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ARTMAP-FTR: A neural network for fusion target recognition,

with application to sonar classification
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ABSTRACT

ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a
variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool
monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART
architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition
categories of optimal size by maximizing code compression while minimizing predictive error in an on-line
setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants,
including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new
ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of
multi-ping sonar target classification. The development data set, which lists sonar returns from underwater
objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren
Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar
returns. The system also provides a procedure for solving more general sensor fusion problems.

Keywords: sonar classification, sensor fusion, target recognition, ARTMAP-FTR, ART, ARTMAP, fuzzy
ARTMAP, adaptive resonance, neural network

1. SONAR TARGET RECOGNITION

A Naval Surface Warfare Center (NSWC) data set records reflections of six types of targets: two mine-like
objects, a water-filled drum, a smooth granite rock, a limestone rock, and a water-saturated log with a mine-like
shape (Table 1). Each object was suspended in water and rotated during sonar testing, yielding 72 aspects per
target for each of seven frequency bands of 40 kHz bandwidth. Researchers at the ORINCON Corporation, under
a Phase IT SBIR contract from the Office of Naval Research led by Dr. Larry Burton, have used the NSWC data
set to develop a neural network system for automated sonar recognition. ORINCON simulation studies focused on
the 20-60 kHz band. Sonar measurements were processed using both a standard matched filter and the

Spectrogram Correlation And Transformation (SCAT) algorithm,1 which emulates signal processing in the bat

echolocation system. Preprocessing yielded input vectors with components representing 492 time-series points for
each echo. Data records were also varied by the addition of simulated reverberations.

- Object number Abbreviation Description
1 bullet Bullet-shaped, metallic
2 cone Truncated-cone-shaped, plastic
3 drum Water-filled 50-gallon drum
4 limestone Rough limestone rock
5 granite Smooth granite rock
6 log Water-saturated log

Table 1: Objects represented by the NSWC sonar data set. Objects 1 and 2 are considered mine-like and
objects 1-3 are man-made.




Carpenter & Streilein ARTMAP-FTR SPIE AeroSense’98 CAS/CNS TR-98-016 2

The ORINCON project has now established a benchmark paradigm for development and comparison of classifier
systems for target recognition. The NSWC sonar data set has been tested on several recognition tasks such as
man-made vs. non-man-made object discrimination, mine-like vs. non-mine-like discrimination, identification of
the man-made objects, and identification of all six objects. ORINCON researchers have examined the recognition
capabilities of various neural network systems, particularly multi-layer perceptrons and ellipsoidal basis functions,
the latter giving slightly better results. The classifier system protocol trains and tests on alternating aspects
(Figure 1).

This paper introduces a neural network architecture that has been developed for data fusion tasks such as those
encountered in sonar discrimination problems. The new classification system, called ARTMAP-FTR (ARTMAP -
Fusion Target Recognition), is based on the ARTMAP family of neural networks (Section 2). Simulations focus

on benchmark paradigms that have shown optimal performance in the ORINCON studies.? In particular, on a set
of three-ping fusion tasks with matched filter preprocessing, ARTMAP-FTR performance compares favorably
with performance measures reported by the ORINCON group (Section 3). Additional ARTMAP-FTR system
studies show that performance improves with increasing numbers of pings; that inter-ping aspects do not need to
be spaced at regular intervals for good performance; and that matched filter preprocessing gives substantially
better classification results than the SCAT algorithm (Section 4). Section 5 shows how the ARTMAP-FTR fusion
system is constructed as a hierarchy of network subsystems.

2. ART AND ARTMAP NEURAL NETWORKS

Researchers at the Boston University Department of Cognitive and Neural Systems / Center for Adaptive Systems
(CNS/CAS) have introduced and analyzed the ART (adaptive resonance theory) family of neural network

architectures for self-organizing category learning, recognition, and prediction.z"16 Capabilities of these systems
include stable incremental learning, if-then rule extraction, and large-scale database interpretation.

This research program is now advancing state-of-the-art engineering, moving from neural network models to
application prototypes and fielded systems. Examples of ART technology transfer that have been reported in

publications include: a Boeing parts design retrieval system,17 an autonomous vision system, also being developed
at Boeing,18 robot sensory-motor control,lg'22 robot navigation,23'24 active vision,25 3-D object recognition,26
face recognition,27 medical imaging,28 satellite remote sensing,zg'32 Macintosh operating system software,33
automatic target recognition,34'37 electrocardiogram classificaxtion,38'39 air quality monitoring,40 weather
prediction,41 strength prediction for concrete mi;(es,42 signature verification,43 decision making and intelligent
agents,44 document retrieval,45 analysis of musical scores,46' character classification,‘”'49 machine condition
monitoring and failure forecasting,so'53 chemical analysis from UV and IR spectra,54 multi-sensor chemical
analysis,55 combinatorial optimization,56 detection of cancerous cells,57 sorting of recycled materials,58

frequency selective surface design for electromagnetic system devices,59 and digital circuit design.60
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Figure 1: Sonar returns were recorded at 5° intervals for each of the six objects represented in the
NSWC data set. (a) The classification training set includes returns at 10° intervals, beginning with the 5°
aspect. (b) System performance was evaluated on returns from the remaining 36 aspects: 0°, 10°, ... 350°.
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The ARTMAP-FTR sensor fusion system is outlined in Section 5 below.

3. THREE-PING SONAR RECOGNITION BY AN ARTMAP-FTR SYSTEM

The three-ping sonar identification problem presents a classifier system with three sonar returns at 30° aspect
separation. Figure 2 illustrates a typical aspect set for this paradigm. Returns are preprocessed to produce
matched filtered and threshold-centered data, which serve as classifier inputs. This benchmark problem facilitates
comparisons between different classifiers applied to a set of common tasks. In particular, ORINCON Phase II
results are reported largely for this paradigm, which gave the best overall performance in their studies.

Table 2 lists the rate of correct classification by an ARTMAP-FTR neural network on the three-ping sonar
-identification problem. These results compare favorably with optimal performance reported by ORINCON
researchers. For example, in the ORINCON ONR SBIR Phase II final report, the best six-class recognition rate is
87.0%, using an ellipsoidal basis function network.> ® 2% On the same task with the same preprocessing steps
applied to the input data, ARTMAP-FTR performance was 91.6% (Table 2).

Figure 2: For three-ping fusion with 30° aspect separation, test-set input trials present the classifier
system with returns from aspects {0°, 30°, 60°}, {10°, 40°, 70°} ... {350°, 20°, 50°}.

3-PING SONAR TASK ARTMAP-FTR
30° SEPARATION Pcc
Man-made vs. non-man-made objects 93.1%
{1,2,3} vs. {4,5,6)
Mine-like vs. non-mine-like objects 93.1%
{1,2} vs. {3,4,5,6}
Discrimination among man-made objects 100%
{1},{2}.{3}
Discrimination among non-man-made objects 97.2%
{4}.{5}.{6}
Six-class discrimination 91.6%
{1}.{2}.{3}.{4}.{5}.{6}

Table 2: ARTMAP-FTR test-set percent correct classification (Pcc) rate on three-ping sonar tasks.
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All ARTMAP-FTR performance rates are reported for a test set that is not used in the training process. The
network requires the selection of one free parameter, vigilance, which determines the degree of cluster
granularity and code compression. Some studies also require a choice of decision threshold. All operating
parameters for testing are chosen using a validation subset of the training set (Section 5.4). Sections 3.1 - 3.3
further describe the three-ping simulation studies.

3.1. Man-made vs. non-man-made object discrimination

A system making a two-class decision can vary the test-set output mix by varying an output decision threshold.
With a threshold ¥ €[0,1], the system chooses class k if the fraction o of the system output favoring that class is

greater than y. For the man-made / non-man-made task, setting ¥ =0.0 causes system output for 100% of all
man-made objects to meet the threshold criterion (Pcc = 1.0), but causes 100% of all non-man-made objects to
meet the criterion as well (Pfc=1.0). In Figure 3, the case ¥ =0.0 corresponds to the point in the upper right-
hand corner of the graph, while the case ¥ =1.0 corresponds to the point in the lower left-hand corner of the
graph. As ¥ increases from O to 1, the graph plots the percent correct classification rate as a function of the false

classification rate. An ideal point would lie in the upper left-hand corner. For the ARTMAP-FTR classifier,
setting ¥ = 0.5 produces correct classifications of 93.1% of the man-made targets, with false classifications for
6.9% of non-man-made targets.
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Figure 3: As the output decision threshold ¥ varies from 0 to 1, a graph plots the correct classification
rate (Pcc) as a function of the rate at which objects are falsely classified (Pfc). For ¥y =0.5, Pcc = 93.1%

and Pfc = 6.9%. The optimal ARTMAP-FTR vigilance parameter (p*) was determined using a validation

subset of the training set.

Actual class
Man-made | Non-man-made Totals
Predicted Man-made 102 9 111
class
Non-man-made 6 99 105
Totals 108 108 201
93.1%

Table 3: ARTMAP-FTR confusion matrix for the man-made / non-man-made discrimination task.
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Table 3 and Figure 4 provide more detailed information about the nature of ARTMAP-FTR errors on the
man-made / non-man-made discrimination task. The test set includes records of 36 views for each of 6 objects
(Figure 1b). Thus a total of 108 three-ping inputs (Figure 2) correspond to man-made objects and 108 to non-
man-made objects. The confusion matrix (Table 3) indicates, for example, that 6 man-made inputs.are mistakenly
identified as coming from non-man-made objects. Figure 4 shows the exact locations of each error. For example,
the aspect set {10°, 40°, 70°} from object 1 (the mine-like bullet-shaped metallic object) is mistakenly classified as
from a non-man-made object. Similarly, the inputs with initial aspects 50° and 70° from object 1 and inputs with
initial aspects 170°, 180°, and 210° from object 2 (the mine-like truncated-cone-shaped plastic object) are also
labeled non-man-made. The other 102 three-ping sets from objects 1, 2, and 3 are correctly classified as
man-made. Table 3 also indicates that 9 inputs from non-man-made objects are misclassified. Figure 4 shows that
all inputs from objects 4 and 6 are correctly classified, with the 9 errors coming from object 5 (the smooth
granite rock), from the inputs with initial aspects 40°, 50°, 60°, 90°, 210°, 230°, 240°, 280°, and 310°.

3.2. Mine-like vs. non-mine-like object discrimination

A confusion matrix (Table 4) shows error patterns for the mine-like / non-mine-like discrimination task.
ARTMAP-FTR performance on this task is identical to performance on the man-made / non-man-made task. This
similarity is due to the fact that the man-made but non-mine-like object (3) gives 100% correct discrimination
(Figure 4). Thus the error patterns for the two tasks are the same.

180°

Non-man-made ’ S\ \
270° A
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Figure 4: Test-set error locations for the three-ping fusion, man-made / non-man-made discrimination
task. Dark areas show the locations of man-made predictions for each of the six objects from each initial
test-set aspect (key). Three inputs from object 1 and three from object 2 are mislabeled as non-man-made;
and nine inputs from object5 are mislabeled as man-made. The remaining 201 inputs (93.1%) are
correctly classified.

Actual class
Mine-like Non-mine-like Totals
Predicted Mine-like 66 -9 75
class
. Non-mine-like 6 135 141
Totals 72 144 201
93.1%

Table 4: ARTMAP-FTR confusion matrix for the mine-like / non-mine-like discrimination task.
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3.3. Three-class and six-class object discrimination

The ARTMAP-FTR system is able to perform six-class object discrimination nearly as well as it performs
two-class discrimination. This is because identification is nearly perfect within the subsets of man-made and non-
man-made objects. In fact, a network trained to discriminate among the man-made object {1,2,3} achieves 100%
correct test-set performance (Table 5a); and a network trained on the non-man-made objects {4, 5, 6} achieves
97.2% correct test-set performance (Table 5b).

The six-class object recognition task is performed in two processing stages. First, an ARTMAP-FTR network is
trained to predict whether returns are from man-made or non-man-made objects (Table 3). Depending on the
outcome, the input is then presented either to a network trained only on the man-made objects {1,2,3} (Table 5a)
or to a network trained only on the non-man-made objects {4,5,6} (Table 5b). The six-class test-set confusion
matrix (Table 6) includes the 15 man-made / non-man-made errors introduced at stage 1 (Table 3), plus three
more errors from stage 2 (Table S5b), giving an overall six-class discrimination rate of 91.6%. Figure 5 shows
the aspect locations of each confusion error listed in Table 6. Compare this gray-scale six-class map with the
man-made / non-man-made aspect map (Figure 4).

(a) Man-made objects Actual class
1 - bullet 2 - cone 3 - drum Totals
Predicted 1 - bullet 36 36
class
2 - cone 36 36
3 - drum 36 36
Totals 36 36 36 108
100 %
(b) Non-man-made objects Actual class
4 - limestone | 5 - granite 6 - log Totals
Predicted -4 - limestone 33 33
class
5 - granite 36 36
6 - log 3 36 39
Totals 36 36 36 105
97.2%

Table 5: ARTMAP-FTR test-set confusion matrices after separate three- plng training of (a) the man-made
objects {1,2,3} and (b) the non-man-made objects {4,5,6}.
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4. ADDITIONAL SONAR TARGET RECOGNITION STUDIES

All ARTMAP-FTR results reported in Section 3 focus on the benchmark three-ping fusion problem with inter-

ping aspect separations always set equal to 30°. Additional studies that varied this set of tasks indicate how changes

v in the training paradigm affect recognition accuracy. These results indicate the robustness of ARTMAP-FTR
,' network performance.

6-class discrimination Actual class
1-bullet | 2-cone | 3-drum | 4-limestone | 5-granite | 6-log Totals
Predicted 1 - bullet 33 33
i class 2 - cone 33 9 42
3 - drum 36 36
4 - limestone 2 33 35
R 5 - granite 3 27 30
6 - log 1 3 36 40
Totals 36 36 36 36 36 36 198
91.6%

Table 6. ARTMAP-FTR six-class object recognition from the sonar test set.

Figure 5: Test-set error locations for the three-ping fusion, six-class recognition task. The darkest areas

show the locations of object 1 predictions and the lightest areas show the locations of object 6 predictions
‘ (key). The circular map shows the initial aspects of the 18 confusion errors listed in Table 6. The other
198 aspect inputs identify the correct object class.
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4.1 Matched filter vs. SCAT preprocessing

Simulation studies confirmed the ORINCON conclusion that matched filter preprocessing with threshold-centered
data is the best of the paradigms considered for this task. For example, on sonar data preprocessed by the SCAT

algorithm,l performance was significantly worse than with matched filter preprocessing. For example, on the
three-ping, man-made / non-man-made task, the best ARTMAP-FTR performance across all values of the
vigilance parameter was just 82% for SCAT data, compared to 93.1% for the matched filter data.

4.2 Variable aspect separations

Simulations were carried out to examine how varying the size of the aspect spacing interval affects performance
on the three-ping, man-made / non-man-made discrimination task. Figure 6 shows that the 30° input aspect
spacing employed in the ORINCON classification paradigm also gives the best ARTMAP-FTR performance,
compared to shorter or longer intervals. On the other hand, accuracy does not deteriorate drastically as the size of
the inter-ping aspect interval varies.

The observation that ARTMAP-FTR performance is stable with respect to inter-ping aspect separation intervals is
reinforced by results of a study in which inter-ping aspect intervals were chosen randomly, between 10° and 50°
(Figure 7). With random separation of inputs, ARTMAP-FTR performance on the three-ping task increases to
94.3%, which is better than the performance produced by any single fixed aspect interval (Figure 6). The fact
that accuracy is not sensitive to aspect spacing indicates the reliability of ARTMAP-FTIR performance on the
sonar recognition task.

Pcc Random intervals: 94.3%
100% AN

| 93.1%! -------- S o
87.9%—-./'/\4‘—88.4%

80% i ; ; t
100. 20° 40° 50°

Figure 6: ARTMAP-FTR classification rate as a function of the inter-ping aspect interval, for the
three-ping, man-made / non-man-made task.

70°

Figure 7: Sample test-set aspect spacing for a typical three-ping fusion input with randomly chosen
inter-ping intervals.
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4.3 Variable numbers of pings

All ARTMAP-FTR simulation studies described so far have considered system performance on three-ping tasks.
The effect of a varying the number of pings was also investigated by presenting N pings, with 30° aspect
separations on each input trial. On the N-ping man-made / non-man-made discrimination task, ARTMAP-FTR
performance was observed to improve with increasing numbers of pings. Table 7 shows that the percent correct
classification rate increasing monotonically from 83.3% (1 ping) to 95.4% (6 pings).

5. THE ARTMAP-FTR NEURAL NETWORK

The goal of the ARTMAP-FTR network is to combine information from a sequence of sonar returns in order to
achieve object identification that is more accurate than single-ping identification. The resulting system is designed
as a neural network hierarchy. Coding, training, testing, and parameter selection for the ARTMAP-FTR
hierarchy are now summarized.

5.1. Distributed coding by ARTMAP networks

Since the introduction of fuzzy ARTMAP,8 which features a winner-take-all (WTA) coding scheme, a number of °
ARTMAP variants that employ distributed coding have been developed. In many application domains, these
variants have been shown to improve computational capabilities of the basic network. One such network is
ART-EMAP (Stage 1),61'62 which, during testing, simply distributes activation across the coding nodes of a

trained fuzzy ARTMAP network. The ARTMAP-IC network > adds instance counting to the coding scheme to
track frequency of use of internal coding nodes. During testing, the system uses this information to bias
distributed predictions. ARTMAP-IC also changes the original search algorithm slightly, which allows the system
to encode inconsistent cases and also improves code compression in general.

Finally, distributed ARTMAP (dARTMAP):"13 introduces computational elements that retain essential ARTMAP
design principles, including stable coding with fast learning, while permitting distributed code representations
during training as well as testing. One of these new computational elements is the increased gradient CAM
(content addressable memory) rule for distributed activation at the coding field. A CAM rule models the steady-
state activation pattern of a coding field in response to a given input vector. Compared to other coding algorithms,
including power rules, the increased gradient CAM rule enhances differences among input components, which is
useful for systems that tend to exhibit a compressed dynamic range of activation values. The increased gradient
CAM rule has been found to be useful in networks, such as ARTMAP, that employ distributed coding only during
testing, in addition to fully distributed coding networks such as dAARTMAP.

N - PING SONAR TASK ARTMAP-FTR
30° SEPARATION Pcc
1-ping 83.3%
2-ping 88.9%
3-ping 93.1%
4-ping 93.1%
5-ping 94.0%
6-ping 95.4%

Table 7: For man-made / non-man-made discrimination, ARTMAP-FTR performance improves with increasing
numbers of pings.
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5.2. ARTMAP-FTR training

The basic ARTMAP-FTR system incorporates two ARTMAP networks (Net 1 and Net 2), which are arranged
hierarchically (Figure 8). For these networks, sonar simulations described in this paper use a variant of the
ARTMAP-IC algorithm. This ARTMAP-IC variant employs the JARTMAP increased gradient CAM rule during
testing.

During ARTMAP-FTR training for a multi-ping sonar task, Net 1 first uses WTA coding to learn to identify the
six objects from single-ping inputs. The same training set is then re-presented to the trained network, except
coding field activation is now distributed, yielding a distributed output pattern for each single-ping return. For
multi-ping training, a concatenated set of these vectors is presented to a second ARTMAP system (Net 2). This
final training stage requires setting one free parameter, which corresponds to an ARTMAP baseline vigilance
parameter. Given a vigilance value p €[0,1], Net 2 is trained to identify the six objects, based on the concatenated
multi-ping input. The baseline vigilance parameter sets code granularity, with low p values permitting coarse
categories and high p values creating fine categories. Following six-class target recognition, system outputs can
be merged for further classification tasks, such as man-made / non-man-made discrimination.

ARTMAP-FTR 3-PING FUSION SYSTEM:| TRAINING
Net 1: Single-ping training

Single-ping
training set| Net1 o
p | ARTMAP: | -p- OFE - | [iyod weights
WTA S

6 objects

Net1 P Net2: Distributed evidence

Re-present Net 1 S
training set | ARTMAP: 8
—» | distributed | P[0 P | Input to Net 2|
coding S .
Net 2(p): 3-ping training
O|
O
0
3-ping [o [¢} Vigilance
fusion [9 Net 2(p) S
0 ™| Artmap: [ 9
R .
S WTA 0 granularity
O
O
0
O
o

Figure 8: Multi-ping training by an ARTMAP-FTR hierarchy. Net 1 encodes single-ping inputs, then
Net 2 encodes concatenated outputs from the previous stage. Sonar simulations use an ARTMAP-IC
network with the increased gradient CAM rule for Net 1 and Net 2.
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5.3. ARTMAP-FTR testing

Test set inputs are presented to an ARTMAP-FTR network that has previously been trained with some fixed value
of p. During testing, the baseline vigilance parameter is set equal to 0, which forces the network to make a
feedforward prediction for each input. As during training, distributed outputs from Net 1 are concatenated to
form the input vectors to Net 2 (Figure 9).

As is typical of fast-learn systems, ARTMAP network coding varies somewhat with the order of input
presentation. To factor out variations due to input ordering, each performance measurement reported here
represents an average across five orderings of the Net 1 input set. This average provides a stable indicator of
network accuracy. However, the average performance of an ARTMAP-FTR system is sensitive to the choice of
the trained network’s free parameter, p. For example, Figure 9 shows that the percent correct classification rate
on a man-made / non-man-made discrimination task achieves a maximal accuracy rate of 93.1% for p equal to an

optimal value, p*, but that system accuracy is lower for other values of the baseline vigilance parameter. In order

to be able to report the optimal value as the test-set performance measure (Figure 3), it is necessary to infer the
optimal parameter value from training set data alone. The ARTMAP-FTR network does, in fact, achieve robust
parameter estimation by training set validation, as follows.

ARTMAP-FTR 3-PING FUSION SYSTEM: | TESTING

Distributed 3-ping outputs

Single-ping . 0
test setinput| Trained 9 » | Net2
> |o
—_— Net 1 S test set input

6 objects
Distributed evidence

3-ping
fusion Trained } Man-made
— ]
Net 2(p) Non-
man-made

I
1 free parameter

|°°°°°°| 0000 OO IOOOOO O|

Results sensitive to Average across

Figure 9: Multi-ping ARTMAP-FTR testing. Net 1 encodes single-ping inputs, then Net 2 encodes
concatenated Net 1 outputs. A given network has been previously trained using a fixed value of the

orderings
|

test set X fusion set

ordering 0.75

parameter choice 1 5 orderings
Net 1 input Net 2 input 93.1% -
(5 1

. Pcc
Single-ping 3-ping

0.7 08 09 P

baseline vigilance, p, and system performance is sensitive to the value of this free parameter.
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5.4. Parameter selection by validation

Figure 10 summarizes the validation procedure used for sonar recognition tasks. During training, a validation
subset of the training set is reserved, and the network trained using inputs from the remaining aspects. For each
study, five validation subsets are selected and, for each, the network is trained on five orderings of the remaining
training set inputs. This procedure produces, for each value of the free parameter, a performance measure

representing an average across 25 simulations. The parameter p was taken to be the one with the best average

validation set performance. An ARTMAP-FTR network is then retrained on the whole training set (with p = p*)
to produce the reported test-set accuracy measurements.

Some of the sonar recognition tasks also require the selection of a second free parameter, namely, an output
decision threshold . This occurs, for example, in the three-class object discrimination tasks (Section 3.3). In this

case, the validation set procedure would first be applied to choose an optimal threshold y(p) for each fixed p.
The previously described steps would be followed to choose p, keeping each y =y(p). In all cases, validation set
choice of network parameters proved to be robust.

6. CONCLUSION: ARTMAP-FTR FOR TARGET RECOGNITION BY SENSOR FUSION

The ARTMAP-FTR network successfully performs target recognition by fusing sonar data. Although the system
was designed specifically for object classification from multi-ping sonar returns, it could also be applied to a more
general class of sensor fusion problems. For example, because of the modular nature of the network hierarchy,
the output from several Net 1 systems, each classifying inputs from a different type of sensor, could be combined
to form the input to Net 2 (Figure 8).

ARTMAP-FTR provides robust performance which remains reliable across many simulation trials. System
parameters are stably selected by validation subsets of the training set, and performance accuracy remains high as
the size of the inter-ping aspect intervals varies. Accuracy also increases with the number of pings.

Having been tested on the NSWC benchmark sonar data set, the ARTMAP-FTR system can now be scaled up for
larger problems, including those with more target object. Future studies could also include investigations of
system performance with test set objects that are disjoint from objects in the training set and with different
preprocessors.

SONAR RECOGNITION TASK

Partition
Training Validationl Testing

27 I 9 | 36

36 views/object 36 views/object
(5°,15°..) (0°,10°..)

Figure 10: A validation subset of the training set is used to choose ARTMAP-FTR parameters.
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