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How Does a Brain Build a Cognitive Code?

Stephen Grossberg
D~artment of Mathematics, Boston University

This article indicates how competition between afferent data and learned feed-
back expectancies can stabilize a developing code by buffering committed pop-
ulations of detectors against continual erosion by new environmental demands.
Tille gating phenomena that result lead to dynamically maintained critical pe-
ri(Jlds, and to attentional phenomena such as overshadowing in the adult. The
fuillctional unit of cognitive coding is suggested to be an adaptive resonance, or
amplification and ,prolongation of neural activity, that occurs when afferent data
and efferent expectancies reach consensus through a matching process. The res-
onant state embodies the perceptual event, or attentional focus, and its amplified
and sustained activities are capable of driving slow changes of long-term mem-
or:r"' Mismatch between afferent data and efferent expectancies yields a global
sulppression of activity and triggers a reset of short-term memory, as well as
raJ~id parallel search and hypothesis testing for uncommitted cells. These mech-
anisms help to explain and predict, as manifestations of the unified theme of
stable code development, positive and negative aftereffects, the McCollough ef-
fect, spatial frequency adaptation, monocular rivalry, binocular rivalry and
hysteresis, pattern completion, and Gestalt switching; analgesia, partial re-
inforcement acquisition effect, conditioned reinforcers, underaroused versus
overaroused depression; the contingent negative variation, P300, and ponto-
ge]lliculo-occipital waves; olfactory coding, corticogeniculate feedback, matching
of proprioceptive and terminal motor maps, and cerebral dominance. The psy-
chophysiological mechanisms that unify these effects are inherently nonlinear and
parallel and are inequivalent to the computer, probabilistic, and linear models
currently in use.

How do internal representations of the
environment develop through experience? How
do these repJ,esentations achieve an impressive
measure of global self-consistency and stabi!ity
despite the :inability of individual nerve cells
to discern the behavioral meaning of the
representations? How are coding errors cor-

rected, or adaptations to a changing environ-
ment effected, if individual nerve cells do not
know that these errors or changes have oc-
curred? ThIs article describes how limitations
in the types of information available to
individual cells can be overcome when the
cells act together in suitably designed feedback
schemes. The designs that emerge have a
natural neural interpretation, and enable us
to explain and predict a large variety of
psychological and physiological data as mani-
festations of mechanisms that have evolved

This work 'vas supported in part by the National
Science Foundation (NSF MCS 77-02958).

Requests for reprints should be sent to Stephen
Grossberg, Department of Mathematics, Boston
University, Boston, Massachusetts 02215.

Copyright 1980 by the American Psychological Association, Inc. 0033.295X/80/8701.Q001$00.75

1



2 STEPHEN GROSSBERG

to build stable internal representations of a
changing environment. In particular, various
phenomena that might appear idiosyncratic
or counterintuitive when studied in isolation
seem plausible and even inevitable when
studied as a part of a design for stable coding.

Some of the themes that will arise in our
discussion have a long history in psychology.
To achieve an exposition of reasonable length,
the article is built around a thought experiment
that shows us in simple stages how cells can
act together to achieve the stable self-organi-
zation of evironmentally sensitive codes. If
nothing else, the thought experiment is an
efficient expository device for sketching how
organizational principles, mechanisms, and
data are related from the viewpoint of code
development, using a minimum of technical
preliminaries. On a deeper level, the thought
experiment provides hints for a future theory
about the types of developmental events that
can generate the neural structures in which
the codes are formed. It does this by correlating
the types of environmental pressures to which
the developmental mechanisms are sensitive
with the types of neural structures that have
evolved to cope with these pressures. Refer-
ences to previous theories and data have been
chosen to clarify the thought experiment, to
contrast its results with alternative viewpoints,
to highlight areas in which more experimen-
tation can sharpen or disconfirm the theory,
or to refer to more complete expositions that
should be consulted for a thorough understand-
ing of particular results. The thought experi-
ment and its consequences do not, however,
depend on these references, and the reader will
surely know many other references that ~an be
used to confront and interpret the thought
experiment.

1. A Historical Watershed

Some of the themes that will arise were
~lready adumbrated in the work of Helmholtz
during the last half of the 19th century
(Boring, 1950; Koenigsberger, 1906). Un-
fortunately, the conceptual and mathematical
tools needed to cast these themes as rigorous
science were not available until recently. This
fact helped to precipitously terminate the
productive interdisciplinary activity between

physics and psychology that had existed until
Helmholtz's time, as illustrated by the per-
ceptual contributions of Mach and Maxwell
(Boring, 1950; L. Campbell & Garnett, 1882;
Ratliff, 1965) in addition to those of Helmholtz
(1866, 1962); to create a schism between
psychology and physics that has persisted to
the present day; and to unleash a century of
controversy and antitheoretical dogma within
psychology that led Hilgard and Bower (1975)
to write the following first sentence in their
excellent review of Theories of Learning:
"Psychology seems tQ be constantly in a state
of ferment and change, if not of turmoil and
revolution" (p. 2).

One illustrative type of psychological data
that Helmholtz studied concerned color per-
ception. Newton had noted that white light
at a point in space is composed of light of all
visible wavelengths in approximately equal
measure. Helmholtz realized, however, that
the light we perceive to be white tends to be
the average color of a whole scene (Beck,
1972). Thus perception at each point is
nonlocal; it is due ~o a psychological process
that averages data from many points to define
the perceived color at each point. Moreover,
this averaging process must be nonlinear, since
it is more concerned with relative than absolute
light intensities. Unfortunately, most of the
mathematical tools that wer~ available to
Helmholtz were local and linear.

There is a good evolutionary reason why
the light that is perceived to be white tends
to be the average color of a scene. We rarely
see objects in perfectly white light. Thus our
eyes need the ability to average away spurious
coloration due to colored light sources, so that
we can see the "real" colors of the objects
themselves. In other words, we tend to see
the "reflectances" of objects, or the relative
amounts of light of each wavelength that they
reflect, not the total amount of light reaching
us from each point. This observation is still
a topic of theoretical interest and is the starting
point of the modern theory of lightness
(Cornsweet, 1970; Grossberg, 1972a; Land
1977).

A more fundamental difficulty faced Helm-
holtz when he considered the objects of
perception. Helmholtz was aware that cogni-
tive factors can dramatically influence our
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perceptions and that these factors can evolve
or be learned through experience. He referred
to all such factors as unconscious inferences,
and developed his belief that a raw sensory
datum, or per;eption, is modified by previous
experience via a learned imaginal increment,
or vorstellung, before it becomes a true per-
ception, or anschauung (Boring, 1950). In
more modern terms, sensory data activate a
feedback process whereby a learned template,
or expectAncy, deforms the sensory data until a
consensus is reached between what the data
"are" and what we "expect" them to be. Only
then do we "perceive" anything.

The struggle between raw data and learned
expectations also has an evolutionary rationale.
If perceptual and cognitive codes are defined
by representations that are spread across many
cells, with no single cell knowing the behavioral
meaning of the code, then some buffering
mechanism is needed to prevent previously
established codes from being eroded by the
flux of e"perience. I t will be shown below how
feedback expectancies establish such a buffer.

Unfortunately, Helmholtz was unable to'
theoretically represent the nonstationary, or
evolutionary, process whereby the expecta~cy
is learne(l, the feedback process whereby it is
read out, or the competitive scheme whereby
the afferent data and efferent expectancy
struggle to achieve consensus. Helmholtz's
conceptulLI and mathematical tools were linear,
local, and! stationary.

Section 4 begins to illustrate how nonlinear,
nonlocal, and nonstationary concepts can be
derived as principles of organization for
adapting to a fluctuating environment. The
presentation is nontechnical, but it will
become apparent as we proceed that without
a rigorous mathematical theory as a basis, the
heuristic summary would have been impos-
sible, since some of the properties that we will
need are not intuitively obvious consequences
of their underlying principles, and were
derived by mathematical analysis. Further-
more, it will emerge that several design
principles for adapting to different aspects of
the environment operate together in the same
structure. One of the facts that we must face
about evolutionary systems is that their simple
organizational principles can imply extra-
ordinarily subtle properties. Indeed, part of

the dilemma that many students of mind now
face is riot that they do not know enough
facts on which to base a theory, but rather
they do not know which facts are principles
and which are epiphenomena, and how to
derive the multitudinous consequences that
occur when a few principles act together. A
rigorous theory is indispensable for drawing
such co~clusions.

The next two sections summarize some
familiar experiments whose properties will
reappear from a deeper perspective in the
thought experiment. These experim~nts are
included to further review one of the themes
that Helmholtz confronted, and to prepare
the reader for the results of the thought
experiment. The sections can be skipped on a
first reading.

2. Overshadowing: A Multicomponent Adult
Phenomenon With Developmental

Implica tions

Psychological data are often hard to analyze
because many processes are going on simul-
taneously in a given experiment. This point .is
illustrated below in a classical conditioning
paradigm that will be clarified by the theo-
retical development. Classical conditioning is
considered by many to be the most passive
type of learning and to be hopelessly in-
adequate as a basis for cognitive studies.
The overshadowing phenomenon illustrates
the fact that even classical conditioning is
often only one component of a multicomponent
process in which attention, expectation, and
other "higher order" feedback processes play
an important role (Kamin, 1969; Trabasso &
Bower, 1968; Wagner, 1969).

Consider the four experiments depicted in
Figure 1. Experiment 1 summarizes the
simplest form of classical conditioning. An
unconditioned stimulus (UCS), such as shock,
elicits an unconditioned response (UCR), such
as fear, and autonomic signs of fear. The
conditioned stimulus (CS) , such as a briefly
ringing bell, does not initially elicit fear, but
after preceding the UCS by a suitai>le interval
on sufficiently many conditioning trials, the
CS does elicit a conditioned response (CR)
that closely resembles the UCR. In this way,
persistently pairing an indifferent cue with a
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Figure 1. Four experiments illustrate overshadowing.
(EXp(,riment I summarizes the standard classical
condi1:ioning paradigm: conditioned stimulus-uncon-
ditioned stimulus [CS-UCS] pairing enables the CS
to eli,:it a conditioned response (CR). Experiment II
shows, that joint pairing of two CSs with the UCS can
enabl,~ each CS separately to elicit a CR. Experiment
ill shows that prior CSt-UCS pairing can block later
conditioning of CSt to the CR. Experiment IV shows
that CSt can be conditioned if its UCS differs from the
one IJlsed to condition CSt. The CR that CSt elicits
depe\1lds on the relationship between both UCSs, hence

the n,()tation CRu.)

significant cue can impart some of the effects
of tile significant cue to the indifferent cue.

lI1L Experiment 2, two ass, CSl and CS2,
occ\Jlr simultaneously before the UCS on a
succession of conditioning trials; for example,
a ringing bell and a flashing light both precede
sho(:k. It is typical in vivo for many cues to
occur simultaneously, or in parallel, and the
experimental question is., Is each cue sepa-
rately conditioned to the fear reaction or is just
the entire cue combination conditioned? If
the cues are equally salient to the organism
and. are in other ways matched, then the
answer is yes. If either cue CS1 or CS2 is
pre:,ented separately after the conditioning
trials, then it can elicit the CR.

Experiment 3 modifies Experiment 2 by
performing the conditioning part of Experi-
ment 1 on CS1 before performing Experiment
2 on CS1 and CSt- In other words, first condi-
tion CS1 until it can elicit the CR. Then
present CS1 and CSt simultaneously on many
trials using the same UCS as was used to
condition CS1. Despite the results of Experi-
ment 2, the CSt does not elicit the CR if it is,presented 

after conditioning trials. Somehow
prior pairing of CS1 to the CR "blocks"
conditioning of CSt to the CR.

The meaning of Experiment 3 is clarified by
Experiment 4, which is the same as Experiment
3, with one exception. The UCS that follows
CS1 is not the same UCS that follows the
stimulus pair CS1 and CSt taken together.
Denote the first UCS by UCS1 and the second
UCS by-UCSt. Suppose, for example, that
UCSl and UCSt are different shock levels.
Does CSt elicit a CR in this situation? The
answer is yes if the two shock levels are
sufficiently different. If the shock UCSt
exceeds UCS1 by a sufficient amount, then
CS2 elicits fear, or a negative reaction. If,
however, the shock level UCS1 exceeds UCSt
by a sufficient amount, then CS2 elicits relief,
or a positive reaction.

How can the difference between Experiments
3 and 4 be summarized? In Experiment 3,
CS2 is an irrelevant or uninformative cue,
since adding it to CSl does not change the
expected consequence UCS. In Experiment 4,
by contrast, CS2 is informative because it
predicts a change in the UCS. If the change is
for the worse, then CSt eventually elicits a
negative reaction (Bloomfield, 1969). If the
change is for the better, then CSt eventually
elicits a positive reaction (Denny, 1970).

Thus many learners are minimal adaptive
predictors. If a given set of cues is followed
by expected consequences, then all other cues
are treated as irrelevant, as is CSt in Experi-
ment 3. Each of us can define a given object
using different sets of cues without ever
realizing that our private sets are different,
so long as the situations in which each of us
uses the object always yield expected conse-
quences. By contrast, if unexpected conse-
quences occur, as in Experiment 4, then we
somehow enlarge the set of relevant cues to
include cues that were erroneously disregarded.
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nerve cells. Perhaps for this reason the fact
that attentional variables can significantly
influence what codes will be learned seems to
have been ignored by some neurophysiologists
who study the development of the visual
cortex. For example, Stryker and Sherk (1975)
were unable to replicate the Blakemore and
Cooper (1970) study of visual code develop-
ment in kittens. In the Blakemor~ and Cooper
study, kittens were raised in a cylindrical
chamber whose walls were painted with
vertical black and white bars. The visual
cortices of the kittens were reported to possess
abnormally small numbers of horizontally
tuned feature detectors. Hirsch and Spinelli
(1970) performed experiments that did repli-
cate in later experiments. In their experi-
ments; -the cats wore goggles, one lens with
vertical stripes and the other with horizontal
stripes. The corresponding visual cortices were
reported to possess abnormally small numbers
of feature detectors that were tuned to the
orthogonal orientation. The entire controversy
focused on such technical details as possible
sampling errors due to Blakemore and Cooper's
method of placing their electrodes. It is
obvious, however, that the two experimental
paradigms are attentionally inequivalent. Even
perfect experimental technique would not
necessarily imply similar experimental results.

Several important qualitative conclusions
can be Idrawn from these remarks. First, what
is conditioned depends on our expectations,
and these in turn help to regulate the cues to
which 1'-'e pay attention. Second, cues are
conditioned, and indeed codes that interrelate
these cues are built up, only if we pay attention
to thes(: cues because of their potential in-
formativeness. Third, the mismatch between
expectecl consequences and real events occurs
only afller attention has been focused on
certain cues that thereupon generate the
expectancy. Somehow this mismatch "feeds
backwards in time" to amplify cues that have
previous:ly been overshadowed but that must

-have contained relevant information that we
have erroneously ignored. Fourth, whenever we
are face<l with unexpected consequences, we
do not blOW which cues have erroneously been
ignored. The feedback process must be capable
ot amplifying all of the cues that are still
being stored, albeit in a suppressed state. In
other words, the feedback process is non-
specific. Finally, the nonspecific feedback
process that is elicited by unexpected events
competes with the specific consummatory
channels that have focused our attention on
the wrong set of cues. This competition between
specific alt1d nonspecific mechanisms helps us
to reorganize our attentional focus until
expected <:onsequences are once again achieved.

This brief discussion reveals several basic 3 P 11I P .
d th P . t.. h d .ara e rocessillg an e ersis ence processes working together ill the overs a ow-

f L d M . .
d .0 earne eanmgsmg para 19m:

(a) classical conditioning, (b) attention, The fact that classical conditioning, and for
(c) learned expectancies, (d) matching between that matter any form of code development or
expectancies and sensory data, and (e) a learning, cannot be divorced from feedback
nonspecifi~:: system that is activated by un- processes that are related to attention is also
expected or novel events and competes with made clear by the example illustrated by
the specifi,c consummatory system that focuses Figure 2. In Figure 2a, two classical condition-
attention Ion prescribed cues. ing experiments are depicted, one in which

Thus e1{en classical conditioning is not a stimulus S2 is the UC5 for response R2 and 51
passive process when it occurs in realistic is its C5, and one in which 51 is the UC5 for
behavioral situations. Furthermore, its under- Rl and 52 is its C5. What would happen if each
standing requires the analysis of such teleo- cue 51 and 52 is conditioned to its own response
logical COl1lCepts as expectancy and attention. Rl or R2, respectively, before a classical
Helmholtz's doctrine of unconscious inference conditioning experiment occurs in which SI
is readily <:alled to mind. and 52 are alternately scanned? This is the

Attention is to many individuals a holistic, typical situation in real life, when we scan
if not unscientific, concept that does not mesh many cues in parallel, or intermittently, and
well with recent technological advances, say many of these cues already have theIr own
in microelectrode recording from individual associations. If classical conditioning were a
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attention, rather than a forced pairing of a CS
with a UCS, maintains the learned persistence
of meanings. Grossberg (1975) developed a
thought experiment in which overcoming the
environmentally imposed dilemma of Figure 2
leads to attentional mechanisms that imply
the overshadowing phenomena in Figure 1.

Before leaving the subject of overshadowing,
we might ask why thiS adult attentional phe-
nomenon is related to the development of
sensory and cognitive codes, even in infants.
This article argues that feedback is necessary
to stabilize the development of behaviorally
meaningful codes in a rich input environment.
The feedback processes include attentional
mechanisms, and the stabilization of develop-
ing codes leads to gating phenomena, or the
emergence of critical periods, that are dy-
namically maintained by the feedback

processes.
From thiS perspective, the structure of an

environmentally adaptive tissue is a dynamic
.scheme whose parameters change very slowly

only because of the nature of its maintaining
feedback. Death itself is a dramatic e'xample
of how seemingly persistent structures can
rapidly disintegrate when maintaining feed-
back is disturbed. When the development of a
structure is driven by a particular type of
experience, one of the structure's maintaining
factors is that variety of experience. A subtle
feature of such a developing structure is its
ability to selectively amplify those experiences
that tend to maintain its structure. Next I

",..

(c)

j~igu'e Z. Classical conditioning cannot be a passive
feed-forward process during real behavior. (In (a),
~;1 acts as a conditioned stimulus (C5) for 52, whereas
~;2 acts as a C5 for 51. In (b), parallel processing of 51
Imd 52, each previously conditioned to responses R1
jmd R2, would yield cross-conditioning. In (c), some of
Ithe disastrous consequences of cross-conditioning are

inustrated.)

:passive feed-forward process, then cross-
conditioning from 51 to R2 and from 52 to Rl
would rapidly occur, as in Figure 2b.

However, this is absurd, as the particular
example in Figure 2c vividly illustrates. Figure
2c schematizes the situation that would ()ccur
due to having a turkey dinner with one's
lover. One alternately looks at lover and.
turkey, with lover associated with sexual
responses (among others!) and turkey as-
sociated with eating responses. Why do we not
come away from dinner wanting to eat our
lover and to have sex with turkeys? Somehow
the persistence of learned meanings can endure
despite the fact that cues that are processed
in parallel often generate incompatible re-
sponses. This is not always true, however, since
if we, for example, consistently use a turkey as
a discriminative cue for shock, or even sex,
then turkeys might well become associated
with fear or sexual arousal. Figure 2 depicts a
situation in which the free reorganization of

x~t)

VI V2 Va. ..vn

Figure 3. Each cell (or cell population) Vi possess an
activity or potential Xi(I), at every time I, i = 1,
2, ..., 1J. (The vector (XI (I) , x,(I), ..., xn{I» of all
these activities is a spatial pattern of activity.)
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will discuss how feedback expectancies help to
acoomplish this end.

4. A Thought Experiment: The Need for
Learned Feedback Expectancies

as a field of cells F. Henceforth, the time
variable t will often be suppressed, since we will
always take for granted that we are studying
the system at a prescribed time.

Now consider two successive fields F(!) and
F(2) of cells. Suppose that a pattern x(!) is
active across F(!) (Figure 4). At this point the
reader might wish to give F(!) and F(2) a
concrete interpretation to help fix ideas. For
example, one might think of FI!) as an idealiza-
tion of the lateral geniculate nucleus (LGN)
and F(2) as an idealization of visual cortex.
The LGN processes visual data on its way to
visual cortex, and it is the way station closest
to the visual receptors at which our argument
might hold in some species. I emphasize,
however, that the results will be generally
applicable to all neural stages at which be-
haviorally meaningful environmental inputs
can drive code development. The fact that a
significantiraction of visual development seems
to be genetically prewired in the geniculo-
cortical pathways of higher mammals like the
monkey (Hubel & Wiesel, 1977) will not
weaken the general conclusions that we will
reach, and in fact various predictions and
recent data about LGN, among other struc-tures, will emerge from the analysis. '

Suppose that the signal-carrying pathways
from F(I) to F(2) act to filter the pattern x(!),
and that due to prior developmental experi-
ence, this filter" codes" pattern x(!) by eliciting
pattern X(2) across F(2). Knowing the detailed
structure of this code is unnecessary to make
our argument. However, we must be able
to show how signal pathways can act as a
filter that can be tuned by e"operience. This
is done in Appendix A.

Suppose after the system learns to code x(!)
by X(2) that another pattern is presented to
F(!) and is erroneously coded at F(2) by X(2).
To describe this situation conveniently, I
introduce some subscripts. Denote X(I) and
X(2) by XI(!) and XI(2), respectively, and denote
the erroneously coded pattern at F(l) by X2(1).
In Figure 5 we draw the pattern X2(2) that
codes X2(1) to equal Xi(2). Equality is meant to
imply functional equivalence rather than
actual identity. We now ask the centril.l
question, How can this coding error be cor-
rected if no individual cell knows that an
error has occurred?

V"I e now start to build a framework in which
to discuss environmentally driven and be-
haviorally meaningful code development.
Wherever possible, mathematical details will
be suppressed, and the minimal structure
capable of achieving our ends will be defined.
This procedure will clarify what mathematical
proll>lems have to be solved, what their
relationship is to each other, and what types
of thematic variations on the minimal struc-
tun~s can be anticipated in different species
and different neural locations in the same
individual.

The central theoretical theme will be, How
can a coding error be corrected if no individual
cell knows that one has occurred? The im-
porllance of this issue becomes clear when we
realize that erroneous cues can accidentally be
incclrporated into a code when our interactions
witll the environment are simple and will only
become evident when our environmental
expl~ctations become more demanding. Even
if Clur code perfectly matched a given en-
vironment, we would certainly make errors
as the environment itself fluctuates. Further-
more, we never have an absolute criterion of
whf:ther our understanding of a fixed environ-
merIt is faulty, or the environment that we
thOlJght we understood is no longer the same.
Thf: problem of error correction is fundamental
whfnever either the environment fluctuates
or the individual keeps testing ever-deepening
interpretations of the environment using ever
shalrper criteria of behavioral success.

V"Ie begin by introducing the functional
eleIillents on which our argument will build.
Figlure 3 depicts a collection of cells or cell
populations, VI, V2, ..., Vn, each of which has an
activity, or potential, XI(t), X2(t), ..., xn(t) at
eve!ry time t. The activity Xi (t) or Vi is imagined
to be due to inputs Ii (t) to Vi from a pgor stage
of rieural processing, or the external environ-
merit, or endogenous sources within Vi itself.
At I~very time t, these activities form a pattern
x(t) = (XI(t), X2(t), ..., Xn(t» across the cells

VI, t'2, ..., Vn, to which we will refer collectively
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~(2)

SIGNALS (FILTER)

1(1)

INPUTS

Figure 4. The activity pattern ;1:(1) across F(l) is filtered to elicit a pattern ;1:(1) across F(I).

It is important to realize that this argument
is independent of coding details. It is based
only on the type of information that F(2)
cannot, in principle, possess. Much of our
argument will be based on similar limitations
in the types of information that particular
processing stages can, in principle, possess.
The robustness of this argument suggests why

Our first robust conclusion is now apparent:
Whatever the mechanism is that corrects this
en-or, it cannot exist within F(2), since by
dejrmition Xl (2) and X2(2) are functionally
eq1L1ivalent. In principle, F(2) does not have the
ability to distinguish the fact that Xl (1), ~nd
not X2(1), should elicit Xl(2), since so far asF(2)
knows, Xl (1) is active at F(l) rather than X2(1).
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~(2)

LEARNED
FEEDBACK
EXPECTANCY

-1-(1)

AFFERENT
DATA

Figure 6. Pattern XIII) across F(I) elicits a feedback
pattern XI(I) to F(I), which is the pattern that it sampled
across F(I) during previous developmental trials.
(Field F(I) becomes an interface where afferent data
and learned feedback expectancies are compared.)

the design that overcomes these limitations
seems to oc:cur ubiquitously, in one form or
another, in so many neural structures.

Where in the network can this error be
detected in principle? At the time when X2 (I)

elicits Xl (2), there exists no trace within the
network that during prior learning trials it
was XI(I) that elicited XI(2), not X2(1). Somehow
this fact must be represented within the
network d}'namics. Otherwise, Xl (2) could

become aSS(Jlciated with X2(1), just as Xl(l) was
on previous. dtvelopmental trials. The only
times that Xl (I) was active in the network were

the developmental trials during which the
filter from ,F'(I) to F(2) was learning to code
Xl (I) by Xl(2). To be, in principle, capable of

testing whether the correct pattern Xl(l) elicits
Xl (2) on late]: trials when Xl (I) is not presented,
it must be t:rue that during the developmental
trials, Xl (2) activates a feedback pathway
from F(2) to F(I) that is capable of learning the
active patt~~rn Xl (I) at F(I). Then when X2 (I)
erroneously activates Xl (2) on future trials,

Xl(2) can read out the correct pattern XI(I)
across F(I). When this happens, the two
patterns Xl (I) and X2(1) will be simultaneously
active acros:s F(l), and they can be compared,
or matched, to test whether or not the correct
pattern has activated Xl(2) (Figure 6).

In summ:lry, if in principle it is possible
to correct a coding error at F(.), then there

'--~
"0"

must exist learned feedback from F(2) to F(l).
This learned feedback represents the pattern
that Xl (2) expects to be at F(l) due to prior

developmental trials. The feed-forward data
to F(l) and the learned feedback expectancy,
or template, from F(2) to F(l) are thereupon
compared at F(l). Figure 7 illustrates this
sequence of events as a series of snapshots that
can occur at a very fast rate, for example, on
the order of hundreds of milliseconds. Helm-
holtz's doctrine of unconscious inference is
readily called to mind.

The general nature of the preceding argu-
ment strongly suggests that feedback pathways
will ubiquitously occur from "higher" neural
centers to the relay stations that excite them.
In fact, reciprocal thalamocortical connections
seem to exist in all thalamo-neocortical systems
(Macchi & Rinvik, 1976; Tsumoto, Creutz-
feldt, & Legendy, 1978).

At this point, we also recognize two more
design problems for mathematics. The first
problem is, How do feedback pathways from
F(2) learn a pattern of activity across F(l)?
(See Appendix B for a summary of this
mechanism.)

(I) (b)

Figure 5. In (a.), pattern XI(I) a.t F(I} elicits the correct
p~ttern XI(I} across F(I). In (b), pattern XI!I} elicits the
incorrect pattern XI(I}, which is functionally equivalent
to XIII} across F(I}.
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(2)
X1

X/1) X(1)1 + 2

~

-'Q

1:r1}

(~) (b) (C)

Figure 7. The stages (a), (b), and (c) schematize the rapid sequence of events whereby afferent data is
filtered and activates a feedback expectancy that is matched against itself.

now indicate that such a mechanism is a
consequence of a more basic property, namely
noise suppression, and that noise suppression
is itself a variation of a basic evolutionary
principle. Moreover, other useful properties
follow from noise suppression, such as spatial
frequency detection and edge enhancement.

The environmental problem out of which
the noise suppression property emerges is the
noise-saturation dilemma. This dil~mma has
been discussed in detail elsewhere (e.g.,
Grossberg, 1977, 1978d). The dilemma con-
fronts all noisy cellular systems that process
input patterns, as in Figure 3. If the inputs
are too small, they can get lost in the noise.
If the inputs are amplified to avoid the noisy
range, they can saturate all the cells by acti-
vating all of their excitable sites, and thereby
reduce to zero the cells' sensitivity to differ-
ences in the input intensities. Appendix C
reviews how competitive interactions among
the cells automatically retune their sensitivity
to overcome the saturation problem. In a
neural context, the competitive interactions
are said to be shunting interactions, and they
are carried by an on-center off-surround
anatomy. The retuning of sensitivity is due
to automatic gain control by the inhibitory

5. Noise Suppression, Pattern Matching, and
Spatial Frequency Detection

The second design problem that we must
face is this: Somehow the mismatch between
the patterns XI(I) and X2CI) must rapidly shut
off activity across F(I). Otherwise, Xl (2) would
learn to code X2 (I) much as Xl (2) learned to

code XI(I) on the preceding developmental
trials. Pattern XI (2) must also be rapidly shut
off if only to prevent behavioral consequences
of Xl (2) from being triggered by further network
processing. Moreover, XI(2) must be shut off
in such a fashion that X2(1) can thereupon be
coded by a more suitable pattern across F(2).
-The only basis on which these changes can
occur is the mismatch of Xl(l) and X2(1) across
F(l). We must therefore ask, How does the
mismatch of patterns across a field F(I) of
cells inhibit activity across F(I)? The mathe-
matical details are summarized in Appendix C.
Here, however, it is useful to make the im-
portant distinction between mechanisms that
develop due to evolutionary pressures and
properties that are merely consequences of
these mechanisms. One might well worry that
the design of a mismatch mechanism is a
rather sophisticated evolutionary task. We
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Ii XI

(a)

I.
I

X.
I

A~~
(b)

'i J.
I

+ --
(c)

I.
I

J. -.~~:~~~~:~- -

I (d)

Figure 8. In (a), noise suppression converts a uniform input pattern into a zero activity pattern. In (b),
a rectangular input pattern elicits differential activity at its edges because the cells within its interior
all1d beyond its boundary perceive uniform fields. (This is a special case of spatial frequency detection.)
11.1 (c), two mismatched patterns add to generate an approximately uniform total input pattern, which
will be suppressed by the mechanism of (a). In (d), two matched patterns add to yield a total input
p:ittern that can elicit more vigorous activation than either input pattern taken separately.

+

activity and allows the network to focus on
informa tive discriminations.

Once noise suppression is guaranteed, several
consequences automatically follow. For ex-
ample, Figure 8b shows that such a network
responds to the edges of a rectangular input,
or to spatial gradients in more general input
patterns. This is b~cause cells whose in-
hibitory surrounds fall outside the rectangle
perceive a uniform field, and cells with inhibi-
tory surrounds that are near the center of the
rectangle also perceive a uniform field. Both
types of cells suppress their inputs. Only cells
near the edges of the rectangle do not perceive
a uniform pattern. Consequently only the
edges of the rectangle elicit large activation.

off-surround signals. This fundamental property
does not exist in additive models of lateral
inhibition, such as the Hartline-Ratliff model
(Ratliff, 1965). Appendix C shows how the
autorl1atic gain control mechanism can inhibit
a uniform pattern of inputs, no matter how
intense the inputs are. This is the property of
noise suppression that we seek. '

Fi~:ure Sa depicts this noise suppression
prop(~rty. A uniform pattern does not dis-
tinguish any cell from an): other cell. For
example, when the cells are feature detectors
of one kind or another, a uniform input
pattern contains no information that can
distil1lguish one feature from any other feature.
Noise suppression eliminates this irrelevant
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This argument tacitly supposes that the
lateral inhibitory interactions affecting each
cell have a prescribed spatial extent, and that
the width of the rectangle exceeds this spatial
scale. More generally, spatial gradients in an
input pattern are matc\1ed against the spatial
scale of each cell's excitatory and inhibitory
interactions. Only those spatial gradients in the
input pattern that are nonuniform with
respect to the cell's interaction scales generate
large activities. By varying the inhibitory
scales across cells, one can tune different cells
to respond to different spatial frequencies.
Thus spatial frequency detectors are a natural
consequence of noise suppression properties
within cells having a prescribed inhibitory
scale. Since all networks in which shunting
inhibition occurs have such scales, the existence
of spatial frequency detectors should come as
no surprise and does not imply that neural
networks are Fourier analyzers in the spatial
domain (Robson, 1976). Indeed, Fourier
analyzers are linear mechanisms. By contrast,
shunting networks that are capable of short-
term memory contain feedback pathways, and
all such networks must be nonlinear to be
stable (Grossberg, 1973, 1978d).

Finally, Figure 8c and 8d indicate how a
noise suppression mechanism can accomplish
pattern matching. Figure 8c supposes that
two mismatched patterns feed into F(I), where
they add before coupling into the shunting
dynamics. Because of the mismatch, the peaks
of L fill in the troughs of J i. The total in-
put pattern is approximately uniform and is
consequently quenched as noise. By contrast,
in Figure 8d, the two patterns match. Their
peaks and troughs mutually reinforce each
other, so the resultant activities can be
amplified beyond the effect of just one pattern.
In summary, mismatched input patterns
quench activity, whereas matched patterns
amplify activity across a field F(I) that is
capable of noise suppression.

A subsidiary mathematical question is now
evident: How uniform must a pattern be for
it to be suppressed? Part of the answer is
determined by the choice of structural param-
eters, such as the strength and spatial distri-
bution of lateral inhibitory coefficients (Ap-
pendix C). However, the field F(I) can also be
dynamically tuned, or sensitized, by fiuctua-

tions in the level of nonspecific arousal that
perturbs it through time. An arousal increment
can, for example, act by inhibiting the inhibi-
tory interneurons of the network (Ellias &
Grossberg, 1975; Grossberg, 1973, 1978e;
Grossberg & Levine, 1975). Such a tuning
mechanism can simultaneously alter the spatial
frequency properties of the network by multi-
plicatively strengthening or weakening the in-
hibitory interactions of the cells (Barlow &
Levick, 1969a, 1969b). Such mechanisms will
arise in a natural fashion as our argument
continues.

6. Triggering of Nonspecific Arousal
by Unexpected Events

Having suppressed X2CI) at FCI) due to
mismatch with the feedback expectancy XlCl),
we must now use this suppression to inhibit
XIC2) at FC2), since the mismatch at FCI) is the
only mechanism in the network that can, in
principle, distinguish that an error has occurred
at FC2). Moreover, until XIC2) is quenched, it
will continue to read out the template Xl CI) to
FCI), which will prevent XIC2) from eliciting a
new signal to FC2).

We were led to the mismatch mechanism
at FCI) by noting that FC2) could not dis-
criminate whether an error had occurred. Now
we note that FCI)S information is also limited
At F(l) it cannot be discerned which pattern
across FC2) caused the mismatch at FCI). It
could have been any pattern whatsoever. All
F(I) knows is that a mismatch has occurred.
Whatever pattern across FC2) caused the
mismatch must be inhibited. Consequently,
a mismatch at FCI) must have a nonspecific
effect on all of FC2), since any of the cells in
F(2) might be one of the cells that must be
inhibited.

We are therefore led to the following
questions: How does mismatch and subsequent
quenching of activity across FCI) elicit a
nonspecific signal (arousal!) to FC2)? Where
does the activity that drives this nonspecific
arousal pulse come from?

Before answering these questions, we should
realize that we have been led to a familiar
conclusion: Unexpected or novel events are
arousing. (To forcefully remind yourself of
this basic fact, test a friend's reaction by
unexpectedly slamming your hand on a table).
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C)

(8) (b)

~
t ~ EXPECTANCY

(c) (d)

Figure 9. In (a), afferent data elicit activity across F(l)
and an input to the arousal source ct that is inhibited
by F(l). In (b), the pattern at FIl) maintains inhibition
of ct as it is filtered and activates FIS). In (c), the
feedback expectancy from F(I) is matched against the
pattern at F(l). In d, mismatch attenuates activity
across F(l) and thereby disinhibits ct, which releases a
nonspecific arousal signal to FII).

Now we will consider how such arousal is
initiated and how it contributes to attentional

processing.
Whl~re does the activity that drives the

arousa.l come from, and why is it released
when quenching of activity at F(l) occurs?
There are two possible answers to the first
part of the question, but only one of them
survives closer inspection. The activity is
either endogenous (internally and persistently
generated) or the activity is elicited by the
sensory input. If the activity were endogenous,
then s~roUSaI would occur whenever F(l) was
inacti,re, whether this inactivity was due to
active quenching by mismatched feedback
from 11'(2) or to the absence of sensory inputs.
This 1eads to the unpleasant conclu~ion that
F(2) would be tonically flooded with aroUSal
whene'ver nothing interesting was happening
at F(l) or F(2). Therefore, sensory inputs to
F(l) bifurcate before they reach F(1). One
pathw:!y is specific: It delivers information
about the sensory event F(l). The other path-
way i!; nonspecific: It activates the arousal
mechanism that is capable of nonspecifically
influen,cing F(2). The idea that cues have both
informative (specific) and arousal (nonspecific)
functions has been empirically known at least
since the work of Moruzzi and Magoun on the
reticul:!r formation (Hebb, 1955; Moruzzi &
Magoun, 1949).

Giv(~n that the sensory inputs to F(I) also
B.ctiva1te an arousal pathway, what prevents
this pathway from being activated except when
activity at F(1) is quenched? The answer is
now clear: Activity at F(1) inhibits the aroUSal
pathway, and quenching of this activity dis-
inhibits the arousal pathway. Figure 9 schema-
tizes the (very rapid) sequence of events to
which we have been led. First, a sensory event
elicits a pattern X2(1) across F(l) as it begins
to ac1jvate the arousal pathway (i. This
activa'tion at (i is inhibited by activity from
f(1). ~)imultaneously, pattern X2(1) activates
pathw:ays to F(2) that act as a filter that
erroneously activates X\(2). Pattern XI(2) reads
out tb:e learned feedback expectancy Xl (1) to
F(1). ~[ismatchofxl(1) andx2(1) at F(1) quenches
activity across F(1). The inhibitory signal from
F(1) to (i is also quenched, and the arousal
pathw:!y is disinhibited. A nonspecific arousal
pulse is hereby unleashed on F(2).

7. Parallel Hypothesis Testing in Real
Time: The Probabilistic Logic of

Complementary Categories

The next design problem is now clearly
before us: How does the increment in non-
specific arousal differentially shut off the
active cells in F(2)? The active cells are the cells
that elicited the feedback e~'Pectancy to F(l),
and since mismatch occurred at F(l), these
cells must have been erroneously activated.
Consequently, they should be shut off. Further-
more, inactive cells at F(2) should not be
inhibited, because these cells must be available
for possible coding of X2(1) during the next time
interval. Thus a differential suppression of
cells is required: The cells that are most
active when arousal occurs should be most



Once this selective and enduring inhibition
is accomplished, the network has a capability
fQr rapid hypothesis testing. By enduringly
and selectively inhibiting Xl(2), the network
"renormalizes" or "conditionalizes" the field
F(2) to respond differently to pattern X2(1)
during the next time interval. If the next
pattern elicited by X2(1) across F(2) also creates
a mismatch at F(l), then it will be suppressed,
and F(2) will be renormalized again. In this
fashion, a sequence of rapid pattern reverber-
ations between F(I) and F(2) can successively
conditionalize F(2) until either a match occurs
or a set of uncommitted cells is found with
which X2(1) can build a learned filter from F(l)
to F(2), and a learned expectancy from F(2)
to F(l).

Figure 10. A recurrent shunting on-center off-surround
n!~twork is capable of contrast-enhancing its input
pattern, normalizing its total activity, and storing the
contrast-enhanced pattern in short-term memory
(~;TM). (If its feedback signals are properly chosen-
e.Ig'., sigmoid, or S-shaped signals-then a quenching
t!Jlreshold exists that defines the activity level below
wroch activity is treated as noise and quenched, and
allOve which activity is contrast enhanced and stored
in STM.)

8. The Parallel Dynamics of Recurrent
Competitive Networks: Contrast

Enhancement, Normalization,
Quenching Threshold,

Tuning

At this point one can justifiably wonder how
X2(1) elicits a supraliminal pattern across F(2)
after Xl (2) is inhibited? If Xl (2) is the pattern
that X2 (I) originally excites, and XI (2) is in-

hibited, then won't the next pattern elicited
by X2(1) across F(2) have very small activity?
In other words, why was the second pattern
not also active when XI (2) was active?

It would have been if the anatomy within
F(2) contained only feedforward, or non-
recurrent pathways. Thus we are forced to
conclude that the anatomy within F(2) contains
feedback, or recurrent pathways. Since all
cellular systems face the noise-saturation
dilemma, these pathways are distributed in a
competitive geometry, or an on-center off-
surround anatomy (Figure 10). Mathematical
analysis demonstrates that the normalization
property holds when recurrent pathways are
distributed in a competitive geometry. When
these competitive networks are designed to
overcome noise amplification and saturation,
they enjoy several properties that we need
(Appendix D). First, they are capable of
contrast-enhancing small differences in initial
pattern activities into .large and easily dis-
criminable differences that are thereupon
stored in short-term memory (STM; see

inhibited. This property realizes a kind of
probabilistic logic in real time. If activating
c4~11 Vi in F(2) to a given degree leads to a
c4~rtain degree of euor or mismatch at F(l), then
C4~11 Vi should be inhibited to a degree that is
commensurate both with its prior activation
and with the size of the arousal increment, or
tile amount of euor. If saying" yes" at Vi leads
tc) euor, then change the "yes" to "no," and
do it in a graded fashion across the field F(2).
Since cells that were only minimally active
clould have contributed only a small effect to
tJl1e feedback expectancy, their inhibition will
c,onsequently be less, and they can contribute
n10re to the correct coding of X2(1) during the
next time interval.

The arousal-initiated inhibition of cells
3,cross F(2) must be enduring as well as selec-
tive. Otherwise, as soon as Xl (2) is inhibited,
the feedback expectancy, Xl (1), woUld be shut
off, and X2(1) would be free to reinstate Xl(2)
~~cross F(2) once again. The euor would
perseverate, and the network would be locked
into an uncouectable euor. The inhibited
cells must therefore stay inhibited long enough
J:or X2(1) to activate a different pattern across
jF'(2) during the next time interval. The in-

hibition is therefore slowly varying compared
1to the time scale of filtering, feedback expect-
ancy, and mismatch.

~
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QUENCHING
THRESHOLD--

PATTERN BEFORE

/\
PATTERN AFTER

I \

PATTERN BEFORE PATTERN AFTER

Figure 11. If the quenching threshold is variable, for
example, due to shunting signals that nonspecifically
control the size of the network's inhibitory feedback
signals, then the network's sensitivity can be tuned to
alter the ease with which inputs are stored in short-term
memory.

Figure 11). This property is necessary to
build up the codes for F(l) patterns at F(2).
Before an F(l) pattern is coded by F(2), it
might elicit an almost uniform activity
pattern across F(2). The recurrent dynamics
within F(2) quickly contrast enhances and
stores the contrast-enhanced pattern in STM,
where it can be sampled and stored in long-
term memory (LTM) by the pathways from
F(l) to F(2). When the next occurrence of the
same pattern at F(l) occurs, these pathways
therefore elicit a more differentiated pattern
across F(2), which is again contrast enhanced
and stored in STM. The feedback enhancement
betweel1l STM and LTM continues until the
two processes equilibrate other things being

equal.
Another property of such a network is its

tendency to conserve, or adapt, the total
activity that it stores in STM. This is the
normalization property that we seek. If
certain cells in the network are prevented from
sharing the STM activity, say due to arousal-
initiated inhibition, then the total activity
is reno]['malized by being distributed to the
other cells. Thus after Xl (2) is inhibited across

F(2), the network will respond to the signals
due to X2(1) by differentially amplify-ing them
in a way that tends to preserve the total STM
activity across F(2). This new STM pattern
will inherit much of the STM activity that
XI(2) had before it was suppressed, but the
new STM pattern across F(2) will be a quite
different pattern than Xl (2), since it is built
from F(l) signals that previously fared poorly
in the competition for STM activity. The
nonnalization property manifests itself in a
large class of psychological data, notably data
about behavioral contrast and ratio scales in
choice behavior (Grossberg, 1975, 1978a).

These recurrent networks also possess a
quenching threshold (QT), which is a parameter
whose size determines what activities will be
suppressed, or quenched, and what activities
will be stored in STM (Grossberg, 1973).
Activities in populations that start below the
QT will be suppressed; activities that exceed
the QT will be contrast enhanced and stored
in STM. Thus the QT is the cutoff point that
defInes noise in a recurrent network. All
netwo:rks that possess a QT can be tuned;
that is, by varying the QT, the criterion of

which data shall be stored in STM and which
data shall be quenched can be altered through
time. Several parameters work together to
determine QT size, notably the strength of
recurrent lateral inhibitory pathways within
the network. For example, if a nonspecific
arousal pulse multiplicatively inhibits or
shunts the inhibitory intemeurons of a re-
current network, then its QT will momentarily
decrease-the network's inhibitory "gates"
will open-to facilitate STM storage.

The normalization property also helps us
to understand the relevance of probabilistic
models of hypothesis testing to cognitive
processing. Normalization plays the role of
summing all the probabilities to equal 1.
Shunting, or multiplicative network dynamics,
plays the role of multiplying the probabilities
of independent events. However, probabilistic
concepts only approximately describe some
aspects of shunting competitive dynamics.
A most serious difference is that although the
network's hypothesis testing mechanism might
produce a serial sequence of renormalizations
in time, these operations are performed by
parallel, rather than serial mechanisms. Serial
mechanisms of hypothesis testing are not
equivalent to the parallel theory.

More generally, serial behavioral properties
do not imply that the control processes that
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sub serve them are also serial. In particular,
various serial, notably computer, models of
memory and cognitive processing have been
shown to be fundamentally inequivalent to
parallel neural i~teractions. This inequivalence
is noted for the Atkinson and Shiffrin (1968,
1971) theory of free recall in Grossberg
(1978a) and for the Schneider and Shiffrin
(1976) theory of automatic versus controlled
visual information processing in Grossberg
(1978e, Section 61). Different predictions of
the two types of theory are also described in
these articles, and some data that are in-
explicable by the serial theories are explained
using parallel properties, such as normaliza-
tion, in a basic way.

9. Antagonistic Rebound Within On-Cell
Off-Cell Dipoles

We are now faced with a subtle design
problem: How can a nonspecific event, such
as arousal, have specific consequences of any
kind, let alone generate an exquisitely graded,
enduring, and selective suppression of active
cells? Here again mathematical analysis was
absolutely essential, since the theory could not
progress beyond this step had not the answer
already been derived (to my own surprise)
during work on reinforcement mechanisms
(Grossberg, 1972b, 1972c, 1975). In this work,
the mechanism helped explain such nontrivial
effects as learned helplessness, vicious circle
behavior, superconditioning,- overshadowing,
asymptotically nonchalant avoidance, and
peak shift with behavioral contrast when it
was joined with suitable conditioning and
cognitive mechanisms that were all derived
as evolutionary solutions to prescribed environ-
mental pressures. These results extend such
popular learning theories as those of Irwin
(1971), Kamin (1969), Rescorla and Wagner
(1972), and Seligman, Maier, and Solomon
(1971) by explicating mechanisms, conceptual
di~tinctions, and predictions in a psycho-
physiological framework that are invisible to
descriptive theories. One might wish to know
what reinforcement mechanisms have to do
with the development of cognitive codes. The
answer is that the property in question occurs
whenever optimally designed chemical trans-
ducers, or transmitters, occur in competing

network channels, or dipoles, whether these
channels arise in reinforcement mechanisms,
attentional mechanisms (Grossberg, 1975),
developmental mechanisms (Grossberg, 1976b),
or mechanisms of motor control (Grossberg,
1978e). The property is a robust consequence
of a ubiquitous neural design principle, and it
guarantees a type of rapid hypothesis testing
and error correction wherever this principle
is used.

First let us consider some familiar behavioral
facts that help to motivate the mechanism.
Suppose that I wish to press a lever in response
to the offset of a .light. If light offset simply
turned off the cells that code for light being
on, then there would exist no cells whose
activity could selectively elicit the lever-press
response after the light was turned off. Clearly,
offset of the light not only turns off the cells
that are turned on by the light, but it also
selectively turns on cells that will transiently
be active after the light is shut off. The
activity of these "off"-cells-namely the cells
that are turned on by light offset--can then
activate the motor commands leading to the
lever press. Let us call the transient activation
of the off-cell by cue offset antagonistic rebound.

Antagonistic rebound also occurs in a
variety of other behavioral situations. For
example, shock can unconditionally elicit the
emotion of fear and various autonomic conse-
quences of fear (Dunham, 1971; Estes, 1969;
Estes & Skinner, 1941). Offset of shock is
(other things equal) capable of eliciting relief
or a complementary emotional reaction
(Denny, 1970; Masterson, 1970; McAllister &
McAllister, .1970). .In a similar -faShion I
suggest that when motor command cells are
organized in agonist-antagonist pairs, offset
of the agonist input can ,elicit a rebound in the
antagonist command cell that acts to rapidly
brake the motion in the muscles controlled
by the agonist command cell.

When such on-cell off-cell interactions are
modeled, one finds examples akin to Figure 12.
In Figure 12a, a nonspecific, or adaptation
level, input I is delivered equally to both
channels, whereas a test input J is delivered
to the on-cell channel. These inputs create
signals Sl and S2 in both channels, arid the
signals are multiplicatively gated by slowly
varying chemical transmitters Zl and Z2,

,
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Figure 12. Two examples of on-cell off-cell dipoles.
(In (a), the test input J and adaptation level input I
add in the on-channel. The adaptation level input
perturbs the off-channel. Each input is gated by a
slowly varying excitatory transmitter [square syn-
apses]. Then the channels compete before eliciting a
net on-response or off-response. In (b), the slowly
varying transmitters are inhibitory, and participate in
the competition process.)

equalize so that SlZl and S2Z2 gradually
equalize. As the gated signals equalize, the
competition shuts off both the on-channel and
the off-channel. These facts are summarized
in Table 1.

respectively. The gated signals 81%1 and 82%2
thereupon compete and yield the on-cell
off-cell responses that are depicted in Figure
12a. Appendix E describes the details that are
needed for a better understanding, but the
main idea behind antagonistic rebound is easy
to describe. Consider Figure 12a. Here the
transmitters %i and %2 are depleted by being
released! at rates proportional to SIZI and S2Z2,
respectively. More depletion of ZI than Z2
occurs ilf the signal SI exceeds S2. While the
test inJ:lut J is on, the on-channel receives a
larger input than the off-channel, since its
total input is J plus the nonspecific input I,
whereasi the ()ff -cell channel only receives the
input T. Consequently, SI> S2, so that
depletion of transmitter leads to the inequality
ZI < Z2. Despite this fact, one can prove that
the gated signals satisfy the inequality
SlZI > ~)2Z2. Consequently, the on-channel
receives a larger gated signal than the off-
channel, so that after competition takes place,
there is a net on-reaction.

What happens when the test input is shut
off? Both channels receive only the equal
nonspecific input I. The signals Sl and S2
rapidly equalize until Sl = S2. However, the
transmitters are more slowly varying in time
so that Ithe inequality ZI < Z2 continues to hold.
The gated signals therefore satisfy SlZI < S2Z2.
Now t~le off-channel receives a larger signal.
After <:ompetition takes place there is an
antagonistic rebound in response to offset of
the test input.

Why is the rebound transient in time? The
equal signals SI and S2 continue to drive the
depletiQn of the transmitters ZI and Z2.
Gradually the amounts of ZI and Z2 also

10. Analgesia, Escape, Partial Reward, and
Underaroused Versus Overaroused

Depression

In Figure 12a, the two transmitters are
excitatory and generate gated signa,ls before
competition occurs. Similar effects occur in
Figure 12b in which the transmitters are
inhibitory and act both as gates and as
competing channels. There exist many varia-
tions on this theme in vivo. For example, by
analyzing more complex learning situations,
in particular, experiments on secondary condi-
tioning phenomena, or on transfer between
instrumental and classical conditioning, one
can show that feedback pathways must exist
within the channels that subserve incentive

Table 1.
Antago:lJistic Rebound at Offset of Phasic Input

After dipole
equilibrates
to offset of J

Right after
offset of J

Teslt input
J is on

I+:r>I
XI> XI
Sl > S.
II < I.

SIll> SII.
Xa > X.

X, > 0 = Xe

I = I
x, = X2
5, = 82
Z, = Z2

5,z, = 82z2
XI = X.

X6 = 0 = X6

I = I
XI = X2
SI = S2
ZI < Z2

S.ZI < S2Z2
X2 < x.

Xi = 0 < Xe
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motivation. These feedback channels lead to
meaningful comparisons with psychophysio-
logical data when they are interpreted as a
formal analogue of the medial forebrain bundle
(Grossberg, 1972c, 1975).

Even the feed-forward networks already have
surprising and important properties, however.
For example, consider a network in which the
on-channel supplies negative incentive moti-
vation (" fear") and the off-channel supplies
positive incentive motivation (" relief") in a
conditioning paradigm. Choose shock reduction
as the experimental manipulation. Let shock
excite the on-channel, and suppose that the
size of the positive rebound after shock
terminates is monotonically related to the
rewarding effect of the manipulation. Then
one can derive a quantitative formula for
rebound size (Grossberg, 1972c) that orders
infinitely many possible experiments in terms
of how rewarding they will be. In particular,
reducing J units of shock to J /2 units is less
rewarding than reducing J /2 units of shock
to 0 units, despite the fact that shock reduction
equals J /2 units in both cases. This analgesic
effect is due to intracellular adaptation of the
chemical transmitters. Analogous data have
been reported by Campbell (1968); B. Camp-
bell and Kraeling (1953); Gardner, Licklider,
and Weisz (1961); and Myers (1969). More-
over, it is predicted that three indices should
all covary as a function of the reticular forma-
tion arousal level, which is interpreted to be a
source of nonspecific input to the incentive
motivational dipoles. These indices are (a)
the rewarding effect due to switching J units
to J/2 units of shock, (b) the ability of an
animal to learn to escape from presentation
of a discrete fearful cue, and (c) the relative
advantage of partial reward over continuous
reward (Grossberg, 1972c).

One also findS that two types of depressed
emotional affect exist in the dipole: an under-
aroused syndrome and an overaroused syn-
drome. These syndromes are manifestations
of the dramatic changes in the net incentive
motivation that occur when the arousal level
is parametrically changed (Grossberg, 1972c).
The two syndromes are the endpoints in an
inverted U of net incentive as a function of
arousal level. At underaroused levels, the
behavioral threshold is abnormally high, but

,

the system is hyperactive after this threshold
is exceeded. At overaroused levels, the be-
havioral threshold is abnormally low, but the
system is so hypoactive that little net incentive
is ever generated. Parkinson's patients and
certain hyperactive children seem to exhibit
the underaroused syndrome (Fuxe & Unger-
stedt, 1970; Ladisich, Volbehr, & Matussek,
1970; Ricklan, 1973), which is paradoxical
because behavioral threshold is inversely
related to supra threshold reactivity. Such
underaroused individuals can be brought
"down" behaviorally by a drug that acts as
an "up"; that is, it raises the adaptation level
to the normal range. In Parkinson's patients,
this up is L-dopa, and in certain hyperactive
children, it is amphetamine.

A general question now presents itself: Do
all neural dipoles share these properties whether
they occur in motivational, sensory, or motor
representations? This question is considered
for the case of cortical red-green dipole
responses to white light in Section 12.

11. Arousal Elicits Antagonistic Rebound:
Surprise and Counterconditioning

A surprising feature of the on-cell off-cell
dipole is its reaction to rapid temporal fluctua-
tions in arousal, or adaptation level. This
reaction allows us to answer the following
question posed in Section 9: How can a
nonspecific event, such as arousal, selectively
suppress active on-cells? Appendix E shows
that arousal fluctuations can reset the dipole,
despite the fact that they generate equal
inputs to the on-cell and off-cell channels. In
particular, a sudden increment in arousal
can, by itself, cause an antagonistic rebound
in the relative activities of the dipole. More-
over, the size of the arousal increment that is
needed to cause rebound can be independent
of the size of the test input that is driving
the on-channel. When this occurs, an arousal
increment that is sufficiently large to rebound
any dipole will be large enough to rebound
all dipoles in a field. In other words, if the
mismatch is "wrong" enough to trigger a
large arousal increment, then all the errors will
be simultaneously corrected. "This cannot, in
principle, happen in a serial processor. More-
over, the size of the rebound is an increasing



NEURAL DEVELOPMENT OF COGNITIVE CODES 19

The thought experiments from which these
conclusions follow are purely abstract. One
experiment describes how limitations in the
types of information available to individual
cells can be overcome when the cells act
together in suitably designed feedback schemes.
Another experiment describes a solution to the
noise-saturation dilemma, and yet another
experiment describes how to design a chemical
transducer and how dipoles formed when such
transducers compete in parallel channels can
achieve antagonistic rebound. As the thought
experiments proceed, however, the resultant
network designs take on increasingly neural
interpretations. To test the theory by psycho-
physiological experiments, these empirical
connections must be made more explicit. The
next three sections discuss three of the major
design features in more detail to suggest that
some psychophysiological designs are examples
of our abstract designs, and to explain and
predict some psychophysiological phenomena
using formal properties of the abstract designs
as a guide. These examples are hardly ex-
haustive, but they will perhaps be sufficient
to enable the reader to continue making new
connections. Further details are in the articles
of Grossberg (1972b, 1972c, 1975, 1976b,
1978e). The next three sections can be skipped
on a first reading if the reader wishes to
immediately study Section 15 to find out
what happens when the patterns at F(l) and
F(2) mutually reinforce each other.

l
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Figu,~' 13. A rebound from on-cell activation to off-cell
activation can be elicited by a rapid ~crement in the
arousa.l or adaptation level of the dipole. (The size of the
rebound is determined by the size of the on-cell activa-
tion. In (a) are depicted the on-responses of four cells.
In (b) are depicted possible rebounds by their off-cells
in response to a nonspecific increment.)

function of the size of the on-cell test input
(Figure 13). Thus the amount of antagonistic
rebound is precisely matched to the amount
of on-cell activation that is to be inhibited.
Finally, in previously inactive dipoles no
rebound occurs, but the arousal increment
can ~)ensitize the dipole to future signals by
chan,ging by equal amounts the gain, or
temporal averaging rate, of the on-cell and
off-cc:ll. In summary, the on-cell off-cell dipole
is superbly designed to selectively reset F(2),
and to do so in an enduring fashion because
of the slow fluctuation rate of the transmitter

gates.
In a reinforcement context, the rebound

due to arousal shows how surprising or un-
expected events can reverse net incentive
motivation and thereby drive countercondi-
tioning of a behavior's motivational support
(Grossberg, 1972b, 1972c). Once the rebound
capabilities of surprising events are recognized,
one must evaluate with caution such general
clairns as "the surprising omission of ...
shock. ..can hardly act as a reinforcing
ever.lt to produce excitatory conditioning"
(Dic:kinson, Hall, & Mackintosh, 1976, p. 321).

The above mechanisms indicate how dy-
namlical critical periods might be laid down by
learil1ed feedback expectancies. These expectan-
cies modulate an arousal mechanism that
bufiers already coded populations by shutting
them off so rapidly in response to erroneous
ST111: coding that L TM recording is impossible.
In other words, the mechanism helps to
stabilize the LTM code against continual
ero~iion by environmental fluctuations.

12. Dipole Fields: Positive and Negative
Aftereffects, Spatial Frequency

Adaptation, Rivalry, and
the McCollough Effect

Section 8 noted that F(2) possesses a re-
current on-center off-surround anatomy that
is capable of normalizing its total STM
activity within its functional channels. Section
9 showed that the cells in this recurrent
anatomy are the on-cells of on-cell off-cell
dipoles. I therefore conclude that F(2) consists
of a field of on-cell off-cell dipoles such that the
on-cells interact within a recurrent on-center
offO-surround anatomy and the off-cells also
interact within a recurrent on-center off-
surround anatomy. Denote by F + (2) the
recurrent subfield of on-cells, and by F_(2) the
recurrent subfield of off-cells (Figure 14). The
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NONSPECIFIC
AROUSAL

Figure 14. A possible anatomy of two dipoles (VI and VI) is depicted, embedded in recurrent subfields
of on-cells and off-cells. (The nonspecific arousal signal is gated by transmitters in the pathways IIli -t IIli,
i = 1, 2, The transmitter gates are depicted by square synapses. The arousal level hereby determines
an overall level of transmitter adaptation across the dipole field. The signal S I turns on the cell 1111, which
inhibits its off-cell 1111 via the inhibitory interneuron 1141. Simultaneously, the on-cell 1111 begins to differ-
entially deplete its transmitter gate via the feedback pathway 1111 -t 11,1 -t 1111. The interneurons 114i,
i = 1, 2, ..., also activate the recurrent interactions among on-cells and among off-cells that normalize
their respective subfields.)

existence of neural, in particular, cortical
on-cells and off -cells, and the joining together of
nerve cells in on-center off-surround anatomies
are familiar neural facts. Moreover, these facts
have often been used to explain psycho-
physiological data (Carterette & Friedman,
1975; Comsweet, 1970). The present treat-
ment is novel in several respects, however.
That a dipole field is a major tool to reset an
error and to search for a correct code is, to the
best of my knowledge, a new insight. More-
over, the way in which arousal fluctuations
interact with slowly varying, competing trans-
mitter gates to cause rebound or a shift in
adaptation level, and the way in which
shunting interactions define a quenching
threshold, normalize field activity, and regulate
contrast enhancement also seem to be new

insights.

There exists a basic difference between the
recurrent inhibition within a subfield and the
dipole inhibition between on-cells and their
off-cells. Dipole inhibition creates a balance
between mutually exclusive categories or
features. Intrafield inhibition normalizes and
tunes its sub field. For example, suppose that
the on-cells in a given field respond to white
bars of prescribed orientation on a black field,
and their corresponding off-cells respond to
black bars of similar orientation on a white
field. A continuous shift in the position of a
white bar can induce a continuous shift of
activity within the on-field, but at each
position there can exist either a white bar on a
blaCk field or a black bar on a white field, but
not both. ~ext are summarized some of the
phenomena that are due to continuous changes
within subfields and complementary changes

1
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when dipole rebounds cause a flip between
subfields. The goal of this summary is to
clarify some of the properties through which
dipolle fields manifest themselves in perceptual
data, and to suggest that these properties are
manifestations of code stabilizing mechanisms.
The summary will not attempt to describe
the I~lobal schemata in which these properties
are I~mbedded during a live perceptual event,
although the article makes clear that interfield
signaling processes, such as filtering and
expe,ctancy matching, will be important in-
grediients in the classification of such schemata.

An important property of a dipole field is
this: If a test input excites a particular on-cell,
then the on-cell inhibits its off-cell. The
inhibited off-cell can, in turn, disinhibit a
near1t>y off-cell-due to the tonic arousal input
and the recurrent anatomy within the off-cell
field. The disinhibited off-cell thereupon
inhibits its on-cell via dipole interactions.
SuPllOse that the test input is shut off after
it has been on long enough to deplete its
tralli;mitter gate. (To make this argument
qualJ,titative, we must carefully control the
duration of experimental inputs relative to the
tralliimitter depletion rate.) Then antagonistic
rebo1lnd within its dipole can turn on its
off-a~ll, which inhibits the nearby off-cell,
who~;e on-cell is hereby disinhibited and
resp<mds by rebounding onward. Negative
aftereffects are hereby generated. For example,
SUppose that the on-cells are orientationally
selective such that nearby orientations re-
currlmtly excite each other, whereas more
distiJllct orientations inhibit each other (Figure
ISa)" Then persistent inspection of a field with
radi~LI symmetry (Figure 15a) can elicit an
aftereffect with circular symmetry (Figure
15c), as MacKay (1957) has reported.

In Section 5 I noted that the noise sup-
presi;ion properties of shunting lateral in-
hibilion also imply spatial frequency proper-
ties. Consequently, dipole fields whose sub-
field inhibition is of shunting type are capable
of s}Joatial frequency adaptation. A grating with
a sililusoidal luminance profile of prescribed
spatial frequency will excite a band of cell
types whose inhibitory fields permit maximal
exci1:ation by the input. If the input stays on
for awhile, the activated transmitter gates
will be differentially depleted. Test inputs~
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Figure 15. In (a), a pattern with radial symmetry is
inspected for a long time. In (b), the net inhibitory
interactions among mutually perpendicular orientations
at each position are depicted. In (c), offset of the radial
pattern elicits antagonistic reboundS' across the
field that differentially activate the perpendicular
orientations.

with similar spatial frequencies share some
of these gated pathways, so the overall sensi-
tivity of response to these inputs will be less
(Grossberg, 1976b). This view of spatial
frequency adaptation contrasts with the view
developed by Wilson (1975) that spatial
frequency adaptation is due to classical condi-
tioning of an inhibitory transmitter. It is often
assumed that a slowly varying effect implies a
conditioned change. The alternative notions
that "fatigue" and antagonistic activity can
yield perceived changes are also very old (see
Brown, 1965, for a review).

The present theory refines the latter view
by noting how slowly varying changes can
follow from dipole adaptation without any
conditioning taking place. In particular, even
if the adaptational differences decay until they
are very similil.r, contrast enhancement due
to fast recurrent competitive interactions can
bootstrap these differences into the perceivable
range. An interaction between slow trans-
mitters and fast recurrent interactions can
hereby create behavioral effects that are much
more enduring than the transmitter decay
rate would suggest. This suggestion is made
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again la,ter for the McCollough effect. The
Wilson 1nodel differs from the present theory
in its STM properties as well as in its descrip-
tion of slow adaptation effects. Wilson used
the Wilson-Cowan equations to describe fast
intercellular interactions. Among other differ-
ences, Ithese equations do not incorporate
automaltic gain control by lateral inhibitory
signals (Grossberg 1973). Consequently, the
Wilson-.Cowan equations cannot retune their
sensitivity in response to shifts in background
input ll.1tensity, a difficulty that also. occurs
in all additive models of lateral inhibition.

Pattern-contingent colored aftereffects can
also be generated in a dipole field. Suppose
that a prescribed field of feature detectors
is color coded. Let the on-cells be maximally
turned on by red light and the off-cells be
maximally turned on by green light for definite-
ness. Then white light will excite both on-cells
and off-cells; that is, white light acts like an
adaptaltion level in this situation. Suppose that
a red input whose features are extracted by
the field is turned on long enough to sub-
stantially deplete its transmitter. What
happelJls if a white input replaces the red input
on tes1; trials? The depletion caused by the
prior red input now causes the white adap-
tation level to generate a larger gated signal
to the green channel, so a green pattern-
continl~ent aftereffect will be generated.

Ho,,' enduring will this aftereffect be? Here
we m\lSt recall that the anatomies of F + (2)
and F__(2) are recurrent, and that one property
of such recurrent anatomies is their ability
to contrast enhance small differences in net
input into large differences that can then be
stored in STM (Section 8). Th\lS, even if the
large initial differences in transmitter depletion
within the on-cell off-cell dipoles decay
steadily to small differences, the recurrent
anatomy can contrast enhance these small
differl~nces into a perceptually visible after-
effect when the white test pattern is presented.
For this to happen, however, the feature field
m\lSt be protected from new inputs that can
disrupt the pattern of small differences until
the tl~st trial occurs. Sleep can hereby prolong
the apparent duration of the aftereffect. These
prop4~rties are familiar ones in the McCollough
effec1: (MacKay & MacKay, 1975; Mc-

Collough, 1965).

:,

Various authors have suggested that the
long duration of the McCollough effect
implicates classical conditioning mechanisms.
Montalvo (1976) presented a particularly
ingenious application of this idea. This
approach seems to trade-off one paradox for
another, since the classical conditioning must
produce a negative aftereffect during test
trials, rather than the positive effect that was
experienced during learning trials. Unless one
can isolate a large class of phenomena in which
classical conditioning reverses the effect on
test trials, this explanation is hard to under-
stand from the viewpoint of basic neural design.
The present theory points out that slowly
varying transmitter gates supplemented by
rapid contrast enhancement and STM storage
in a recurrent anatomy can also generate
long-term effects whose duration is much
longer than the transmitter decay rate would
suggest. Such long-term effects must un-
ambiguously be ruled out before classical con-
ditioning is invoked as a unitary explanation.

Dipole field structure also helps to explain
monocular rivalry (Rauschecker, Campbell,
& Atkinson, 1973), whereby two superimposed
gratings with the same sinusoidal luminance
profile, one vertically oriented and one hori-
zontally oriented, and each illuminated by
white light or by different (say complemen-
tary) colors,are seen to alternate through time.
The tendency toward rivalry can be explained
by the recurrent inhibition across orientation-
ally tuned on-cells and across orientationally
tuned off-cells; the vertical on-cells tend to
inhibit the horizontal on-cells, and conversely.
The tendency to alternate can be explained
by the fact that persistent STM reverberation
of the active vertical on-cells tends to deplete
their transmitter gates, thereby weakening
their reverberation and providing a relative
advantage to the inhibited, and therefore
relatively undepleted, horizontal on-cells.
When the vertical on-cell depletion reaches a
critical value, the horizontal on-cells are
sufficiently disinhibited to allow the recurrent
dynamics to contrast enhance the horizontally
coded inputs into STM. The horizontally coded
on-cells thereupon reverberate in STM until
the cycle repeats itself. Thus the main effect
can be ascribed to combined effects of slow
transmitter depletion, recurrent inhibition
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Other aftereffects provide more direct
evidence for the existence of slowing varying
transmitter gates. In particular, the effects of
changing background illumination, or the
secondary field, on aftereffects are remarkably
similar to the effects of changing arousal level
on the rebound. If a secondary field is turned
on during the observation of a positive after-
image in darkness, then a rapid transition to
a negative afterimage can be generated
(Brown, 1965, p.' 483 j Helmholtz, 1866, 1924).
If the secondary field is then turned off, the
afterimage can revert in appearance to that of
the stage when the secondary field was first
turned on. In a dipole, an increase of adapta-
tion level tends to rebound the relative dipole
activities. If the arousal level is then decreased,
the slowly varying transmitter levels can still
be close to their original values, so that the
original relative dipole activities are rapidly
restored. The higher the luminance of the
secondary field, the shorter the afterimage
latency, and the more rapidly the afterimage is
extinguished Quhasz, 1920). In a dipole, a
higher adaptation level more rapidly equalizes
the amounts of transmitter in the two dipole
channels by depleting them both at a faster,
more uniform rate. When approximately equal
levels of transmitter are achieved, the in-
hibitory interneurons between the dipole's
populations kill any relative advantage of one
population over the other. The duration of an
afterimage increases with an increase in
primary stimulus luminance (Brown, 1965,
p. 493). In a dipole, increasing the intensity
of an input to one population increases the
rebound at the other population when the
input terminates, much as termination of a
more intense shock causes greater relief, other
things being equal (Grossberg, 1972c, 1976b).

The preceding considerations lead to some
experimental predictions. Some of these con-
cern red and green cortical dipoles. For
example, suppose that a red stimulus has
activated a red-cell long enough to substan-
tially deplete the transmitter. Does an incre-
ment in white light cause a green-cell rebound?
Does a decrement in red light from J units to
J /2 units cause a smaller rebound when white
light is on than a decrement from J /2 units
to 0 units? Is there an inverted U in dipole
responsiveness as a function of the arousal

across orientations, and the contrast-en-
hancing capabilities of the recurrent network,
even if there are no changes in gaze.

Of particular interest is the fact that the
alternatiion rate depends on the color of the
gratings. Two white and black gratings, or two
monoch]:omatic gratings, alternate up to three
times slower than gratings that are illuminated
by com:plemen tary colors. This can be dis-
cussed i][} terms of the rebound behavior that
occurs between subfields that are orientation-
ally coded a,nd whose dipoles code for comple-
mentary colors. When two white and black
gratings of sufficient contrast are used, the
white inputs can excite both on-cells and
off-cells of the color-coded dipoles, thereby
inhibiting them. It is therefore assumed that
apart fr'om altering their gain, intense black
and white gratings cause net excitation
primaril:v in feature fields whose on-cells
respond unselectively to light-on and whose
off-cells respond to light-off. In such a feature
field, th,e horizontal and vertical white bars
excite the same subfield, and the horizontal
and vertical black bars excite the complemen-
tary subfield. Each subfield tends to adapt
or const:rve its total STM activity (within
its func1:ional channels!) so that there exists
a tendency for the horizontal and vertical
inputs t,o compete for STM activity, and to
thereby decrease the transmitter depletion
rate in active cells.

By contrast, consider what happens in a
color-coded dipole field in response to two
gratings that use the field's complementary
colors, say red-vertical and green-horizontal.
Here the, red-vertical bars deplete only the red
field, and the green-horizontal bars deplete
only the green field. There is no direct inhibi-
tion within a given subfield between horizontal
and verltical orientations. Thus, other things
equal, gJ:eater STM activation of red-verticals
or green-horizontals is possible than in the
black-white case because less intrafield compe-
tition for STM activity occurs. Greater STM
activation implies faster transmitter depletion
and fast,er alternation rates. If this explanation
is correc:t, then it is a special case of a more

general phenomenon; namely, that the fre-
quency of perceptual oscillations can be
pattern contingent due to the intrafield
normali2:a tion property.
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level or the intensity of white light? Does the field is activated. In the limit of absolute
relative rebound size increase as a function of black and very bright white verticals, both
arousal level size for intermediate levels of the on-cells and the off-cells would be almost
arousal? In other words, are visual dipoles equally excited on the average, albeit at
designed the same way as motivational different times, as the light and dark verticals
dipoles? drift over their receptive fields. Neither on-cell

Another set of predictions concerns the nor off-cell would gain a large relative advan-
McCollough effect. For example, how does the tage, but both would have their transmitter
McCollough effect depend on the intensity of stores significantly depleted by the persistence
white light during test trials? A more intense of the horizontally drifting input. Hence,
white light should yield an initially larger significant spatial frequency adaptation would
aftereffect unless the white is so intense that occur, but not due to large relative imbalances
overarousal occurs. Moreover, more intense in the dipoles. What happens as the contrast
white should equalize the relative transmitter between the white and black verticals is
stores more rapidly than less intense white. decreased? Then other things being equal, the
T'his suggests an experiment in which a double off-cells will be depleted more than the on-cells.
test is made. The first test uses prolonged Hence, a greater relative depletion within the
inspection of white bars whose intensity dipoles can be induced at smaller contrast
differs across subjects. Before the second test is levels than at larger contrast levels. How can
Dlade, some visual experience should occur to this conclusion be tested? Consider two groups
blot out whatever small differences in trans- of subjects. Let Group 1 be adapted and tested
mitter storage might still exist after the bright using high contrast gratings. Let Group 2 be
white bars are examined. Then a second test adapted on a lower contrast grating and tested
with white bars is given. Subjects who saw using the same higher contrast grating used
l~ess intense bars on the first test should to test Group 1. The net on-responses at a
perceive a larger aftereffect. black-white interface as the test grating

An experiment concerning spatial frequency slowly drifts across the visual field should be
adaptation is also suggested. This experiment greater in Group 2 than in Group 1. Can such
is analogous to the experiment on aftereffects differentially enhanced boundaries between
due to changes in the secondary field. Speaking the trailing edge of black and the leading
generally, if spatial frequency adaptation and edge of white be perceived? If the answer is
c:ert,ain other aftereffects are all due to dipole yes, then one can properly claim that the
depletion, albeit in different fields of feature effect is a functional analogue within the
~ietectors, then they should undergo similar visual system of the partial reinforcement
transformations in response to analogous acquisition effect in the motivational system
,experimental manipulations, other things being (Grossberg, 1975).

equal, notably the persistence with which each
feature field is disrupted by uncontrolled
inputs. Suppose that when a series of vertical
sinusoids drifts horizontally across the visual
field, those on-cells and off-cells whose re-
current inhibitory signals collide with visually
induced inputs will have their activities
suppressed. Consider the on-cells and off-cells
that can be activated by the prescribed
spatial frequency. What happens as the
contrast 'of the visual pattern is parametrically
increased across subjects?

This is a delicate question because more
than one dipole field in the coding hierarchy
can be activated by such an input. Let us
consider what would happen if only one dipole

13. Reset Wave: Reaction Time, P300, and
Contingent Negative Variation

The nonspecific arousal that is triggered
by unexpected events (or mismatch) selec-

tively and enduringly inhibits active popula-
tion across F(2). In vivo, do there exist broadly
distributed inhibitory waves that are triggered
by unexpected events? In average evoked
potential experiments, one often finds such a
wave, namely the P300 (Rohrbaugh, Donchin,
& Eriksen, 1974; Squires, Wickens, Squires, &
Donchin, 1976). The theory's relationship to
P300 is discussed in Grossberg (1978e), in
which the following properties of P300 are

,
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occur in many thalamocortical systeIIls, so
that there should exist different reset waves
corresponding to each functionally distinct
system. In Grossberg (1978e), the preceding
scheme is generalized to a variety of examples
in which competition occurs between atten-
tional, or consummatory, pathways and
novelty, or orienting, pathways. A matching
process goes on within the attentional system
and computes such information as follows:
Are the sensory cues the ones tha t are expected?
Do the proprioceptive motor cues match the
terminal motor map that is guiding the limb?
If the answer is yes, then goal-oriented arousal
systems are activated to support the matching
process and its consequences, such as posture.
If the answer is no, then complementary
arousal systems are activated that support
rapid reset and orienting reactions aimed at
acquiring new information with which to
correct the error. Given that the P300 helps
to reset sensory STM in response to une>.-pected
events, does there exist a complementary
wave that occurs along with expected events?
The CNV would appear to be such a wave
(Cohen, 1969), since it is associated with an
animal's expectancy, decision (Walter, 1964),
motivation (Cant & Bickford, 1967; Irwin,
Rebert, McAdam, & Knott, 1966), volition
(McAdam, Irwin, Rebert, & Knott, 1966),
preparatory set (Low, Borda, Frost, &
Kellaway, 1966), and arousal (McAdam, 1969).

If the P300 and the CNV are indeed comple-
mentary waves, then experiments should be
undertaken to determine the neural loci at
which the generators of these waves compete.
For example, Section 16 suggests that the
hippocampus provides output that contributes
to the CNV. Does expectancy mismatch occur
within the hippocampus, or in a cell nucleus
that activates hippocampus, and thereby
release a P300 by disinhibiting its generator?

Having noted the existence of reset and
attentional waves that are triggered by sensory
events, it is natural to ask whether there exist
analogous waves that are triggered by motor
events? To answer this question, the next
section considers how eye movements can
modulate the LGN's sensitivity to afferent
visual signals and the related questions of
whether the LGN has a dipole field organiza-
tion and whether feedback from visual cortex

shown to be analogous to properties of the
resetlting wave: Reaction time is an increasing
function of P300 size (Squires et al., 1976);
P300 is not the same average evoked potential
as thle contingent negative variation (CNV)
(Don chin, Tueting, Ritter, Kutas, & Heffley,
1975; cf. Section 16); P300 can be elicited
in the absence of motor activity (Donchin,
Gerbrandt, Leifer, & Tucker, 1972); resetting
the ~;TM codes of longer sequences of events
can take longer than resetting the STM codes
of sh;orter sequences of events, and due to the
relationship between reaction time and P300
size, longer sequences will elicit larger P300s
(Remington, 1969; Squires et al., 1976).
More,over, Chapman, McCrary, and Chapman
(197~1) showed that in a number- and letter-
comp'arison task, there existed an evoked
potential component with a poststimulus
peak at about 250 msec that is related to the
stora,ge of cue-related information in STM.
This latency fits well with the idea that STM
stora,ge occurs if the feedback expectancy does
not (;reate a mismatch. The extra 50 or so
msec needed to generate a P300 would also be
necessary in the network to trigger the reset
wave if a mismatch does occur.

If the P300 is indeed a reset wave of the
type that the thought experiment describes,
then several types of experiments can be
unde:rtaken to test this hypothesis. On the
anatomical side, Where does the expectancy
matching take place? What pathways subserve
the arousal? On the physiological side, Do
dipole rebounds cause the inhibition? On the
Psycllophysiological side (e,g., average evoked
potential experiments), Is there a more direct
expe1imentcal paradigm for testing whether
P300 directly inhibits STM? In particular,
Can a succession of P300s be reliably triggered
when information is disconfirmed in successive
stagl:s? On a deeper functional level, Does
the ]>300 act to buffer committed cells against
conUinual recording by the flux of experience?
If P~IOO is inhibited, can previously committed
cells be recoded? In other words, when we
consilder cognitive coding, does a chemical
swit(;h contribute to code stability, or is code

stability entirely dependent on buffering by
dyna.mic reset mechanisms?

As, was noted in Section 4, feedback expectan-
cies 1lhat trigger STM reset mechanisms should
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tentials elicited from optic nerve or optic

radiation, Singer (1977) concluded

that the intrinsic inhibitory pathways also get in.
activated. However, it cannot yet be decided whether
the inhibitory interneurons in the main laminae are
also subject to direct reticular inhibition as is the case

for cells in nucleus reticularis thalami. (po 409)

Singer went on to suggest that corticogeniculate
.feedback could partially accomplish the in-

14. Template Matchmg and Reset: PGO trinsic cell inhibition.
Wave, .Genic~late Dipoles, and For present purposes, the main point is

Cortlcogemculate Feedback Singer's (1977) functional interpretation of the
MRF. d d LGN d' .h.b. . H I .

dAn example of an" attentional" motor wave -m uce ism 1 ltion. e c alme

seems to be the ponto-geniculo-occipital that the brief phase of disinhibition serves to reset the
(PGO) wave whose effects on the LGN are thalamic relay each time the point of fixation is

admirably reviewed by Singer (1977). Singer changed T? assure a bias. free initial ~r~e~sing
(1977) distinguished at least two types of of ~e pattern viewed after a saccade. ..inhibitOry
, ,,' " d .' f gradients ought to be erased before the eyes come to
mhlbltory l~temeurons m hIS lSCUSsl0n 0 rest on the new fixation point, .' the concomitant
LGN dynamics: disinhibition occurs only towards the end of the saccade

Th tl . h.b. ha 0 . h right before the eyes come to rest, (po 411)

ere apparen Y are two in 1 ltory mec nlSms Wit
~wo different functions. One is based on !ntrin~ic Singer's remarks can be mechanistically inter-
mterneurons and presumably conveys the retlnotoplC- d .'
ally organized and highly selective inhibitory inter- prete, as follows: As the proprioceptive
3ICtions between adjacent retinocortical channels. 0 ..coordinates of the eye muscles approach the

This inhibition seems to be mainly of the feed-forward terminal motor coordinates that control the

t:vpe, ...The second inhibitory pathway is ex. saccade the two sets of coordinates match a

cLusively of the recurrent type and is relayed via cells PGO' .' 't. t d 't di. h 'b 't LGNin nucleus reticularis thalami. .., This extrinsic wave IS ml la e , I sm liS

inhibitory loop is probably involved in more global relay cells, and prepares the LGN to transmit
tl1odifications of LGN excitability as they occur during retinal signals to the visual cortex, If the PGO

C~g~s in the animal's s~te of ~ertness and during wave is indeed elicited by a matching process
orienting responses associated With eye movements. between the terminal motor map and pro-
Ip.394) , . din f h I0 pnoceptive coor ates 0 t e eye musc es,

Singer noted that mesencephalic reticular then this matching process should be capable
formation (MRF) stimulation leads to field of exciting cells that inhibit the LGN inter-

potentials in the LGN and the visual cortex neurons within the nucleus reticularis thalami.

that closely resemble PGO waves. LGN In what neural structure does this matching
transmission is facilitated during PGO waves process take place? One component of this

and during the analogous negative field structur~ might already have been discovered
potential that occurs after MRF stimulation, by Tsumoto and Suzuki (1976), who report a

One mechanism of MRF facilitation is in- pathway from the frontal eye fields to the

hibition of the cells in the nucleus reticularis perigeniculate nucleus in which are found the

thalami, which are recurrent inhibitory inter- LGN inhibitory intemeurons, Electrical stimu-
neutrons between LGN relay cells. From a lation of the frontal eye fields inhibits the

theoretical viewpoint, this type of disinhibition perigeniculate cells and facilitates LGN

would be expected to have nonspecific effects transmission,like decreasing the quenching threshold of an Singer (1977) claimed that the PGO wave

entire recurrent subfield of cells, and thereby resets the LGN so that it can respond to

facilitating transmission of signals through retinal signals without bias. However, non-

these cells (Grossberg, 1973; Grossberg & specifically reducing the quenching threshold
Levine, 1975), Such an effect seems to occur is not the type of selective reset that I have

in LGN. Since MRF stimulation can com- discussed earlier, Indeed, Singer's discussion

pletely suppress inhibitory postsynaptic po- of LGN dynamics emphasizes the wiping away

to LGN can selectively attenuate or amplify
afferent visual signals. This discussion leads
to a reinterpretation of LGN data and to some
predictions. These predictions concern the
possible existence of a reset motor wave and the
timing of certain developmental events relative
to the end of the critical period for plasticity
in the primary visual cortices.
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These interneurons are analogous to the intra-
field lateral inhibition that was postulated
within F+ (2) and F_(2), but which we now
recognize as a prerequisite for total activity
adaptation and quenching threshold tuning
in any recurrent network. In addition, there
exist "reciprocal inhibitory interactions be-
tween neurons with antagonistic field center
characteristics-that is, between on- and off-
center units with spatially overlapping recep-
tive fields" (Singer, 1977, p. 390). These cells
would appear to form dipoles. If they are
dipoles of the type discussed, then the arousal
system that triggers their rebounds will feed
into them-from the dorsal raphe nucleus-
and activating this arousal system will rebound
their relative activities.

These hypotheses should be easier to test
in the: monkey than the cat, because Schiller
and Malpeli (1978) have reported that of the
four parvocellular layers in the monkey, the
two layers committed to the left eye are
subdivided into an on-cell layer and an off-cell
layer, and the two layers committed to the
right eye are also subdivided into an on-cell
layer and an off-cell layer. Do dipole inter-
actions occur between the on-cell and off-cell
layers of each eye representation? Does a
suitable arousal increment rebound the relative
activities of these dipoles? If so, we will have
found an elegant functional reason for the
existence of this structure in the monkey: Each
eye has its own dipole field to carry out its
selective reset modes. We will also have found
an elegant reason for the existence of intrinsic
and extrinsic inhibitory systems: Attentional
reduction of the quenching threshold is
functionally distinct from, and even comple-
mentary to, selective reset.

Another important point of Singer's (1977)
article concerns the role of corticogeniculate
feedback.

of all inhibitory gradients as a reset mechanism.
But what if excitatory activities already exist
in the LGN when this happens? Why do these
activities not get amplified and thereupon
maximally bias LGN activity in response to
the next retinal input volley? I suggest that
the LGN reset that is due to the nucleus
thalami reticularis occurs while the eye is
moving and the extrinsic inhibitory inter-
neurons are active. This extrinsic inhibitory
feedback resets the LGN by generating a
high quenching threshold and thereby wiping

lout the LGN's excitatory patterns. As the eye
i comes to rest at its intended position, I suggest
I that matching occurs between the terminal and

:+- proprioceptive motor maps of the eye muscles,
i thereby activating the attentional system, in
: particular tl)e PGO wave, which sensitizes the
! LGN to retinal and cortical signals.
! Even if the preceding interpretation of
I Singer's argument is correct, i-t discusses a
/. nonspecific effect on the QT and the sensitivity
i of visual pattern processing, but not the
: selective reset that aims at reorganizing
I attention in response to an error, or other
f

unexpe(:ted event.
j Is there a wave that is functionally comple-
: mentar:f' to the PGO wave, that can precede

it, and that drives a selective reset of LGN
dynamics in response to unexpected events?
If such a wave does exist, it would be function-
ally analogous to the P300. In this regard,
Singer (1977) parenthetically mentions the

; work of Foote, Manciewicz, and Mordes (1974)

to explain the inhibition of LGN transmission
: that sometimes occurs shortly after MRF
i stimula.tion but before the facilitatory phase.

Foote et aI, suggest that this inhibitory
I pathway is due to serotonergic fibers origin-
; ating in the dorsal raphe nucleus. Are these
.fibers the pathway over which selective reset

can occur?
I For a selective reset wave to exist, it must

i operatl~ on on-cell off-cell dipoles. Do such
i dipoles exist in the LGN? Much of the data
: discussed by Singer was collected in the cat
: LGN. Singer (1977) reports here

that reciprocal inhibitory connections exist between
adjacent neurons driven by the same eye that have the
saine receptive field center characteristics; i.e., between
O~-centler cells and between off-center cells, respec-
tively. (p. 390)

In a highly selective way the cortex pennits trans-
mission of binocular information that can be fused and
evaluated in tenus of disparity depth cues while it
leaves it to the intrinsic LGN circuits to cancel trans-
mission of signals that give rise to disturbing double
images. (p. 398)

In other words, the corticogeniculate feedback
acts as a template that selectively enhances
the type of data that the cortex is capable of
cOding in a globally self-consistent way.
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between all pairs of attentional and selective
reset waves, as between CNV and P300, or
PGO and its hypothesized complementary
reset wave?

.In summary,. the LGN seems to enjoy a
dipolle field structure whose sensitivity to
afferent sensory signals is modulated both by
corticogeniculate feedback, which acts like a
sensc>ry expectancy-matching mechanism, and
by ]~RF arousal, which lowers the LGN QT
in response to proprioceptive-terminal map
matc:hing within the eye movement system.

If we interpret the geniculocortical relay
as ~~n example of our thought experiment,
then several experimental predictions arise.
The~,e predictions are made with caution,
sincl~ a significant part of visual development
seems to be genetically prewired in the geni-
culo,cortical pathways of higher mammals
(Rubel & Wiesel, 1977). It is still not clear,
however, to what extent corticogeniculate
feedback does help to terminate the visual
critical period in these animals. Nor is it clear
whether the same neural design that. is used
in sc>me species, or in individual neural relays,
to terminate a critical period using feedback
is also used in others wherein a chemical switch
or <Jtther prewired mechanisms are appended.
The predictions flow from the observation that
if the geniculocortical system is an example
of the thought experiment, albeit vestigially,
then its reset and search mechanisms must
devlelop before the end of the visual critical
period. In particular, if lateral inhibition
within the LGN is used to help match cortical
and retinal data, then these inhibitory connec-
tiODlS must develop before the end of the critical
period. The dipole field structure of the cortex
must also develop before the end of the critical
periiod. Moreover, mismatch within the LGN
sys1:em should disinhibit an arousal system
capable of rebounding the cortical dipoles.
Thl~re exists a catecholamine ar~usal system to
neocortex, among other structures (Fuxe,
Rokfelt, & Ungerstedt, 1970; Ungerstedt,
1971; Jacobowitz, 1973; Lindvall & Bjorklund,
19i'4; Stein, 1974). Is this the arousal system
being sought? Does it develop before the end
of the critical period? Is this arousal system
capable of driving antagonistic rebound in
cortical dipoles? Is a catecholamine transmitter
alvrays used in arousal systems that drive
an1tagonistic rebound, for example, the catecho-
lal1tline system originating in the dorsal raphe
nucleus that was described by Foote et al.
(1974)? Finally, is there a structural similarity

15. Adaptive Resonance, Code Stability,
and Attention

The preceding sections discuss some of the
network events that occur when feedforward
data mismatch feedback expectancies. What
happens if an approximate match occurs?
Then the activity patterns at F(I) and F(2)
elicit interfield signals that mutually reinforce
each other, and activities at both levels are
amplified and locked into STM. Because the
STM activities can now persist much longer
in time than the passive decay rates of in-
dividual cells, the slowly varying feed-forward
filters and feedback expectancies have sufficient
time to sample the STM patterns and store
them in L TM. I call this dynamical state an
adaptive resonance. The resonant state provides
a global interpretation of the afferent data,
or a context-dependent code, that explicates
in neural terms the idea that the network is
paying attention to the data. The resonance
idea suggests that many individual neural
events, such as cell potentials and axonal
signals, are behaviorally irrelevant until they
are bound together by resonant feedback. Of
special importance is the observation that
unless resonance occurs, no coding in L TM
can take place. This observation clarifies from
a me<:;hanistic viewpoint the psychological fact
that a relationship exists between paying
attention to an event and coding it in L TM
(Craik & Lockhart, 1972; Craik & Tulving,

1975).
The resonant state provides a context-

dependent code due to several factors acting
together. For example, the pattern of expect-
ancy feedback can alter, through a matching
process, the activity that a given feature
detector would have experienced if only
afferent signals were operative. Similarly,
competitive interactions within a subfield can
rapidly alter the net input pattern before
storing it in STM. Thus when an activity
pattern at a field F(l) is projeCted by interfield
signaling to a field F(2), feedback from F(3) to
F(2) can deform this pattern before it is further
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reorganized by competition within F(2). Be-
caUSI~ the resonant state provides a context-
dependent code whose resultant patterns in
STM and LTM depend on all active com-
ponents of the system, it is impossible to
determine the code from the measurements
taken by any single microelectrode, no matter
how precise its calibration. I claim that
adaptive resonances are the functional units
of cognitive coding, and that classification of
the resonances that occur in prescribed situa-
tions is a central problem for cognitive psy-
chology. The structural substrates of these
cognitive units are nonlinear feedback modules
involving whole fields of cells rather than
individual nerve cells.

The technical details needed to rigorously
build up the resonance idea are derived in
Grossberg (1976a, 1976b), in which a summary
of related coding models is also given, and
further developed in Grossberg (1978e). In
partic:ular, Grossberg (1976a) points out that
a coding theory that depends on a feedforward
anatomy with any fixed number of cells is
faced with a crippling dilemma: Eith~r a
chemical switch turns off. code development at a
prescribed time, but then the code will be
behaviorally meaningless with a high likeli-
hood, or the code is unstable through time
whenever the number of patterns in the
envir~lnment significantly exceeds the number
of coding cells. It is also proved that a develop--
ing code can be stable in a sparse input environ-
ment, but this does not address the typical
situation in vivo, where~ontinuous visual
fi?w, and therefore a nond um~rable series of
vIsual patterns, must be ealt with. Computer
models of code development missed these
basic points because they typically used small
numbers of inputs and small numbers of
coding cells.

Once the main point was vividly made, one
could see that feedback was essential to
stabilize a developing code in a rich input
environment, and that the types of feedback
that were needed resembled attentional mecha-
nisms that had previously been derived from
different considerations, namely classical and
instrumental conditioning postulates (Gross-
berg, 1975). The examples in Sections 2 and 3
illustrate these attentional phenomena. Two
pleasing conclusions were thereby drawn:

Adult mechanisms, in this case attentional
mechanisms, are often continuations along a
developmental continuum of infantile mecha-
nisms, in this case code development mecha-
nisms; and the rather mysterious rubrics of
"paying attention" and "expectancy" could
be attached to the more substantial theme of
"code stability and consistency," and the
establishment of dynamically maintained criti-
cal periods.

Anderson, Silverstein, Ritz, & Jones (1977)
also recognized the importance of feedback in
defining the functional units of neural network.
Their model differs, however, from the present
theory in several notable respects. The re-
current STM interactions in their model are
defined by linear feedback signals. Grossberg
(1973, 1978d) shows how linear feedback
signals among cells that are capable of satur-
ating create unphysical instabilities such as
noise amplification and compression of an
input pattern. Furthermore, known neural
nonlinearities, such as sigmoid signals between
cells, overcome these instabilities and contrast
enhance the input pattern (Appendix D). The
L TM interactions in the Anderson et al.
model are described by summing up a large
number of mutually orthogonal LTM vectors

"
Z = L Zk

k-l

to form the total L TM trace across a field F(l)
of cells. When a signal pattern S from F(l) to
F(2) is gated by the total LTM trace, as in

"
S.z = L S'Zk

k-1

(see Appendix A), it might be perpendicular
to all but one of the increments, say Zl. Conse-
quently, the net signal is S. %1. This concept
gets into difficulty because in vivo the total
L TM trace Z must be composed of small
quantities (e.g., transmitter concentrations).
Each of the summands Zk must therefore be a
very small quantity unless n is also very small,
but then the theory is powerless. If each Zk is
very small, then the net signal depends on
gating by a sum of very small quantities. This
creates an unstable situation. Furthermore,
the LTM trace Zii from cell Vi to cell Vi in the
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Anderson et al. model is assumed to equal the
LTM trace Zji from Vj to Vi. This symmetry
assumption is too restrictive for our purposes,
since we do not want the filter from F(l) to
F(2) to necessarily equal the expectancy from
F(2) to F(l); this would limit the tendency to
achieve greater abstractness of feature extrac-
tion in a hierarchy of fields. A more serious
problem for the L TM symmetry assumption
is its implication that the signal from every
cell be proportional to its STM trace. This
follows because the growth rate of LTM trace
Zij is proportional to the product of signal Sij
from Vi and Vj times STM trace Xj of Vj. To
achieve Zij = Zj;, it is necessary for SijXj
= SjiXi, which is possible if Sij = axi and
Sji = axj. In particular, the recurrent signals
must be linear functions of the STM traces,
and the usual instabilities that recurrent linear
signals generate among cells will be generated.

The next three sections summarize a few
resonant schemes and predictions pertaining
thereto that suggest the scope of the resonance
phenomenon. Other resonances, notably the
olfactory resonance that is described by the
distinguished work of Freeman (1975), are
discussed more completely in Grossberg (1976b,
1978e). Freeman discovered a resonant phe-
nomenon by performing parallel electrode
experiments on the cat prepyriform cortex.
When the cat smells an expected scent, its
cortical potentials are amplified until a
synchronized oscillation of activity is elicited
across the cortical tissue. The oscillation
organizes the cortical activity into a temporal
sequence of spatial patterns. The spatial
patterns of activity across cortical cells carry
the olfactory code. By contrast, when the cat
smells an unexpected scent, then the cortical
activity is markedly suppressed. Freeman
traces the differences in cortical activity after
expected versus unexpected scents to gain
changes within the cortical tissue. Appendix C
shows how a matching mechanism in a shunting
network simultaneously changes gains as it
amplifies or attenuates network activity.
Freeman also notes a tendency for the most
active populations to phase-lead less active
populations. This also occurs automatically
in a shunting network due to the correlation
between gain and asymptote. Because the
cortex oscillates, Freeman models his data

using second-order differential equations whose
coefficients are changed by expectations in a
manner that is, descriptively stated, but not
dynamically explained, by his model. I suggest
that the oscillations are caused by feedback
between cells that obey first-order differential
equations whose gains are changed by signals
coupled to the shunting mechanism.

Grossberg (1978b) claimed that adaptive
resonances also occur in nonneural tissues,
where they are suggested to be a basic design
principle in a universal developmental code.
Syncytium formation during sea urchin gastru-
lation is identified as a possible adaptive
resonance phenomenon-in particular, the law
whereby pseudopods from the mesenchymal
cells adhere to ectodermal cells to form a
syncytium has tbe same form as the law for
an L TM trace-and some predictions are made
to test this hypothesis.

16. Are Conditioned Reinforcer Pathways and
Conditioned Incentive Motivational

Pathways Reciprocal Pathways in
an Adaptive Resonance?

Grossberg (1975) has described a psycho-
physiological theory of attention in which an
adaptive resonance occurs. This resonance
helps to explain why the dilemma of cross-
conditioning that is depicted in Figure 2 does
not routinely occur. Figure 16 idealizes this
resonance. Speaking intuitively, the internal
representations of external cues elicit signals
that are, before conditioning takes place,
distributed nonspecifically across the various
internal drive representations. During condi-
tioning trials, the pattern of reinforcement and
drive levels strengthens the L TM traces
within certain of these signal pathways and
weakens the L TM traces within other path-
ways. These conditioned changes in the signal
pathways endow the external cues with
conditioned reinforcer properties. On recall
trials, these conditioned signals combine
with internal drive inputs to determine
whether or not feedback signals will be elicited.
The feedback signals play the role of incentive
motivation in the network. Incentive motiva-
tion is released in a given feedback pathway
only if the momentary balance of conditioned
reinforcer signals plus drive inputs compete

i

j
~
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EXTERNAL CUES

CONDITIONED
REINFORCER
SIGNALS

CONDIT IONED
INCENTIVE
MOTIVATIONAL
SIGNALS

I..

t

1..

.'-"~":' ...

.

HIPPOCAMPUS

.

INTERNAL DRIVES
Figure 16. An adaptive resonance between neocortex and hippocampus is suggested to occur when
external cues are compatible with internal needs. (The conditionable feedback pathways in this module
subserve conditioned reinforcer properties and conditioned incentive motivational properties.)

ally related external cue representations via
incentive motivational feedback. A type of
subliminal psychological set is hereby formed.
Since the external cue representations compete
among themselves for storage in STM, the
conditioned incentive motivational feedback
abets the storage of compatible cues and tends
to overshadow the storage of incompatible
cues. Thus, during alternate scanning of
incompatible cues, attentional switching be-
tween resonances cottlpatible with one cue
class and then the other class buffers each
class against indiscriminate cross-conditioning
with incompatible cues. Various data and
related theories about reinforcement and
attention are analyzed in the light of these
concepts in the articles of Grossberg (1972b,

favorably against these factors within ilie other
feedback pathways.

Before conditioning occurs, each of the
incentive motivational channels nonspecmcally
projects to the external cue representations.
As iin the case of the conditioned reinforcers,
the incentive motivational channels are condi-
tionable, and their L TM traces can be strength-
ened when their signals are large and
COnitiguous to active external cue represen-
~til~ns. Thus after conditioning occurs, an
~ternal. drive representation can deliver
Incentive motivational signals preferentially
to those external cue representations with
whi1;:h it was previously associated. In this
Way, activating a given external cue represen-
tation can sensitize an ensemble of motivation-
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1

logical experiment to test its existence.
In Figure 16, F(I) and F(2) ~oth po~sess 17. Pattern Completion, Hysteresis, and

recurrent on-center off-surround Interactions, Gestalt Switching
and both the F(I) -F(2) and F(2) --+ F(I)
pathways are conditionable. R;egion F(I) c~n- Consider what happens to an adaptive
tains exter.nal ~ue represe?tations, and re.glon resonance as its afferent data are slowly and
F(2) con~ams mtern~l dnve repr.esentations. continuously deformed through time, say
When this network ~s embe~ded Into. a more from the letter 0 to the letter D. By" slowly"
complete system of Interactions, an mterpre- I mean slowly relative to the rate with which
tation of F(I~ as neocorte~ and ?f. F(2) as resonant feedback can be exchanged. Recall
hippocampus IS suggested. GIven thIs mterpre- that feedback from F(2) to F(I) can deform
tation, the conditioned reinforcer pathways what" is" perceived into what "is expected
F(I) --+ F(2).should have a final. common path- to be" perceived. Otherwise expressed, the
way at hIppocampal pyramIdal. ~ells, and feedback is a prototype, or higher order
their LTM traces should be sensitIve to the Gestalt that can deform and even complete
balance of drives and reinforcements through activit; patterns across lower order feature
time. Relevant data have been collected ~y detectors. For example, suppose that a sensory
Berger and Thompson (1977), who descr~be event is coded by an activity pattern across
neural plasticity at the hippocampal pyraml~ the feature detectors of a field F(I). The F(I)
during classical conditioning of the rabbIt pattern is then coded by certain populations
nictitating membrane response. in F(2). If the sensory event .has never before

The conditioned incentive motivational been experienced, then the F(!) populations
pathways F(!) --+ F(I) should. have a ~al that are chosen are those whose codes most
common pathway at neocortical pyra~l~al nearly match the sensory event because the
cells, and their LTM t~ace:s should be sen~ltlve pattern at F(I) is projected onto F(2) by the
to the balance of mOtlvatlo? and cue.s~liency positional gradients in the F(I) -.F(!) path-
through time. The CNV IS a conditlonable ways (Appendix A). If no approximate match
neocortical potential shift th.at .has been is possible, then mismatch at F(I) will trigger
associated with an animal's motivational state a reset wave that selectively inhibits F(2) and
(Cant & Bickford, 1967; Irwin et al., 1966), elicits a search routine. If an approximate
and Walter (1964) has hypot?esized that the match is possible, however, then the feedback
CNV shifts the aver~~e ?asellne of!he cort~x signals from F(2) to F(I) will elicit the template
by depolarizing the apIcal .d~ndrit~s of!ts of the sensory events that are optimally coded
pyramidal cells. If the condItioned I~centlve by the E(2) pattern. These feedback signals
motivational feedback is indeed realized by rapidly deform the F(I) pattern--until this
the CNV and if adaptive resonances between STM pattern is a mixture of feedforw'ard
conditioned reinforcers and conditioned incen- codes and feedback templates. Otherwise
tives do exist, .then there should exist n~ural expressed, F(2) tries to complete the F(I)
feedback loops betwe~n neOc?~tex and. hippo- pattern using the prototype, or template,
campus such that whIle conditioned re~nforcer that its active populations release.
properties are being established with the In Grossberg (1978e, Section 40), another
hippocampal pyramid cells as a fmal.com~on completion mechanism is also suggested,
pathway, simultaneously con.~tioned ~centlve namely a normative drift. This mechanism

properties are being cond!tloned wI~h the generalizes the line neutralization phenomenon
apical dendrites of neocortical pyramid cells that was described by Gibson (1937). In
as a final common pathway. Experiments to suitably designed feature fields, STM activity
test this prediction would require either at a particular coding cell can spontaneously
simultaneous measurement from electrodes drift toward the "highest order" coding cell
in the neocortical and hippocampal loci of the in its vicinity, due either to the existence of
resonant circuit, or correlation of electrode more cell sites, or to larger and spatially more
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If Gestalt switching is a two-stage process,
then at the moment of switching, a reset
wave should occur. Does a P300 occur at the
moment of perceived switching? If not, can
this paradigm be used to discover what
average evo~ed potential, if any, parallels
activation of the reset mechanism?

18. Binocular Resonance and Rivalry

My final example indicates that adaptive
resonances need not be hierarchically organized,
and points to a class of resonances of particular
importance. Hysteresis can occur between two
reciprocally connected fields even if they are
not hierarchically organized, since the in-
dividual cells do not know whether they are
in a hierarchy. For example, suppose that
each eye activates a field of monocularly coded
feature detectors. Suppose that each monocular
field is endowed with a recurrent on-center
off-surround anatomy, indeed with a recurrent
dipole field of on-cell and off-cells. Let the
on-cells in each monocular field be capable
of exciting corresponding on-cells in the other
monocular field. In other words, signals from
a given monocular field act as a template
for the other monocular field. It does not
matter what features are coded by these
detectors to draw the following conclusion.
Once a resonance is established between the
two monocular fields, hysteresis will prev~nt
small and slow changes in the input patterns
from changing the coded activity. Julesz
(1971) introduced a field of physical dipoles
to model the binocular hysteresis that he and
Fender described (Fender & Julesz, 1967).
Resonance between two recurrent on-center
off-surround anatomies undergoing shunting
dynamics provides a neural model of the
phenomenon. Such a binocular resonance will
generate properties of binocular rivalry, since
competition within each subfield of the re-
current networks will inhibit feature detectors
that do not participate in the resonance.

The construction of monocular represen-
tations whose binocular resonances code
globally self-consistent invariants of stereopsis
is presently being undertaken. Although this
construction is not yet complete, some obser-
vations can be made in broad strokes to guide

broadly distributed feedback signals, at the
highest order cells. After STM activity drifts
to its local norm, the highest order cell can
thereupon release its feedback template. It was
shown in Levine and Grossberg (1976) that
sul::h drifts are a type of lateral masking due
to the recurrent interactions within the
feature field. I suggest that many Gestalt-like
pattern completions are manifestations of
in1:rafield competitive transformations, such
as normative drifts, and the deformation by
fe!~dback expectancies of lower order STM
patterns. Such global dynamical transforma-
ticlns transcend the capabilities of classical
pattern discrimination models (e.g., Duda &

Hart, 1973).
Two important manifestations of the com-

pll~tion property are hysteresis and Gestalt
sw'itching. For example, once an STM reso-
nance is established in response to the letter 0,
the resonance resists changing its codes when
sumll changes in the sensory event occur-this
is hysteresis. Hysteresis occurs because the
active F(2) -+ F(l) template keeps trying to
deform the shifting F(l) STM pattern back to
OI1Le that will continue to code the F(2) popu-
laltions that originally elicited this template.

If, however, the sensory event changes so
much that the mismatch of test and template
pB.tterns becomes too great, then the arousal-
and-reset mechanism is triggered. This event
inhibits the old code at F(2) and forces a search
for a distinct code. A dramatic switch between
g1[)bal percepts can hereby be effected. The
g1obal nature of the switch is due not only
to the rapid suppression of the previously
active F(2) code but also to the fact that F(2)
contains populations that can synthesize
WLta from many feature detectors in F(l), and
tile feedback templates of these populations
C1Ln reorganize large segments of the F(l) field.
I suggest that an analogous two-stage process
olr hysteresis and reset is operative in various
visual illusions, such as Necker's cube (Graham,
1'965). When ambiguous figures are presented,
these mechanisms can elicit spontaneous
switches of perceptual interpretation due
either to shifts of gaze or to the input-induced
c:yclic rates of transmitter depletion that can
OCcur even if the gaze remains relatively
fixed (Section 12).
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properties of auditory feedback patterns
(Grossberg, 1978e).

19. Symmetry and Symmetry Breaking in
Sensory and Motor Systems

the reader who is interested in pursuing the
elucidation of perceptual and motor resonances.

Before the two eyes can fixate on the scenes
that will drive binocular development, there
must already exist enough prewired visual
feature detectors to direct the eye movement
system to lock in the fixation process. Thus
the existence of prewired visual fea~ure fields
dcles not argue against the need for visual
tuning by experience. Such tuning seems
n{:cessary to achieve accurate stereopsis in
the face of significant variations in bodily
paLrameters due to individual differences and
growth (Daniels & Pettigrew, 1976). An effort
should be made to correlate individual and
species differences in the motor mechanisms
that are used to accumulate visual data and to
act on the visual environment with correspond-
ing differences in prewired sensory feature
detectors and the ultimate feature fields that
can be synthesized (Arbib, 1972; Creutzfeldt
& Nothdurft, 1978).

Even if feature development can continue
in the absence of visual experience, this does
nclt imply that visual experience does not
alter visual development. Just as imprinting
can be driven by endogenous drive sources
that are later supplanted by environmentally
reactive drive sources (Sluckin, 1964), an
effort should be made to test whether visual
d{:velopment is driven by endogenous arousal
sources before these sources are supplanted
by visual experience, in particular by visually
reactive arousal sources.

Binocular visual resonances seem to be a
special case of bilateral resonances that are
due to the bilateral organization of the body,
for example, binaural auditory resonances. As
in the case of binocular corticogeniculate feed-
b:Lck (Singer, 1977), bilateral interactions at
~Lch of several anatomical stages help to
s{:lect the activity patterns that elicit and are
n:lodulated by hierarchical signals. The hier-
aJl'chical signals are supplemented by environ-
mental feedback signals to complete the
s!:nsorimotor loops that control the circular
r!:actions of a developing individual (Piaget,
1'!)63). An effort should be made to correlate
the structures that emit the environmental
signals with those that receive them, for
e:Kample, the algebraic properties of motor
speech commands with the corresponding

An important theme in the design of adaptive
resonances will be the analysis of their sym-
metry and symmetry-breaking properties. This
theme is unavoidable when sensory resonances
are studied side by side with their motor
counterparts, as Section 18 suggests. For
example, the system schematized in Figure 9
shows a manifest asymmetry in the construc-
tion of its arousal and pattern analysis com-
ponents. However, this system forms only
one part of a larger system that enjoys a much
more symmetric structure in which two sub-
systems compete, namely an attentional and
an orienting subsystem (Lynn, 1966). The
component in Figure 9 is part of the attentional
system, which also includes incentive moti-
vational and CNV components (Grossberg,
1975). This subsystem focuses attention on
cues that are expected to generate prescribed
consequences of behavior. It can overshadow
irrelevant cues, as in Section 2, by selectively
amplifying certain patterns at the expense of
others. The complementary orienting system
is also capable of selectively amplifying
patterns, but these are not the patterns that
code for sensory or cognitive events. They
are, rather, the motor maps that are capable
of directing the subject toward sources of
unexpected environmental events.

The dichotomous but interdependent nature
of these subsystems is illustrated by the
existence of X-cells and Y -cells in mammalian
retinas and by the neural pathways that these
cells excite. The X-cells project primarily to
the LGN, where their signals are processed
as visual data, whereas the Y -cells have axons
that bifurcate to send branches both to the
LGN and the superior colliculus (Fukuda &
Stone, 1974; Robson, 1976), which has been
identified as an area in which a visuomotor
map for eye movements is elaborated (Wurtz
& Goldberg, 1972). The competitive nature of
these two subsystems is illustrated by consider-
ing how different our motor reactions can be
when a loud sound to the left is unexpected
versus when it is a learned discriminative

1
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1976). Proprioceptive-terminal map matching
means that the end organ has reached the
location where it expects to be. I suggest that
such matching is capable of eliciting signals
that not only support the motor postures and
perceptual sensitivity needed to pay atten-
tion-reflected in the PGO wave-but also
release from STM the next motor command in
a goal-directed motor sequence. The new
motor command instates a new terminal motor
map that mismatches the current proprio-
ceptive map, thereby inhibiting the attentional
arousal and releasing the new orienting
reaction. Thus the matching process seems to
cyclically sow the seeds of its own destruction,
at least until the entire motor plan is executed.
An effort should be made to test whether
proprioceptive-terminal matching does indeed
elicit signals that reset motor commands in a
goal-directed motor plan.

The minimal dimension of the s)'nlInetry
that is needed to design bilateral hierarchical
resonances between competing subsystems is a
16-fold symmetry, since each subsystem
contains at least two levels capable of matching
their patterns, and each level contains a pair
of dipole fields to compute a bilateral resonance.

Despite the greater symmetry that manifests
itself by studying competing subsystems side
by side, it is inevitable that neural system
design will exhibit substantial symmetry
breaking. In addition to the asymmetry
between excitatory and inhibitory configura-
tions that supports neural development and
evolution (e.g., on-center off-surround an-
atomy), such environmental asymmetries as
between light versus dark and between up
versus down must be reflected in the neural
machinery that has adapt~d to them. Some
insights concerning this neural machinery are
suggested in terms of the preceding discussion.
For example, if certain off-cells are tonically
on in darkness, and if offset of a light triggers
a transient output signal from the correspond-
ing off-cell, then why does the tonic activity
of this off-cell in the dark not drive a tonic
output signal? If the off-field is normalized,
then when all the off-cells are on in the dark,
none of them is sufficiently active to exceed
the output threshold, which is chosen higher
than the quenching threshold. After a light is
turned off, a particular off-cell's activity is

cue for rapid button pushing that will be
highly rewarded if it is sufficiently rapid. In
the former case, our eyes and head rotate
rapidly to the left. In the latter case, rotation
can be inhibited and supplanted by a rapid
button push.

Competition between attentional and orient-
ing s,ubsystems may clarify certain paradoxes
about mental illness. As just summarized,
the a.ttentional system focuses attention on
cues that are expected to generate prescribed
consequences of behavior and can thereby
over!;hadow irrelevant cues. The competing
system is triggered by unexpected events
(novelty) and allows the network to redefine
the set of relevant cues to avoid unexpected
cons(~quences. Overarousal of either subsystem
can yield attentional deficits (Grossberg, 1972c;
Grossberg & Pepe, 1970, 1971), but the exact
nature of the deficit and its,proper treatment
depends on the particular subsystem that is
overaroused. For example, a schizophreniclike
syndrome of reduced attentional span and
conu~xtual collapse can be elicited by over-
arou!!al of the incentive-motivational system,
but would not necessarily be cured by a
deprc~ssant that acted differentially on the
novelty (reticular formation) system. In fact,
depn~ssing the wrong arousal system can cause
a pa]:adoxical deterioration of a syndrome by
disinhibiting the hyperactive competing arousal
system that caused the syndrome. Compli-
cating the situation further is the inverted-U
in rlesponsiveness that can be caused by
paraJrnetrically exciting either of the arousal
systems separately (Section 10).

Arternation between attentional and orient-
ing I~eactions seems also to occur, and in a
cyclic fashion, within the motor system during
the performance of a familiar sequence of
skilu:d movements. Grossberg (1978e, Sections
48-54) used a thought experiment concerning
the information available to a behaving infant
to derive a minimal network for the learning
of circular reactions. A central mechanism in
this network is the matching or mismatching
of a terminal motor map, or where the end
organ expects to go, and a proprioceptive
motor map, or where the end organ now is.
Prop,rioceptive-terminal map matching is the
analc)gue within motor systems of expectancy
matching in sensory systems (Tanji & Evarts,
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ing mechanism such as I have just discussed.
The temporal reset mechanism is derived from
a study of free recall and serial learning. The
output signal from a population in a temporal
processor is suggested to activate a self-
destructive inhibitory feedback signal. This
feedback inhibition prevents perseverative
performance of the same item, and conditional-
izes the order information among the popu-
lations that remain active, with the most active
population performed first, since its reaction
time for generating an output signal is smallest.
The readout of order information from a field
of active populations is suggested to be accom-
plished by either a nonspecific decrease in all
the output thresholds or a nonspecific amplifi-
cation of the total STM activity in the field.
Again the relative size of these two levels is a
crucial parameter in determining network
performance. Thus, the readout of sensory
order information is suggested to be mechanis-
tically analogous to the activation of a se-
quential motor program. By this scheme, a list
of items can be performed in a perfect serial
ordering despit~ the fact that all the mecha-
nisms in the network are parallel mechanisms.
Serial properties do not imply serial processes.

I suggest that the cortical microanatomy
that subserves spatial versus temporal process-
ing will be found to exhibit these different
STM reset mechanisms. Consequently, to
unambiguously decode temporal versus spatial
data, somehow the populations that code the
different types of data must be spatially
segregated so that they can be endowed with
their disparate STM reset mechanisms. The
ambiguous meaning of spatial patterns hereby
suggests the need to spatially segregate the
processing of sequential, including language-
like, codes from codes concerning themselves
with spatial integration. This dichotomy might
be one reason for the emergence of cerebral
dominance (Gazzaniga, 1970, chap. 8), despite
the fact that a typical speech act can include
both spatial and temporal coding elements,
and thus requires cyclic resetting of both
types of codes. Visual and auditory processing
are sensory prototypes of higher codes that
emphasize spatial and temporal processing,
respectively. Since visual and auditory repre-
sentations are bilateral, the trend toward
segregation of spatial versus temporal process-

differentially rebounded for a short time
during which its activity exceeds the output
threshold. Tonic activity and transient outputs
are hereby reconciled. This example illustrates
the importance of carefully tuning the relative
levels of overall network activity and output
threshold.

By contrast, suppose that the output
threshold is lowered by disinhibiting the
output cells' axon hillocks, or that the overall
network activity is enhanced by lowering its
quenching threshold-perhaps as in the nucleus
reticularis thalami. Then the off-field can
deliver tonic output signals to its target cells.
If, for example, the target cells control the
contraction of muscles, then the tonic muscle
signals can maintain a posture that resists
the effects of gravity, for example, standing.
In this situation, periodic phasic inputs to the
on-cells, whether due to external sources or to
feedback signals from the off-cells, can cause
an oscillatory motor reaction during every
cycle of which agonist contraction is followed
by an antagonist rebound, for example,
walking. Thus, differential tuning of output
threshold and normalized activity can convert
transient off-cell output signals, as in phasic
sensory responses, into tonic off-cell output
signals that either balance a persistent asym-
metry in environmental influences, as in
standing, or energize rhythmic output bursts,
as in walking.

20. Cerebral Dominance: The Anatomy of
Temporal Versus Spatial Encoding

A more profound type of symmetry breaking
occurs between the attentional and orienting
subsystems, due to the different nature of
cognitive and motor data, and within the
attentional subsystem itself, due to the
different processing of data about space and
time. A pattern of activity across a field of
populations at a given time is inherently
ambiguous. Does the pattern code a single
event in time, such as the features in a visual
scene, or does it code the order information
in a series of events? Because of this funda-
mental ambiguity, it is suggested in Grossberg
(1978e) that different STM reset mechanisms
are needed to reset spatial versus temporal
data. The spatial reset mechanism is a match-

"
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ing in separate hemispheres can be viewed equivalent and generate different predictions.
as IL symmetry-breaking operation with a Similarly, behavioral properties that seem
drift of visuallike processing into the non- linear are often controlled by nonlinear
dominant hemisphere and auditorylike process- processes (Grossberg, 1978d). Again the two
ing into the dominant hemisphere. The types of description are fundamentally not
symmetry between bilateral resonances in equivalent. When a theory is erroneously built
these regions should be correspondingly broken, on consensual properties, it soon meets data
leading to a generalized avalanche or command that it finds paradoxical. Then the theory
strul:ture between the two hemispheres to either collapses or is decorated with a succes-
coordinate the temporal unfolding of spatial sion of ad hoc hypotheses. Theoretical epi-
repr,esentations. An effort should be made to cycles soon crowd the scientific landscape, and
test whether the cortical microanatomy in theory gets a bad name even though we cannot
spatial versus temporal processors exhibits live without it.
traces of different reset mechanisms in the An alternative procedure is to respect the
anatomy of inhibitory feedback interneurons. wisdom of evolution by trying to imitate it.

To do this, at each stage of theory construc-
tion, prescribed environmental pressures are
identified that force adaptive designs on the
behaving brain. Most of us know these
pressures; they are familiar precisely because
they are among the constraints to which We
have successfully adapted. Thus the theory is
grounded on a firm basis. By contrast with the
consensual method, these pressures are proper-
ties of the environment rather than of our
behavior. The thought experiments show how
these environmental constraints generate ex-
plicit minimal mechanisms for coping with
them. Such experiments include information
that eludes experimental techniques for several
reasons. For example, they show how many
system components work together, and they
compress into a unified description environ-
mental pressures that act over long, or at least
nonsimultaneous, times. Most importantly,
the thought experiments explicate design
constraints that are needed to adapt in a
real-time setting. These real-time constraints
are often the most crucial ones, and they are
invisible to descriptive or purely formal
theories.

Once the minimal mechanisms that realize
several environmental pressures are con-
structed, mathematical analysis shows how
they work together to generate data and
predictions whose complexity and subtlety
transcend the apparent simplicity of the
environmental pressures, as well as unaided
intuition. This procedure defines new con-
ceptual categories into which to divide the
data, and also points to important environ-
mental pressures that have been overlooked,
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21. Conclusion: How to Understand
Evolutionary Data?

Tille thought experiment in this article
illustrates a general method for discovering
the mechanisms behind psychological data.
Many psychological phenomena are facets of
the evolutionary process-variously called
chwlking, unitization, or automation-whereby
behavioral fragments are grouped into new
cont:rol units that become the fragments of
still higher behavioral units in a continuing
process of hierarchical organization and com-
maIJld synthesis. By its very nature, this
evolutionary process hides the mechanistic
substrate on which it is built, so that we can
behave in a world of percepts, feelings, and
plans rather than of cells, signals, and trans-
mit1:ers. Because our brains are these evolu-
tionary devices, we have immediate introspec-
tive evidence about basic psychological
proc:esses, and can consensually define concepts
like reward, punishment, frustration, expec-
tation, memory, and plan even without a
scientific understanding of their mechanistic
substrates. To represent these consensual
concepts in our scientific work by processes
that mirror their introspective properties is,
however, a fundamental mistake. Then the
consensual impression of events blinds us to
their functional representation.

Ilor example, language processes whose
properties seem discrete and serial are often
realized by continuous and parallel control
processes (Grossberg, 1978a, 1978e). The two
tyPoes of representation are not fundamentally

..
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the same. In a real-time theory, this trivial
fact creates a severe synchronization problem
whose solution unexpectedly led to explicit
mechanisms of instrumental conditioning
(Grossberg, 1971a, 1972b, 1972c). Many
insights about instrumental mechanisms and
their relationship to Pavlovian mechanisms
were hereby derived. One of them is especially
pertinent to this article. A dipole mechanism
was forced on the theory to control net
incentive motivation through time. Mathe-
matical analysis of the dipole revealeli several
unexpected properties (Sections 10 and 11)
including the ability of arousal, and hence of
unexpected events, to adapt or rebound the
dipole. The detailed understanding of dipole
dynamics helped to clarify many novelty-
related phenomena, such as learned helpless-
ness, superconditioning, and vicious circle
behavior. It also forced on the theory the
realization that cognitive events, via expec-
tancy matching, can directly influence rein-
forcement, via the dipole. In summary, a
simple environmental pressure concerning a
real-time synchronization problem in classical
conditioning was solved by mechanisms of
instrumental conditioning and led to a role for
cognitive processing in the direct evaluation of
reinforcement.

With these results in hand, a thought
experiment about feature fields came into
view. The parallel activation of many cells
by external cues can easily destroy decision
rules that regulate the balance of net incentive
through time. The minimal solution of this
difficulty is to impose a normalization property
at the pro<;essing stages where cues are stored
in STM (Grossberg, 1972c). This normalization
property had already been noticed as a
property by which competitive shunting net-
works solve the saturation problem (Grossberg,
1970). These results from reinforcement theory
made it clear that further progress concerning
feature extraction and related perceptual
phenomena required a frontal attack on the
mathematics of competitive systems. The
early results in this direction (Grossberg,
1973) eventually led to many surprising
properties, the most general being that every
competitive system induces a decision scheme
that can be used to predict its behavior
through time (Grossberg, 1978c). For present

by clearly delineating what the mechanisms
can and cannot do. In this way, a small
number of principles and mechanisms is
organized in an evolutionary progression, and
large bodies of data are hierarchically grouped
as manifestations of these principles.

In the present article a thought experiment
shows how limitations in the types of informa-
tion available to individual cells can be
overcome when the cells act together in
suitably designed feedback schemes. The
explication of these schemes in a rigorous
setting (see the appendices) forces us to study
a series of general design problems whose
complete solution includes many examples that
go beyond the thought experiment; for
example, competitive systems (their decision
schemes, self-tuning, adaptation, fast pattern
transformations, and STM), nonstationary
prediction systems (their filtering, pattern
learning, and LTM), dipole systems (their
transduction and rebound properties), and
resonant systems (their hysteresis, deforma-
tion, and reset properties). This thought
experiment is just one in a series that has
helped to unravel psychological mechanisms
and to generate as yet untested predictions.

An early thought experiment used the
simplest classical conditioning postulates, inter-
preted in real time (see Grossberg, 1974, for a
review), to derive explicit neural networks.
When, for example, these networks are
exposed serially to long lists, a variety of
serial learning properties automatically occur,
such as bowing, skewing, anchoring, primacy
dominating recency, anticipatory and per-
severative generalization gradients, and re-
sponse oscillation (Grossberg, 1969b j Gross-
berg & Pepe, 1970, 1971). In addition, mathe-
matical analysis unexpectedly showed how
overarousal can cause an attentional deficit
with reduced attentional span and collapsed
contextual constraints. This overaroused syn-
drome includes a change toward less skewing
of the bowed error curve and toward recency
dominating primacy. These formal properties
have not yet been empirically tested.

Using these results on classical conditioning,
another thought experiment about classical
conditioning became necessary. The time
intervals between CS and UCS presentations
on successive learning trials are not always~
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purposes, the normalization and quenching
threshold properties are particularly important,
since they show how arousal can tune STM,
and thereby help to control what cues are
overshadowed vs. what cues are processed.
Another role for cognitive events, again acting
on arousal via expectancies, was hereby
discerned.

Once the normalization and quenching
threshold properties were discovered, a thought
experiment was suggested that joins together
facets of perceptual and motivational process-
ing: How can cues with incompatible moti-
vational consequences be processed in parallel
without causing chaotic cross-conditioning
(Figure 2)? This thought experiment showed
how incentive motivational feedback can
influence STM storage to )ield stable self-
consistent coding and, as side benefits, explana-
tions of a ttentional data such as overshadowing
and discrimination-learning data such as peak
shift and behavioral contrast (Grossberg,
1975). Several other theoretical stages then
followed as the attentional phenomena were
recognized to be special cases of the resonance
idea. It became possible to build a theory of
stable code development (Grossberg, 1976a,
1976b), which, in turn, suggested a psycho-
physiological foundation for cognitive theory
(Grossberg, 1978e), one of whose facets is
heuristically summarized by the present

thought experiment.
The evolutionary procedure thus embodies

a p.rogram of real-time theory construction in
psychological studies that underscores the need
to ~nderstand the collective properties of
hierarchically organized nonlinear neural net-
wo:rks. Because the rigorous analysis of such
networks is well under way, we can anticipate
an emergent resonance between experimental
psychology and psychophysiological theory
during our generation.
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Appendix A

This section summarizes some of the mechan- of inputs to F(I) represents pattern S by
isms whereby an activity pattern across F(l) projecting S onto all the cells F(I) with relative
elici1:s signals to F(I) that filter the pattern. input sizes that depend on the choice of all
The filtered signal pattern is then rapidly the vectors Zl. S2, ZN.
transformed by recurrent competitive interac-
tions within F(2) before the resultant pattern Contrast Enhancement
is stored in STM. The STM pattern endures
long enough to alter the interfield path When S is first presented to F(l) I the
strengths that define the filter. This is an pattern T of inputs that it elicits across F(2)
L TM change. Then the process repeats itself might be approximately uniform. Recurrent
until STM and L TM equilibrate. on-center off-surround interactions within F(2)

rapidly contrast enhance this input pattern
in order to produce a sharper pattern of STM
activities across F(2) (Grossberg, 1976a, 1976b).
I illustrate this concept with the simplest case:
Suppose that F(2) can choose the cell whose
initial input is maximal for storage in STM.
Denoting the activity of Vj(l) by Xj(2), this
law says that

Xj(2) = 1 if Tj> maxiE, Tk, k F jl (AI)

Xj(2) =0 if Tj<maxIE,Tk.kFjl.

The coefficient E designates a quenching
threshold that must be exceeded before any
STM storage is possible. Suppose for definite-
ness that Tl > maxiE, Tk' k F 11. Then the
activity of Vl(2) is rapidly contrast enhanced
and stored in STM, whereas all other activities
across F(2) are suppressed.

Filter

Denote the cells of F(I) bYlli(I),i = 1,2, ...,

n,andthecellsofF(2)bYllj(2),j= 1,2, ...,N.
Let the activity of lIi(l) at time t be Xi(l) (t).
Suppose that the activity Xi(l) (t) elicits a
signal Si = Si (Xi (I) (t)) in the pathways from
Vi (1) to F(2). Let the net signal from Vi (I) to v;i)

be ~;iZij, where Zij provides a measure of the
efficiiency of the pathway eijfrom Vi (1) to Vj(2).

In other words, Zij gates signal Si on its way to
IIj(i). Then the total signal from F(I) to Vj(2) is

~nd

Coding

The path strengths Zij are L TM traces that
can slowly adapt to the signal pattern S from
F(I) and the STM pattern across F(S). In the
simplest case, Zij changes only if Xj(S) > O. Then

d-Z'. = (-Z.. + S.)x .(S) (A 2)dt 'I 'I' 1 .

For example, if Xl(t) = 1 and all Xj(S) = 0,
j F 1, then this LTM law causes the signal
T 1 = S' Zl to be maximized as S is practiced by
making Zl become parallel to S. In this way,
presentation of S at F(I) can induce a differ-
entiated STM pattern across F(S) by changing
the LTM vectors SI, Zt, ..., ZN.

Grossberg's (1976a, 1976b, 1978b, 1978e)
articles describe these mechanisms in greater
detail. They also show how to generalize the
mechanisms to include more complex STM
a[\d L TM interactions. Despite these general-
izations, the mechanisms are there shown to
be unstable in a complex input environment.
A precise understanding of this difficulty
forced the use of learned feedback expectancies.

and the cosine of the an~le between Sand si
by the formula Tj = IISIIIISil! cos(S,SV. In
particular, if all \lSill are equal. then the cell
IIj(l) in F(I) that receives the largest signal is
the cell whose cos(S, sv is maximal. The
cosine can be increased by choosing the
coefficients of Sj more proportional, or parallel,
to :5, and can be decreased by choosing the
coefficients more perpendicular, or orthogonal,
to S. Thus each Sj filters S by producing a net
signal Tj whose size depends on how parallel
si is to S. Otherwise expressed, Si projects S
Onto Vj(2). The pattern T = (Tl, T2, ..., TN)

..

"
Tj = }: SjZjj.

i-I

Thiei equation for Tj has an informative
geornetrical interpretation in terms of the
vectors S = (S1! S2. Sn) of signals and
Zj = (Zlj. Z2j, ..., ZnV of path strengths from
F(I) to flj(2). Namely, Tj is the dot product,
or inner product, of Sand Zj. which is written
Tj == S.lj (Thomas. 1968). The dot product
can be evaluated in terms of the vector lengths
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Appendix B

This section indicates how a single cell and
population in F(2) can learn a spectial pattern
of activity across F(I). Analogous arguments
then show how many simultaneously active
(:ell populations across F(2) can learn a spatial i = 1, 2, ..., n. The terms Ao and A are
pattern across F(I), albeit not necessarily the STM decay rates. The term C is the L TM
same spat.ial pattern that would have excited decay rate. The terms Band D are signals
a single cell in F(2) by interfield signaling from from Vo along all the pathways eOi, i = 1, 2,
.P{II) to F(2). ..., n; for example, B(t) = f(xo(t- T»,

where f(w) is a sigmoid function of w. The
L TM trace ZOi is computed at the interface
of the synaptic knob SOi (at the end of eov
and the postsynaptic cell vi-that is. at the
synaptic knob and/or iJostsynaptic membrane
-where it can gate the signals B on their way
to Vi, as in term Bzol of Equation A4, and
simultaneously time-average (term -Czov
the product of signals D and postsynaptic
STM trace Xi (term Dxv. in AS. In particular,
A2 is a special case of AS.

A spatial pattern is a UCS whose relative
activities remain fixed, even though their
absolute activities can fluctuate through time,

(AS)

Associative Learning

Our laws for associative learning appeared
in a monograph by Grossberg (1964), and were
mathematically analyzed in a series of articles,
leading to a universal theorem of associative
learning in Grossberg (1969a, 1971b, 1972d).
The universal theorem proves that if these
associative learning laws were invented at a
prescribed time during the evolutionary pro-
cess, then they could be used to guarantee
unbiased associative learning in essentially
any later evolutionary specialization. That is,
the laws are capable of learning arbitrary
spatial patterns in arbitrarily many, simultan-
eously active sampling channels that are
activated by arbitrary continuous data pre-
processing in an essentially arbitrary anatomy.
Learning of arbitrary space-time patterns is
also guaranteed given modest requirements on
the temporal regularity of stimulus sampling.
(See Grossberg, 1974, for a review.) Herein I
summarize the fact that the unit of L TM is a
spatial pattern. This is done by considering
the minimal anatomy that is capable of

classical conditioning.

Vo

Son
v~

501

j)\/\
(a)

.Vn

.S~ ~n .V1

"" S01
..~~ -.i~02 .V2

.

/

STM and LTMLaws That Factor Pattern from

Actitlity
Let presentation of a CS create an input

10(t) that activates the cell population tlo.
Let the UCS create an input pattern (11(t),
It(t), ..., In(t» that activates the cell popula-
tions tll, tit, ..., tint whose outputs elicit the
UCR. Let the STM trace of tli be Xi(t), j = 0,
1, ..., n, and let the LTM trace of the axon
pathway eOi from tlo to tli be Soi(t), i = 1, 2,
..., n (Figure A1). Suppose that the STM
and L TM traces obey the laws

.
(b)

Figure Ai. In (a) the conditioned stimulus (CS)-
activated population 110 samples the unconqitioned
stimulus (UCS)-activated populations 1111 II!, ..., 110;
in (b) the outstar is the minimal network capable of

classical conditioning.

(A3)

(A4)
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namely, Ii (t) = eil (t), i = 1, 2, ..., n, where
8; is the fixed relative activity and I (t) is the
total UICS activity. The convention

and relative L TM traces
..

Zi = ZOi( L ZoJ-l
.-1

as follows:

d;jtXi = E(Zi -Xv + F(8i -Xv (A6)

and
ddiZi = G(XI -Zu. (A7)

The coefficients E, F, and G depend only on
I (t), on the total STM activity

The relative values 8 = (811 82, ..., 8n) are
like generalized "reflectances" that carry the
information in the UCS pattern, whereas I (t)
provides the UCS activity that drives system
changes; in response to 8. It is shown below
how t~lis system, which I call an outstar
(Figure At), can factorize pattern informa-
tion 8 from information about total activity
I (t). This property has many important
implications. For example, 8 is a probability
distribultion, since each 8; ~ 0 and

By A4 and A5,

d-"-x = -Ax + Bz + I
dt (A8)

and
The system learns probabilities despite the
fact that it can generate deterministic behavior.
There exists a type of "wave-particle" dualism
in these systems that helps to explain the
partial successes of statistical learning models,
and prc'vides an interesting vantage point from
which to think about the wave-particle dualism
of quantum theory. Also, since there is no
evoluti'Jnary advantage in perceptually dis-
criminating data that cannot, in principle, be
learned, we can expect the neural perceptual
apparatus also to process spatial patterns.
The brightness and hue ~onstancies of vision
illustrate this fact. These observations clarified
how perceptual and learning mechanisms are
matched to each other, and suggested study
of the minimal neural networks that are
capablc! of discriminating a spatial pattern 8;
that is, reflectances. Some of these networks
were constructed in Grossberg (1970, 1972a)
and, not surprisingly, have an anatomy that is
remarkably retinal.

System A3-AS factorizes 8 and I (t) in the
following sense. Equation A3 can be explicitly
solved for xo(t) by integration, and the result
used tc) solve for B (t) and D (t) as functions
of time t. Then A4 and AS can be rewritten
in terms of the relative STM traces

t-

guarant:ees the normalization
"

I(t) = ~ Ii(t).
.-1

and on the total L TM activity
..

Z = L ZOk.
10-1

Equations A8 and A9 are independent of
6; they depend only on the total activity I (t).
These equations decouple total activity data
(I, x, y,) from pattern data (6, X, Z), where
X = (Xl, X" ..., XD) and Z = (Zi, Zi, ...,
ZD) are also probability distributions. The
total activity data influence the pattern data
only via the coefficients E, F, and G, which are
always nonnegative. No matter how wildly the
CS input lo(t) and the UCS input I (t) oscillate
through time, these coefficients influence only
the rates with which X and Z are influenced
by 6, but not the directions in which X and Z
can change in response to 6. It is this property
that generalizes to yield the universal theorem
cited above.

In particular, term F(6i -Xi) in A6 says
that Xi approaches 6i as learning proceeds
(UCS read into STM). Term E(Zi -Xi) in
A6 says Xi approaches Zi (readout of L TM
into STM). The net effect of these two terms
shows how present demands of the UCS,
expressed via 6, and past memories, expressed
vial, compete to change STM via X. Equation
A7 shows that Zi approaches Xi (transfer
from STM to L TM). As X approaches 6,
and Z approaches X, Z learns the spatial
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in more complex anatomies. In particular, the
liS are stimulus sampling probabilities whose
properties explain in a neural setting the
partial successes of statistical learning models.
The distributions of STM and L TM traces
also mimic and predict various data about
serial learning, paired associate learning, and
free recall experiments. See Grossberg (1974,
1978a, 1978e) for additional discussion.

pattern 6. On later performance trials, a CS
input to Vo activates Xo. which in turn activates
the signal B. Signal B reads the pattern Z
into STM via the terms BZOi in A4. Since
Z ~ 6, A4 shows that the XiS that are
activated in this fashion are proportional to
the 6iS, as desired.

Many aspects of associative learning can be
understood using these STM and L TM laws

Appendix C

Now keep 8 fixed and increase I. That is,
process the same pattern with different back-
ground activity. Then all Xi in All approach
B even if the relative input intensity 8i is
small. This is saturation. How can the system
preserve its sensitivity to 8 even as I increases?
In other words, how does the ith cell Vi compute
its .'reflectance" 8i in response to a spatial
pattern Ii = 8J, i = 1, 2, ..., n, of inputs?
Since

This section summarizes how feedforward
competitive interactions solve the saturation
problem using automatic gain control by
inhibitory signals, and how properties such as
noise suppression, pattern matching, edge
enhancement, and sp'4tial frequency sensitivity
follow as special cases.

cell Vi needs to know what all the inputs
111 12, ..., In are in order to compute 8i. Since

8j = Ii (Ii + }: It.)-l,to'.

Noise-Saturation Dilemma

All cellular systems face the following
dilemma. If their inputs are too small, they
can get lost in noise. If the inputs are too large,
they can turn on all excitable sites, thereby
saturating the system and rendering it insensi-
tive to input differences across the cells. For
example, suppose that the ith cell Vi receives
an input Ii that can turn on some of its B
excitable sites by mass action. Let Xi(t) be
the number of excited sites and B -Xi(t) be
the number of unexcited sites at time t. The
simplest mass action law for turning on
unexcited sites and letting excited sites
spontaneously turn off is

d-x. = -Ax. + (B -x. )I. (Al0 )dt 1 1 1 l'

increasing the ith input Ii "excites" Vi (in-
creases 8J. whereas increasing any input
lk, k ~ i, "inhibits" Vi (decreases 8J. When
this intuition is most simply modeled by a
cellular mass action network, we find the

system

d,Xi = -AXi + (B -XJIi -Xi L, Ik. (A12)
l.t k~i

i = I, 2, ..., n. Term (B -XU Ii says that the
input Ii turns on unexcited sites B -Xi by
mass action. Term -AXi says that excited
sites spontaneously becomes unexcited by
mass action at rate A. Hence, when Ii = 0, Xi
can decay to the equilibrium point O.

System AI0 is inadequate for the following
reason: Let the inputs form a spatial pattern
Ii = 8;1. Given a fixed pattern 8 = (81, 82,
..., 8n), choose a background intensity I
and let the system reach equilibrium. This
equilibrium is found by setting (d/dt)Xi = 0

and solving for Xi:

i = 1,2, ..., n. In Equation A12, Ii excites
Vi via term (B -XJIi, just as in A10.
The new term

-Xi L Ik~,
describes how the inputs Ik' k ~ i, inhibit
(note the minus sign) the excited sites of IIi
(which number x;) by mass action. The gain
of Xi is its decay rate. This is found by
grouping together all the terms that multiply
Xi. The sum of these terms is A + I, where

"
I = L Ik'

k-lBB;l
A+BJ'

(All)Xi =
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matches the ratio of the number of cells
excited by each Ii. namely 1. to the number of
cells inhibited by Ii. namely (n -1). If
CB-I = (n -1)-1, then C(B + C)-I = l/n.
Since. in response to a uniform spatial pattern
of inputs. all (Ji = l/n. no matter how intense
I is. it then follows by A15 that all Xi = O.
This is noise suppression in its simplest form.
It is due to a matched symmetry-breaking
between the intracelluar excitatory versus
inhibitory parameters (B. C) and the intercell-
ular spread of off-surround versus on-center
pathways.

Thus the inputs automatically change the
gain of Xi. In AI0 the gain of Xi is A + Ii.
The two gains differ by the sum

L Ik
k;"i

of inhibitory signals. We now note how
automatic gain control by the inhibitory
signals overcomes the saturation problem.

Present a spatial pattern Ii = 8iI to A12
and let each Xi reach equilibrium. Setting
(dldt)Xi = 0, we find

BIXi = 8i~' (A13)

In A13, Xi remains proportional to 8i no
matter how intense I is, and BI (A + 1)-1
has the form of a Weber-Fechner law. The
saturation problem is hereby overcome using
automatic gain control by inhibitory signals.

Edge Enhancement, Spatial Frequency Detection,
and Pattern Matching

The noise suppression property generalizes
to systems whose excitatory and inhibitory
interactions can depend on intercellular dis-
t;ances, as in

d n-d Xi = -AXi + (B -XJ ~ IkCki
t 1;-1

Noise Suppression

In A12, the passive equilibrium point, due to
term -Ax;. and the inhibitory saturation
point, due to term (A16)

where Cki (EkU is the excitatory (inhibitory)
coefficient from Vk to Vi. Noise suppression at
Vi (i.e., Xi ~ 0) occurs in response to a uniform
pattern (all 8i = 1/n) in A16 if

(A17)

which generalizes CB-1 = (n -1)-1 in A1S.
If a rectangular pattern perturbs such a
network, then a cell's activity Xi will be
suppressed either if its interactions fall so
far outside the rectangle or so far inside it
that the pattern looks uniform to its interaction
coefficients Cki and Eki. Consequently, only
activities near the edge of the rectangle will
be enhanced. More generally, the spatial
gradients of activity in any input pattern
are matched against the spatial gradients in
each cell's interaction coefficients to enhance
the activity of only those cells to whom the
input pattern looks nonuniform. In recurrent
networks, this property is supplemented by
active contrast-enhancing, disinhibitory, and
STM processes that can join together cells
with similar interaction gradients into a
dynamically coherent sub field that is sensitive

-Xi L Ik.
~i

are both zero. This is not always true in vivo,
where a cell potential can sometimes be
actively inhibited below the passive equili-
brium point. How does this fact alter pattern
processing? Consider the system

ddiXi = -AXi + (8 -xi)l!

-(Xi + C) L Ik' (A14)
k~i

which differs from A12 only in that Xi can
fluctuate between Band -C, rather than
Band 0, where -C < O. Often in vivo B
represents the saturation point of a Na+
channel, -C represents the saturation point
of a K+ channel, and B is much larger than C.

To see how the inhibitory saturation point C
influences pattern processing, let A14 equi-
librate to the spatial pattern Ii = 8il. Setting
(d/dt)Xi = 0, we find the equilibrium activities

(8 + C)I ( C )Xi = A + I 8; -B + C' (A15)

By A15, Xi > 0 only if 8i > C(B + C)-I,
The constant C (B + C)-I is an adaptation level
that 8; must exceed in order tp excite Xi. For
simplicity, suppose that the ratio CB-I

t-
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(AI5),

= (8 + C)(1 + a)K
[O .-

XI A + (1 + a)K 1

to a band of spatial frequencies in the input
patterns.

Pattern matching is illustrated as follows.
Suppose in A14 that each input Ii is a sum
of two inputs J i and Ki whose patterns
J = (Jl,J2,...,Jn)andK= (Kl,K2,...,Kn)
are to be matched. If J and K mismatch each
other's peaks and troughs to form an almost
uniform total pattern I = (11, 12, ..., In), then
by A15 all Xi will be inhibited if CB-l
~ (n -1)-1. By contrast, if the two patterns
reinforce each other, say J i = aKi. then by

where

and 8i = Ki(K)-I. In other words. matching
J and K amplifies each Xi without changing
the pattern 8;.

Appendix D

This section summarizes some properties The solution is reviewed in Grossberg (1978e,
of recurrent on-center off-surround networks, Sections 14 and 15).
including normalization, contrast enhance- To understand the simplest STM properties,
ment, quenching threshold, and STM proper- A18 is transformed into pattern variables
ties. Xi = XiX-1 and total activity variables

To see how recurrent networks normalize ..
their STM activity, we first note by Appendix x = L Xk
C that these networks need competitive k-1
i~teractions to .solve the noise-saturation using the notation g(w) = W-I f(w) and suppos-
dilemma. The simplest recurrent on-center ing that all Ii = J i = o. Then
off-surround network is defined by

d ..
~Xi = -Axi + (B -X;)[f(Xi) + I;] diXi = BXi ~I Xk[g(XiX) -g(XkX)] (A19)

-xJ L f(Xk) + J i], (A18) and
k..,

i = 1, 2, ..., n. As usual, Xi is the STM
activity of IIi, term (B -xu!(xu describes
the self-excitation of IIi via a positive feedback
signal f(xu-the recurrent on-center-and
term

-Xi L. f(Xk)k...
describes the inhibition of IIi via negative
feedback signals f(Xk), k ~ i-the recurrent
off-surround. Term Ii is the ith excitatory
input, and term J i is the ith inhibitory input,
for example,

in A12.

d ..
d-tX = -Ax + (B -x) L f(XkX). (A20)

k-l
For example, if f(w) is linear, namely, f(w)
= Cw, then g(w) = C and all (d/dt)Xi = 0 in

A19. In other words, A19 can perfectly
remember any initial pattern of reftectances.
However, by A20 if A? B, then x(t) ap-
proaches zero as t -+ 00, whereas if B > A,
then x(t) approaches B -A as t-+ 00,
whether or not a prior input pattern occurs.
Thus if STM storage is ever possible, then
B > A, and consequently noise will be
amplified as vigorously as inputs. A linear
signal amplifies noise, and is therefore in-
adequate despite its perfect memory of
reftectances.

A siower-than-linear signal f(w), for
example, f(w) = Cw(D + W)-1 or more gen-
erally, any f(w) such that g(w) is monotone
decreasing, is even worse. By A19, if Xi > Xk,
k ~ i, then (d/dt)Xi < 0 and if Xi < Xk,
k ~ i, then (d/di)Xi > O. All differences in
reflectances are hereby erased by the reverbera-
tion, and noise amplification also occurs. The
whole network experiences a type of seizure.

Contrast Et£hancement, Normalization, and
Quenching Threshold

An important problem in system A18 is
to choose the feedback signal function f(w)
as a function of activity level w in such a way
as to suppress noise but contrast enhance and
store in STM behaviorally important patterns.
This problem was solved in Grossberg (1973).

1
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J[

competition. Every other solution E2' E" ."
of A22 is a stable equilibrium point of x(t)
as t-+ ~ (total activity quantization) and
all equilibria are smaller than B (normaliza-
tion).

The faster-than-linear signal contrast en-
hances the pattern so violently that the good
property of noise suppression is joined to the
extreme property of binary choice. This latter
property is weakened by contructing a hybrid
signal function that is chosen faster than
linear at small activities to achieve noise
suppression, but which levels off at high
activities if only because all signal functions
must be bounded. In the simplest case, f(w)
is a sigmoid, or S-shaped signal function.
Then there exists a quenching threshold (QT).
If ViS initial activity Xi (0) falls below the QT,
then its STM activity is quenched, or laterally
masked: Xi (~) = O. All the Xi (O)s that exceed
the QT are contrast enhanced and stored in
STM. Simultaneously, the total STM activity
is normalized. Speaking intuitively, the QT
exists because the faster-than-linear range
starts to contrast enhance the pattern. Simul-
taneously, normalization shifts the activities
into the intermediate linear range that stores
any pattern, in particular the partially
contrast-enchanced pattern. Because a QT
exists, the network is a tunable filter. For
example, a nonspecific arousal signal that
multiplicatively inhibits all the recurrent
inhibitory interneurons will lower the QT
and facilitate storage of inputs in STM.
Grossberg and Levine (1975) mathematically
studied how such attentional shunts alter the
resultant STM pattern by differentially sen-
sitizing prescribed subfields of feature detectors
that are joined together by competitive feed-
back interactions. The privileged subfields
mask the activities in less sensitive subfields.

Such examples, either taken separately or
linked together by feedback, provide insight
into how interactions between continuously
fluctuating quantities can sometimes generate
discrete collective properties of the system
as a whole. More generally, Grossberg (1978c)
proves that every competitive system induces
a decision scheme that can be used to globally
characterize its pattern transformations as
time goes on.

glw)

A
B / ' A I I I I

: B=-W I I 'I

Iii I.i w
<:=:J E I .: > E 2 <:;:::J E 3 c::::::> E4<:i B

Figure AZ. The even solutions Eo, Es, ...of g(w)
= A(B -W)-l are stable equilibrium points of %( ~)
=lim %(t). (Since g(w) = w-1j(w), these points are
solutions of f(w) = Aw(B -W)-l. If %(0) < El, then
%( ~) = OJ thus El defines the level below which %(t)
is treated as noise and quenched. All equilibrium points
satisfy Ei ~ B; hence, short-term memory is
normalized. )

If f(w) is faster than linear, then the
situation is better; for example, f(w) = Cw",
n > I, or more generally any f(w) such that
g(w) is monotone increasing. In this case, if
Xi > Xk, k F i, then (d/dt)Xi > 0, and if
Xi < Xk, k F i, then (d/dt)Xi < O. Con-
sequently, this network chooses the pop~lation
with the initial maximum in activity and
totally suppresses activity in all other popula-
tions. This network behaves like a finite state,
or binary choice machine. The same is true
for total activity, since as t -+ (X) , A20 becomes

approximately
(d/dt)x ~ x[ -A + (B -x)g(x)]. (A21)

Thus the equilibrium points of x(t) as t -+ (X)
are Eo = 0 and all the solutions of the equation

g(x) = A(B -X)-I. (A22)

If g(O) < A/B, then the smallest solution E1
of A22 is unstable (Figure A2) so that
small activities x(t) are suppressed as t -+ (X) .
This is noise suppression due to recurrent

Appendix E

This section summarizes how the simplest rebound due to specific cue offset and to
transduction law realizable by a depletable nonspecific arousal onset when two parallel
chemical generates properties of antagonistic transduction pathways compete.

~.



-;

50 STEPHEN GROSSBERG

Transmitters as Gates

The transmitter law that we need can be
derived in two ways. Originally, it WItS derived
as the minimal law that was compatible with
psychological postulates of classical condition-
ing (Grossberg, 1969c, Section 20; Grossberg,
1972c, Section 2). I now show that the law is
the simplest transduction rule that can be
computed using a depletable chemical trans-
ducer.

The simplest transduction rule converts an
input I into a proportional signal S, namely,

S = BI, (A23)

Rebound Due to Cue Offset

Suppose that the adaptation level is I and
that the cue input is J. Consider the simplest
case in which the total signal in the on-channel
is Sl = I + J and in the off-channel is S2 = I.
Let the transmitter Zl in the on-channel satisfy
the equation

ddtZ1 = A(B -zo -SlZl, (A26)

and the transmitter Z2 in the off-channel
satisfy the equation

ddtZ2 = A(B -Z2) -S2Z2. (A27)

After Zl and Z2 equilibrate to Sl and S2, (d/dt)Zl
= (d/dt)Z2 = O. Thus by A26 and A27.

AB (A28)Zl = A+s;

and
AB

Z2=A+52' \""71

5ince 51 > 52, it follows that Zl < Z2; that is,
Zl is depleted more than Z2, However, the
gated signal in the on-channel is SlZl, and the
gated signal in the off-channel is 52z2. Since

-AB51
(A30)~lZl = ~

and
ABS2S2Z2 = A + 52' \".;Jl}

it follows from 51 > 52 that 51z1 > S2Z2 despite
the fact that ZI < Z2. Thus the on-channel gets
a bigger signal than the off-channel. After the
two channels compete, the cue input J produces
a sustained on-response whose size is propor-
tional to

where B > 0 is some proportionality constant.
Equation A23 says that I is gated by B to
yield 5. If we interpret B as the amount of
transducer and BI as the rate with which
transducer is released to create signal 5, then
A23 says that the input I activates the trans-
ducer B in a statistically independent, or mass
action, way.

When the transducer is released to activate
another cell, there must exist a mechanism
whereby it can be replenished, so that A23 can
be maintained, at least approximately, through
time.

Let z(t) be the amount of transducer at time
t. How can we keep z(t) ~ B for all t ~ 0 so
that the transduction rule

5 = Iz(t) (A24)

approximately agrees with A23? This question
leads to the following law for the temporal
evolution of the amount z(t) of available
transducer

dz
-= A(B -z) -Iz (A25)dt .

The term A(B -z) in A25 says that z{t)
accumulates until It attains level B. The
term does this by accumulating transducer
at rate AB, that is proportional to B, and by
feedback inhibition of the production rate
at a rate -Az(t) that is proportional to z(t).
The term -Iz(t) in A25 indicates that trans-
ducer is depleted at a rate proportional to
its rate of elimination, which is due to gating
of I by z(t). When z(t) ~ H, term -Iz is
proportional to -HI, as required by A23.
Thus A25 is the law that "corresponds" to
the law S = BI when depletion of transducer
can occur. It describes four effects working
together: production, feedback inhibition,
gating, and depletion.

Sl.Zl = "A"-=F5"1

and
ABI

~. (A34)S2*Z2 ~
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sinceSince 51 > 52, 51*Zl < 52*Z2' The off-channel
now gets the bigger signal, so an antagonistic
rebound occurs whose size is approximately

* - 5 * -ABIJ (A35)52Z2 1Zl-(A+I+J)(A+I)'

The rebound is transient because the equal
signals 51* = 52* = I gradually equalize the
Zl and Z2 levels until they both approach
AB (A + 51*)-1, Then 51*Zl -52*Z2 approaches
zero, so the competition between channels
shuts off both of their outputs.

Rebound due to A rouslIl Onset

Suppose that the on-channel and off-channel
have equilibrated to the input levels I and J,
Now increase I to 1*, thereby changing the
signals to Sl* = 1* + J and S2* = 1*, The
transmitters Zl and Z2 continue to obey A28
and A29 for awhile, with Sl = I + J and
52 = J, A rebound occurs if S2*Z2 > Sl*Zl'
This inequality is true if

1* > I + A, (A36)

ABJ(I* -I -A)S2*Z2 -S1*ZI = (A =1= I) (A + I + J). (A37)

In particular, a rebound will occur if 1* exceeds
I + A no matter how J is chosen. In other
words, if the mismatch is great enough to
increment the adaptation level by more than
amount A, then all dipoles will simultaneously
rebound, and by an amount that increases as a
function of J, as in Equation A37. This is
not true in all versions of the dipole model,
since the signals Si, i = 1, 2, are not always
linear functions of their inputs. There exist
examples in which the most active dipoles can
be rebounded even though less intensely
activated dipoles are amplified without being
rebounded. Moreover, if the signals are
sigmoid functions of input size, then inverted-
U effects occur in both the on- and off-
responses to cue and arousal increments
(Grossberg, 1972b, 1972c, 1975).
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