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Abstracl--A model to implement parallel search of compressed or distributed pattern recognition codes in a 
neural network hierarchy is introduced. The search process functions well with either Jast learning or slow 
h'arning, and can robustly cope with sequences of asynchronous input patterns in real-time. The search process 
emerges" when computational properties of the chemical synapse, such as transmitter accumulation, release, 
inactivation, and modulation, are embedded within an Adaptive' Resonance Theory architecture called A R T  3. 
Formal analogs of  ions such as Na- and Ca'- control nonlinear feedback interactions that enable presynaptic 
transmitter dynamics to model the postsynaptic short-term memory representation of  a pattern recognition code. 
Reinforcement feedback can modulate the search process by altering the A R T 3 vigilance parameter or directly 
engaging the search mechanism. The search process is a ,[orm qfl hypothesis testing capabh' of  discovering 
appropriate representations of  a nonstationa O, input environment. 
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1. INTRODUCTION: DISTRIBUTED 
SEARCH OF ART 

NETWORK HIERARCHIES 

This article incorporates a model of the chemical 
synapse into a new Adaptive Resonance Theory 
(ART) neural network architecture called ART 3. 
ART 3 system dynamics model a simple, robust 
mechanism for parallel search of a learned pattern 
recognition code. This search mechanism was de- 
signed to implement the computational needs of ART 
systems embedded in network hierarchies, where 
there can, in general, be either fast or slow learning 
and distributed or compressed code representations. 
The search mechanism incorporates a code reset 
property that serves at least three distinct functions: 
to correct erroneous category choices, to learn from 
reinforcement feedback, and to respond to changing 
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input patterns. The three types of reset are illus- 
trated, by computer simulation, for both maximally 
compressed and partially compressed pattern rec- 
ognition codes (Sections 20-26). 

Let us first review the main elements of ART. 
ART architectures are neural networks that carry 
out stable self-organization of recognition codes for 
arbitrary sequences of input patterns. ART first 
emerged from an analysis of the instabilities inherent 
in feedforward adaptive coding structures (Gross- 
berg, 1976a). More recent work has led to the de- 
velopment of two classes of ART neural network 
architectures, specified as systems of differential 
equations. The first class, ART 1, self-organizes rec- 
ognition categories for arbitrary sequences of binary 
input patterns (Carpenter & Grossberg, 1987a). A 
second class, ART 2, does the same for either binary 
or analog inputs (Carpenter & Grossberg, 1987b). 

Both ART 1 and ART 2 use a maximally com- 
pressed, or choice, pattern recognition code. Such a 
code is a limiting case of the partially compressed 
recognition codes that are typically used in expla- 
nations by ART of biological data (Grossberg, 1982a, 
1987a, 1978b). Partially compressed recognition codes 
have been mathematically analysed in models for 
competitive learning, also called self-organizing fea- 
ture maps, which are incorporated into ART models 
as part of their bottom-up dynamics (Grossberg, 1976a, 
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FIGURE 1. Typical ART 1 neural network module (Carpenter 
& Groeeberg, 1987a). 
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1982a; Kohonen, 1984). Maximally compressed codes 
were used in ART 1 and ART 2 to enable a rigorous 
analysis to be made of how the bottom-up and top- 
down dynamics of ART systems can be joined to- 
gether in a real-time self-organizing system capable 
of learning a stable pattern recognition code in re- 
sponse to an arbitrary sequence of input patterns, 
These results provide a computational foundation for 
designing ART systems capable of stably learning 
partially compressed recognition codes, The present 
results contribute to such a design 

The main elements of a typical ART 1 module 
are illustrated in Figure 1. F~ and t:- are fields of 
network nodes. An input is initially represented as 
a pattern of activity across the nodes, or feature de- 
tectors, of field FL. The pattern of activity across F, 
corresponds to the category representation. Because 
patterns of activity in both fields may persist after 
input offset yet may also be quickly inhibited, these 
patterns are called short-term memory (STM) rep- 
resentations. The two fields, linked both bottom-up 
and top-down by adaptive filters, constitute the At- 
tentional Subsystem. Because the cunnection weights 
defining the adaptive filters may be modified by in- 
puts and may persist for very long times after input 
offset, these connection weights are called long-term 
memory (LTM) variables. 

An auxiliary Orienting Subsystem becomes active 

U ~T 

(c) 

FIGURE 2. ART search cycle (Carpenter & Grossberg, 1987a). 
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during search. This search process is the subject of 
the present article. 

2. AN ART SEARCH CYCLE 

Figure 2 illustrates a typical ART search cycle. An 
input pattern I registers itself as a pattern X of ac- 
tivity across F~ (Figure 2a). The F~ output signal 
vector S is then transmitted through the multiple 
converging and diverging weighted adaptive filter 
pathways emanating from F~, sending a net input 
signal vector T to ~ .  The internal competitive dy- 
namics of ~ contrast-enhance T. The F2 activity vec- 
tor Y therefore registers a compressed representa- 
tion of the filtered F~ ~ ~ input and corresponds to 
a category representation for the input active at F~. 
Vector Y generates a signal vector U that is sent top- 
down through the second adaptive filter, giving rise 
to a net top-down signal vector V to F~ (Figure 2b). 
F~ now receives two input vectors, I and V. An ART 
system is designed to carry out a matching process 
whereby the original activity pattern X due to input 
pattern I may be modified by the template pattern V 
that is associated with the current active category. If 
I and V are not sufficiently similar according to a 
matching criterion established by a dimensionless 
vigilance parameter p, a reset signal quickly and en- 
duringly shuts off the active category representation 
(Figure 2c), allowing a new category to become ac- 
tive. Search ensues (Figure 2d) until either an ade- 
quate match is made or a new category is established. 

In earlier treatments (e.g., Carpenter & Gross- 
berg, 1987a), we proposed that the enduring shut- 
off of erroneous category representations by a non- 
specific reset signal could occur at ~ if F~ were 
organized as a gated dipole field, whose dynamics 
depend on depletable transmitter gates. Though the 
new search process does not here use a gated dipole 
field, it does retain and extend the core idea that 
transmitter dynamics can enable a robust search pro- 
cess when appropriately embedded in an ART sys- 
tem. 

3. ART 2: THREE-LAYER 
COMPETITIVE FIELDS 

Figure 3 shows the principal elements of a typical 
ART 2 module. It shares many characteristics of the 
ART 1 module, having both an input representation 
field F~ and a category representation field F2, as 
well as Attentional and Orienting Subsystems. Fig- 
ure 3 also illustrates one of the main differences be- 
tween the examples of ART 1 and ART 2 modules 
so far explicitly developed; namely, the ART 2 ex- 
amples all have three processing layers within the F~ 
field. These three processing layers allow the ART 
2 system to stably categorize sequences of analog 
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FIGURE 3. Typical ART 2 neural network module, with three- 
layer F1 field (Carpenter & Grossberg, 1987b). Large filled 
circles are gain control nuclei that nonspecifically inhibit 
target nodes in proportion to the Euclidean norm of activity 
in their source fields, as in eqn (33). 

input patterns that can, in general, be arbitrarily close 
to one another. Unlike in models such as back prop- 
agation, this category learning process is stable even 
in the fast learning situation, in which the LTM vari- 
ables are allowed to go to equilibrium on each learn- 
ing trial. In Figure 3, one F~ layer reads in the bot- 
tom-up input, one layer reads in the top-down filtered 
input from F2, and a middle layer matches patterns 
from the top and bottom layers before sending a 
composite pattern back through the F~ feedback loop. 
Both F~ and ~ are shunting competitive networks 
that contrast-enhance and normalize their activation 
patterns (Grossberg, 1982a). 

4. ART BIDIRECTIONAL HIERARCHIES 
AND HOMOLOGY OF FIELDS 

In applications, ART modules are often embedded 
in larger architectures that are hierarchically orga- 
nized. Figure 4 shows an example of one such hi- 
erarchy, a self-organizing model of the perception 
and production of speech (Cohen, Grossberg, & 
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FIGURE 4. Neural network model of speech ~ and perception (Cohen, Grossberg, & ~ r k ,  1988). 

Stork, 1988). In Figure 4, several copies of an ART 
module are cascaded upward, with partially com- 
pressed codes at each level. Top-down ART filters 
both within the perception system and from the pro- 
duction system to the perception system serve to sta- 
bilize the evolving codes as they are learned. We will 
now consider how an ART 2 module can be adapted 
for use in such a hierarchy. 

When an ART module is embedded in a network 
hierarchy, it is no longer possible to make a sharp 
distinction between the characteristics of the input 
representation field F1 and the category represen- 
tation field F2. For example, within the auditory per- 
ception system of Figure 4, the partially compressed 
auditory code acts both as the category representa- 
tion field for the invariant feature field and as the 
input field for the compressed item code field. For 
them to serve both functions, the basic structures of 
all the network fields in a hierarchical ART system 
should be homologous in so far as possible (Figure 
5). This constraint is satisfied if all fields of the hi- 
erarchy are endowed with the FI structure of an ART 
2 module (Figure 3). Such a design is sufficient for 
the F2 field as well as the F1 field because the principal 
property required of a category representation field, 
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FIGURE 5. Hon~ogy of fields F,, F~, F~ . . .  in an ART bidi- 
rectional hierarchy. 
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namely that input patterns be contrast-enhanced and 
normalized, is a property of the three-layer F~ struc- 
ture. The system shown in Figure 5 is called an A R T  
bidirectional hierarchy, with each field homologous 
to all other fields and linked to contiguous fields by 
both bottom-up and top-down adaptive filters. 

5. ART CASCADE 

For the ART hierarchy shown in Figure 5, activity 
changes at any level can ramify throughout all lower 
and higher levels. It is sometimes desirable to buffer 
activity patterns at lower levels against changes at 
higher levels. This can be accomplished by inserting 
a bottom-up pathway between each two-field ART 
module. Figure 6 illustrates a sequence of modules 
A, B, C . . .  forming an A R T  cascade. The "category 
representation" field ~A acts as the input field for 
the next field F,~. As in an ART 2 module (Figure 
3), connections from the input field F2A to the first 
field F~B of the next module are nonadaptive and 
unidirectional. Connections between F~B and F2, are 
adaptive and bidirectional. This scheme repeats itself 
throughout the hierarchy. Activity changes due to a 
reset event at a lower level can be felt at higher levels 
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FIGURE 6. An ART cascade. Nonadaptive connections ter- 
minate in arrowheads. Adaptive connections terminate in 
semicircles, 

via an ascending cascade of reset events. In partic- 
ular, reset at the lowest input level can lead to a 
cascade of input reset events up the entire hierarchy. 

6. SEARCH IN AN ART HIERARCHY 

We now consider the problem of implementing par- 
allel search among the distributed codes of a hier- 
archical ART system. Assume that a top-down/bot- 
tom-up mismatch has occurred somewhere in the 
system. How can a reset signal search the hierarchy 
in such a way that an appropriate new category is 
selected? The search scheme for ART 1 and ART 2 
modules incorporates an asymmetry in the design of 
levels/71 and F2 that is inappropriate for ART hier- 
archies whose fields are homologous. The ART 3 
search mechanism described below eliminates that 
asymmetry. 

A key observation is that a reset signal can act 
upon an ART hierarchy between its fields F,, F~,, 
Fc • • • (Figure 7). Locating the site of action of the 
reset signal between the fields allows each individual 
field to carry out its pattern processing function with- 
out introducing processing biases directly into a field's 
internal feedback loops. 

The new ART search mechanism has a number 
of useful properties. It: (a) works well for mismatch, 
reinforcement, or input reset; (b) is simple; (c) is 
homologous to physiological processes; (d) fits nat- 
urally into network hierarchies with distributed codes 
and slow or fast learning; (e) is robust in that it does 
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FIGURE 7. Interfield reset in an ART bidirectional hierarchy. 



134 G. A. Carpenter and S. Grossberg 

not require precise parameter choices, timing, or 
analysis of classes of inputs; (f) requires no new anat- 
omy, such as new wiring or nodes, beyond what is 
already present in the ART 2 architecture; (g) brings 
new computational power to the ART systems: 
and (h) although derived for the ART system can be 
used to search other neural network architectures 
as well. 

7. A NEW ROLE FOR CHEMICAL 
TRANSMITFERS IN ART SEARCH 

The computational requirements of the ART search 
process can be fulfilled by formal properties of neu- 
rotransmitters (Figure 8), if these properties are ap- 
propriately embedded in the total architecture model. 
The main properties used are illustrated in Figure 9, 
which is taken from Ito (1984). In particular, the 
ART 3 search equations incorporate the dynamics 
of production and release of a chemical transmitter 
substance, the inactivation of transmitter at postsyn- 
aptic binding sites, and the modulation of these pro- 
cesses via a nonspecific control signal. The net effect 
of these transmitter processes is to alter the ionic 
permeability at the postsynaptic membrane site, thus 
effecting excitation or inhibition of the postsynaptic 
cell. 

The notation to describe these transmitter prop- 
erties is summarized in Figure 10 for a synapse be- 
tween the ith presynaptic node and the jth postsyn- 
aptic node. The presynaptic signal, or action potential 
S~ arrives at a synapse whose adaptive weight, or 
long-term memory trace, is denoted z~j. The variable 
z u is identified with the maximum amount of avail- 
able transmitter. When the transmitter at this syn- 
apse is fully accumulated, the amount of transmitter 
u~j available for release is equal to z~j. When a signal 
Si arrives, transmitter is typically released. The vari- 
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able vii denotes the amount of transmitter released 
into the extracellular space, a fraction of which is 
assumed to be bound at the postsynaptic cell surface 
and the remainder rendered ineffective in the extra- 
cellular space. Finally, xj denotes the activity, or 
membrane potential, of the postsynaptic cell. 
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8. EQUATIONS FOR TRANSMITTER 
PRODUCTION, RELEASE, 

AND INACTIVATION 

The search mechanism works well if it possesses a 
few basic properties. These properties can be real- 
ized using one of several closely related sets of equa- 
tions, with corresponding differences in biophysical 
interpretation. An illustrative system of equations is 
described below. 

Equations (1)-(3) govern the dynamics of the vari- 
ables z, i, u 0, v0, and x i at the i ] th  pathway and jth 
node of an ART 3 system. 

Presynaptic Transmitter 

du. 
d--7 (z , , -  u,,) - uo[release rate]. (1) 

mitter at all synapses converging on the jth node is 
assumed to be excitatory, via the term. 

Zv,,. (4) 

Internal feedback from within the target field (Figure 
3) is excitatory, while the nonspecific reset signal is 
inhibitory. Parameter e is small, corresponding to the 
assumption that activation dynamics are fast relative 
to the transmitter accumulation rate. equal to I in 
eqn (1). 

The A RT 3 system can be simplified for purposes 
of simulation. Suppose that ~: ~ 1 in (3); the reset 
signals in (2) and (3) are either 0 or > 1; and net 
intrafield feedback is excitatory. Then eqns (1), (5), 
and (6) below approximate the main properties of 
ART 3 system dynamics. 

Bound Transmitter 

d v,j _ 
dt v,~ + u,,[release rate] - v,~[inactivation rate] 

= - v,, + uii[release rate] - v0[reset signal]. 

(2) 

Postsynaptic Activation 

dx~ 
c d t  = -x,  + (A - xj)[excitatory inputs] 

- (B + xj)[inhibitory inputs] 

- x ,  + ( A  - xi)  

× L.[~"v" + { i n t r a f i e l d ,  feedback}] 

- (B + x,)[reset signal]. (3) 

Equation (1) says that presynaptic transmitter is 
produced and/or  mobilized until the amount u o of 
transmitter available for release reaches the maxi- 
mum level z,,. The adaptive weight z 0 itself changes 
on the slower time scale of learning, but remains 
essentially constant on the time scale of a single reset 
event. Available presynaptic transmitter uq is re- 
leased at a rate that is specified below. 

A fraction of presynaptic transmitter becomes 
postsynaptic bound transmitter after being released. 
For simplicity, we ignore the fraction of released 
transmitter that is inactivated in the extracellular 
space. Equation (2) says that the bound transmitter 
is inactivated by the reset signal. 

Equation (3) for the postsynaptic activity xj is a 
shunting membrane equation such that excitatory in- 
puts drive xj up toward a maximum depolarized level 
equal to A; inhibitory inputs drive xj down toward a 
minimum hyperpolarized level equal to - B; and ac- 
tivity passively decays to a resting level equal to 0 in 
the absence of inputs. The net effect of bound trans- 

Simplified ART 3 Equations 

du,._._~ = (z , , -  u,,) - u,,[release rate] (1) 
dt 

dt  = - v , ,  + u,i[release rate] if reset = 0 

v , ( t )  - 0 if reset > 1. (5) 

x J t )  = { ~  v,, + [intrafield feedback] if reset = (/ 
1 

0 if reset >> 1. 
(6) 

9. ALTERNATIVE ART 3 SYSTEMS 

In eqns (2) and (3), the reset signal acts in two ways, 
by inactivating bound transmitter and directly inhib- 
iting the postsynaptic membrane. Alternatively, the 
reset signal may accomplish both these goals in a 
single process if all excitatory inputs in (3) are re- 
alized using chemical transmitters. Letting wj denote 
the net excitatory transmitter reaching the jth target 
cell via intrafield feedback, an illustrative system of 
this type is given by eqns (1), (2), (7), and (8) below. 

Presynaptic Transmitter 

dlttj 
d'-~ = ( z , -  u,i ) - u,,[release rate]. (1) 

Bound Transmitter 

du,/ 
dt - v, + u,i[release rate] - v,[reset signal]. (2) 

dwj _ 
dt w, + [intrafield feedback] 

- w,[reset signal]. (7) 
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Postsynaptic Activation 

cdxj = -xi  + (A - xi) (~vg, + wj). (8) 
dt 

The reset signal now acts as a chemical modulator 
that inactivates the membrane channels at which 
transmitter is bound. It thus appears in eqns (2) and 
(7), but not in eqn (8) for postsynaptic activation. 

When the reset signal can be only 0 or >> 1, the 
simplified system in Section 8 approximates both ver- 
sions of the ART 3 system. However, if the reset 
signal can vary continuously in size, eqns (2), (7), 
and (8) can preserve relative transmitter quantities 
from all input sources. Thus, this system is a better 
model for the intermediate cases than eqns (2) and 
(3). 

An additional inhibitory term in the postsynaptic 
activation eqn (8) helps to suppress transmitter re- 
lease, as illustrated in Section 25. 

10. TRANSMITTER RELEASE RATE 

To further specify the ART search model, we now 
characterize the transmitter release and inactivation 
rates in eqns (1) and (2). Then we trace the dynamics 
of the system at key time intervals during the pre- 
sentation of a fixed input pattern (Figure 11). We 
first observe system dynamics during a brief time 
interval after the input turns on (t = 0+), when the 
signal Sg first arrives at the synapse. We next consider 
the effect of subsequent internal feedback signals 
from within the target field, following contrast-en- 
hancement of the inputs. We observe how the ART 
3 model responds to a reset signal by implementing 
a rapid and enduring inhibition of erroneously se- 
lected pattern features. Then we analyze how the 
ART 3 model responds if the input pattern changes. 

We will begin with the ART Search Hypothesis 
h Presynaptic transmitter uq is released at a rate 
jointly proportional to the presynaptic signal Si and 
a function f(xj), of the postsynaptic activity. That is, 
in eqns (1), (2), and (5), 

release rate = &f(xi). (9) 
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o I XJ = 

INPUT 
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The function f(xj) in eqn (9) has the qualitative 
properties illustrated in Figure 12. In particular, f(xi) 
is assumed to have a positive value when xj is at its 
0 resting level, so that transmitter u,~ can be released 
when the signal Si arrives at the synapse. If f(0) were 
equal to 0, no excitatory signal could reach a post- 
synaptic node at rest, even if a large presynaptic 
signal Si were sent to that node. The function f(x/) 
is also assumed to equal 0 when x, is significantly 
hyperpolarized, but to rise steeply when xj is near 0. 
In the simulations, f(xj) is linear above a small neg- 
ative threshold. 

The form factor sir(x,) is a familiar one in the 
neuroscience and neural network literatures. In par- 
ticular, such a product is often used to model asso- 
ciative learning, where it links the rate of learning 
in the ijth pathway to the presynaptic signal S~ and 
the postsynaptic activity x~. Associative learning oc- 
curs, however, on a time scale that is much slower 
than the time scale of transmitter release. On the 
fast time scale of transmitter release, the form factor 
S~f(xj) may be compared to interactions between 
voltages and ions. In Figure 9, for example, note the 
dependence of the presynaptic signal on the Na ~ ion; 
the postsynaptic signal on the Ca ~ ion; and trans- 
mitter release on the joint fluxes of these two ions, 
The ART Search Hypothesis 1 thus formalizes a known 
type of synergetic relationship between presynaptic 
and postsynaptic processes in effecting transmitter 
release. Moreover, the rate of transmitter release is 
typically a function of the concentration of Ca 2+ in 
the extracellular space, and this function has quali- 
tative properties similar to the function f(xj) shown 
in Figure 12 (Kandel & Schwartz, 1981, p. 84; Kuf- 
fief, Nicholls, & Martin, 1984, p. 244). 

11. SYSTEM DYNAMICS AT INPUT 
ONSET: AN APPROX~ATELY 

LINEAR FILTER 

Some implications of the ART Search Hypothesis l 
will now be summarized. Assume that at time t = 0 
transmitter uq has accumulated to its maximal level 
zi~ and that activity x~ and bound transmitter vii equal 
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FIGURE 11. The system Is designed to carry out necessary FIGURE 12. The ART Search Hypothesis 1 specifies the 
computations at critical junctures of the search process, transmitter release rate. 
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0. Consider a time interval t = 0 + immediately after 
a signal Si arrives at the synapse. During this brief 
initial interval, the ART equations approximate the 
linear filter dynamics typical of many neural network 
models. In particular, eqns (2) and (9) imply that the 
amount of bound transmitter is determined by equa- 
tion 

du,  
= - u . ,  + u , , S , f ( x , )  - v,i[inactivation rate]. (10) 

dt 

Thus, at times t : 0", 

du'---2 ~- z , ,S , f (O)  (11) 
dt 

and so 

v , ( t )  ~- K( t )S , z , ,  for times t - 0 .  (12) 

Because eqn (12) holds at all the synapses adjacent 
to cell j .  eqn (6) implies that 

x M )  -~ ~ K( t )S , z , ,  

K(t)S-zj for timest = 0 ~. (13) 

Here S denotes the vector (S t  • • . S , , ) ,  zj denotes the 
vector (z1I. • • z,,3, a n d i  = 1 . . . n. Thus, in the 
initial moments after a signal arrives at the synapse, 
the small amplitude activity xl at the postsynaptic 
cell grows in proportion to the dot product of the in- 
coming signal vector S times the adaptive weight 
vector z i. 

( a )  xj = K(t) S. zj ( t=  o + ) 
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FIGURE 13. (a) If transmitter is fully accumulated at t = 0, 
low-amplitude postsynaptic STM activity xj is initially pro- 
portional to the dot product of the signal vector S and the 
weight vector zj. Fields are labeled Fb and F¢ for consistency 
with the ART 3 system in Figure 21. (b) Intrafield feedback 
rapidly contrast-enhances the initial STM activity pattern. 
Large-amplitude activity is then concentrated at one or more 
nodes. 

12. SYSTEM DYNAMICS AFTER 
INTRAFIELD FEEDBACK: AMPLIFICATION 

OF TRANSMITTER RELEASE BY 
POSTSYNAPTIC POTENTIAL 

In the next time interval, the intrafield feedback sig- 
nal contrast-enhances the initial signal pattern (13) 
via eqn (6) and amplifies the total activity across field 
F, in Figure 13a. Figure 13b shows typical contrast- 
enhanced activity profiles: partial compression of 
the initial signal pattern; or maximal compression, 
or choice, where only one postsynaptic node re- 
mains active due to the strong competition within 
the field F,. 

In all, the model behaves initially like a linear 
filter. The resulting pattern of activity across post- 
synaptic cells is contrast-enhanced, as required in the 
ART 2 model as well as in the many other neural 
network models that incorporate competitive learn- 
ing (Grossberg, 1988). For many neural network sys- 
tems, this combination of computational properties 
is all that is needed. These models implicitly assume 
that intracellular transmitter uq is always accumu- 
lated up to its target level z o and that postsynaptic 
activity x/does not alter the rate of transmitter re- 
lease: 

u,, ~- zq and vii ~ zipS,. (14) 

If the linear filtering properties implied by (14) 
work well for many purposes, why complicate the 
system by adding additional hypotheses'? Even a new 
hypothesis that makes a neural network more real- 
istic physiologically needs to be justified functionally 
or it will obscure essential system dynamics. Why, 
then, add two additional nonlinearities to the portion 
of a neural network system responsible for trans- 
mitting signals from one location to another? The 
following discussion suggests how nonlinearities of 
synaptic transmission and neuromodulation can, 
when embedded in an ART circuit, help to correct 
coding errors by triggering a parallel search, allow 
the system to respond adaptively to reinforcement, 
and rapidly reset itself to changing input patterns. 

In eqn (10), term 
u , ,S , f ( x  i) (15) 

for the amount of transmitter released per unit time 
implies that the original incoming weighted signal 
zqSi  is distorted both by depletion of the presynaptic 
transmitter u 0 and by the activity level xj of the post- 
synaptic cell. If these two nonlinearities are signifi- 
cant, the net signal in the i j th  pathway depends jointly 
on the maximal weighted signal z , f l i ;  the prior activ- 
ity in the pathway, as reflected in the amount of 
depletion of the transmitter u,i; and the immediate 
context in which the signal is sent, as reflected in the 
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target cell activity xj. In particular, once activity in 
a postsynaptic cell becomes large, this activity dom- 
inates the transmitter release rate, via the term f(xj) 
in (15). In other words, although linear filtering 
properties initially determine the small-amplitude ac- 
tivity pattern of the target field F,., once intrafield 
feedback amplifies and contrast-enhances the post- 
synaptic activity xj (Figure 13b) it plays a major role 
in determining the amount of released transmitter u(~ 
(Figure 14). In particular, the postsynaptic activity 
pattern across the field F, that represents the rec- 
ognition code (Figure 13b) is imparted to the pattern 
of released transmitter (Figure 14), which then also 
represents the recognition code, rather than the in- 
itial filtered pattern S • z i. 

13. SYSTEM DYNAMICS DURING RESET: 
INACTIVATION OF BOUND 
TRANSMITTER CHANNELS 

The dynamics of transmitter release implied by the 
ART Search Hypothesis 1 can be used to implement 
the reset process, by postulating the A R T  Search 
Hypothesis 2: The nonspecific reset signal quickly 
inactivates postsynaptic membrane channels at which 
transmitter is bound (Figure 15). The reset signal 
in eqns (5) and (6) may be interpreted as assignment 
of a large value to the inactivation rate in a manner 
analogous to the action of a neuromodulator (Figure 
9). Inhibition of postsynaptic nodes breaks the strong 
intrafield feedback loops that implement ART 2 and 
ART 3 matching and contrast-enhancement (eqn (3) 
or (6)). 

Let us now examine system dynamics following 
transmitter inactivation. The pattern of released 
transmitter can be viewed as a representation of the 
postsynaptic recognition code. The arrival of a reset 
signal implies that some part of the system has judged 

TOTAL POSTSYNAPTICALLY 

BOUND TRANSMITTER 

Xj (POST) DOMINATES 

l 
I 

FIGURE 14. The ART Search Hypothesis I implies that large 
amounts of transmitter (u~) are released only ~ to 
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the Iltittlll ~ ~  ~ 
bound transmitter Into a i e ~  conWest,4mhlfmed 
pattern. 
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is Mmllar to ~ of a neuromodulator, 

this code to be erroneous, according to some crite- 
rion. The ART Search Hypothesis 1 implies that the 
largest concentrations of bound extracettular trans- 
mitter are adjacent to the nodes which most actively 
represent this erroneous code. The ART Search Hy- 
pothesis 2 therefore implies that the reset process 
selectively removes transmitter from pathways lead- 
ing to the erroneous representation• 

After the reset wave has acted, the system is biased 
against activation of the same nodes, or features, in 
the next time interval: Whereas the transmitter signal 
pattern S • uj originally sent to target nodes at times 
t = 0 + was proportional to S .  zj, as in eqn (12), the 
transmitter signal pattern S • ui after the reset event 

S ' u .  I LESS AVAILABLE 
j TRANSmiTTER == 

s z ~ E ~ O ~  
~EAI~RIES  

J i 
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is no longer proportional to S • zj. Instead, it is se- 
lectively biased against those features that were pre- 
viously active (Figure 16). The new signal pattern 
S • u~ will lead to selection of another contrast-en- 
hanced representation, which may or may not then 
be reset. This search process continues until an ac- 
ceptable match is found, possibly through the selec- 
tion of a previously inactive representation. 

14. PARAMETRIC ROBUSTNESS OF THE 
SEARCH PROCESS 

This search process is relatively easy to implement, 
requiring no new nodes or pathways beyond those 
already present in ART 2 modules. It is also robust, 
since it does not require tricky timing or calibration. 
How the process copes with a typical slow learning 
situation is illustrated in Figure 17. With slow learn- 
ing, an input can select and begin to train a new 
category so that the adaptive weights correspond to 
a perfect pattern match during learning• However,  
the input may not be on long enough for the adaptive 
weights to become very large• That input may later 
activate a different category node whose weights are 

(a) 

(b) 

S ' U .  ~ 
I 

S ' Z .  
I 

i 

J j 
f f 

G O O D  PATTERN LARGE MATCH WEIGHTS 
Iz~l 

CHOICE, 
RESET 

J J 

(c) 
S'g. ! 

l A ~ E R  RESET 

J j 
f 

CHOOSE J AGAIN, 
UNTIL ANOTHER 
NODE CAN WIN 

FIGURE 17. An erroneous category representation with large 
weights (z~) may become active before another representa- 
tion that makes a good pattern match with the input but which 
has small weights. One or more mismatch reset events can 
decrease the functional value (uu) of the larger weights, al- 
lowing the "correct" category to become active. 

large but whose vector of adaptive weights forms a 
poorer  match than the original, smaller weights. 

Figure 17a shows such a typical filtered signal 
pattern S • z i. During the initial processing interval 
(t = 0 +) the transmitted signal S • u~ and the post- 
synaptic activity xj are proportional to S • z i. Suppose 
that the weights z,j in pathways leading to the Jth 
node are large, but that the vector pattern zj is not 
an adequate match for the signal pattern S according 
to the vigilance criterion. Also suppose that dynamics 
in the target field F, lead to a "choice" following 
competitive contrast-enhancement (Figure 17b) and 
that the chosen node J represents a category. Large 
amounts of transmitter will thus be released from 
synapses adjacent to node J, but not from synapses 
adjacent to other nodes. The reset signal will then 
selectively inactivate transmitter at postsynaptic sites 
adjacent to the Jth node. Following such a reset wave, 
the new signal pattern S • uj will be biased against 
the Jth node relative to the original pattern. How- 
ever, it could happen that the time interval prior to 
the reset signal is so brief that only a small fraction 
of available transmitter is released. Then S • ul could 
still be large relative to a "correct"  S • u, after reset 
occurs (Figure 17c). If this were to occur, the Jth 
node would simply be chosen again, then reset again, 
leading to an accumulating bias against that choice 
in the next time interval. This process could continue 
until enough transmitter vii is inactivated to allow 
another node, with smaller weights zij but a better 
pattern match, to win the competition. Simulations 
of such a reset sequence are illustrated in Figures 
23-26. 

15. SUMMARY OF SYSTEM DYNAMICS 
DURING A MISMATCH-RESET CYCLE 

Figure 18 summarizes system dynamics of the ART 
search model during a single input presentation. In- 
itially, the transmitted signal pattern S • uj, as well 
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FIGURE 18. ART Search Hypotheses I and 2 implement com- 
putations to carry out search in an ART system. Input reset 
employs the same mechanisms as mismatch reset, initiating 
search when the input pattern changes significantly. 



140 G. A. Carpenter and S. Grossberg 

as the postsynaptic activity xj, are proportional to the 
weighted signal pattern S • zj of the linear filter. The 
postsynaptic activity pattern is then contrast-en- 
hanced due to the internal competitive dynamics of 
the target field. The ART Search Hypothesis 1 im- 
plies that the transmitter release rate is greatly am- 
plified in proportion to the level of postsynaptic ac- 
tivity. A subsequent reset signal selectively inactivates 
transmitter in those pathways that caused an error. 
Following the reset wave, the new signal S - u~ is no 
longer proportional to S • zj but is, rather, biased 
against the previously active representation. A series 
of reset events ensue until an adequate match or a 
new category is found. Learning occurs on a time 
scale that is long relative to that of the search process. 

16. AUTOMATIC STM RESET BY REAL- 
TIME INPUT SEQUENCES 

The ART 3 architecture serves other functions as 
well as implementing the mismatch-reset-search 
cycle. In particular, it allows an ART system to dis- 
pense with additional processes to reset STM at onset 
or offset of an input pattern. The representation of 
input patterns as a sequence, L, 12, L, . • . • corres- 
ponds to the assumption that each input is constant 
for a fixed time interval. In practice, an input vector 
l(t) may vary continuously through time. The input 
need never be constant over an interval, and there 
may be no temporal marker to signal offset or onset 
of "an input pattern" per se. Furthermore, feedback 
loops within a field or between two fields can main- 
tain large amplitude activity even when l(t) = 0. 
Adaptive resonance develops only when activity pat- 
terns across fields are amplified by such feedback 
loops and remain stable for a sufficiently long time 
to enable adaptive weight changes to occur (Gross- 
berg, 1976b, 1982a). In particular, no reset waves 
are triggered during a resonant event. 

The ART reset system functionally defines the 
onset of a "new" input as a time when the orienting 
subsystem emits a reset wave. This occurs, for ex- 
ample, in the ART 2 module (Figure 3) when the 
angle between the vectors l(t) and p(t) becomes so 
large that the norm of r(t) falls below the vigilance 
level p(t),  thereby triggering a search for a new cat- 
egory representation. This is called an input reset 
event, to distinguish it from a mismatch reset event, 
which occurs while the bottom-up input remains 
nearly constant over a time interval but mismatches 
the top-down expectation that it has elicited from 
level F2 (Figure 2). 

This property obviates the need to mechanistically 
define the processing of input onset or offset. The 
ART Search Hypothesis 3, which postulates resto- 
ration of a resting state between successive inputs 
(Carpenter & Grossberg, 1989), is thus not needed. 

Presynaptic transmitter may not be fully accumulated 
following an input reset event, just as it is not fully 
accumulated following a mismatch reset event. For 
both types of reset, the orienting subsystem judges 
the active code to be incorrect, at the present level 
of vigilance, and the system continues to search until 
it finds an acceptable representation. 

17. REINFORCEMENT FEEDBACK 

The mechanisms described thus far for STM reset 
are part of the recognition learning circuit of A R T  
3. Recognition learning is, however, only one of sev- 
eral processes whereby an intelligent system can learn 
a correct solution to a problem. We have called rec- 
ognition, reinforcement, and recall the "3 R's" of 
neural network learning (Carpenter & Grossberg, 
1988). 

Reinforcement, notably reward and punishment, 
provides additional information in the form of en- 
vironmental feedback based on the success or failure 
of actions triggered by a recognition event. Reward 
and punishment calibrate whether the action has or 
has not satisfied internal needs, which in the biolog- 
ical case include hunger, thirst, sex. and pain reduc- 
tion, but may in machine applications include a wide 
variety of internal cost functions~ 

Reinforcement can shift attention to focus upon 
those recognition codes whose activation promises 
to satisfy internal needs based on past experience. 
A model to describe this aspect of reinforcement 
learning was described in Grossberg (1982a, 1982b, 
1984: reprinted in Grossberg, 1987a) and was sup- 
ported by computer simulations in Grossberg and 
Levine (1987; reprinted in Grossbcrg, 1988). An at- 
tention shift due to reinforcement can also alter the 
structure and learning of recognition codes by am- 
plifying (or suppressing) the STM activations, and 
hence the adjacent adaptive weights, of feature de- 
tectors that are active during positive (or negative) 
reinforcement. 

A reset wave may also be used to modify the 
pattern of STM activation in response to reinforce- 
ment. For example, both green and yellow bananas 
may be recognized as part of a single recognition 
category until reinforcement signals~ contingent upon 
eating the bananas, differentiate them into separate 
categories. Within ART 3, such a reinforcement sig- 
nal can alter the course of recognition learning by 
causing a reset event. The reset event may override 
a bias in either the learned path weights (Figure 19) 
or in the input strengths (Figure 20) that could oth- 
erwise prevent a correct classification from being 
learned. For example, both green and yellow ba- 
nanas may initially be coded in the same recognition 
category because features that code object shape (e.g,, 
pathway A in Figures 19 and 20) prevent features 
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FIGURE 19. A system whose weights are biased toward fea- 
ture A over feature B over feature C. (a) Competition amplifies 
the weight bias in STM, leading to enhanced transmitter re- 
lease of the selected feature A. (b) Transmitter inactivation 
following reinforcement reset allows feature B to become 
active in STM. 
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FIGURE 20. A system whose input signals are biased towards 
A over B over C. (a) Competition amplifies the input bias in 
STM, leading to enhanced transmitter release of the selected 
feature A. (b) Transmitter inactivation following reinforce- 
ment reset allows feature B to become active in STM. 
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that code object color (e.g., pathway B in Figures 
19 and 20) from being processed in STM. Reset waves 
triggered by reinforcement feedback can progres- 
sively weaken the STM activities of these shape fea- 
tures until both shape and color features can simul- 
taneously be processed, and thereby incorporated 
into different recognition codes for green bananas 
and yellow bananas. 

In technical applications, such a reset wave can 
be implemented as a direct signal from an internal 
representation of a punishing event. The effect of 
the reset wave is to modify the spatial pattern of 
STM activation whose read-out into an overt action 
led to the punishing event. The adaptive weights, or 
LTM traces, that input to these STM activations are 
then indirectly altered by an amount that reflects the 
new STM activation pattern. Such a reinforcement 
scheme differs from the competitive learning scheme 
described by Kohonen (1984, p. 200), in which re- 
inforcement acts directly, and by an equal amount, 
on all adaptive weights that lead to an incorrect clas- 
sification. 

Reinforcement may also act by changing the level 
of vigilance (Carpenter & Grossberg, 1987a, 1987b). 
For example, if a punishing event increases the vig- 
ilance parameter,  then mismatches that were toler- 
ated before will lead to a search for another recog- 
nition code. Such a code can help to distinguish pattern 
differences that were previously considered too small 
to be significant. Such a role for reinforcement is 
illustrated by computer simulations in Figures 25- 
28. 

All three types of reaction to reinforcement feed- 
back may be useful in applications. The change in 
vigilance alters the overall sensitivity of the system 
to pattern differences. The shift in attention and the 
reset of active features can help to overcome prior 
coding biases that may be maladaptive in novel con- 
texts. 

18. NOTATION FOR HIERARCHIES 

Table 1 and Figure 21 illustrate notation suitable for 
an ART hierarchy with any number of fields F,,, [),, 

F, . . . . .  This notation can also be adapted for related 
neural networks and algorithmic computer simula- 
tion. 

Each STM variable is indexed by its field, layer, 
and node number. Within a layer, x denotes the ac- 
tivity of a node receiving inputs from other layers, 
while y denotes the (normalized) activity of a node 
that sends signals to other layers. For example, xl  'e 

denotes activity at the ith input node in layer 2 of 
field F , ( i  = 1 . . . n , )  and y','~ denotes activity of the 
corresponding output node. Parameters are also in- 
dexed by field (p]', p~ . . . .  ), as arc signal functions 
(g"). Variable rl' denotes activity of the ith reset node 
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TABLE 1 
Notation for ART 3 Hierarchy 

Ff ie ld  ~ Fa 
i = i, = 1 . . . n ~  
L = 1,2,3 
xff 

y~L 

g. (y~L) =_ S~' 
P~ 
r~ 
p~ 
z~ ~ 

c 

STM field a 
node index, field a 
index, 3 layers of an STM field 
STM activity, input node i, layer L, 

field a 
STM activity, output node i, layer L, 

field a 
signal function, field a 
parameter, field a, k = 1,2 . . . .  
STM activity, reset node i, field b 
vigilance parameter, field b 
LTM trace, pathway from node i 

(field b) to node j (field c) 
intracellular transmitter, pathway 

from node i (field b) to node ] 
(field c) 

released transmitter, pathway from 
node i (field b) to node j (field c) 

of field Fb, and pb is the corresponding vigilance pa- 
rameter. 

Variable z denotes an adaptive weight or LTM 
trace. For example, z~ '~ is the weight in the bottom- 
up pathway from the ith node of field Fb to the jth 
node of field F,.. Variables u ~ and v~ ~ denote the t l  
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FIGURE 21. ART 3 simulation neural network. Indices i = 1 
. . .  r l ,  = nb and i = 1 . . .  n~. The reset ~ acts at all layers 
1 and 3 (Section 8). 

corresponding presynaptic and bound transmitter 
quantities, respectively. Variables for the top-down 
pathways are z~i b, u~ ~, and v~* I I  • 

Complete simulation equations are specified in 
Section 26. 

19.  T R A D E , O F F  B E ~ E E N  W E I G H T  S I Z E  
A N D  P A I ' T E R N  M A T C H  

The simulations in Sections 20-24 illustrate the dy- 
namics of search in the ART 3 system shown in Fig- 
ure 21. The simulation time scale is assumed to be 
short relative to the time scale t)t learning, so all 
adaptive weights z~ C and z)i h are held constant. The 
weights are chosen, however, to illustrate a problem 
that can arise with slow learning or in any other 
situation in which weight vectors are not normalized 
at all times. Namely, a category whose weight vector 
only partially matches the input vector may become 
active because its weights are large, This can prevent 
initial selection of another category whose weight 
vector matches the input vector but whose weight 
magnitudes are small due, say, to a brief prior learn- 
ing interval. 

The search process allows the ART 3 system to 
reject an initial selection with large weights and par- 
tial pattern match, and then to activate a category 
with smaller weights and a better pattern match. As 
in ART 2. when weights are very small (nodes j = 
6, 7 . . . . .  Figure 22) the ART system tolerates poor 
pattern matches to allow new categories to become 
established. During learning, the weights can be- 
come larger. The larger the weights, the more sen- 
sitive the ART system is to pattern mismatch (Car- 
penter & Grossberg, 1987b). 

Figure 22 illustrates the trade-off between weight 
size and pattern match in the system used in the 
simulations. In Figures 22a and 22b, vector S illus- 
trates the STM pattern stored in bl, and sent from F, 
to Fh when an input vector I is held constant. The S~ 
values were obtained by presenting to F, an input 
function I with li a linearly decreasing function of i. 
Vector S is also stored in Fh, as long as F, remains 
inactive. Initially, S is the signal vector in the bottom- 
up pathways from F~, to F,. In Figure 22a . $1 :> 
$2>  . • . > S t ; f o r i  = 6 ,7  . . 15(= n, : n~),S, 
is small. Each vector z], z:, z3, and z4, plotted in 
columns within the square region of  Figure 22a, par- 
tially matches the signal vector S. These weights are 
significantly larger than the weights of vector zs. 
However, z5 is a perfect match to S in the sense that 
the angle between the two vectors is 0: 

cos(S, zs) = l. (16) 

The relationship 

S • zj = IISIIIIz, llcos(S, zi) (1'7) 
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FIGURE 22. The length of a side of the square centered at position i or j or (i,j) gives the value of a variable with the 
corresponding index. Shown are quantities S~ 3, zqbc, S~3. Z~:, and cos (S ~3, z~). (a) Vector S b3 is the signal response to Input 
1 in the simulations. Vector z~ (filled squares) is parallel to S ~3, but Iz~ol is small. Thus S b3 . z~ is smaller than S b3 • zJ 'c for 
j = 1, 2, and 4, despite the fact that cos (S%z~ ~) is maximal. (b) Vector S b3 is the signal response to Input 2 in the simulations. 
Vector z~ ~ (filled squares) is parallel to S b3. 

implies a trade-off between weight size, as measured 
by the length ItzjH of zj, and pattern match, as mea- 
sured by the angle between S and z r If the initial 
signal from Fh to F, is proportional to S • zj, as in 
(13), then the matched node (j = 5) may receive a 
net signal that is smaller than signals to other nodes. 
In fact, in Figure 22a, 

S ' z , > S ' z , > S ' z 4 > S ' z ~ >  . . . .  (18) 

Figure 22b shows a signal vector S that is parallel to 
the weight vector z~. 

20. ART 3 SIMULATIONS: MISMATCH 
RESET A N D  INPUT RESET OF 

STM CHOICES 

The computer simulations summarized in Figures 23- 
26 use the inputs described in Figure 22 to illustrate 
the search process in an ART 3 system. In these 
simulations, the F,. competition parameters were cho- 
sen to make a choice; hence, only the node receiving 
the largest filtered input from Fb is stored in STM. 
The signal function of IV, caused the STM field to 
make a choice. In Figure 27, a different signal func- 
tion at F,,, similar to the one used in F, and Fb, il- 
lustrates how the search process reorganizes a dis- 
tributed recognition code. The simulations show how, 
with high vigilance, the ART search process rapidly 
causes a series of mismatch resets that alter the trans- 
mitter vectors u~, u : , . . ,  until S • u5 becomes max- 
imal. Once node j = 5 becomes active in STM it 

amplifies transmitter release. Since the pattern match 
is perfect, no further reset occurs while Input 1 (Fig- 
ure 22a) remains on. Input reset is illustrated follow- 
ing an abrupt or gradual switch to Input 2 (Figure 
22b). 

Each simulation figure illustrates three system 
variables as they evolve through time. The time axis 
(t) runs from the top to the bottom of the square. A 
vector pattern, indexed by i or j, is plotted horizon- 
tally at each fixed time. Within each square, the value 
of a variable at each time is represented by the length 
of a side of a square centered at that point. In each 
figure, part (a) plots y~q, the normalized STM vari- 
ables at layer 1 of field F,.. Part (b) plots E,i v~ '~, the 
total amount of transmitter released, bottom-up, in 
paths from all Fh nodes to the jth F, node. Part (c) 
plots Zj v~i b, the total amount of transmitter released, 
top-down, in paths from all F, nodes to the ith Fh 
node. The ART Search Hypothesis 1 implies that the 
net bottom-up transmitter pattern in part (b) reflects 
the STM pattern of F, in part (a); and that the net 
top-down transmitter pattern in part (c) reflects the 
STM pattern of F~. 

In Figure 23, the vigilance parameter is high and 
fixed at the value 

p ~ .98. (19) 

For 0 -< t < .8, the input (Figure 22a) is constant. 
The high vigilance level induces a sequence of mis- 
match resets, alternating among the category nodes 
j = 1, 2, and 4 (Figure 23a), each of which receives 
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at t = '215. Input 1 swi tches to Input 2 at t = .8, causing an Input reset a n d ~  o f a  n e w ~ ~  
(I = 1). 

an initial input larger than the input to node j = 5 
(Figure 22a). At  t = .215, the Fc n o d e j  = 5 is 
selected by the search process (Figure 23a). It re- 
mains active until t = .8. Then, the input from F, is 
changed to a new pattern (Figure 22b). The mis- 
match between the new STM pattern at F, and the 
old reverberating STM pattern at Fb leads to an input 
reset (Figures 18 and 23). The ART Search Hypoth- 
esis 2 implies that bound transmitter is inactivated 
and the STM feedback loops in Fb and Fc are thereby 
inhibited. The new input pattern immediately acti- 
vates its category node j = 1, despite some previous 
depletion at that node (Figure 23a). 

Large quantities of transmitter are released and 
bound only after STM resonance is established. In 
Figure 23b, large quantities of bottom-up transmitter 

are released at the Fc node j = 5 in the time interval 
.215 < t < .8, and at node j = 1 in the time interval 
.8 < t < 1. In Figure 23c. the pattern of top-down 
bound transmitter reflects the resonating matched 
STM pattern at Fb due to Input 1 at times .215 < 
t < .8 and due to Input 2 at times .8 < t < 1. 

21. ,11" 
DI_ 

Figure 24 shows the dynamics of the same system as 
in Figure 23 but at the lower vigilance value 

p ~- .94. (20) 

The Fc node j = 5 becomes active slightly sooner 
(t = .19. Figure 24a) than it does in Figure 23a, 
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( j  = 5) at t = .19 Input 1 switches to Input 2 at t = .8, but  no input reset occurs, and nodej = 5 remains active, due to the 
lower vigilance level than in Figure 23. 

where p = .98. At a lower vigilance, more trans- 
mitter needs to be released before the system reacts 
to a mismatch so that each "er roneous"  category 
node is active for a longer time interval than at higher 
vigilance. When p = .98 (Figure 23b), node j = 1 
is searched five times. When p = .94 (Figure 24b), 
node j = 1 is searched only three times, but more 
transmitter is released during each activation/reset 
cycle than at comparable  points in Figure 23b. In- 
activation of this extra released transmitter approx- 
imately balances the longer times to reset. Hence,  
the total search time remains approximately constant 
over a wide range of vigilance parameters.  In the 
present instance, the nonlinearities of transmitter re- 
lease terminate the search slightly sooner at lower 
vigilance. 

Figure 24a illustrates another  effect of lower vig- 
ilance: the system's ability to tolerate larger mis- 
matches without causing a reset. When the input 
changes at t = .8, the mismatch between the input 
pattern at F, and the resonating pattern at Fh is not 
great enough to cause an input reset. Despite bot- 
tom-up input only to nodes i = 1, 2, the strong 
resonating pattern at nodes i = 1 . . . . .  5 maintains 
itself in STM at Fh (Figure 24c). 

22. R E I N F O R C E M E N T  R E S E T  

In Figure 25, vigilance is initially set at value 

/, = .9 ,  ( 2 1 )  

in the time interval 0 < t < . 1. At this low vigilance 
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level, the STM pattern of Fb does not experience a 
mismatch reset series. Node j = 1 is chosen and 
resonance immediately ensues (Figure 25a), as is also 
reflected in the amplification of transmitter release 
(Figure 25b). The simulation illustrates a case where 
this choice of category leads to external conse- 
quences, including reinforcement (Section 17), that 
feed back to the A R T  3 module. This reinforcement 
teaching signal is assumed to cause vigilance to in- 
crease to the value 

p = .98 (22) 

for times t -- . 1. This change triggers a search that 
ends at node j = 5, at time t = .19. Note that, as 
in Figure 24, enhanced depletion of transmitter at 

] = 1 shortens the total search time. In Figure 23, 
where p also equals .98, the searehintervat  has length 
.215: in Figure 25, the search interval has length .09, 
and the system never again activates node j = 1 
during search. 

23. IN P U T H Y S ~  

The simulation illustrated in Figttte 26 is nearly the 
same as in Figure 25, with a = .9 for  O_< t < . t  and 
p = .98 for t > .  1. However ,  at t = .8, Input 1 starts 
to be slowly deformed into Input  2 , ra ther  than being 
suddenly switched, as in Figure 25. The Fa ~ Fb input 
vector becomes a convex combination of  Input 1 and 
Input 2 that starts as Input 1 (t <- .8) and is linearly 
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shifted to Input 2 (t -> 1.7). Despite the gradually 
shifting input, node j = 5 remains active until t = 
1.28. Then an input reset immediately leads to ac- 
tivation of node j = 1, whose weight vector matches 
Input 2. Competition in the category representation 
field F, causes a history-dependent choice of one 
category or the other,  not a convex combination of 
the two. 

24. DISTRIBUTED CODE SIMULATION 

Issues of learning and code interpretation are subtle 
and complex when a code is distributed. However,  
the AR T 3 search mechanism translates immediately 

into this context. The simulation in Figure 27 illus- 
trates how search operates on a distributed code. The 
only difference between the A RT 3 system used for 
these simulations and the one used for Figures 23-  
26 is in the signal function at F,. In Figures 23-26, 
a choice is always made at field F~. The signal func- 
tion for Figure 26 is, like that at F, and F~, piecewise 
linear: 0 below a threshold, linear above. With its 
fairly high threshold, this signal function compresses 
the input pattern; but the compression is not so ex- 
treme so as to lead inevitably to choice in STM. 

Distributed code STM activity is shown in Figure 
27a. At a given time more than one active node may 
represent a category (2.6 < t < 7), or one node may 
be chosen (7.7 < t -< 9). 
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the bottom-up Input pattern to satisfy the vigi lance criterion. 

25. A L T E R N A T I V E  A R T  3 
M O D E L  SIMULATION 

ART 3 systems satisfy the small number of design 
constraints described above. In addition, ART 3 sat- 
isfies the ART 2 stability constraints (Carpenter & 
Grossberg, 1987b). For example, top-down signals 
need to be an order of magnitude larger than bottom- 
up signals, all other things being equal, as illustrated 
below by (24) and parameters Pl and P2 in Table 4 
and eqns (31) and (34). At least some of the STM 
fields need to be competitive networks. However, 
many versions of the ART systems exist within these 

boundaries. A simulation of one such system is il- 
lustrated in Figure 28, which duphcates the condi- 
tions on p and input patterns of  Figure 25. However. 
the system that generated Figure 28 uses a different 
version of the ART 3 STM field Fc than the one 
described in Section 26. In particular, .in the STM 
equation (3), B > 0. STM nodes can thus be  hyper- 
polarized, so that x / <  0, by intrafietd inhibitory in- 
puts. The transmitter release function f (xj)  (eqn (9)) 
equals 0 when xj is sufficiently hype~olarized. The 
system of Figure 28 thus has the ~ r t y  that trans- 
mitter release can be terminated at nodes that be- 
come inactive during the STM competition. Since 
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f (0)  needs to be positive to allow transmitter release 
to begin (Figure 12), low-level transmitter release by 
nodes without significant STM activity is unavoidable 
if nodes cannot be hyperpolarized. Figure 28 shows 
that a competitive STM field with hyperpolarization 
gives search and resonance results similar to those 
of the other simulations. 

Similarly, considerable variations in parameters 
also give similar results. 

26. SIMULATION EQUATIONS 

Simulation equations are described in an algorithmic 
form to indicate the steps followed in the computer 
program that generated Figures 23-27. 

Time Scale 

The simulation time scale is fixed by setting the rate 
of transmitter accumulation equal to 1. The intrafield 
STM rate is assumed to be significantly faster and 
the LTM rate significantly slower. Accordingly, STM 
equations are iterated several times each time step 
and LTM weights are held constant. The simulation 
time step is 

At = .005. (23) 

Integration Method 

Transmitter variables u and u are integrated by first- 
order approximation (Euler 's method). The IMSL 
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Gear package gives essentially identical solutions but 
requires more computer time. 

LTM Weights 

The bottom-up LTM weights z~ ~ illustrated in Figure 
22 are specified in Table 2. At "uncommitted" nodes 

bc = 0.001. Top-down LTM weights z~ ~ are (j --- 6) zij 
constant multiples of corresponding z~ ¢ weights: 

z~b = 10' z~ ~. (24) 

This choice of LTM weights approximates a typ- 
ical state of an A R T  system undergoing slow learn- 
ing. Weights do not necessarily reach equilibrium on 
each presentation, but while the Jth F~ node is active, 

z~," , xl '3 (25) 

and 

z',~ , SIC (26) 

Given the parameters specified below, as STM and 
LTM variables approach equilibrium, 

x~ 3 ~ 10 • S, b3. (27) 

Equations (25)-(27) imply that eqn (24) is a good 
approximation of a typical weight distribution. 

Initial Values 

Initially, 

and 

u~'(0) = z~' (28) 

uT, b(0) = z)) b. (29) 

All other initial values are 0. 

Input Values 

The Fb input values (S~ 3) are specified in Table 3. 
All simulations start with Input 1. Several of the 
simulations switch to Input 2 either with a jump or 

TABLE 2 
LTM Weights z~ 

j 

1 2 3 4 5 6 
1.0 0.0 0.0 1.0 0.176 0,0001 1 
1,0 0.0 0.0 0.0 0.162 0.0001 2 
0.0 0.9 0.0 0.0 0.148 0.0001 3 i 
0.0 0.9 0.0 0.0 0.134 0:0001 4 | 
0.0 0.0 0.8 0.0 0,120 0.0001 5 
0.0 0.0 0.8 0.0 0.0 0.0001 6 
0.0 0.0 0.0 0.0 0.0 0.0001 7 

i = 1 . . . n ,  = nb = 15 
j = 1 . . . n ~  = 20 

G. A. Carpenter and S. Grossberg 

TABLE 3 
F, --, F, Input Values (St 3) 

i Input 1 Input 2 

1 1.76 2,36 
2 1.62 2.36 
3 1.48 O0 
4 1.34 0.0 
5 1.20 0 0 
6 0.0 O0 
7 0.0 0.0 

gradually. Input 1 values are obtained by presenting 
a linear, decreasing function L to F,. Input 2 values 
are obtained by setting 1~ = I, = 1 and L -- 0 
(i -> 3). 

Implicit in this formulation is the assumption that 
a changing input vector I can register itself at Fo. This 
requires that STM at F, be frequently "reset ."  Oth- 
erwise, new values of I~ may go unnoticed, due to 
strong feedback within Fo. Feedback within Fb allows 
the STM to maintain resonance even with fluctuating 
amplitudes at F,. 

STM Equations 

Except during reset, equations used to generate the 
STM values for Figures 23-27 are similar to the A R T  
2 equations (Carpenter & Grossberg, 1987b). Dy- 
namics of the fields Fo, Fb, and F,. are homologous, 
as shown in Figure 21. Steady-state variables for the 
field Fb, when the reset signal equals 0, are given by 
eqns (31)-(36). Similar equations hold for fields F, 
and F,. 

Layer 1, input variable 

dxf ~ 
- -  b S b 2  . ~: xf ~ + Sf 3 + p~ , .  (30) 

dt 

In steady state, 

x ;  1 -~ s~ 3 + p~S~, 2. (31) 

Table 4 specifies parameter p~, p)  . . . .  values and 
the signal function 

gb(y~L) _~ S~L (32) 

for layers L = 1, 2, 3. Equation (31) is similar to 
the simplified STM eqn (6), with X~ ! equal to the 
sum of an interfietd input (Sf a) and an intrafield input 
(p,~S~2). 

Layer 1, output variable 

xb 1 
y bl ~ P~ + JlXbL]I" (33) 
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TABLE 4 

Paramete rs  

p~ = p f  - p~ - 10.0 

p~ = p~ = p~ = 10.0 

p~ = p3 b = p~ = 0.0001 

p~ - 0.9 

p~ - pg = 0.1 

p~ = pg = 1.0 

Signal  Funct ions g ' ,  g~, g~ 

F., F~ Distributed 

p~ = p~ = 0.0 

p~ = p~ = 0.3 

F~ Choice 
/-- 

p~ 1 ./k/n. 

p~ = 0.2 

Distributed 

w -  P7 i f w > p 7  + P8 
l \ P8 / 

g ( v v )  = 

F~ Distributed 

p~ = 0.0 

p~ = 0.4 

Cho ice  

~ w -  pT] z if w <  

~ /  if w P7 

Layer  2. input  variable 

xl '2 ~ SI" + p~Sl '~. (34) 

L a y e r  2. ou tpu t  variable 

X t>2 
v5  - - -  ( 3 5 )  

p~, + rlx~:l[ 

Layer 3, input  variable 

xl '~ ~ SI'" + p'4 ~ v'/'. (36) 

Layer  3, ou tpu t  variable 

xh ~ 
v I'~ = - -  (37) 
- '  p,~ + IIx"~ll" 

Normalizat ion of  the output  variables in eqns (33), 
(35), and (37) accomplishes two goals. First, since 
the nonl inear  signal function gb in eqn (32) has a 
fixed threshold,  normal izat ion is needed to achieve 
orderly pat tern  t ransformat ions  under  variable pro- 
cessing loads. This goal could have been reached with 
o ther  norms,  such as the L l norm (Ix[ -= E,xi). The 
second goal of  normal izat ion is to allow the patterns 
to have direct access to category representat ions,  
without  search, after the code has stabilized (Car- 
penter  & Grossberg ,  1987a, 1987b). Equat ions  (13) 
and (17) together  tie the Eucl idean norm to direct 
access in the present  model .  I f  direct access is not  
needed,  or  if ano ther  measure  of  similarity of  vectors 
is used, the Eucl idean norm may be replaced by L ~ 
or  another  norm.  

Transmitter Equations 

When the reset signal equals O, levels of presynaptic  
and bound  transmit ter  are governed  by equat ions of  
the form (1) and (5). as follows. 

Presynapt ic  transmitter,  Fh ~ F,. 

dul;' 
dt 

= (zl;' - ul'/) - ul;'p;(.v' + p',;)SI". (38) 

B o u n d  transmitter.  Fh ~ F, 

dvl;'  
- " + ul','p~(x', ~ + p',,)SI'L (39) 

dt - - u, 

Presynapt ic  transmitter.  F,--~ F~, 

du)/' 
ig~h )h Xl,~ dt = (z'/' - u;/') - /,!~( , + p~)S', ~. (4o) 

B o u n d  transmitter,  F,.--. Fh 

dv)) h _ ,, ~,, 
dt u',/' + u, p~(x, + p~)S'~ ~. (41) 

Note  that eqns (38) and (39) imply that 

ul;' + vl;' , zl;' (42) 

and eqns (40) and (41) imply that 

u',/' + v~i ~' , z;/' (43) 
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Reset Equations 

Reset occurs when patterns active at F~ and Fh fail 
to match according to the criterion set by the vigi- 
lance parameter. In Figure 21, 

r, h -_ y,2 + yl,~ 
p~ + i!yoZll + /ly~,tl. (44) 

Reset occurs if 

where 

I/r"ll < p", (45) 

0 < p ~ <  1. (46) 

As in eqns (5) and (6), the effect of a large reset 
signal is approximated by setting input variables 

c3 and bound transmitter variables b~ t, xi /36 , 
v~b equal to 0. 

Iteration Steps 

Steps 1-7 outline the iteration scheme in the com- 
puter program used to generate the simulations. 

Step 1. t--> t + At. 
Step 2. Set p and Si a3 values. 
Step 3. Compute r~ and check for reset. 
Step 4. Iterate STM equations Fb, F~ five times, set- 

ting variables to 0 at reset. 
Step 5. Iterate transmitter eqns (38)-(41). 
Step 6. Compute sums E~ v~ ~ and Ej v~, b. 
Step 7. Return to Step 1. 

27. CONCLUSION 

In conclusion, we have seen that a functional analysis 
of parallel search within a hierarchical ART archi- 
tecture can exploit processes taking place at the 
chemical synapse as a rich source of robust designs 
with natural realizations. Conversely, such a neural 
network analysis embeds model synapses into a pro- 
cessing context that can help to give functional and 
behavioral meaning to mechanisms defined at the 
intracellular, biophysical, and biochemical levels. 
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