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a b s t r a c t

The temporal character of the input is, generally, not taken into account in the neural models. This paper
presents an extension of the FasArt model focused on the treatment of temporal signals.
FasArt model is proposed as an integration of the characteristic elements of the Fuzzy System Theory

in an ART architecture. A duality between the activation concept andmembership function is established.
FasArt maintains the structure of the Fuzzy ARTMAP architecture, implying a static character since the
dynamic response of the input is not considered.
The proposed novel model, dynamic FasArt (dFasArt), uses dynamic equations for the processing

stages of FasArt: activation, matching and learning. The new formulation of dFasArt includes time as
another characteristic of the input. This allows the activation of the units to have a history-dependent
character instead of being only a function of the last input value. Therefore, dFasArt model is robust to
spurious values and noisy inputs.
As experimental work, some cases have been used to check the robustness of dFasArt. A possible

application has been proposed for the detection of variations in the system dynamics.
© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Dealing with the problem of recognition of temporal patterns,
the arriving order of data constitutes an important part of the
information in order to establish a classification of time series. It
is necessary to consider the temporal arrangement of the patterns
as part of their characteristics. Usually, the methods proposed
for pattern classification do not make use of this information,
(Bezdek & Pal, 1992; Devijver & Kittler, 1982; Duda & Hart,
1973; Nigrin, 1993; Pao, 1989). It can be said that patterns are
processed independently of their temporal disposition. However,
the temporal concept is taken into account in the Adaptive
Resonance Theory (ART) because of the dynamic character of
their activation equations. This is suggested in Raijmakers and
Molenaar (1997) and Carpenter, Grossberg, and Rosen (1991b), but
usually the algorithm used just considers the stationary solution of
the model differential equations (Carpenter, Grossberg, & Rossen,
1991c). Specific architectures have been proposed, like the STORE
model (Bradski, Carpenter, & Grossberg, 1994) for the recognition
of temporal sequences or the ART-EMAP model (Carpenter &
Ross, 1995) that allows temporal evidence accumulation. ART
3 (Carpenter & Grossberg, 1990) might be the model that best
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approaches the problem that outlines the recognition of temporal
patterns because it allows the tracking of time-variant patterns.
This requires the inclusion of new dynamics associated to the
liberation of neurotransmitters on the neural synapses.
Different combinations of Fuzzy Set Theory have been included

in the neural models. The Fuzzy ART architecture (Carpenter,
Grossberg, & Rosen, 1991a) and Fuzzy ARTMAP (Carpenter,
Grossberg, Markuzon, Reynolds, & Rosen, 1992) are the most
important models among the ART ones. The FasArt model (Cano,
Dimitriadis, Araúzo, & Coronado, 1996) and its derivation FasBack
(Cano, Dimitriadis, & Coronado, 1997) maintain the ARTMAP
structure but rigorously including the principles of fuzzy sets.
This allows establishing a dual vision of the model as a neural
architecture and as a Fuzzy Logic System (FLS). At first, the
FasArt/FasBack models were applied to identification and control
system tasks (Arauzo et al., 2004; Cano, Dimitriadis, Gómez, &
Coronado, 2001), and to the pattern recognition problems (Gómez
et al., 2001). An unsupervised version called UFasArt (Sainz,
Dimitriadis, Cano, Gómez, & Parrado, 2000; Sainz, Dimitriadis,
Sanz, & Cano, 2002) has been also proposed associated with this
issue.
The paper is organized as follows. Section 2 describes the main

characteristics of FasArt model within the Fuzzy ART architectures
in the frame of the ART Theory. Section 3 proposes the dynamic
equations defining the new model. Several examples have been
selected to test its behaviour under different inputs including
inputs with noise. An application of dFasArt model, described in
Section 4, is the detection of changes in the system dynamics. The
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Fig. 1. Activation/membership function in FasArt model.

plant is a simulated DC motor controlled in a closed loop. Finally,
conclusions are given in Section 5.

2. FasArt model: ART based fuzzy adaptive system

FasArt model links the ART architecture with Fuzzy Logic
Systems, establishing a relationship among the unit activation
function and the membership function of a fuzzy set. One the one
hand this allows interpreting each of the FasArt unit as a fuzzy
class defined by themembership–activation function associated to
the representing unit. On the other hand, the rules that relate the
different classes are determined by the connection weights among
the units.
FasArt uses an activation function determined by the weights

of the unit as the membership function of a fuzzy set. The signal
activation is calculated as the AND of the activations of each one
of the dimensions when a multidimensional signal is considered.
This AND is implemented using the product as a T-norm. Hence,
the activity of unit j (Tj) for anM-dimensional input EI = (I1 . . . IM)
is given by:

Tj =
M∏
i=1

ηji(Ii) (1)

where ηji is the membership function associated to the ith-
dimension of unit j, determined by the weights wji, cji and vji, it is
shown in Fig. 1. The σ parameter determines the fuzziness of the
class associated to the unit.
The election of the winning unit J is carried out following the

winner-takes-all rule, hence:

TJ = max
j
{Tj}. (2)

The learning process starts when the winning unit meets
a criterion. That is usually related with the size of the class,
considering the input as a pattern attached to this class. This size
is calculated by the sum of those sides of the resulting hyperbox:

RJ =
M∑
i=1

(
max(vJi, Ii)−min(wJi, Ii)

)
. (3)

This RJ value, called RESET level, is compared with a function
h(ρ) of the ρ design parameter, so that:
• If:

RJ ≤ h(ρ) (4)

the matching between the input and the weight vector of the
unit is good, and the learning task starts.
• If:

RJ > h(ρ) (5)

there is not enough similarity, so the RESETmechanism is fired.
This inhibits the activation of unit J , returning to the election of
a new winning unit.
In the case of Fuzzy ART and FasArt this function comes defined
as:

h(ρ) = ρM. (6)

If the winning unit achieves the matching condition (RESET)
the learning phase is activated and the unit modifies its weights.
The Fast-Learning concept is commonly used. When the winning
unit represents a class that had performed some other learning
cycle (committed unit) the weights are updated according to the
equations:

EWNEWJ = min(EI, EWOLDJ )

ECNEWJ = ECOLDJ + β
(
EI − ECOLDJ

)
EVNEWJ = max(EI, EVOLDJ ).

(7)

For the case of the uncommitted units, the class is initialized
with the first categorized value, hence Fast-Commit:

EWNEWJ = EI

ECNEWJ = EI

EVNEWJ = EI.

(8)

Related with the FasArt equations it can be realized that the
learning task and the RESET calculus coincide with Fuzzy ART
(Carpenter et al., 1991a). However, the formulation proposed in the
case of FasArt denotes the different philosophy that inspires both
models. In the case of FasArt, min(EI, EWJ) is written since what is
calculated is the minimum between two vectors, so it can not be
computed as EI ∧ EW (representing the intersection of two fuzzy
sets). EI and EW are not fuzzy sets, i.e. their membership functions
are not defined at any time. Therefore, the fuzzy character of
Fuzzy ART is questionable, as pointed out in Simpson (1993). As
a difference, FasArt maintains a formal analogy with a fuzzy logic
system, relating each unit with a fuzzy set (fuzzy class) whose
membership function corresponds to the activation function.

2.1. Normalization of the inputs in FasArt

The complementary code used in Fuzzy ARTMAP model (Car-
penter et al., 1992) allows the normalization of the inputs main-
taining the relative importance of each component. Nevertheless,
the use of this coding implies that the components of the input vec-
tor should be inside the [0, 1] interval. When using generic signals,
this condition is often not satisfied and a pre-normalization of the
inputs is necessary. This pre-processing implies a previous knowl-
edge of themaximumandminimumvalues of the signal. This is not
always fulfilled. Therefore, the requirement for the input of being
inside the [0, 1] range, limits the on-line adaptive character of the
system since it implies a previous signal pre-processing.
The constraint on the input values is eliminated when using

the proposed formulation for FasArt, since the fuzzy sets can be
defined along the whole real axis. In contrast, the necessity of
determining the values of σ and h(ρ) is introduced, so that the
variability of themaximum andminimum values in the inputs and
that they are not known a priori, is assumed. The value of σ is the
level of generalization assigned to the fuzzy set. On the one hand,
it is necessary to remember that the wi and vi values have had
inputs that have been classified in the unit at any time and they
have contributed to its definition. On the other hand, the ci value
represents a typical value of the category; so the generalization can
be computed as a part of it. Hence, σ is proposed as:

σ = σ ∗|2cj| + ε (9)
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Fig. 2. dFasArt structure.

where the σ ∗ value is the generality level of the associated fuzzy
set: values of σ ∗ → 0 make the set less fuzzy (more crisp), while
values of σ ∗ → ∞ increase set fuzziness. The parameter ε > 0
fixes the minimum value of σ .
Another aspect when considering unconstrained input values

is the calculus of the RESET level. As the maximum value of each
individual length of the hyperbox is not limited to 1 and taking
into account that each component contributes with the same
equivalent information, the size of the hyperboxmust beweighted
by its order of magnitude. Thus:

RJ =
M∑
i=1

(
max(vJi, Ii)−min(wJi, Ii)

|2cJi| + ε

)
. (10)

This set of changes allows to process signals at any range,
without a previous knowledge of them. This feature increases the
operation range of themodel achieving a truly adaptive and on-line
character.

3. FasArt with dynamics: dFasArt

In other to use FasArt for clustering temporal inputs, a dynamic
formulation for the operation equations of FasArt is proposed. This
allows considering some temporal features of the input (arriving
order, persistence) which are as relevant as the signal value.
The dFasArt architecture, shown in Fig. 2, maintains the ART

structure but adding dynamic equations for the RESET, weights
and the activation calculus. This last one directly derives from the
activity equation in FasArt by:

dTj
dt
= −ATTj + BT

M∏
i=1

ηji(Ii(t)). (11)

Eq. (11) includes a term of passive decay with decay rate: AT ,
that reduces the unit activitywhen the signalmoves away from the
hyperbox that defines it and a term of excitation with excitation
gain BT . If the condition AT = BT is imposed in this equation and
if input EI(t) remains time-constant, then Tj →

∏M
i=1 ηji(Ii) when

t →∞. So, the system behaves as the original FasArt model.
Let us consider no dynamics to calculate the RESET level, since

thismechanismgenerates a typical characteristic of the classes and
therefore an aspect that is not generally time-dependent. It can be
said that the maximum size of the category/hyperbox is a system
characteristic of the same type than the input pattern dimension
(M). This implies that the RESET signal is integrated at a much
higher rate than the activation one. So the differential equation
which describes the RESET activation can be taken as an algebraic
equation. However, dealingwith noisy data, it is appropriate to use
a dynamic formulation, as is shown in dFasArt structure (Fig. 2):

dRJ
dt
= −ARRJ + BR

M∑
i=1

(
max(vJi, Ii)−min(wJi, Ii)

|2cJi| + ε

)
. (12)
If the condition of having the decay rate the same value as
excitation gain (AR = BR) is imposed, the system behaviour
approaches in time to that of the FasArt static model in the case
of constant input.
Dynamics is also considered in the learning equations, since it

seems evident that the persistence or duration of a certain value
as input signal should influence in the learning, as can be seen in
Fig. 2. To do this, a learning dynamics based on the principle of
Fast-Commit Slow-Recode is outlined. The initialization in FasArt
is maintained for uncommitted nodes, so that the category is
initialized with the input which generated it. When the learning
category is a previously created committed node, its weights are
modified according to the following dynamic equations:

d EW
dt
= −AW EW + BW min(EI(t), EW )

dEC
dt
= β(EI − EC)

dEV
dt
= −AV EV + BV max(EI(t), EV )

(13)

where AW and AV are passive decay rates, BW and BV excitations
gains and β is the learning rate.
The AW = BW and AV = BV conditions assure that the weights

approach the values of the FasArt static model when the input
signal remains time-constant.

3.1. Activation and reset in dFasArt

Let the input be a sinusoidal signal I(t) = sin(0.5π t) (Fig. 3(a))
and a unit with weight vector w = 0.5, c = 0.6 y v =
0.7. The activation equation (11) has been considered with a
forgetting factor rate AR = 0.99, a excitation gain BR = 1 and
a minimum fuzziness σ ∗ = 0. Simulation results of the unit
behaviour are shown in Fig. 3(b)(c). The unit begins to respond
(increasing activity) when input I(t) reaches the weight value,
(I(t) = w(t) = 0.5). At this point, the neuron starts to increase its
activity and it continues doing so until the input comes out of its
hyperbox influence (in this case, the segment [0.5, 0.7]). Starting
from the output, the unit begins losing its activity, increasing it
again when it passes through the hyperbox again. Amemory effect
takes place in this second passing, since there has been recently
an activation. This effect is observed in Fig. 3(b), where the new
peak of maximum activation is bigger than the previous one. This
clearly reflects the dynamic character of the net. Faced with the
same input, the system operates in a different way (different level
of maximum activity) depending on the past history (temporal
distance of the last activation increase). This is shown in the
second sinusoidal wave: as time passes, the neuron relaxes and its
response is weaker.
The results obtained in this simulation can be related to the

experimental results of pyramidal neurons submitted to a double
pulse of excitement with a short time interval between pulse
and pulse. In Polsky, Mel, and Schiller (2004) it can be clearly
seen under the mentioned circumstances how the response to the
second stimulus overcomes the one given to the first one.
According to the RESET level value shown in Fig. 3(c), it is

observed that it remains constant andwith aminimumvaluewhen
the signal remains in the hyperbox that defines the category. The
RESET level is increased or decreased when the signal passes away
or comes closer to the hyperbox with the same speed of that
increase/decrease according to the case. Evidently, any memory
effect is taken into account given the algebraic character of the
equation that defines it.
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Fig. 3. Activation and RESET level of the unit in response to a sinusoidal signal.

3.2. Noisy data

The appearance of noise is a frequent problem dealing with
experimental data. Noise is a serious inconvenience in ARTMAP
(Carpenter, 1997) architectures, since it can generate proliferation
of categories. Although FasArt model allows processing data with
noise (Cano et al., 2001) problems can arise due to an excess of
categories when the activation value becomes zero because of the
noise. An example of this behaviour is illustrated in Fig. 4(a) where
a Gaussian noise of zero mean and 0.05 variance has been added
to the original sinusoidal signal. For the activation and the RESET
calculus no dynamics have been considered. Comparing figures
Figs. 3(b) and 4(b) it can be seen that the activation falls to zero
many times. This is because the noise added to the original signal
yields the input I(t) out of the range [w − σ , v + σ ] where the
activation is not zero, just as Fig. 1 reflects. This kind of behaviour
would produce superimposed multiple categories (that would be
superimposed).
When dynamic equations are used to calculate both, the unit

activation and the RESET level, there appears a filtering effect at
certain input frequencies (Fig. 5). This has been observed in the
behaviour of biological neurons, (Mel, 1994). It allows the noise
effect becoming considerably attenuated when dynamic character
Fig. 4. Unit activation (b) and RESET level (c) responses to a sinusoidal input signal
(a) with additive noise when dynamics is not considered in neither the activity
equation nor the RESET.

is taken into account in the activation unit and RESET signal
calculus. Values of AT = 0.5 and BT = 1 was set for the TJ equation
and AR = 5, BR = 1 for the RESET equation, are used in Fig. 5.

3.3. Weight learning

A system with a two-dimensional input I(t) = (I1, I2) is
selected in order to illustrate the performance of the learning
equations. The first one is a step input (I1), passing from value:
I1(t) = 3 in t ∈ [0, 5) to value: I1(t) = 6 in t ∈ [5, 10] (Fig. 6,
dotted line). The second input is a constant value: I2(t) = 1, but
in t ∈ [1, 1.1] and t ∈ [5, 10] a Gaussian noise (mean = 0 and
variance = 1) e(t) = N(0, 1) is added (Fig. 6, solid line).
It is considered that a unit with initial weight vector: EW (0) =

EC(0) = EV (0) = (1, 3) is learning all the time by the input
(AW = BW = AV = BV = 0.9 and β = 0.1). Taken into account
the input vector characteristics it is expected that the change
in the input value I(1) will be reflected in the first component
of the weights (w1, c1, v1). Fig. 7 shows the weight behaviour
when FasArt equations are used. It is observed that the weight
corresponding with the minimum learned value remains the same
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Fig. 5. Unit activation (b) and RESET level (c) responses to a sinusoidal input signal
(a) with additive noise when dynamics is considered in the activity equation and in
the RESET.

Fig. 6. Two-dimensional input vector. One dimension is represented by the dotted
line and the other one by the continuous line. At time t = 5, a change in the input
values is produced.
Fig. 7. Weight learning for two-dimensional input vector. One dimension is
represented by the dotted line and the other one by the continuous line. At time
t = 5, a change in the input values is produced. (a) w1 and w2 weights, (b) c1 and
c2 weights, v1 and v2 weights.

(Fig. 7(a), dotted line), the one corresponding with the maximum
value (Fig. 7(c), dotted line) reflects the change in the input, and
the weight corresponding to the value of maximum membership
(Fig. 7(b), dotted line) is modified taking a value between the
maximum and minimum.
When the proposed dynamic learning equations are used, a

similar behaviour is observed with some differences (Fig. 8, dotted
lines). The change in weight V1 (Fig. 8(c), dotted line) is not
instantaneous, a continued presence of the input is necessary for
this weight to get the final value.
The particular characteristics of the dynamic learning are

clearly presented in the learning process of the input second
component I2(t) (Fig. 6, solid line). This input presents at t = 1
a small disturbance that produces an important change in the
weights w2 and v2 in the case of fast learning (without dynamics)
as shown in Fig. 7(b)(c) solid lines, and nothing when dynamic
learning is considered. This short time disturbance is filtered, as
shown in Fig. 8(b)(c) solid lines. When the noise in the input is
persistent (t > 5) the weight variations are high in the case of fast
learning (Fig. 7(b)(c), solid line) and smooth in the case of dynamic
learning (Fig. 8(b)(c), solid line).
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Fig. 8. Weight learning for two-dimensional input vector. One dimension is
represented by the dotted line and the other one by the continuous line. At time
t = 5, a change in the input values is produced. (a) w1 and w2 weights, (b) c1 and
c2 weights, v1 and v2 weights.

In both cases the learning equation of the weight c2, which
determines themaximummembership point, makes the system to
maintain a same ‘‘prototype’’ of the input c2, filtering the influence
of the noise.

4. Experimental results

A DCmotor with a PD control has been considered as a possible
practical application for the neural processing system. A change
in the parameters of the motor will imply a non-stationary state
in the process. The aim is to study the nature of the system by
output observation. The fact that the global system is controlled
in a closed loop makes its study difficult, since the controller tends
to cancel the effect of changes in the parameters of the motor, in
order tomaintain the global systembehaviour (i.e. the tracking of a
certain reference). Dealing with closed loop systems allow a closer
approach to industrial processes, where data usually comes from
controlled variables. Model identification in closed loop systems is
very important and has been studied in different works (Landau,
2001; Zhu & Butoyi, 2002).
Fig. 9. PD control scheme for the DC motor.

Fig. 10. Error signal at time interval 90 < t < 110.

A DC motor is considered, where the input voltage is applied
to the armature circuit of the motor, while fixed voltage is applied
to the field winding (Matko, Karba, & Zupancic, 1992). This motor
can be modelled as a dynamic system where the input u(t) is the
voltage applied to the motor and the output θ(t) is the angular
position:

J
d2θ
dt2
+ cf

dθ
dt
=
kT
R

(
u− ke

dθ
dt

)
(14)

where kT is the motor torque constant, ke is the back emf constant,
J is the inertia of the combination load and gear train referenced
to the motor shaft and cf is the viscous-friction coefficient of the
whole system, also referenced to the motor shell. The numeric
values are the same proposed in Matko et al. (1992): kT =
0.1146 Nm/A, cf = 0.001 N ms/rad, ke = 0.1435 V s/rad, J =
1.5× 10−4 kg m2/rad, R = 0.93�.
The position control of the motor is carried out using a PD

controller (Fig. 9). The controller parameters are: p = 12.17, q0 =
0.0188, q1 = 12.17. The reference for angular position r(t) of the
motor is a square signal with a period of T = 1, amplitude Ar = 1,
and a pulse width of 50% of the period.
At time t = 100, a change in the load inertia of the motor

is considered, from J(t ≤ 100) = 1.5 × 10−4 to a new value
J(t > 100) = 3 × 10−4. This variation produces a change
in the behaviour of the closed loop system. This change should
be detected by studying the time series of the control error e(t),
obtained subtracting the output signal from the reference, which
it is the angular position of the motor. The error signal e(t) is
represented in Fig. 10 at time interval 90 ≤ t ≤ 110. Note that
the action of the controller prevents the output frommoving away
from the reference even with the change in the parameter of the
motor.
The change in the value of the load inertia causes a variation

in the global system (motor and controller) dynamics. This
variation is reflected in the appearance of a non-stationary state
in the error variable which can be studied with the frequency
composition of the signal. The power spectrum is used, which
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Fig. 11. Power spectrum for the error signal.

Fig. 12. Winning unit evolution.

is calculated in a moving window through the signal. A 1-
second time-window has been selected, with a sampling period
of 1000 Hz. Using the definition of power spectrum as the Fourier
transform of the correlation function (Bendat & Piersol, 2000), the
values represented in Fig. 11 are obtained, where 10 frequencies
uniformly distributed in the [0, fc] interval have been considered,
the cutting frequency is given by fc = 1

21T and 1T is the
sampling period. As shown in the figure, the evolution of the
energy associated to the first two frequencies (0 and 55.5 Hz) takes
into account the effect due to the change in the inertia.
dFasArt model is started using the ten frequency components

of the energy as the input vector. Values of σ = 5.0 × 10−4
and ρ = 2.0 × 10−5 are considered. In the activation equation,
values of AT = BT = 0.01 and AR = BR = 0.9 are set for
the RESET. For the learning equations of the weights A = 0.01
and β = 0.01 are considered. Using these values, two units are
committed, corresponding with the two operation areas of the
system, as shown in Fig. 12.
If a Gaussian noise N(0, 0.1) is added to the error signal, it can

be observed in Fig. 13 how the noise level makes that the signal
does not easily divide in two operation areas matching with t ≤
100 and t > 100, since at t = 100 the change in the value of the
(motor) load inertia is produced.
Using the same procedure as in the previous case, the time

evolution of the energy signal frequency composition has been
analyzed. This evolution keeps showing a change associated with
the energy of the first two analyzed frequencies (Fig. 14). In this
case, the high level of noise in the input vector is associated with a
problem of proliferation of categories in Fuzzy ARTMAP. However,
dFasArt maintains the behaviour that was obtained for the free-of-
noise case, as it is shown in Fig. 15. The parameters used have been
Fig. 13. Error signal with noise at time interval 90 < t < 110.

Fig. 14. Power spectrum for the noisy error signal.

Fig. 15. Time evolution for the winning unit for a noisy input.

the same ones than in the previous case, except for the value of ρ,
that has been increased to ρ = 3× 10−4.
It can be thought that the system behaviour is obtained

thanks to the increase of the vigilance parameter. This assumption
becomes false observing the nature of one of the components of
the input vector. For example, the one with the energy associated
to the frequency f = 0, whose time evolution is represented in
Fig. 16. It is shown how units one and two have associate segments
with common parts (Fig. 17). The signal dynamics determines the
resulting winning unit, as shown in Fig. 18.
In the studied case, a constant in the RESET equation (AR =

0.9) has been considered. This implies that the RESET signal is
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Fig. 16. Time evolution of the energy associated to frequency f = 0 for a noisy
signal.

Fig. 17. Membership functions for the first component defined by the weights of
unit one (continuous) and unit two (dotted).

Fig. 18. Activity of units one (continuous) and two (dotted).

influenced by the existence of noise in the input, as it is illustrated
in Fig. 19. The choice of a lower dynamic constant (AR = 0.05)
implies a better performance in the process of noise filtering and
its influence in the RESET signal, which can be observed in Fig. 21,
but makes the dynamic change to be detected later. This can be
appreciated in Fig. 20 in comparison with the represented data of
Fig. 15.
The relevance of dynamics in the equations can be checked

when comparing the results obtained with dFasArt with those
Fig. 19. RESET level of units one (continuous) and two (dotted) with AR = 0.9.

Fig. 20. Winning unit time evolution for a noisy input (AR = 0.065).

Fig. 21. RESET level of units one (continuous) and two (dotted) with (AR = 0.065).

obtainedwith FasArt. This is observed in Fig. 22,where thewinning
unit is represented for a vigilance parameter ρ = 7 × 10−4. As
it is shown in that figure, FasArt also commits two classes in the
category level, but in this case there are points that are classified
in class ‘‘1’’ when they should be categorized in class ‘‘2’’. This
takes place although the generated weights for FasArt (Fig. 23) are
very similar to those generatedwith dFasArt (Fig. 17). The different
behaviour is due to the dynamic character of dFasArt, that implies
taking into account the previous values of the input in order to
establish the classification of an eventual input.
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Fig. 22. Winning unit time evolution for a noisy input using FasArt model.

Fig. 23. Activation function for the first component of the input in units one
(continuous) and two (dotted) using FasArt model.

5. Conclusions

This paper presents an adaptation of the FasArt model to
improve some aspects related with the temporality of the inputs.
It involves modifications in the activation equations, calculus of
RESET level and theweight learning. Thesemodifications imply the
transformation of the algebraic model in a dynamicmodel that has
been called dFasArt (dynamic FasArt).
A practical application of the new model has been proposed

for determination of the state of a DC motor. Frequency analysis
has been applied to generate a characteristic vector to obtain
the behaviour of the motor. This vector has been classified using
dFasArt model, which has successfully established its states of
operation. A simulation example has shown the capability of
dFasArtmodel to establish the state of themotor subject to changes
in its dynamic behaviour even in the presence of noise in the
measured signal.
To conclude, the dFasArt model allows performing robust

classification of signals with temporal characteristics, showing a
good performance even in the presence of noise. Therefore, it is
suitable to be used in those fields where the temporality aspect is
significant, such as controller maintenance, fault detection, voice
recognition, medical signals, etc.
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