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Abstract 

Distributed coding at the hidden layer of a multi-layer 
perceptron (&UP) endows the network with memory 
compression and noise tolerance capabilities. However, 
an MLP typically requires slow o&line learning to 
avoid catastrophic forgetting in an open input 
environment. An adaptive resonance theory (ART) model 
i3 designed to guarantee stable memories even with fast 
on-line learning. However, ART stability typically 
requires winner-take41 coding, which may cause 
category prolifration in a noisy input environment. 
Distributed A R T W  ( M T W )  seeks to combine the 
computational advantages of MLP and ART systems in a 
real-time neural network for supervised learning. This 
system incoporates elements of the unsupervised U T  
model as well as new futures, including a content- 
addressable memory (CAM rule. Simulations show that 
M T W  retains firzzv A R T W  accuracy while 
significantly improving memory compression. The 
model’s computational learning rules correspond to 
paradoxical cortical data. 

Distributed Coding By Adaptive Resonance 
Systems 

Adaptive resonance theory (ART) began with an analysis 
of human cognitive information processing [19]. 
Fundamental computational design goals have always 
included memory stability with fast or slow learning in an 
open and evolving input environment. As a real-time 
model of dynamic processes, an ART network is 
characterized by a system of ordinary differential 
equations, which are approximated by an algorithm for 
implementation purposes. In a general ART system, an 
input is presumed to generate a charact&stic pattern of 
activation, or spatial code, that may be distributed across 
many nodes in a field representing a brain region such as 
the inferior temporal cortex (e.g., Miller, Li, and 
Desimone [23]). 

While ART code representations may be distributed in 
theory, in practice nearly all ART networks feature 
winner-takeall (WTA) coding. These systems include 
ART 1 [5] and fuzzy ART [8], for unsupervised learning, 
and ARTMAP [7] and fuzzyARTMAP [6], for 
supervised learning. The coding field of a supervised 
system is analogous to the hidden layer of a multi-layer 
perceptron (MLP) [25, 26, 27, 281, where distributed 
activation helps the network achieve memory 
compression and generalization. However, an MLP 
employs slow learning, which limits adaptation for each 
input and so requires multiple presentations of the 
training set. With fast learning, where dynamic variables 
are allowed to converge to asymptote on each input 
presentation, MLP memories suffer catastrophic 
forgetting. However, features of a fast-learn system, such 
as its ability to encode significant rare cases and to learn 
quickly in the field, may be essential for a given 
application domain. Additional ART capabilities, 
including stable coding and scaling to accommodate 
large databases, are also essential for many applications, 
such as the Boeing parts design retrieval system [12]. 

An overall aim of the distributed ART (dART) research 
program is to combine the computational advantages of 
ART and MLP systems. Desirable properties include 
code stability when learning is fast and on-line, memory 
compression when inputs are noisy and unconstrained, 
and real-time system dynamics. Global system design 
goals, such as stable fast learning, led to the introduction 
of novel rules for learning and synaptic transmission. 
These rules, in tum, exhibit dynamics which appear 
paradoxical at the synaptic level but which are seen to 
support stable coding at the network level. Markram and 
Tsodyks [21] have recently discovered similar 
paradoxical dynamics in cortical neurons. 

Distributed Learning 

A key step in the derivation of the first family of dART 
models [3,4] was the specification of dynamic learning 
laws for stable distributed coding. These laws generalize 
the instar [17] and outstar [15, 161 laws used, for 
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example, in fuzzy ART. Instar and outstar learning 
features a gating operation that permits weight change 
only when a coding node is active. This propee is 
critical to ART stability. With a distributed code and fast 
learning, however, instar and outstar dynamics cause 
catastrophic forgetting. A system such as Gaussian 
ARTMAP [29] includes many features of a distributed 
coding network, but retains the instar and outstar learning 
laws of earlier ART and ARTMAP models. The weight 
update rules in a Gaussian ARTMAP algorithm therefore 
approximate a real-time system only in the slow-learn 
limit. Other ARTMAP variations, such as ART-EMAP 
[ l l ]  and ARTMAP-IC [9] acquire some of the 
advantages of distributed coding but sidestep the learning 
problem by permitting distributed activation during 
testing only. 

The distributed instar [4] and distributed outstar [2] laws 
used in dART dynamically apportion learned changes 
according to the degree of activation of each coding 
node, with fast as well as slow learning. The update rules 
in a dARTMAP implementation algorithm represent 
exact, closed form solutions of the model differential 
equations. These solutions are valid across all time 
scales, with fast or slow learning. When coding is WTA, 
the distributed learning laws reduce to instar and outstar 
equations, and dART reduces to fuzzy ART. Similarly, 
with coding that is WTA during training but distributed 
during testing, the dARTMAP algorithm reduces to 
ARTMAP-IC, and further reduces to fuzzy ARTMAP 
with coding that is WTA during both testing and training. 

dARTMAP Design Choices 

An ART module is embedded as the primary component 
of ARTMAP, and similarly an unsupervised dART 
module is embedded in a supervised dARTMAp 
network. In applications, ARTMAP requires few design 
choices: the number of coding nodes is determined by 
on-line performance, and the default network parameters 
work well in most settings. In contrast, a general 
dARTMAP system presents the user with a far greater 
array of choices, due to the new degrees of freedom 
afforded by distributed code possibilities. In practice, a 
number of the “obvious” design choices have failed to 
produce good perfonnance in simulation studies. 

A family of dARTMAP networks that have performed 
well in pilot studies has been developed as a set of 
algorithms for implementation [lo]. In particular, 
d A R W  retains fuzzy ARTMAP test set accuracy 
while significantly reducing network size. The 
dARTMAP algorithm is designed both to expedite ready 
implementation and to foster the development of 
alternative designs adapted to the demands of new 
applications. 

dARTMAP Algorithm 

A number of computational devices that were not part of 
the more general distributed ART theory were found to 
be usel l  in dARTMAP simulations. These include a new 
rule characterizing the content-addressable memory 
stored at the coding field in response to a given input, an 
internal control device that causes the system to alternate 
between distributed and winner-take-all coding modes, 
and credit assignment and instance counting. 

A geometric representation aids the visualization of 
distributed ARTMAP computational dynamics. Since the 
algorithm reduces to fuzzy ARTMAP when coding is 
winner-takc+all, the geometric characterization of 
dARTMAP builds upon the geometry of fuzzy 
ARTMAP, which represents weight vectors as category 
boxes in input space. The relationship between these 
boxes and a system input determines the order in which 
categories are searched, and box expansion represents 
weight changes during winner-takeall learning. 

Distributed ARTMAP replaces the long-term memory 
weights of fuzzy ARTMAP with dynamic weights, which 
depend on short-term memory coding node activations as 
well as long-term memory. The corresponding geometric 
representation replaces each fuzzy ARTMAP category 
box with a nested family of boxes, one for each coding 
node activation value. Some or all of these coding boxes 
may expand during M T M A P  learning, but the 
geometry shows how the system preserves dynamic range 
with fast as well as slow learning. The rule in the 
dARTMAP algorithm that characterizes the signal 
transmitted to the coding field in response to a given 
input admits a geometric interpretation, as does the rule 
characterizing the response of the content-addressable 
memory to the incoming signal. 

A series of simulations indicate how the dAIZTMAP 
algorithm works [lo]. Distributed prediction in the basic 
algorithm reduces network size, but this system uses only 
binary connections from the coding field to the output 
field. Perfonnance can be improved by augmenting the 
trained dARTMAF’ system with a linear output map such 
as Adaline. Other simulations analyze the role of 
d A R W  learning that takes place in the distributed 
mode, as opposed to the winner-takeall mode. By 
varying the degree of pattern contrast in the content- 
addressable memory system, dARTMAP performance 
can be improved, without increasing network size. 
Possible dARTMAP variations point to directions for 
future research. 
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CAM Rules, Coding Modes, and 
Credit Assignment 

The unsupervised distributed ART network [3,4] features 
a number of innovations that differentiate it from 
previous ART networks, including a new architecture 
configuration and distributed instar and outstar learning 
laws. In order to stabilize fast leaming with distributed 
codes, dART represents the unit of long-term memory 
(LTM) as a subtractive threshold rather than a traditional 
multiplicative weight. Despite their different 
architectures, a dART algorithm reduces to fuzzy ART 
when coding is winner-takeall. While a dART module 
is the basic component of a supervised dARTMAP 
system, the algorithm also employs additional devices not 
included in the previous distributed ART description. 
These features, including a new rule defining coding field 
activation, alternation between WTA and distributed 
coding modes, and credit assignment, will now be 
described. 

Increased Gradient CAM Rule 

A neural network field of strongly competitive nodes can, 
once activated by an initial input, maintain a short-term 
memory (STM) activation pattern even after the input is 
removed. A new input then requires some active reset 
process before it can instate a different code, or content- 
addressable memory (CAM). A CAM rule specifies a 
function that characterizes the steady-state STM 
response to a given vector of inputs converging upon a 
field of neurons. 

Traditional CAM rules include McCulloch-F’itts 
activation, which makes STM proportional to input [22]; 
a power rule, which makes STM proportional to input 
raised to a power p; and a WTA rule, which concentrates 
all activation at the node receiving the largest net input. 
Other CAM rules include Gaussian activation functions, 
as used, for example, in radial basis function networks 
[24]. A power rule reduces to a McCullocbF’itts rule 
when p=l and converges to a WTA rule as p+. 
Movingp from 0 toward infinity produces a stored STM 
pattern that is a progressively contrast-enhanced 
transformation of the input vector. In many examples, 
however, a power rule is problematic because differences 
among input components are small. A CAM system may 
then require unreasonably large powers p to produce 
significant differences among STM activations. 

The CAM rule used in the dARTMAP algorithm is 
designed to enhance input differences as represented in 

the distributed internal code without raising input 
components to high powers. It is therefore called the 
increased gradient CAM rule. Beyond its role in the 
present system, this rule is useful for defining the steady- 
state activation function in other neural networks. The 
increased gradient rule includes a power p for contrast 
control. The role of p is analogous to the role of variance 
in Gaussian activation functions [20, 241. A geometric 
representation of dARTMAP provides a natural 
interpretation of the increased gradient CAM rule. 

Distributed and Winner-take-all 
Coding Modes 

The increased gradient CAM rule solves a pattern 
separation problem that often arises in neural systems, 
where each element has a limited dynamic range. A 
second common problem is how to choose the size of a 
neural network In a multi-layer perceptron, for example, 
deciding on the number of hidden units is a critical 
design choice. With WTA coding, ARTMAP determines 
network size by adding category nodes incrementally, to 
meet the demands of on-line predictive accuracy. Some 
types of MLP networks have also been designed to add 
hidden units incrementally. A cascade correlation 
architecture, for example, creates a hierarchy of single- 
unit hidden layers until the error criterion is met [14], but 
weights in all lower layers are frozen during learning 
associated with the top layer. 

With distributed coding, a dARTMAP network could, in 
principle, operate with a field of coding nodes that are 
fixed a priori. In practice, this type of network did not 
produce satisfactory results in simulation studies, where 
fast learning tended to make the learned representations 
too uniform. To solve this problem, the dARTMAP 
algorithm alternates between distributed and winner- 
take-all coding modes, as follows. 

Each dARTMAP input first activates a distributed code. 
If this code produces a correct prediction, learning 
proceeds in the distributed coding mode. If the prediction 
is incorrect, the network resets the active code via 
ARTMAP match tracking feedback [n. In ARTMAP 
networks, the reset process triggers a search for a 
category node that can successfully code the current 
input. In dARTMAP, reset also places the system in a 
WTA coding mode for the duration of the search. The 
switch from a distributed mode to a WTA mode could be 
implemented in a competitive network by means of a 
nonspecific signal that increases the strength of intrafield 
inhibition [13, 181. Such an arousal signal might be 
interpreted as an increase in overall attentiveness in 
response to an error signal or alarm, the computational 
result being a sharpened focus on the most salient input 
features. 
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In WTA mode, dARTMAP can, like ARTMAP, add 
nodes incrementally as needed. When a coding node is 
added to the network, it becomes permanently associated 
with the output class that is active at the time. From then 
on, the network predicts this class whenever the same 
coding node is chosen in WTA mode. In distributed 
mode, STM activations across all nodes that project to a 
given output class provide evidence in favor of that 
outcome, Despite its computational advantages, the 
winner-take-all possibility implies that dARTMAP 
coding is not l l l y  distributed all the time, indicating one 
possible direction for future system modifications. 

Credit Assignment, Instance Counting, and 
Match Tracking 

When a dARTMAP network makes a distributed 
prediction, some of the active coding nodes may be 
linked to an incorrect outcome. In a real-time network, a 
feedback loop for credit assignment would suppress 
activation in these nodes during training. Credit 
assignment allows leaming to enhance only those 
portions of an active code that are associated with the 
correct outcome. This procedure is similar to credit 
assignment algorithms widely used in other neural 
networks (e.g., [29]) and genetic algorithms (e.g., [l]). 

The current simulations were also found to benefit from 
design features used in the ARTMAP-IC network. These 
include instance counting of category exemplars and the 
MT- match tracking search rule. Instance counting biases 
output predictions according to previous coding node 
activations summed over training set inputs. The MT- 
search rule generally improves memory compression 
compared to the original ARTMAP match tracking 
algorithm @IT+). It also permits a system to encode 
inconsistent cases, where two identical training set inputs 
are associated with different outcomes. Inconsistent cases 
are common in medical databases, for example. 

Aspects of the dARTMAF' algorithm such as the 
increased gradient CAM rule, the combination of WTA 
with distributed coding during training, credit 
assignment, and instance counting are not necessarily 
fundamental principles intrinsic to the class of all 
dARTMAP networks. Rather, they are developed for the 
pragmatic purpose of defining one set of dARTMAP 
systems with the desired computational properties. 
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