting $(A) = TJ(A) produces essentially the 
same results as setting $(A) = T J ( A ) / T ~ ~ ~ .  The for- 
mer choice of (Y is more readily computable in a neural 
network but the latter has a simpler geometric interpre- 
tation. 

3.2 Familiarity discriminat ion algorithm 

ARTMAP-FD is identical to  fuzzy ARTMAP during 
training. During testing, 4(A) is computed after fuzzy 
ARTMAP has yielded a winning node J and a predict- 
ed class K = k ( J ) .  If d(A) > y, ARTMAP-FD predicts 
class I< for the input a. If d(A) 5 y, a is regarded as 
belonging to  an unfamiliar class and the network makes 
no prediction. 

Note that fuzzy ARTMAP can also abstain from clas- 
sification, when the baseline vigilance parameter p is 
greater than zero during testing. Typically p = 0 during 
training, to  maximize code compression. In radar range 
profile simulations such as those described below, fuzzy 
ARTMAP can perform familiarity discrimination when 
p > 0 during both training and testing. However, accu- 
rate discrimination requires that i~ be close to  1, which 
causes category proliferation during training. 

Range profile simulations have also set p = 0 during 
both training and testing, but with the familiarity mea- 
sure set equal to the fuzzy ARTMAP match function: 

(4) 

This approach is essentially equivalent to  taking p = 0 
during training and p > 0 during testing, with p = y. 
However, when a test set input a E R J ,  the function 
defined by (4) sets d(A) =I WJ I / M ,  which may be 
large or small. Thus this function does not provide as 
good familiarity discrimination as the one defined by (3), 
which always sets d(A) = 1 when a E RJ.  All the 
simulations below employ the function (3) with p = 0. 

3.3 Familiarity discrimination with se- 
quential evidence accumulation 

ART-EMAP (Stage 3) [16] identifies a test set object’s 
class after exposure to  a sequence of input patterns, 
such as differing views, all identified with that one ob- 
ject. Training is identical to  that of fuzzy ARTMAP, 
with winner-take-all coding at  F2. ART-EMAP gener- 
ally employs distributed F2 coding during testing. With 
winner-take-all coding during testing as well as training, 
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Figure 1. A fuzzy ARTMAP network for classification 

ART-EMAP predicts the object's class to  lbe the one 
selected by the largest number of inputs in the sequence. 
Extending this approach, ARTMAP-FD accumulates fa- 
miliarity measures at each predicted class I< as the test 
set sequence is presented. Once the winning class is de- 
termined, the objects familiarity is defined as Ithe average 
accumulated familiarity measure of the predicted class. 

4 Radar range profiles 
A radar range profile is a one-dimensional repiresentation 
of a target, produced from a recording of a radar pulse 
reflection at high temporal resolution [17]-[19]. A con- 
tinuous radar return is quantized into range bins that 
sample information about the target over a downrange 
extent Ax. The signal, integrated over each bin, pro- 
duces a discrete radar range profile vector (Figure 2a, 
top). Several range profiles, constructed from the same 
view of the target but using pulses of different center fre- 
quencies, can also be concatenated to form a multiwave- 
length radar range profile [20,21] (Figure 2a, bottom). 
The simulations presented here have multi wavelength 
range profiles with center frequencies evenly spaced be- 
tween 18GHz and 22GHz. In the simulations, Ax = 2/3 
m and the range profile covers 40m, so the number of 
components in a range profile equals the number of cen- 
ter frequencies times 60. Simulations below use 2, 10, 
or 40 center frequencies, yielding input vectors a of size 
M = 120, 600, or 2400. 

Range profiles are here simulated by computing, in the 

TARGET CLASS 

far-field approximation, reflections from 100 scattering 
centers placed randoimly on each image. Images repre- 
sent a set of two-dimensional "aircraft" that differ from 
one another by wing position and wing length (Figure 
ab). Each set of targets represents airplanes with wing 
positions that range from the middle of the fuselage to 
near the tail and with wing lengths whose range is inde- 
pendent of the set size. Larger sets thus contain more 
targets and targets that are more similar to one another. 
Figure 2b depicts the scattering centers of a set of targets 
with 6 wing positions and 6 wing lengths. The network 
is trained on range profiles generated by 18 targets (in 
boxes), which define the set of familiar classes. 

The ARTMAP-FD, network is trained on range pro- 
files obtained from 21 viewing angles in the plane of the 
targets, evenly spaced 0.5' apart over a range of loo ,  
centered on the front of the target. At each viewing 
aspect and for each familiar target, training set range 
profiles are computed with 15 downrange shifts even- 
ly spaced from - l /2  to  + l /2  bin widths. The trained 
network is tested on at least 2000 range profiles of all 
the targets, familiar and unfamiliar, taken at  random 
angles within the 10" range and with random shifts of 
the distance to  the tizrget spanning one half the down- 
range extent of the range profile. A temporal sequence 
of range profiles is generated using a model of small- 
amplitude stochastic fluctuations of the heading of an 
aircraft attempting to  fly in a fixed direction. Twenty 
sequential views correspond to  one second of observation 
time. (For a more extensive discussion of the procedures 
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YI 
randomly selected familiar targets 

for generating simulated radar range profiles, sep [2 11 .) 

5 Familiarity discriminat ion 
simulations 

Since familiarity discrimination involves placing an input, 
into one of two sets, familiar and unfamiliar, the rec.eiv- 
er operating characteristic (ROC:) formalism [22,23] can 
be used to  evaluate the effectiveness of ARTMAP-FD 
on this task. The hit rate RH is the fraction of familiar 
targets the network correctly identifies as familiar arid 
the false a l a n n  rate RF is the fraction of unfamiliar tar- 
gets the network incorrectly identifies as familiar. Eac,h 
of these quantities depends upon a decision threshold fa- 
miliarity parameter y. An ROC curve is a plot of RH vs. 
R F ,  parameterized by y. With y = 0, all inputs meet 
the familiarity criterion, so the curve begins in the up- 
per right-hand corner. There, the hit rate RH equals 1 
but the false-alarm rate RF also equals 1. As y increases, 
the ROC: curve moves toward the lower left-hand corner, 
where y = 1. Then, all inputs are regarded as unfamil- 
iar and R H  = R F  = 0. Good discrimination potential 
is c,harac,terized by an ROC curve that approac,hes the 
upper left-hand Corner of the square, the point where all 
true positives are identified (RH = 1) without any false 
positives (RF = 0). The area under the ROC: curve is 
the e- index,  a measure of predictive accuracy that is in- 
dependent of both the fraction of positive cases in the 
test set and the positive-case decision threshold y. 

Figure 3a shows ROC curves for a network trained on 
2 targets from a 4-target set (the upper-right and lower 
right, corner targets out of the 4 corner targets in Figure 
2b). Successive ciirves show simulation results for range 

Figure 2. (a) Simulated range profiles. Top: Single wavelength. Bot tom: Multiwavelength, wi th  two center frequencies. 
(b) 36 simulation targets wi th 6 wing positions and 6 wing lengths and 100 scattering centers per target. Boxes indicate 
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profiles having 2, 10, and 40 center frequencies. Just 
as an inc.rease in the number of center frequencies in a 
range profile increases the accuracy of classification on 
test sets with purely familiar targets [21], increasing the 
nurriber of frequencies also increases the network's ability 
to distinguish between farniliar and unfamiliar targets. 

A larger target set makes dassification more difficult, 
even with many center frequencies in each range profile. 
Familiarity discximination is more difficult as well, but 
is again improved by sequential evidence accumulation. 
This can be seen from the ROC: curves in Figure 3b, ob- 
tained from 18 familiar targets and 18 unfamiliar targets 
selected a t  random from a set of 36 targets (Figure 2b). 
Sequential evidence acmmulation was performed for 1, 
3,  and 100 observations, c,orresponding to 0.05, 0.15, and 
5.0 seconds of observation time. 

6 Familiarity threshold select ion 

The cindex and the shape of the ROC curve measure 
the network's potential ability to discriminate between 
familiar and unfamiliar targets. However, when the 
network is placed in operation, one particular decision 
threshold y = r must be chosen. The optimal r cor- 
responds to a point on the parameterized ROC: curve 
that is typically close to the upper left-hand corner of 
the unit square [22,23] , to maximize correct selection of 
familiar targets while minimizing incorrect selection of 
unfamiliar targets. In a given application, selection of r 
depends upon the relative cost of errors due to missed 
targets and false alarms. The value of r can be deter- 
mined by a validation procedure [23]. 

Because of noise and varying target patterns encoun- 
tered during operation, the robustness of the choice of 
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Figure 3. ROC curves f r o m  ARTMAP-FD simulations. (a) 4 targets, w i th  multiwavelength range profiles having 2, 10, 
and 40 center frequencies, with ROC curves for 110 and 40 center frequencies lying alrnost on  the edges of the  unit square. 
Classification accuracy for famil iar targets is 77.4%, 95.9%, and 99.2% for 2, 10, and 40 center frequencies, respectively, 
among 8000 test patterns. T h e  network created 7, 3, and 3 category nodes. (b)  36 targets, w i th  mult iwavelength 
range profiles having 40 center frequencies, w i th  sequential evidence accumulation for 1, 3 and 100 views. Classification 
accuracy for familiar targets is: 89.5%, 97.0%, and 100.0% for 1, 3, and 100 sequential inputs, among 2016 test pattern 
sequences. The  network created 44  category nodes. 

the optimal 7 = I' is an important factor in the SUC- 

cess of applications. To see the effect of noise in the 
current simulations, consider the ROC curve from an 
ARTMAP-FD network trained on 2 familiar targets out 
of the 4-target set with 40 center frequencies, and test- 
ed on range profiles from all 4 targets (Figure 3a). At 
the point where the curve almost reaches the upper left- 
hand corner of the box, I' = 0.9989, which gives a hit rate 
RH = 0.9997 and a false-alarm rate RF = 0.0003. When 
1% Gaussian noise is added to  the test range profiles, 
the ROC curve looks exactly like the noise-free curve, 

noise level and adjusts y accordingly. An approach of 
this type may be useful in improving the robustness of 
familiarity discrimination in the presence of noise. Mod- 
ified familiarity measures that improve robustness while 
retaining effective famliliarity discrimination are current- 
ly being investigated. 
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