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Abstract - How do humans and animals learn to
recognize objects and events? Two classical views are
that exemplars or prototypes are learned. A hybrid view
is that a mixture, called rule-plus-exceptions, is learned.
None of these models learn their categories. A
distributed ARTMAP neural network with self-
supervised learning incrementally learns categories that
match human learning data on a class of thirty
diagnostic experiments called the 5-4 category structure.
Key predictions of ART models have received
behavioral, neurophysiological, and anatomical support.
The ART prediction about what goes wrong during
amnesic learning has also been supported: A lesion in its
orienting system causes a low vigilance parameter.

I. INTRODUCTION

Some scientists believe that exemplars, or individual
experiences, can be learned and remembered, like those of
familiar faces. Unfortunately, storing every exemplar can
lead to a combinatorial explosion of memory, as well as to
unwieldy memory retrieval. Others believe that we learn
prototypes that represent more general properties of the
environment, such as that everyone has a face. But then how
do we learn specific episodic memories? Popular cognitive
models of these processes also do not describe how this
information is learned. This article briefly summarizes
recent results showing that a variant of distributed Adaptive
Resonance Theory (ART) can incrementally learn
categories in a way that allows quantitative fits of human
categorization data, while clarifying how both specific and
general information can be incrementally learned in a
context-appropriate way. The model also sheds light on
amnesic categorization data.
More generally, these results support the hypothesis that

brain processes underlying categorization are part of a
larger system whereby the brain is designed to learn about a
changing world. In particular, the processes whereby our
brains continue to learn about a changing world in a stable
fashion throughout life are proposed to lead to conscious
experiences. These processes include the learning of
bottom-up adaptive filters that activate recognition
categories, the read-out of top-down expectations by these
categories, the matching of these expectations against
bottom-up data, the focusing of attention upon the expected

clusters of information, and the development of resonant
states between bottom-up and top-down processes as they
reach a predictive and attentive consensus between what is
expected and what is there in the outside world. It is
suggested that all conscious states in the brain are resonant
states, and that these resonant states trigger learning of
sensory and cognitive representations when they amplify
and synchronize distributed neural signals that are bound
together by the resonance. Thus, processes of learning,
categorization, intention, attention, synchronization, and
consciousness are intimately linked. ART explicates this
predicted link.

lllustrative psychophysical and neurobiological data have
been explained and quantitatively simulated using these
concepts in the areas of early vision, visual object
recognition, auditory streaming, and speech perception,
among others [1-5]. These articles summarize recent
neurobiological experiments that provide convergent
evidence for ART predictions, including the predicted link
between learned expectations, attention, resonant
synchronization, and learning, with top-down expectations
computed by modulatory on-center off-surround networks
that can prime the brain to get ready for bottom-up
information that may or may not occur, and match or
mismatch such information when it does occur, focusing
attention upon patterns of critical features that match the
modulatory on-center, thereby leading to synchronization
and gain amplification of these features, while suppressing
mismatched features.

II. UNIFYING EXEMPLARS AND PROTOTYPES USING
ATTENTIONALLY MODULATED CRITICAL FEATURE

PArTERNS

In the cognitive literature on recognition, and more
specifically on object categorization, prototype and
exemplar descriptions have lead to prominent models of the
human categorization process. In the prototype-based
approaches [6-9], a single center of a category is extracted
from many exemplars, to-be-categorized items are
compared to these category prototypes, and they are
assigned to the category of the most similar prototype. The
alternative exemplar-based approach [10-13] does not
assume a single category center. Instead, a more distributed
representation of the category domain is assumed to exist,
wherein memorized sets of individual exemplars are the
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core representational units in memory. A new item is
compared to each of the exemplars and similarity measures
are obtained in terms of these comparisons.
Both of these approaches have advantages and

disadvantages. Because the exemplar approach codes
individual events, it is plausible that individual events, like
a particular face in a particular pose, can be recognized. On
the other hand, this approach raises the problem of how to
recognize novel variations of familiar events; that is, where
should category boundaries be drawn? Said more generally,
how can one determine the proper level of abstraction when
only exemplars are stored in memory? In addition, how can
one search such a large memory in an efficient way? How
can one avoid a combinatorial explosion as more and more
exemplars are learned and searched as life proceeds? In
particular, why does the reaction time to a familiar
recognition event remain rapid even as the total number of
exemplars that are stored in memory increases?
Because prototypes code abstractions of multiple events,

prototype models plausibly explain how the learning of
abstract information, such as the fact that all humans have a
face, may occur. On the other hand, then one is faced with
the problem of how to recognize individual events, such as
the particular face of a friend. Here, too, the problem of
abstraction is again raised, but from the opposite end of the
concreteness-abstractness continuum.

In order to deal with these concerns, a third approach,
which often is called by Nosofsky the rule-plus-exceptions
model [14-17], attempts to incorporate the strengths of both
the exemplar and prototype approaches, while overcoming
their most obvious weaknesses. Here it is assumed that
categories are represented mainly by prototypes but, in
addition, a few exemplars are allowed that are located
usually at points that are distant from the category centers or
in regions where class boundaries based on distance from
prototypes would give erroneous results.

Despite the significant progress represented by these three
modeling approaches, they all experience several
shortcomings. A key difficulty is that all the models take the
form of formal equations for response probabilities. None of
them actually learns their exemplars or prototypes. using the
type of real-time incremental learning process that humans
typically experience during a new categorization task.
Prototype models define prototypes a priori even though
these prototypes might not be the ones that are actually used
by human subjects. None of these models explains how
exemplar or prototype information may be stored or
retrieved in real time as part of the brain's information
processing dynamics. In particular, the successful exemplar
models all use combinations of exemplars, not individual
exemplars, to derive formal response probabilities, but the
real-time process whereby these combinations are derived
from stored individual exemplars is not specified. Finally,
none of these models sheds light upon the types of brain
categorization processes for which neurophysiological data
have been accumulated in cortical areas like inferotemporal
cortex, or IT, from awake behaving monkeys as they learn
and perform categorization tasks [18-26].

III. THIRTY COGNITIVE EXPERIMENTS USING THE 5-4
CATEGORY STRUCTURE

A substantial body of the debate over the question of
what model best describes human cognitive data has been
based on a particular data structure, the so called 5-4
category structure (Table 1). Starting in the early 1980's,
exemplar-based models gave consistently better fits to
experimental data than prototype-based models. Smith and
Minda [8] have shown, however, using thirty data sets of
this category structure, that when allowed greater flexibility,
prototype models produce results that overcome some of the
earlier problems, but this claim has been challenged [27,
28].

TABLE 1.
SCHEMATIC OF THE 5-4 CATEGORY STRUCTURE: BINARY FEATURES ON
FOUR DIMENSIONS (D1,...,D4) DEFINE THE EXEMPLARS IN THE TWO
CATEGORIES (A AND B). THERE ARE FIVE EXEMPLARS IN CATEGORY A
(Al,..., A5) AND FOUR IN CATEGORY B (B1. B4).

Experiments with the 5-4 category structure have used
geometric shapes, Brunswick faces, yearbook photos, verbal
descriptions, and rocket ship drawings. There are four
dimensions with binary values. The whole sample space,
therefore, has 24 = 16 different samples. Five samples are
labeled as Class A and four as Class B. The other seven
Transfer samples are unlabeled. In many studies that use
this category structure [12, 13, 16, 17, 29] it is assumed that
class prototypes are the two extreme points of the sample

1610

Type and Dimension (D)
Stimulus Dl D2 D3 D4
Category A
Al 1 1 1 0
A2 1 0 1 0
A3 1 0 1 1
A4 1 1 0 1
A5 0 1 1 1
Category B
BI 1 1 0 0
B2 0 1 1 0
B3 0 0 0 1
B4 0 0 0 0
Transfer (T)
T1O 1 0 0 1
Tll 1 0 0 0
T12 1 1 1 1
T13 0 0 1 0
T14 0 1 0 1
T15 0 0 1 1
T16 0 1 0 0



space; namely, [1, 1, 1, 1] for Class A, and [0, 0, 0, 0] for
Class B. Prototype [1, 1, 1, 1] is not a Class A exemplar.

In general, items in Class A share more features with the
[1, 1, 1, 1] prototype, with the exception of the A2
exemplar. Two of the four exemplars in Class B, B3 and
B4, share more features with the [0, 0, 0, 0] prototype. For
the exceptional exemplars in both categories, the two
prototypes are equally well represented. No feature is
perfectly diagnostic, as it is not possible to correctly
separate items into the two classes based on knowledge of
only one dimension.
An index of within-category coherence and between-

category differentiation, used by Smith and Minda [8], is
the structural ratio. It is defined as the ratio of within-
category similarity to between-category similarity. The two
similarity measures for this category structure are 2.4 and
1.6, respectively. The structural ratio is thus 1.5, which is
quite low; a structural ratio of 1.0 implies no differentiation,
and a structural ratio greater than 3.0 implies easy
differentiation.

8 10
Item Number

Fig. 1. Best fits to the mean of the 30 responses and
average of individual best fits shown for one set of data
(squares: average of experimental data; circles: best fit
to mean experimental data; triangles: average of best
fits to individual data).

IV. DISTRIBUTED ARTMAP WITH SELF-SUPERVISION

A. Procedure, Parameters, and Goodness-of-Fit Values

A version of distributed ARTMAP [30] with self-
supervision was used in the simulations. A set of 32 4-
dimensional input-output pairs was formed from the 16
different stimuli characterizing the 5-4 category structure
(each pair included twice). The same 9 pairs (from
categories A and B) used in the 30 experiments studied here
were used as training data. The stimuli themselves were fed
as inputs a to the dARTMAP system and their
corresponding category labels were fed as inputs b. In each

of the 100 runs, the training and test inputs were
randomized and the network was trained until 100% correct
categorization was reached in the training phase. In the
testing phase, the entire 32-exemplar set (including Transfer
samples) was presented sequentially. Categorization scores
for each exemplar for each individual run were recorded.
When an exemplar is correctly classified in both of its
presentations, its score is 2. If it is once misclassified and
once correctly classified, its score is 1. Finally, if it is
misclassified in both presentations, its score is 0. The mean
score for each item is the sum of its score over the 100 runs
divided by the total number of presentations of the item
(200 = 2xW00). These mean scores are the simulation results
that are compared with the experimental results.
The only parameters in the model that are tuned by the

user to fit the data are the vigilance parameter and the
learning rate for unsupervised learning. The first parameter
determines how big a mismatch the network can tolerate
before searching for a new category. Vigilance thus
influences how general a category is and thus the number of
memories (adaptive weights) that are needed to learn to
categorize all the training inputs. The learning rate
determines how much a new exemplar can change on a
single learning trial. Simulations for each of the 800
parameter pairs - 20 for vigilance (ranging from 0.05 to 1)
and 40 for unsupervised learning rate (ranging from 0.025
to 1) - were run and the pair giving the best fit was picked.
The model was tuned to fit both each individual data set and
the average of the data (Fig. 1). Statistical analysis of these
two parameters indicates that: (1) The best vigilance
parameter for the fit to mean data was identical to the best
vigilance parameter for 50% of the 30 experiments; (2) The
best unsupervised learning rate for the fit to mean data was
identical to the best unsupervised learning rate for 67% of
the 30 experiments.

B. Prototypes or Exemplars

For each category, we analyzed the distribution of the
number of hyper-boxes that were created by learning and
the distribution of their sizes. The size of a hyper-box
measures how general, or prototype-like, the category is.
The number of hyper-boxes measures how distributed the
category representation is. The mean number of boxes
created for each class over the entire set of simulation runs
was 2.2 and 2.1 for Class A and Class B, respectively. This
result indicates that there was not a single category center
for each region, thus eliminating the possibility of a pure
prototype-based representation. On the other hand, this
number of hyper-boxes is too small to support a claim for a
pure exemplar representation. Instead, the network learns
larger hyper-boxes that span most of the category space, but
in addition learns 1 or 2 smaller boxes for the items that
occupy more marginal parts of the feature space that are
close to the category boundary or to the edges of the feature
space. Indeed, the histogram of box sizes indicates a
bimodal distribution for both Class A boxes and Class B
boxes with peaks at the big-size and point-size. This
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distribution supports a rule-plus-exceptions type of category
representation.

C. Predictive Power ofEach Dimension

One theoretical measure of the predictive power of each
dimension is the ratio of correct category values along that
dimension, for all training items to the number of training
items (Table 1). For example, along the first dimension,
there are four Is for Class A items and three Os for Class B
items. Thus, the predictive power of this dimension is (4 +
3) / 9 = 7/ 9 * 0.78. The further from 0.5 this value is, the
more predictive power it has. The values of this measure of
predictive power for the other three dimensions are 0.56,
0.78, and 0.67, in order. This index suggests that subjects
should use mostly the first and the third dimensions in their
categorization decisions and not rely on the second
dimension.

If ART captures the dynamics of the categorization
decision process, it should be able to reproduce these
observations. One way to extract this information from the
system parameters relies on the fact that the stimuli in the 5-
4 category structure are linearly separable. Consequently,
the boxes created by the system should not have substantial
overlapping regions. This, in turn, implies that almost all of
the weights created in the 200 runs and labeled either Class
A or Class B should be linearly separable by a hyper-plane
that divides the categories. Then, finding the hyper-plane
that optimally separates all weights should give a good
estimate of the category boundary. The angle at which this
hyper-plane intersects each of the axes (dimensions) of the
feature space is a direct measure of the predictive power of
the corresponding dimension. The closer this angle is to 900
(or to 270 0), the more predictive this dimension is; and
conversely, the closer this angle is to 00 (or to 1800) the less
predictive it is. The plane could be parameterized in such a
way that a bigger parameter for one dimension causes a
steeper intersection angle with that dimension; namely,

0 =ao +a1x1 +a2x2 +a3x3 +a4x4, (1)

where Xj is a vector with the values of all weights created in
the 200 runs along the jth dimension and aj are the
parameters of the plane. The first parameter, a., the bias
tern, does not effect the inclination of the plane but just its
distance from the origin. It is therefore not important for our
analysis and will be ignored. Moreover, only the amplitude
of the parameters aj matters, not their sign. We find that [a,,
a2 a, a4] = [0.48, -0.33, 0.48, 0.38]. In order to compare
them with the predictive power index introduced at the
beginning of the section, we normalize both the theoretical
values and the experimental plane parameters such that the
sum of their absolute values adds up to one. Then, the
relative predictive power indices are [0.28, 0.20, 0.28, 0.24]
and the relative hyper-plane parameters are [0.29, 0.20,
0.29, 0.23]. In summary, the incrementally learned
categories are sensitive to the relative predictive power of
the experimental features.

V. DISCUSSION: NORMAL AND AMNESIC CATEGORIZATION

The classical prototype and the exemplar models are
based on conflicting assumptions about the nature of
category representation in humans, yet they both can
provide statistical fits of category data. In order to better
characterize the dynamics of category learning and
information processing, this article adopted a substantially
different approach. Instead of trying to come up with an
analytical expression that would map successfully the
sixteen four-dimensional input data to observations obtained
from 5-4 human categorization experiments, we developed
an ART model to carry out the incremental learning and
decision making process of each individual used in the
experiments and then showed how this model could
reproduce the experimental results.

Previous studies have shown that ART-based models can
fit other data about brain categorization [1-5, 31-35]. In
particular, ART posits that both bottom-up and top-down
processes contribute to category learning, shows how a
subject can learn which critical feature combinations to
attend and which features to ignore, and how sufficiently
large mismatches between bottom-up data and learned top-
down expectations can drive a memory search for a new or
better-fitting category. ART also predicts that matched
bottom-up and top-down processes can lead to a resonance
that can enable fast learning and also give rise to a
conscious brain state. ART learning enables the autonomous
creation of new categories and the refinement of previously
learned critical feature patterns in response to new
exemplars. A dynamically controlled vigilance process
helps to determine how general a category will become
based on its ability to predict the correct classification.
Experimental evidence consistent with predicted properties
of vigilance control have been reported in macaque
inferotemporal cortex during a categorization task [26].
An ART model has also been used to explain data about

the type of abnormal learning and memory that occur during
medial temporal amnesia [33, 34]. A lesion of the ART
orienting system, which is interpreted to model aspects of
hippocampal dynamics, eliminates vigilance control; that is,
the lesioned model behaves as if it has a very low vigilance.
Knowlton and Squire [36] reported dissociations between

categorization and recognition in amnesic individuals and
used these data to argue for multiple memory systems to
mediate these tasks. However, Nosofsky and Zaki [37] and
Zaki et al. [38] have shown that they can quantitatively fit
the Knowlton and Squire and their own data using an
exemplar model in which they choose a low value of their
sensitivity parameter. Their low sensitivity parameter plays
a role like the low vigilance parameter in ART. It should be
noted that, when an exemplar model is interpreted as a real-
time dynamical processing model, its hypotheses look very
much like those of an ART model. These parallel
approaches may thus become even more closely linked
through future research. In this regard, Nosofsky and
Johansen [39, p. 375] have argued that many multiple-
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system accounts can be replaced by a single system model
when "similarity relations among exemplars change
systematically because of selective attention to dimensions
and because of changes in the level of sensitivity relating
judged similarity to distance in psychological space.
Adaptive learning principles may help explain the
systematic influence of the selective attention process and
of modulation in sensitivity settings on judged similarity."
ART provides a dynamical account of how subjects can
incrementally learn to selectively pay attention to predictive
stimulus dimensions and of how they may alter their
vigilance, or sensitivity, in a context-sensitive way.
Good fits to data with the 5-4 category structure were

achieved by an ART model with the following self-
supervision refinement: Each test exemplar can perturb
those memories that had already been learned in the training
phase. This memory change represents a kind of self-
supervised learning. It clarifies why in the testing phase less
than 100% classification is observed for exemplars that
subjects had previously been trained to perfect performance.
This learning scheme fits the data and provides new insights
into the prototype-exemplar debate. The simulation results
suggest that, for this data structure, subject learning leads to
what Nosofsky calls a rule-plus-exceptions approach for
categorization: the model created, on average, 2 prototypes
per category (as opposed to 1, if it were a purely prototype-
based classification) of which one covered a large region of
the feature space and the other covered a very small region.
These results also clarify why small populations of cells in
inferotemporal cortex can be used to categorize many
objects in the world. Finally, The ART concept of a
vigilance-controlled, attentive, critical feature pattern allows
this model to overcome problems of classical prototype and
exemplar models while explicating in a real-time neural
processing framework the intuitive concepts that made these
models so appealing.
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