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Abstract—An historical discussion is provided of the intellectual trends that caused nineteenth century interdisciplinary
studies of physics and psychobiology by leading scientists such as Helmholtz, Maxwell, and Mach to splinter into
separate twentieth-century scientific movements. The nonlinear, nonstationary, and nonlocal nature of behavioral
and brain data are emphasized. Three sources of contemporary neural network research—the binary, linear, and
continuous-nonlinear models—are noted. The remainder of the article describes results about continuous-nonlinear
models: Many models of content-addressable memory are shown to be special cases of the Cohen-Grossberg model
and global Liapunov function, including the additive, brain-state-in-a-box, McCulloch-Pitts, Boltzmann machine,
Hartline-Ratliff-Miller, shunting, masking field, bidirectional associative memory, Volterra-Lotka, Gilpin-Ayala, and
Eigen-Schuster models. A Liapunov functional method is described for proving global limit or oscillation theorems
Jor nonlinear competitive systems when their decision schemes are globally consistent or inconsistent, respectively.
The former case is illustrated by a model of a globally stable economic market, and the latter case is illustrated by
a model of the voting paradox. Key properties of shunting competitive feedback networks are summarized, including
the role of sigmoid signalling, automatic gain control, competitive choice and quantization, tunable filtering, total
activity normalization, and noise suppression in pattern transformation and memory storage applications. Connections
to models of competitive learning, vector quantization, and categorical perception are noted. Adaptive resonance
theory (ART) models for self-stabilizing adaptive pattern recognition in response to complex real-time nonstationary
input environments are compared with off-line models such as autoassociators, the Boltzmann machine, and back
propagation. Special attention is paid to the stability and capacity of these models, and to the role of top-down
expectations and attentional processing in the active regulation of both learning and fast information processing.
Models whose performance and learning are regulated by internal gating and maiching signals, or by external
environmentally generated error signals, are contrasted with models whose learning is regulated by external teacher
signals that have no analog in natural real-time environments. Examples from sensory-motor control of adaptive
vector encoders, adaptive coordinate transformations, adaptive gain control by visual error signals, and automatic
generation of synchronous multijoint movement trajectories illustrate the former model types. Internal matching
processes are shown capable of discovering several different types of invariant environmental properties. These
include ART mechanisms which discover recognition invariants, adaptive vector encoder mechanisms which discover
movement invariants, and autoreceptive associative mechanisms which discover invariants of self-regulating target
position maps.
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“The foundations of science as a whole, and of physics in
particular, await their next great elucidations from the side
of biology, and especially from the analysis of the sensations
. . . psychological observation on the one side and physical
observation on the other may make such progress that they
will ultimately come into contact, and that in this way new
facts may be brought to light. The result of this investigation
will not be a dualism but rather a science which, embracing
both the organic and the inorganic, shall interpret the facts
that are common to the two departments.” (Mach, 1914)

1. INTRODUCTION

The physical and mathematical theory of neural net-
works has been developing rapidly during the past 25
years. It is a theory whose diversity and complexity
reflect the multifaceted organization of the brain pro-
cesses that it sets out to explain. In this article, I will
summarize some of the unifying principles, mecha-
nisms, and mathematical methods that arise in this
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theory, as well as some of the specialized neural archi-
tectures which are important both in physical analyses
of behavioral and brain data and in the development
of novel technologies.

I will begin this article with some historical remarks
that may clarify the complex and often confusing so-
ciological milieu in which these exciting intellectual
developments have been taking place.

2. INTERDISCIPLINARY STUDIES
DURING THE NINETEENTH CENTURY:
HELMHOLTZ, MAXWELL, AND MACH

Interdisciplinary studies flourished during the nine-
teenth century. In addition to pursuing their great work
in physics, scientists such as Helmholtz, Maxwell, and
Mach also made seminal contributions to psychology
and neurobiology (Boring, 1950; Campbell & Garnett,
1882; Glazebrook, 1905; Koenigsberger, 1906; Ratliff,
1965). Their interests in the structure of physical space-
time were balanced by a fascination with psychological
space-time. Thus their contributions to understanding
the observed world developed side-by-side their analysis
of the observer. .

For example, every physicist knows about the Mach
numbers and about the influence of Mach’s ideas upon
Einstein’s thinking during the development of relativity
theory. Mach is also famous, however, for his investi-
gations of the Mach bands in vision. Surprisingly few
scientists have studied both types of contributions in
school. In a similar way, every physicist knows about
Maxwell’s fundamental contributions to electromag-
netic theory and to the molecular theory of gases. Max-
well is equally well known, however, for his work on
developing trichromatic color theory.

Helmbholtz’s life is an inspiration to us all. Trained
as an ML.D., his experiments on the velocity of electrical
signals in nerve axons led him to help discover the
principle of conservation of energy, which is one of the
cornerstones of nineteenth-century physics. He made
fundamental contributions to optics, which served as
a foundation for his classical contributions to vision.
His work in acoustics likewise supported his major
contributions to hearing.

Thus during the last half of the nineteenth century,
a number of great scientists functioned successfully in
an interdisciplinary research mode and made lasting
contributions to both the physical and psychobiological
sciences.

3. THE SCHISM BETWEEN PHYSICS
AND PSYCHOLOGY

It is often accepted as a truism that success breeds
success, just as money makes money. Likewise, the great
interdisciplinary successes of Helmholtz, Maxwell, and
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Mach might have been expected to breed droves of
dedicated interdisciplinary disciples. This did not,
however, occur. In the next generation of physicists,
Einstein himself, in a letter to his friend Queen Eliz-
abeth of Belgium in 1933, wrote: “Most of us prefer
to look outside rather than inside ourselves; for in the
latter case we see but a dark hole, which means: nothing
at all” (Nathan & Norden, 1960, p. 567).

Thus a schism of major scientific importance oc-
curred towards the end of the nineteenth century. Sci-
entists whose work was previously greatly energized by
interdisciplinary investigations of physics and psy-
chology were rapidly replaced by scientists who rarely
had even a rudimentary knowledge of the other field.
Although the explosion of scientific knowledge during
the twentieth century, with its attendant requirement
to specialize, surely contributed to this schism, deeper
intellectual factors exacerbated this schism. An under-
standing of these factors is useful for appreciating the
scientific climate in which neural network research has
been carried out during the past few decades.

4. THE NONLINEAR, NONLOCAL, AND
NONSTATIONARY PHENOMENA
OF MIND AND BRAIN

Basic causes of this schism emerged from the sci-
entific work of the very pioneers, such as Helmholtz,
Maxwell, and Mach, whose interdisciplinary careers
we have been considering. Two examples from Helm-
holtz’s work on visual perception are illustrative.

A. Color Theory |

In the classical Newtonian approach to color theory,
white light is defined by an energy spectrum that is
locally measurable at each point in space. In contrast,
Helmbholtz realized that, during visual perception, the
average color of a whole scene tends to look white (Beck,
1972; Helmbholtz, 1962). Thus, instead of being re-
duceable to local measurements at each location, the
analysis of how humans perceive white light at each
location necessitates an investigation of long-range (or
nonlocal) interactions across a network of locations.
Such investigations disclosed the role of these interac-
tions in “discounting the illuminant,” or enabling hu-
mans and other species to detect the actual reflectances
of visible surfaces under a wide variety of illumination
conditions. In addition to being nonlocal, the network
interactions which discount the illuminant, being sen-
sitive to image reflectances, are also nonlinear. The
neural processes whereby illuminants are discounted
are still the subject of intensive experimental and theo-
retical investigation (Arend, Buehler, & Lockhead,
1971; Cornsweet, 1970; Hurvich, 1981; Land, 1977,
Mollon & Sharpe, 1983) and only recently have a large
number of paradoxical brightness and color phenomena
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been analysed in a unified way using a real-time neural
network model (Cohen & Grossberg, 1984; Grossberg,
1987a, 1987b; Grossberg & Mingolla, 1985a, 1985b;
Grossberg & Todorovié, in press).

B. Top-Down Learning, Expectation, and Matching

Helmbholtz faced another barrier when he attempted
to conceptualize the process of visual perception itself.
His conception is known as the doctrine of unconscious
inference (Boring, 1950). This doctrine held that a raw
sensory datum, or perzeption, is modified by previous
experience via a learned imaginal increment, or vor-
stellung, before it becomes a true perception, or an-
schauung. Thus Helmholtz realized that we perceive,
in part, what we expect to perceive based upon past
learning.

Helmbholtz’s doctrine can be recast in modern ter-
minology as follows (Figure 1). Bottom-up environ-
mentally-activated input signals trigger the read-out of
learned top-down expectations. These bottom-up and
top-down data cooperate and compete through a
matching process until they generate an emergent con-
sensus which is the final percept. Such a cooperative-
competitive network interaction also requires nonlinear
and nonlocal interactions. In addition, the learning of
top-down expectations requires a nonstationary process.
Thus Helmholtz’s experimental discoveries about visual
perception led to the realization that theoretical un-
derstanding of these phenomena would require the dis-
covery of appropriate nonlinear, nonlocal, and nonsta-
tionary mathematics, which are now being developed
on multiple fronts.

In contrast, much of the mathematics available for
physical theorizing during the nineteenth century was
linear, local, and stationary mathematics. Thus the ex-
perimental discoveries about mind and brain by work-
ers like Helmholtz, Maxwell, and Mach clarified that

COOPERATION—
COMPETITION

TOP-DOWN
LEARNING
(EX PECTATION)
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LEARN NG

CODOPERATION=—
COMPETITION

INPUTS

FIGURE 1. Bottom-up inputs and learned top-down expectations
interact via a co-operative-competitive matching process until
they generate an emergent consensus which represents the
final, or resonant, percept.
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the available mathematics were not sufficient for sup-
porting a sustained theoretical penetration of mind and
brain mechanisms. Since theoretical scientists rely upon
appropriate mathematical bread-and-butter techniques
to express and develop their deepest intuitive ideas, the
mismatch between psychological phenomena and
nineteenth-century mathematics created an intellectual
crisis for all theorists who might have wished to study
mind and brain.

This schism was exacerbated by the fact that the
major revolutions of twentieth-century physics could
be supported by nineteenth-century mathematics. For
example, when Einstein finally realized that he needed
a certain type of mathematics to express the general
relativity theory, his burden was significantly lightened
by the fact that nineteenth-century Riemannian ge-
ometry provided a perfect tool. As the early quantum
mechanicians struggled towards expressing their intu-
itive insights using matrix theory and linear operator
theory, they too were greatly aided by strong nineteenth-
century mathematical traditions.

A major approach-avoidance paradigm was hereby
established in the practice of theoretical science. Theo-
retical physicists abandoned psychology and neuro-
biology to rapidly fashion theories about the external
world that could be quantitatively supported by avail-
able mathematical concepts and methods. Psychologists
and neurobiologists returned the favor by abandoning
physical concepts and mathematics that seemed irrel-
evant to their data and, over time; by also eschewing
and even denegrating theoretical and mathematical
training in general. This bifurcation was already ap-
parent during the unfolding of Helmholtz’s scientific
life. Beginning his career as an M.D., he ended it as
the first President of the new Physico-technical Institute
in Berlin (Koenigsberger, 1906).

5. THE NATURE OF AN
ENDURING SYNTHESIS

Left without an appropriate framework of concepts
and mathematical techniques for interpreting and uni-
fying their experiments, psychologists and neurobiol-
ogists nonetheless went about accumulating one of the
largest and most sophisticated sets of data bases in the
history of science. Remarkably, they accomplished this
feat during a century of controversy that was spawned
by the unavailability of a unifying theoretical and
mathematical framework for explaining their data. As
Hilgard and Bower (1975) have noted in their important
textbook about theories of learning “Psychology seems
to be constantly in a state of ferment and change, if
not of turmoil and revolution” (p. 2).

While most mind and brain experimentalists ignored
theory and most theorists looked for more hospitable
frontiers, there arose the widespread tendency to in-
terpret brain function in terms of whatever technolog-
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ical development happened to be current. The ever-
expanding list of technological metaphors to which the
brain has been compared includes telegraph circuits,
hydraulic systems, information processing channels,
digital computers, linear control systems, catastrophies,
holograms, and spin glasses. All of these metaphors have
been unable to explain a substantial data base about
brain and behavior, as well they might, since none of
them arose from a sustained analysis of behavioral or
brain data.

The schism between physics and psychology en-
couraged theorists trained in the physics tradition to
believe that no theories of behavior and brain exist. An
inquiry about available theories by an interested phys-
icist more often than not would confirm this impres-
sion, because the schism has prevented most psychol-
ogists and neurobiologists from getting the training
necessary to understand the theories that have begun
to cope with the nonlinear, nonlocal, and nonstationary
nature of behavioral and brain data. Thus the theories
which hold the greatest promise have been the ones
that have been most difficult to evaluate in the social
climate spawned by the great schism.

We can recognize in this sociological milieu touches
of irony when we acknowledge that a key scientific issue
in understanding behavior and brain is to explain how
humans rapidly and spontaneously adapt to noisy and
complex environments whose rules may change un-
expectedly, or in William James’ engaging phrase: How
do we cope with the “blooming buzzing confusion™ of
every day? It remains to be seen how the several sci-
entific communities now converging with enthusiasm
but vastly different training and goals upon the inter-
disciplinary study of mind and brain will assimilate the
noisy and unexpected constraints imposed by each
others’ existence, notably by the fact that, despite the
extra burden of difficult sociological conditions, rele-
vant theories of mind and brain have been developing
rapidly during the past few decades.

6. SOURCES OF NEURAL NETWORK
RESEARCH: BINARY, LINEAR,
CONTINUOUS-NONLINEAR

A. Binary

At least three sources of neural network research
can be identified which have had a substantial influence
on contemporary research. The streams of research
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generated by the sources have intersected in complex
ways through the years and have tended to converge
during the past several years. The present brief review
merely sets the stage for the article’s later discussions.
Due to the sheer size and complexity of the neural net-
work literature, this review must necessarily be selective.
Other recent collections of classical and current neural
network results include both articles (Carpenter &
Grossberg, 1987b; Grossberg, 1987¢; Hecht-Nielsen,
1986; Hestenes, 1987; Levine, 1983; Szu, 1986) and
books (Amari & Arbib, 1982; Denker, 1986; Grossberg,
1982, 1987c, 1987d, 1988; Grossberg & Kuperstein,
1986; Hinton & Anderson, 1981; Kohonen, 1977, 1984;
McClelland & Rumelhart, 1986; Rumelhart & Mc-
Clelland, 1986).

Table 1 indicates several of the contributions that
initiated or illustrate significant research developments.
The stream of binary neural networks was initiated by
the classical article of McCulloch and Pitts (1943). This
article investigated threshold logic systems of the form

xi(t + 1) = sgn[ X A;x,(t) — B, 0y

where sgn (W) = +1ifw>0,0if w =0, and —1 if w
< 0. Such binary systems were inspired in part by neu-
rophysiological observations showing that neural signals
between many cells are carried by all-or-none spikes.
The variables x; in Equation (1) are often called short
term memory (STM) traces, or activations. Caianiello
(1961) used a binary STM equation of the form
n Km)
x{t+71)= [T T APx(t — kr) — B}) @
j=1 k=0
where 1(w) = | if w > 0 and O if w < 0. Rosenblatt
(1962) used an STM equation of the form
%x,- =4, + j-ZI o(B; + x;)Cyy 3)
where ¢(w) = 1 if w = 0 and 0 if w < 6. Mueller,
Martin, and Putzrath (1962) designed circuits which
used the McCulloch-Pitts logical operations and also
extended their analysis to analog circuits for applica-
tions to acoustic pattern recognition.

The binary, discrete-time approach to neural mod-
eling was encouraged by the technical liberation which
the use of oscilloscopes brought to neurophysiology.
After years of heroic efforts to measure the tiny elec-
trical signals in nerves, each spike could at last be easily

TABLE 1

Binary

Linear

Continuous and Nonlinear

McCulloch-Pitts (1943)
Caianielio (1961)
Rosenblatt (1962)

Hartline-Ratliff-Miller (1963)
Grossberg (1967, 1968)
Sperling-Sondhi (1968)
Wilson-Cowan (1972)
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amplified until it filled the whole oscilloscope screen.
The all-or-none property of the individual spike was
celebrated by making each spike much bigger than life.
Although the oscilloscope provided a way for people to
look at spikes, this representation did not necessarily
correspond to what the cells which received the spikes
were measuring. Cell body potentials may vary slowly
and continuously relative to the time scale of a single
spike. Thus neurons may process the frequencies or
other statistical properties of spike sequences through
time. If, for example, the spiking activity of a visual
cortical feature detector is amplified by a microphone
instead of by an oscilloscope, and if an object to which
the detector is sensitive is brought in and out of its
receptive field, one hears a continuous waxing and
waning of the sound of the cell’s spike discharges
through time. If the potentials of the cells receiving
these spike sequences fluctuate slowly enough to average
across clusters of spikes, then such cells will be better
modeled by continuous than binary dynamics.

Both Caianiello (1961) and Rosenblatt (1962) also
introduced equations to change the weights 4% in (2)
and C;; in (3) through learning. Such adaptive weights
are often called long term memory (LTM) traces. Both
workers decoupled the interactions between STM traces
and LTM traces in order to partially analyze their non-
linear equations. These LTM equations also had a dig-
ital aspect. The equations of Caianiello (1961) increased
or decreased at constant rates until they hit finite upper
or lower bounds. Those of Rosenblatt (1962) were used
to classify patterns into two distinct classes, as in the
Perceptron Learning Theorem.

The historical importance of the binary McCulloch-
Pitts (1943) model cannot be overestimated. For ex-
ample, in addition to its seminal influence on neural
modelling per se, it also was very much in the thoughts
of von Neumann as he developed his ideas for the mod-
ern digital computer. In fact, a number of brain-inspired
developments have found spin-offs over the years into
other technologies.

B. Linear

Concepts from linear system theory have provided
a classical source of models for representing some of
the continuous aspects of neural dynamics. Solutions
of simultaneous linear equations Y = 4.X using matrix
theory and concepts about cross-correlation have been
among the useful tools.

Inspired by an interest in brain modeling, Widrow
(1962) developed his classical gradient descent Adeline
adaptive pattern recognition machine before using this
background to make his major contributions to the
theory of adaptive antennas. Anderson (1968) initially
described his intuitions about neural pattern recogni-
tion using the spatial cross-correlation function

¢1adx, y) = 2 2 NG N+ x5+ ). )

1 jml
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Kohonen (1971) made his transition from linear algebra
concepts such as the Moore-Penrose pseudoinverse to
more biologically motivated studies which he has sum-
marized in his influential books (Kohonen, 1977,
1984). These workers thus began to develop their in-
tuitions within a mathematically familiar engineering
framework which was progressively developed to in-
clude more biologically motivated nonlinear interac-
tions. :

C. Continuous-Nonlinear

Continuous-nonlinear network laws typically arose
from a direct analysis.of behavioral or neural data. One
distinguished modeling tradition can be traced directly
to the influence of Mach (Ratliff, 1965). This tradition
set out to model data taken from the lateral eye of the
Limulus, or horseshoe crab, and led to the award of a
Nobel prize to H. K. Hartline.

The basic model from this tradition is the steady
state Hartline-Ratliff model

i ri=e - Zl kilry — ryl* &)
-
where [w]* = max(w, 0). This model describes how
cellular excitations e; are transformed into net responses
r; due to inhibitory feedback interactions governed by
threshold-linear signals —k;;[r; — r;;]*. Thus, the Hart-
line-Ratliff model is a type of continuous threshold-
logic system. Ratliff, Hartline, and Miller (1963) ex-
tended this steady-state model to a dynamical model
of the form

| n t +
i =e@t-2 kij["l' f e Ir(s)ds — r.-,-] , (6
3 i j=1 LT Y0
which also behaves linearly in the suprathreshold range.
This model is a precursor of the additive model that is
described below.

Another classical tradition arose from the analysis
of how the excitable membrane of a single neuron can
generate electrical spikes capable of rapidly and non-
decrementally traversing the axon, or pathway, of the
cell. The original experimental and modeling work on
the squid giant axon by Hodgkin and Huxley (1952)
also led to the award of a Nobel prize. Since this work
focused on individual cells rather than networks of cells,
it will not be further discussed herein except to note
that it provides the foundation for the shunting model
that is described below. The Hodgkin-Huxley model
and some of its variations are reviewed elsewhere (Car-
penter, 1981; Hodgkin, 1964; Hodgson, 1983; Katz,
1966; Plonsey & Fleming, 1969; Ricciardi & Scott,
1982; Scott, 1977).

Another source of continuous-nonlinear network
models arose through a study of adaptive behavior,
rather than of neural mechanisms per se, in Grossberg
(1964, 1967, 1968a, 1968b). Its primary concern was
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to understand how the behavior of individuals adapts
stably in real-time to complex and changing environ-
mental contingencies. In order to analyze adaptive be-
havior, it is necessary to characterize the functional
level on which a system’s behavioral success is defined
and achieved, as well as the computational units that
are manipulated by this level. This behavioral analysis
led to the derivation of continuous neural networks
defined by nonlinearly coupled STM and LTM traces,
and to the mathematical proof that the computational
units of these networks are not individual STM and
LTM variables, but are rather distributed spatial pat-
terns of STM and LTM variables (Grossberg, 1968b,
1969a, 1969b, 1970a). Thus, neural networks describe
a proper level for an analysis of adaptive behavior be-
cause the functional units which govern behavioral
success are emergent properties due to interactions on
the network level.

As in the tradition of binary models, this continuous-
nonlinear approach defined laws for STM traces and
LTM traces (Figure 2). The two primary versions of
the STM equation which were introduced through this
approach have been used in many applications since
the 1960s and have received increasing experimental
support.

Additive STM Equation

d n n ~ )
2% = ~Axit Z 0Bzl — 2 g0)Cazy” + L. ()
j=1 Jj=1

Equation (7) includes a term for passive decay (—A4,x;),
positive feedback (2., fi(x;)B;; z}f’), negative feedback
(=20 g-(xj)C},-z},-')), and input (I;). Each feedback
term includes a state-dependent nonlinear signal (f(x;),
&i(x;)), a connection, or path, strength (B;, Cj), and
an LTM trace (z$, z{7). If the positive and negative
feedback terms are lumped together and the connection
strengths are lumped with the LTM traces, then the
additive model may be written in the simpler form

%Xi = —Adix; + 2 fi(x)zu + I (8)

Jj=1

Early applications of the additive model included
computational analyses in vision, associative pattern
learning, pattern recognition, classical and instrumental
conditioning, and the learning of temporal order in ap-

. Z.. X.

XI ij Xj

@ [

Vv e.. \'A

i ij J
FIGURE 2. Short-term memory traces (or potentials) x; at cell
populations v, emit signals along the directed pathways (or

axons)e; which are gated by long-term memory traces z, before
they can perturb their target cells v;.
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plications to speech and language behavior and to
planned sensory-motor control (Grossberg, 1969a,
1969b, 1969c, 1970a, 1970b, 1971a, 1972a, 1972b,
1974; Grossberg & Pepe, 1971). The additive model
has continued to be a cornerstone of neural network
research to the present day; see, for example, Amari
and Arbib (1982) and Grossberg (1982). Some physi-
cists unfamiliar with the classical status of the additive
model in neural network theory erroneously called it
the Hopfield model after they became acquainted with
Hopfield’s first application of the additive model in
Hopfield (1984); see Section 9A. The classical Mc-
Culloch-Pitts (1943) model in Equation (1) has also
erroneously been called the Hopfield model by some
physicists who became acquainted with the McCulloch-
Pitts model in Hopfield (1982). These historical errors
can ultimately be traced to the schism between physics
and psychology that was described in Section 3.

A related behaviorally derived STM equation was
found to more adequately model the shunting dynamics
of individual neurons (Hodgkin, 1964; Kandel &
Schwartz, 1981; Katz, 1966; Plonsey & Fleming, 1969).
In such a shunting equation, each STM trace is re-
stricted to a bounded interval [-D;, B;] and automatic
gain control, instantiated by multiplicative shunting
terms, interacts with balanced positive and negative
feedback signals and inputs to maintain the sensitivity
of each STM trace within its interval (see Section 15).

Shunting STM Equation

d noo
ph —Aix; + (B — x)L Z [0)CizP + 1)

J=1

— (it DS GONEiZ + I )

i j=1
Several LTM equations have been useful in appli-
cations. Two particularly useful variations have been:

Passive Decay LTM Equation

d
2= —Fjjzij + Gy fi(xi)hi(x;) (10)
and

Gated Decay LTM Equation

dit 2 = hOg—Fyzyy + Gyfi(x)). (1)
In both equations, a nonlinear learning term f;(x;);(x;),
often called a Hebbian term after Hebb (1949), is bal-
anced by a memory decay term. In (10), memory decays
passively at a constant rate —F;. In (11), memory decay
is gated on and off by one of the nonlinear signals. A
key property of both equations is that the size of an
LTM trace z; can either increase or decrease due to
learning. Neurophysiological support for an LTM
equation of the form (11) has recently been reported
(Levy, 1985; Levy, Brassel, & Moore, 1983; Levy &
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Desmond, 1985; Rauschecker & Singer, 1979; Singer,
1983). Extensive computational analyses of these STM
and LTM equations in a number of specialized circuits
led gradually to the identification of a general class of
networks for which one could prove invariant properties
of associative spatio-temporal pattern learning and
recognition (Grossberg, 1969a, 1971b, 1972c, 1982).
Sperling and Sondhi (1968) utilized a shunting STM
equation in an important contribution to visual psy-
chophysics. Wilson and Cowan (1972) introduced a
modified shunting STM equation of the form

n

%Xi = —Ax;+ (Bi — xi)ﬁ(FZI x;Cji) (12)
which replaces the sum 27 f(x)C;iz” of nonlinear
signals in (9) with a nonlinear function of the sum.
Equation (12) possesses one automatic gain control
term (B; — x;), whereas (9) possesses two. Consequently,
the dynamics of (12) saturate in many situations where
the dynamics of (9) remain sensitive to input fluctua-
tions (see Section 15).

7. NONLINEAR FEEDBACK BETWEEN
FAST DISTRIBUTED STM PROCESSING
AND SLOW ASSOCIATIVE
LTM PROCESSING

These dynamical equations incorporate two general
types of nonlinear processes which explicate some of
the themes that were already touched upon in Helm-
holtz’s work. On the one hand, there are the coopera-
tive-competitive nonlinear feedback processes which
operate on a relatively fast time scale. These processes
instantiate the distributed information processing and
STM storage capabilities of the network. They can, for
example, carry out matching of bottom-up data with
top-down expectations (Figure 1) to generate the per-
ceptual consensus discussed by Helmbholtz.

Interacting with these fast STM interactions via
nonlinear feedback are the more slowly varying LTM
processes which instantiate associative learning. Such
a learning process can, for example, adaptively tune
the bottom-up filters and encode the learned top-down
expectations (Figure 1) that were adumbrated in
Helmholtz’s concept of unconscious inference.

8. PRINCIPLES, MECHANISMS,
AND ARCHITECTURES

Such STM and LTM equations were discovered
through the analysis of two mutually supportive, but
complementary, types of results.

On the one hand, a small number of general design
principles and their mechanistic instantiations were
discovered through a comparative analysis of several
interdisciplinary data bases. For example, the func-
tional importance of the shunting STM equation (9)
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became clear through analyses of data about perception,
conditioning, and cognitive information processing.
Such analyses led to the realization that a single type
of network was needed that was capable of ratio pro-
cessing, conservation or normalization of total activa-
tion (limited capacity), Weber law modulation, adap-
tation level processing, noise suppression, contrast en-
hancement, short term memory storage, energetic
amplification of matched input patterns, and energetic
suppression of mismatched input patterns. The dis-
covery that these multiple constraints are all satisfied
by a ubiquitous type of on-center off-surround network
of cells which obey the membrane equations of neu-
rophysiology created an irresistable intellectual pres-
sure to study them exhaustively (see Sections 9F
and 13-15).

In addition to such general laws, a growing number
of specialized architectures have also been developed.
Each architecture is a synthesis of several types of design
principles and mechanisms in a carefully crafted circuit.
The organization of the brain into functionally dis-
tinctive regions—such as cerebellum, hippocampus,
retina, visual cortex, parietal cortex, frontal cortex, hy-
pothalamus, septum, amygdala, and reticular forma-
tion—illustrates why a considerable number of spe-
cialized architectures need to be developed.
~ Due to the highly interactive nature of brain dy-
namics, the development of general organizational
principles, mechanisms, and specialized architectures
have proceeded hand-in-hand, each bootstrapping the
scientific understanding of the others. Here is a research
area where it is essential to keep the forest, the trees,
and the individual branches simultaneously in view. In
the remainder of the article, I will summarize several
of the principles, mechanisms, and architectures whose
further development is still engaging the efforts of many
scientists.

9. CONTENT-ADDRESSABLE MEMORY
STORAGE: A GENERAL STM MODEL
AND LIAPUNOV METHOD

From a mathematical perspective, the question of
content-addressable memory (CAM) in a neural net-
work can be formulated as follows: Under what con-
ditions does a neural network always approach an
equilibrium point in response to an arbitrary, but sus-
tained, input pattern? The equilibrium point represents
the stored pattern in response to the input pattern. In
a satisfactory analysis of this problem, the behavior of
the network in response to arbitrary initial data, an
arbitrary sustained input pattern, and an arbitrary
choice of network parameters is provided. Also an ac-
count of how many equilibrium points exist and of
how they are approached through time is desirable.
Such a mathematical analysis is called a global analysis,
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to distinguish it from a local stability analysis around
individual equilibrium points.

Amari and Arbib (1982) and Levine (1983) include
a number of contributions to the local analysis of neural
networks. Our concern herein is with global methods.
A global analysis of equilibrium behavior is of impor-
tance for an understanding both of CAM and of the
types of nonequilibrium behavior—such as traveling
waves, bursts, standing waves, and chaos—which can
be obtained by perturbing off systems which always
approach equilibrium (Carpenter, 1977a, 1977b, 1979,
1981; Cohen & Grossberg, 1983; Ellias & Grossberg,
1975; Ermentrout & Cowan, 1979, 1980; Hastings,
1976, 1982; Hodgson, 1983; Kaczmarek & Babloyantz,
1977). A global mathematical analysis of nonlinear as-
sociative learning networks was begun in Grossberg
(1967, 1968b). A global mathematical analysis of non-
linear shunting cooperative-competitive feedback net-
works was begun in Grossberg (1973). Some of the main
articles in these series are brought together in Grossberg
(1982).

One approach to the global approach to equilibrium
which has attracted widespread interest is the use of
global Liapunov, or energy, methods. Such global
methods were introduced for the analysis of neural net-
works in the 1970s. Herein I summarize a general

model of a nonlinear cooperative-competitive neural-

network for which a global Liapunov function has been
explicitly constructed. I then show that a number of
popular models are special cases of the general model,
and thus are capable of CAM.

Cohen and Grossberg (1983) described a general
principle for designing CAM networks by proving that
models that can be written in the form

g‘xt = gi(x)bi(x) — 2 cydi(x)) - (13)
1 =

admit the global Liapunov function

1

3 2 Gkdi(x)di(xx)  (14)

Jhe=1

v=-3 f ' biEd (8 +

i=]

if the coefficient matrix C = ||¢;;|| and the functions
a;, b;, and d; obey mild technical conditions, including

Symmetry:
Cij = G, (15)
Positivity:
a;(x;) 2 0, (16)
Monotonicity:
di(x;) = 0. an
Integrating V along trajectories implies that
d n n
Z V== adibi— X c;d. (18)
t i=1 j=1

If (16) and (17) hold, then (d/df)V < 0 along trajectories.
Once this basic property of a Liapunov function is in
place, it is a technical matter to rigorously prove that
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every trajectory approaches one of a possibly large
number of equilibrium points.

For expository vividness, the functions in the Cohen-
Grossberg model (13) are called the amplification
function a;, the self-signal function b,, and the other-
signal functions d;. Specialized models are character-
ized by particular choices of these functions,

A. Additive STM Equation

Cohen and Grossberg (1983, p. 819) noted that “the
simpler additive neural networks . . . are also included
in our analysis.” The additive equation (8) can be writ-
ten using the coefficients of the standard electrical cir-
cuit interpretation (Plonsey & Fleming, 1969) as

C; % = R% x; + Ej}(xj)zﬁ + 1. (19)

Substitution into (135 shows that

ai(x;) = C; (constant!) (20)
bi(x) = — .Il(..xi + I; (linear!) 0
=Ty (22)
and
di(x) = fi(x;). (23)

Thus in the additive case, the amplification function
(20) is a positive constant, hence satisfying (16), and
the self-signal term (21) is linear. Substitution of (20)-
(23) into (14) leads directly to the equation

n l X; n
V=2 if i((€)dt — 2 1ifilx
2 [ e~ 3 s

i=1

-4 kE T fiO) flxe).  (24)
Jk=1

This Liapunov function for the additive model was
later published by Hopfield (1984). In Hopfield’s treat-
ment, §; is written as an inverse f7'(V;). Cohen and
Grossberg (1983) showed, however, that although f;(x;)
must be nondecreasing, as in (17), it need not have an

inverse in order for (24) to be valid.

B. Brain-State-in-a-Box Model: §' = Exchange

The BSB model was introduced in Anderson, Sil-
verstein, Ritz, and Jones (1977). It is often described
in discrete time by the equation

xi(t + 1) = S(x,(t) + a 2, Axi(t)) (25)
Jj=1
using symmetric coeflicients
A= Aj 26)

and a special type of nonlinear signal function S(w)
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that characterizes the model. The signal function is a
symmetric ramp function:

F ifw=F
Sw)y={w if—-F<w<F. (0X))
-F ifw<—-F

Thus each STM trace x; obeys a linear equation until
its argument reaches the hard saturation limit F.

The BSB model has been used to discuss categorical
perception in terms of its formal contrast enhancement
property that each x; tends to approach a limiting value
+F, and thus that the vector (x;, x3, ..., Xx,) tends to
approach a corner of the box (£ F, =F, ..., +F) as
time goes on. An alternative explanation of contrast
enhancement by a nonlinear feedback network was
provided in Grossberg (1973) using a sigmoid signal
function, rather than a function linear near zero, cou-
pled to the soft saturation dynamics of a shunting net-
work, rather than the hard saturation of a symmetric
ramp (see Section 15). This is still a topic undergoing
theoretical discussion (Anderson, Silverstein, Ritz, &
Jones, 1977; Grossberg, 1978b, 1987d).

The BSB model can be rewritten as an additive
model with no input and a special signal function that
satisfies (17). Hence it is a special case of model (13).
To see this, rewrite (25) in the form

xi(t + 1) = S(Z Byx;(1) (28)

Jj=1
using the coefficient

where é6; = if i = jand 0 if { # j. By (26), it follows
that

Bij = Bj,‘. (30)

Although (28) is written in discrete time for compu-
tational convenience, it needs to be expressed in con-
tinuous time in order to represent a physical model, as
in :

—‘{xi = —x;+ S( 2 Byxj). @31
dt -1

Define the new variables y; by

yi= 2 Byx;. (32)

Jj=1

Then
d n
7= + 2 ByS(y). (33)

j=1
Comparison of (33) with (19) shows that the BSB model
is an additive model such that each I; = 0. Because this
simple change of coordinates is so important in neural
modeling, I give it a name: S = Exchange.

The observation that, via S £ Exchange, a nonlinear
signal of a sum, as in (31), can be rewritten as a sum
of nonlinear signals, as in (33), shows that a number
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of models which have been treated as distinct are, in
reality, mathematically identical. In contrast, this type
of transformation cannot be carried out on shunting
models such as (9) and (12).

The Liapunov function for (33) is found by directly

substituting into model (13) expressed in terms of the
variables y;:

d n
il ai(y)lbi(y) — 2 cidi(y)). (34)
Jj=1
Since a;(y) = 1, bi(y) = ~yi, ¢; = —By, and di(y)
= S())), substitution into (14) yields

n ey n
V= Zf ES(E)dti — 1 2 BuS(y)S(y).  (39)
i=1 k=1

Using the definitions in (27), (29), and (32), Equation
(35) can be rewritten in terms of the original variables
X; as follows:

V=-—

a n
> 2 ApXiXi. (36)
Jok=1

Golden (1986) has derived (36) from a direct analysis
of the BSB model.

C. The McCulloch-Pitts Model

This classical model takes the form

xi(t + 1) = sgn( X Ayx,() — By). n
j=1

Letting
M(w) = sgn(w — B)), 37

(1) can be rewritten as

xi(t + 1) = M(Z Ax(0)). (38)
J=1
As in the analysis of (31), (38) can be rewritten in con-
tinuous time in terms of the variables y; via § 2 Ex-
change:
d n
p7e e 2 AzM(y) 39
t -
and is thus also a symmetric additive model with zero
inputs. In addition, its signal function M(y;) has a zero
derivative (M'(y;) = 0) except at y; = 0. Substitution
of this additional property into (35) shows that the Lia-
punov function for the continuous time McCulloch-
Pitts model is

V=1 2 4MO)M(y, (40)
Jik=1

which is the continuous time version of the discrete
time Liapunov function described by Hopfield (1982).

D. The Boltzmann Machine

The STM equation of the Boltzmann machine
(Ackley, Hinton, & Sejnowski, 1985) has the same form
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as (31) and (38), and is thus also an additive equation
with symmetric coefficients. Its signal function is the
sigmoid logistic function

f(W)= i +e_w’

(41)

which satisfies (17) and is thus a special case of model
(13). Thus the Boltzmann machine is a specialized ad-
ditive model regulated by simulated annealing as de-
veloped by Geman (1983, 1984), Geman and Geman
(1984), and Kirkpatrick, Gelatt, and Vecchi (1982,
1983).

E. The Hartline-Ratliff-Miller Model

The S Z Exchange is not the only change of variables
whereby CAM models can be transformed into an ad-
ditive model format. For example, the STM equation
(6) of the classical Hartline-Ratliff-Miller model is
transformed into an additive model under an expo-
nential change of variables

L
x{t) = J; eI pi(s)ds. (42)
Then (6) becomes
d 1 » 1 M
EXI—_;.X["}-Z‘[;XJ—YU] k,-j+e,-. (43)

F. Shunting Cooperative-Competitive Feedback
Network

All additive models lead to constant amplification
functions a;(x;) and linear self-feedback functions b;(x;).
The need for the more general model (13) becomes
apparent when the shunting STM equation (9) is an-
alyzed. Consider, for example, a class of shunting mod-
els in which each node can receive excitatory and in-
hibitory inputs I; and J;, respectively, and each node
can excite itself and can inhibit other nodes via non-
linear feedback. Such networks model on-center off-
surround interactions among cells which obey mem-
brane equations (Grossberg, 1973; Hodgkin, 1964;
Kandel & Schwartz, 1981; Katz, 1966; Plonsey &
Fleming, 1969). In particular, let

%x.- = —Axi+ (B, = XL + )]
-+ G+ 2 D;gi(x)). (44)
=1

In (44), each x; can fluctuate within the finite interval
[—C;, Bj] in response to the constant inputs I; and J;,
the state-dependent positive feedback signal f;(x;), and
the negative feedback signals Dyg;(x;). It is assumed
that

D[j = Dj,' =3 0 (45)
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and that
gy(x) = 0. (46)

In order to write (44) in Cohen-Grossberg form, it is
convenient to introduce the variables

yi=xi+C. @7

In applications, C; is typically nonnegative. Since x;
can vary within the interval [~C;, B;], y; can vary within
the interval [0, B; + C;] of nonnegative numbers. In
terms of these variables, (44) can be written in the form

d n
72V = aWlbi(y) — 2 Cydi(y)] (34)
= :
where
ay;)) = y; (nonconstant!), (48)

bi(y) = xi_[A,-ci — (4i + J)xi + (B + C; — x))

X (I} + fitx; — C))] (nonlinear!), (49)
- Cy = Dy, (50)

and
di(y;) = g(y;— C;) (noninvertible!). (51)

Unlike the additive model, the amplification function
a;(y;) in (48) is not a constant. In addition, the self-
signal function b;(3;) in (49) is not necessarily linear,
notably because the feedback signal fi(x; — C;) is often
nonlinear in applications of the shunting model; in
particular it is often a sigmoid or multiple sigmoid sig-
nal function (Ellias & Grossberg, 1975; Grossberg,
1973, 1977, 1978c¢; Grossberg & Levine, 1975; Sperling,
1981). Sigmoid signal functions, and approximations
thereto, also appear in applications of the additive
model and its variants (Ackney, Hinton, & Sejnowski,
1985; Amari & Arbib, 1982; Freeman, 1975, 1979;
Grossberg, 1969a, 1982; Grossberg & Kuperstein, 1986;
Hinton & Anderson, 1981; Hopfield, 1984; Rumelhart
& McClelland, 1986). Such applications do not require
the full generality of the Liapunov function (13) because
the nonlinear signal function can then be absorbed into
the terms d;(x;).

Property (16) follows from the fact that a;(y;) = y;
= 0. Property (17) follows from the assumption that
the negative feedback signal function g; is monotone
non-decreasing. Cohen and Grossberg (1983) proved
that g; need not be invertible. A signal threshold may
exist below which g; = 0 and above which g; may grow
in a nonlinear way. The inclusion of nonlinear signals
with thresholds better enables the model to deal with
fluctuations due to subthreshold noise. On the other
hand, thresholds are not the only mechanisms which
can suppress noise in a cooperative-competitive feed-
back network (see Section 15D).

G. Masking Field Model

In many applications of the shunting and additive
models, the coefficients ¢; in (13) may be asymmetric,
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thereby rendering the Liapunov function (14) inappli-
cable. Asymmetric coefficients typically occur in prob-
lems relating to the learning and recognition of tem-
poral order in behavior. Consequently, a number of
mathematical methods were developed from the earliest
days of the continuous-nonlinear approach to analyse
models with asymmetric interaction coefficients.

On the other hand, certain network models may have
asymmetric interaction coefficients, yet be reduceable
to the form (13) with symmetric interaction coefficients
through a suitable change of variables. The masking
field model is a shunting network of this type. The
masking field model was introduced in Grossberg
(1978a; reprinted in Grossberg, 1982) to explain data
about speech learning, word recognition, and the
learning of adaptive sensory-motor plans. It has been
further developed through computer simulations in
Cohen and Grossberg (1986, 1987). A masking field
is a multiple-scale, self-similar, automatically gain con-
trolled, cooperative-competitive nonlinear feedback
network (Figure 3) which can generate a compressed
but distributed STM representation of an input pattern
as a whole, of its most salient parts, and of predictive
codes which represent larger input patterns of which it
forms a part. The masking field model is thus a spe-
cialized type of vector quantization scheme (Gray,
1984). Its multiple-scale self-similar properties imply
its asymmetric interaction coefficients.

The STM equation of a typical masking field is de-
fined by '

%xw=-ﬂﬂ“+w—x9n2@wﬁ+uumﬂﬁl
. x€J

mag KL +IK N D

ZmalKI(1 +IK N T

In (52), x!’ is the STM trace of the ith masking field
node that receives excitatory input 2, E;p$ from
the unordered set J of input items. Notation |J| counts
the number of items in set J and thereby keeps track
of the number of spatial scales that go into each version
of the model.

The inhibitory interaction coeflicient

p>
-+ 0

(52)

IKI1 +1K O T
ZmxlKI(1 +IK N T

| (53)

in (52) is an asymmetric function of J and K. Despite
this fact, (52) can be written in Cohen-Grossberg form
as

7 = a0 ~ T exd P (54
mK
with symmetric coefficients
Cik = Cxy = 1 +|KﬂJ| (55)
in terms of the variables
W =Fil(x{"+C) (56)
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MASKING FIELD

ADAPTIVE
FILTER
TEM FIELD
(a)
+
F2

(b)

FIGURE 3. Masking field interactions: (a) Cells from an item
field F, grow randomly to a masking field F, along positionally
sensitive gradients. The nodes in the masking field grow so
that larger item groupings, up to some optimal size, can activate
nodes with broader and stronger inhibitory interactions. Thus
the F, = F, connections and the F, — F; interactions exhibit
properties of self-similarity; (b) The interactions within a mask-
ing field F; include positive feedback from a node to itself and
negative feedback from a node to its neighbors. Long term
memory (LTM) traces at the ends of F, — F, pathways (des-
ignated by hemidisks) adaptively tune the filter defined by these
pathways to amplify the F, reaction to item groupings which
have previously succeeded in activating their target F, nodes.
(Reprinted with permission from Cohen & Grossberg, 1987, p.
1868.)

where

Fy = 2 IKI(1 +lIK N J)). (57)

mK
This is seen as follows. Since F), is the denominator
of (53), it can be used to divide term x!” + C in (52).
Then the asymmetric term |K| in the numerator of (53)
can be absorbed into the definition of g in (54). Then
by redefining and rearranging terms as in (47)—(51),
equation (54) holds with
a" (") = Fiily{?
C

1 B+
b (") = rol o AFiny{” + (—FIT - J";")(ﬁ"
l

+Duwmﬂmw9—0ﬂ (59)
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where
I"=Fiy T EPY, (60)
jeJ
and
d®(yE) = |KIg(F iy — C). (61)

Thus the masking field model is a specialized Cohen-
Grossberg model.

H. Bidirectional Associative Memories:
Symmetrizing an Asymmetric Interaction Matrix

Other procedures have also been devised for dealing
with systems having asymmetric coefficients. For ex-
ample, given an arbitrary n X m coefficient matrix Z
= ||z;ll from a network level F; to a network level F,
with STM traces x; and y;, respectively. Kosko and
Guest (in press) and Kosko (1987) have shown that
(13) and (14) can be used to construct feedback path-
ways from F, to F; so that the two-level feedback net-
work F| <> F, has convergent trajectories.

For example, if the bottom-up interaction ¥, - F,
obeys an additive equation

d
2" —Aiyi+ 2 flxdzig + 1, (62)
k

then the top-down interaction F, — F; is defined to
obey an additive equation

J .
25 —Bix; + 2 gl(ydzu+ Ji, (63)
1

where I; and J; are input terms. This definition creates
a symmetric interaction matrix by closing the top-down
feedback loop, since if f;(x;) influences y; with coeffi-
cient z; in (62), then g;(y;) influences x; with the same
coefficient z;. Thus, by defining an augmented vector
(X1, X2, <« vy Xns V1» V2, .., Ym) Of STM activities,
system (62)-(63) as a whole define an additive model
(19) with an (n + m) X (n + m) symmetric coefficient
matrix.

The same procedure can be used to symmetrize
many other neural network models. Kosko and Guest
(in press) have described optical implementations for
this procedure, and Kosko (1987) has used the sym-
metrized additive model! to discuss minimization of
fuzzy entropy.

I. Volterra-Lotka, Gilpin-Ayala, and Eigen-Schuster
Models

The Cohen-Grossberg model was designed to also
include models which arose in other areas of biology
than neural network theory. For example, it includes
the classical

Volterra-Lotka Model
2 %= A1 = 2 Byx) 64

J=1
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of population biology (Lotka, 1956), the
Gilpin-Ayala Model
4. . (5 _ s o
foal 3ol

also from population biology (Gilpin & Ayala, 1973),
and the

Eigen-Schuster Model
d n
e X{Aixt™' - q ¥ 4;x?) (66)

J=1

from the theory of macromolecular evolution (Eigen
& Schuster, 1978). In all of these models, either the
amplification function a;(x;) is non-constant, or the self-
signal function b;(x;) is nonlinear, or both.

The specialized models summarized in Sections 9A-
91 illustrate that model (13) and Liapunov function
(14) embody a general principle for designing CAM
devices from cooperative-competitive feedback models.
These models are said to be absolutely stable because
the CAM property is not destroyed by changing the
parameters, inputs, or initial values of the model. The
persistence of the CAM property under arbitrary pa-
rameter changes-enables learning to change system pa-
rameters in response to unpredictable input environ-
ments without destroying CAM. The STM transfor-
mation executed by a network with adaptively altered
parameters can differ significantly from its original
STM transformation. A finer analysis is needed to
choose models, as in Sections 9A-91, which are opti-
mally designed to carry out specialized processing tasks.

The Cohen-Grossberg analysis emphasizes the crit-
ical role of mathematical analysis in classifying and
understanding very large systems of nonlinear neural
networks (VLSN). Without such an integrative ap-
proach, it is difficult to tell whether or not a model is
really new computationally, or whether it is a special
case of a known model in slightly different coordinates
or notation. For example, many scientists have not re-
alized that models (31) and (33) are mathematically
equivalent. Table 2 describes the relationships between
models disclosed by such an analysis. Thus the BSB
model enjoys a CAM property for the same reason that

TABLE 2
CAM Models in Decreasing Generality
MP (1943)
BSB (1977)
ADDITIVE (1967) BM (1985)
CG (1983) BAM (1987)

SHUNTING (1973) MF (1978, 1986)

Organization in terms of decreasing generality of the models
described in Section 9. Abbreviations: CG = Cohen-Grossberg;
MP = McCulloch-Pitts; BSB = Brain-State-in-a-Box; BM = Boltz-
mann Machine; BAM = Bidirectional Associative Memory; MF
= Masking Field.
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any additive or CG model does. On the other hand, the
BSB model may have special properties that may make
it ideal for certain tasks, or it may be too specialized
to accomplish certain tasks which are better dealt with
using a shunting model.

10. OTHER LIAPUNOV METHODS

A considerable amount of work was done on finding
Liapunov functions for special cases of (13) before the
appearance of Cohen and Grossberg (1983). A global
Liapunov method was also developed which is in some
respects more general than that of Cohen and Grossberg
(1983).

In the former category, MacArthur (1970) described
a quadratic Liapunov function for proving local
asymptotic stability of isolated equilibrium points of
Volterra-Lotka systems with symmetric coefficients.
Goh and Agnew (1977) described a global Liapunov
function for Volterra-Lotka and Gilpin-Ayala systems
in cases where only one equilibrium point exists. Lia-
punov functions were also described for Volterra-Lotka
systems whose off-diagonal terms are relatively small
(Kilmer, 1972; Takeuchi, Adachi, & Tokumaru, 1978).
Such constraints are, however, too limiting for the de-
sign of CAM systems aimed at transforming and storing
a large variety of patterns.

11. TESTING THE GLOBAL CONSISTENCY
OF DECISIONS IN COMPETITIVE
SYSTEMS

An alternative approach began with the global anal-
ysis in Grossberg (1973) of the nonlinear dynamics of
shunting cooperative-competitive feedback networks.
The goal of this analysis was to design CAM networks
capable of transforming and stably storing in STM large
numbers of patterns (see Section 15). The first analyses
carried out direct proofs of the STM transformation
and storage properties for small classes of shunting net-
works which arose in specialized applications. Later
articles (Ellias & Grossberg, 1975; Grossberg & Levine,
1975; Levine, 1979; Levine & Grossberg, 1976) clas-
sified the global CAM behavior of increasingly large
sets of networks.

These results led to the progressive development in
Grossberg (1977, 1978¢, 1978d, 1980a) of a global Lia-
punov method for classifying the dynamical behaviors
of a wider variety of competitive dynamical systems.
A competitive dynamical system is, for present pur-
poses, defined by a system of differential equations such
that
4 = fe . x 67)
where

igo, i #J, (68)
0x;
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and the f; are chosen to generate bounded trajectories.
By (68), increasing the activity x; of a given population
can only decrease the growth rates d/dt x; of other pop-
ulations, i # j, or may not influence them at all. No
constraint is placed upon the sign of 3f;/dx;. Typically,
cooperative behavior occurs within a population and
competitive behavior occurs between populations, as
in the on-center off-surround networks (44). Since this
Liapunov method led to results which are still of current
interest and which seem amenable to further devel-
opment, some of its most salient points will be sum-
marized here.

The method makes mathematically precise the sim-
ple intuitive idea that a competitive system can be un-
derstood by keeping track of who is winning the com-
petition. To do this, write (67) in the form

d
25" a(xIMi(x) x = (x1, X2, ..., Xn), (69)

which factors out the amplification function a;(x))
= 0. Then define

M*(x) = max{Myx):i=1,2,...,n} (70)
and
M~ (x) = min{ M(x): i = 1,2,...,n}. an

These variables track the largest and smallest rates of
change, and are used to keep track of who is winning.
Using these functions, it is easy to see that there exists
a property of ignition: Once a trajectory enters the pos-
itive ignition region

RY = {x: M*(x) = 0} (72)
or the negative ignition region

R™ = {x: M~(x) <0}, (73)
it can never leave it. If x(¢) never enters the set

R*=R*NR", (74)

then each variable x;(f) converges monotonically to a
limit. The interesting behavior in a competitive system
occurs in R*. In particular, if x(¢) never enters R*, each

x;(f) decreases to a limit; then the competition never
gets started. The set

S* = {x: M*(x) = 0} (75)

acts like a competition threshold, which is called the
positive ignition hypersurface.

We therefore consider a trajectory after it has entered
R*. For simplicity, redefine the time scale so that the
trajectory is in R* at time ¢ = 0. The Liapunov func-
tional for any competitive system is then defined as

Lo) = [ Mrtona. (76)

The Liapunov property is a direct consequence of pos-
itive ignition:

d

Z L(x) = M*(x(#)) = 0.
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This functional provides the “energy” that forces tra-
jectories through a series of competitive decisions,
which are also called jumps. Jumps keep track of the
state which is undergoing the maximal rate of change
at any time (“who’s winning”). If M*(x(£)) = M;(x(1))
for times S < ¢ < T"but M*(x(1)) = M;(x(t)) for times
T <t < U, then we say that the system jumps from
node v; to node v; at time ¢ = T. A jump from v; to v
can only occur on the jump set

Ji={x € R*: M*(x) = Mi(x) = Mj(x)}. (78)

The Liapunov functional L(x;) moves the system
through these decision hypersurfaces through time. The
geometry of §*, §7, and the jump sets J;, together with
the energy defined by L(x,), can be used to globally
analyze the dynamics of the system. In particular, due
to the positive ignition property (77), the limit

lim L(x,) = J; M*(x(v))dv (79)
[ond
always exists, and is possibly infinite.

The following results illustrate the use of these con-
cepts (Grossberg, 1978d):

Theorem 1: Given any initial data x(0), suppose that
L MH(x(v))dv < oo. (80)
Then the limit x(o0) = lim,..., x(¢) exists.

Corollary 1: If in response to initial data x(0), all
jumps cease after some time 7" < oo, then x{ o) exists.

Speaking intuitively, this result means that after all
local decisions, or jumps, have been made in response
to an initial state x(0), then the system can settle down
to a global decision, or CAM x(0). In particular, if x(0)
leads to only finitely many jumps because there exists
a jump tree, or partial ordering of decisions, then x(o0)
exists. This fact led to the analysis of circumstances
under which no jump cycle, or repetitive series of
jumps, occurs in response to x(0), and hence that jump
trees exist.

Further information follows readily from (80). Since
M*(x(1)) = 0 for all ¢ = 0, it also follows that lim,.
M*(x(2)) = 0. This tells us to look for the equilibrium
points x{co0) on the positive ignition hypersurface S*
in (75):

Corollary 2: If [§ M*(x(t))dt < o0, then x(c0) E S™*.

Thus the positive ignition surface is the place where
the competition both ignites and is stored if no jump
cycle exists. Using this result, an analysis was made of
conditions under which no jump cycle exists in response
to any initial vector x(0), and hence all trajectories ap-
proach an equilibrium or CAM state.

The same method was also used to prove that a
competitive system can generate sustained oscillations
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if it contains globally inconsistent decisions. These re-
sults are important for understanding the role of sym-
metric coefficients in the design of CAM systems. They
identified circumstances under which, in response to
initial data x(0),

J; M*(x(v))dv = oo, (81)

thus that infinitely many jumps occur, hence a jump
cycle occurs, and finally that the trajectory undergoes
undamped oscillations.

This method was used to provide a global analysis
of the oscillations taking place in the May-Leonard
(1975) model of the voting paradox. In this specialized
Volterra-Lotka model,

Rl x(1 — Xy — ax; — Bx3)

d
A Xo(1 — Bxy — X3 — axs)

d .
PR x3(1 — ax; — 8x; — x3) (82)

and the parameters are chosen to satisfy 3 > 1 > « and
a+ B> 2. System (82) represents the following intuitive
situation. Three “candidates™ are run against each other
in pairwise elections. If v, wins over v,, v, wins over
v3, and v3 wins over v,, what happens when all three
candidates run against each other? If the winning re-
lationship were transitive, then v, could win over him-
self! Thus the voting paradox illustrates how a globally
inconsistent decision scheme can arise.

In (82) the relationship “v; wins over v,” is repre-
sented by “v; inhibits v; more than v; inhibits v,.” In
particular, v, > v, > v3 > v,. May and Leonard (1975)
did computer simulations which showed that the tra-
jectories of (82) oscillate. Grossberg (1978d) proved that
the trajectories oscillate because system (82) generates
a globally inconsistent decision scheme, characterized
by a jump cycle v, = v, = v3 = v; with L(x,) = oo,
for almost all trajectories.

The interaction matrix

‘ﬁla
a B 1

of system (82) can be chosen arbitrarily close to a sym-
metric matrix by letting « and 8 approach 1 without
violating the constraint 8> 1 > e« and a + § > 2. Thus
there exist competitive systems whose matrices are ar-
bitrarily close to symmetric matrices almost all of
whose trajectories oscillate, albeit slowly. There also
exist competitive systems without jump cycles whose
coefficients are not symmetric, yet approach equilib-
rium points, because they satisfy Theorem 1. Although
symmetry may be sufficient to generate CAM, as in
model (13), the concepts of jump cycle and jump tree
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illustrate that one needs to analyze more global geo-
metrical concepts to understand the relationship be-
tween a system’s symmetry and its emergent CAM
properties.

The Liapunov functional method led to the Cohen
and Grossberg (1983) analysis in the following way. The
Liapunov functional method was used to prove a theo-
rem about the global CAM behavior of the competitive
adaptation level systems

g;xi = ai(x)[bi(x;) — c(x)] (84)
which were identified through an analysis of many spe-
cialized networks. In system (84), each state-dependent
amplification function a;(x) and self-signal function
bi(x;) can be chosen with great generality without de-
stroying the system’s ability to reach equilibrium be-
cause there exists a state-dependent adaptation level
¢(x) against which each b;(x;) is compared. Such an
adaptation level ¢(x) defines a strong type of long-range
symmetry within the system.

The examples which motivated the analysis of (84)
were additive networks

4 X;i = —Aix; + 2 fulxi) B + I (85)
dt P

and shunting networks

%x.- = — A+ (B = x)i+ S S Cal
’ k

= (x:+ DYlJi + 2 gdx)Eil  (86)
P’

in which the symmetric coefficients By;, Cy;, and Ey;
took on different values when k = i and when k # i.
Examples in which the symmetric coefficients varied
with |k — i| in a graded fashion were also studied
through computer simulations (Ellias & Grossberg,
1975; Levine & Grossberg, 1976), but an adequate
global mathematical convergence proof was not avail-
able before Cohen and Grossberg (1983).

In the proof of the global convergence theorem
(Grossberg, 1978¢, 1980a) for systems of the form (84),
it was shown that each x;() gets trapped within a se-
quence of decision boundaries that get laid down
through time at the abscissa values of the highest peaks
in the graphs of the functions b;. The size and location
of these peaks reflect the statistical rules, which can be
chosen extremely complex, that give rise to the output
signals from the totality of cooperating subpopulations
within each node v;. In particular, a b; with multiple
peaks can be generated when a population’s positive
feedback signal function is a multiple-sigmoid function
which adds up output signals from multiple randomly
defined subpopulations within v;.

After all the decision boundaries get laid down, each
x; is trapped within a single valley of its b; graph. This
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valley acts, in some respects, like a classical potential.
Correspondingly, it was proved that after all the x; get
trapped in such valleys, the function

B[x())] = max{b;(x(t): i = 1,2, ..., n} 87)

is a Liapunov function. This Liapunov property was
used to complete the proof of the theorem.

The adaptation level model (84) is in some ways
more general and in some ways less general than model
(13). Cohen and I began our study of (13) with the hope
that we could use the symmetric coefficients in (13) to
prove that no jump cycles exist, and thus that all tra-
Jectories approach equilibrium as a consequence of the
general Theorem 1. Such a proof'is greatly to be desired
because it would be part of a more general theory and,
by using geometrical concepts such as jump set and
ignition surface, it would clarify how to perturb off the
symmetric case without generating oscillations such as
the voting paradox (82). As it is, the Liapunov function
(14) does not necessarily require that the system (13)
be competitive because, by (18), (d/dr) V; < 0 whether
or not the coefficients c¢; are all nonnegative.

Hirsch (1982, 1985) has proved powerful global
theorems about the class of cooperative systems

d
in=.f;‘(xlax29~-~s-xn) (88)
where
afi .
ax, =0, i#]j. (89)

One of the outstanding mathematical problems in
neural network theory is to find more general methods
than the Cohen and Grossberg, Grossberg, and Hirsch
results for designing mixed cooperative-competitive
feedback systems with desired global behavior.

12. STABLE PRODUCTION STRATEGIES
FOR A COMPETITIVE MARKET

The properties of adaptation level systems may prove
useful in areas far removed from neural networks. To
illustrate this possible range, consider the problem of
how to design a competitive market such that every
competing firm can choose one of infinitely many pro-
duction strategies, each choice is unknown to the other
competitors, yet the market generates a stable price and
each firm balances its books.

Let x; denote the amount produced by firm i of the
commodity; P(x) denote the market price per item of
the commodity, where x = (x;, X2, . - . , Xp); Ci(x)) de-
note the cost per item of firm #; and 4,(x) (= 0) denote
a multiplier chosen by firm i. Let the firms agree to
govern their individual production plans according to
the adaptation level system

%xi = XALPX) — Co).
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The competitive property of the market is expressed by
the conditions

apP .
5};<0, i=1L2,...,n 1)

In order to play this market, each firm compares its
private cost function with the publicly known market
price. If 4,(x) depends only on x;, then this is all that
the firm needs to know to determine its production
rate dx;/dt. If A;(x) depends on amount x; produced
by other firms, then each firm needs also to know how
much the other firms are producing. In either case, no
firm knows the internal strategies A;(x) and C;(x;) of
the other firms, which can be very complex. Nor does
any firm need to know the function P(x), which can
also be very complex. All it needs to know are the values
of P(x()) through time, which it can read in a trade
newspaper.

By the adaptation level convergence theorem, limits
lim,—. o, P(x(2)) and lim,., o, C;(x;(?)) exist and are equal.
Thus the market price is stable and every firm breaks
even. If the definition of C;(x;) also includes a savings
factor, then the savings functions of all the firms would
also be satisfied.

In this generality, the theorem does not say what
firms will get rich. It only says that if firms are willing
to play the game, then they can attain some much-
valued properties of market stability and predictability.
Just as the existence of stable CAM in neural networks
must be supplemented by a mathematical classification
theory which determines who, if anyone, will win a
specially designed competition, the existence of a stable
market must be supplemented by an analysis of how
firms should choose their strategies to maximize their
gains despite ignorance of their competitors’ strategies.

Before turning to a discussion of some recent spe-
cialized architectures, I shall further discuss two issues
that naturally arise from the preceding text:

1. Why bother studying shunting interactions? Why
aren't the simpler additive interactions always suf-
ficient?

2. Are symmetric coefficients necessary to achieve sta-
ble learning and memory storage? In Section 11, it
was noted that the answer is “no” for CAM systems
whose storage is in short term memory (STM). The
answer is also well-known to be “no” for associative
learning systems whose storage is in long term
memory (LTM). This is true for networks designed
to accomplish associative pattern learning as well as
for networks designed for spatiotemporal pattern
recognition and planned sensory-motor perfor-
mance. Some asymmetric associative networks
which arise in adaptive pattern recognition and
adaptive sensory-motor control are discussed in
Sections 16-20.
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13. SENSITIVE VARIABLE-LOAD PARALLEL
PROCESSING BY SHUNTING
COOPERATIVE-COMPETITIVE NETWORKS:
AUTOMATIC GAIN CONTROL AND
TOTAL ACTIVITY NORMALIZATION

The value of shunting networks is clarified by their
ability to help overcome one of the problems which
has confronted recent investigators who have been using
additive networks. Amit, Gutfreund, and Sompolinsky
(1987, p. 2294) found spurious memory states in the
additive model that they studied. Their analysis led
them to conclude that “there must be some global con-
trol on the dynamics of the network, which prevents
too high or too low activity.” In other words, it is im-
portant to carefully regulate the network’s total acti-
vation through time. The importance of this property,
called total activity normalization, has been recognized
in the neural network literature for the past two decades,
and is one of the basic properties of shunting cooper-
ative-competitive networks (Grossberg, 1970b, 1972a,
1973, 1982).

More generally, shunting networks provide a design
for sensitive variable-load parallel processors. Suppose
that the STM traces or activations x;, X3, ..., X,ata
network level fluctuate within fixed finite limits at their
respective network nodes. Setting a bounded operating
range for each x; has the advantage that fixed decision
criteria, such as output thresholds, can also be defined.
On the other hand, if a large number of intermittent
input sources converge on the nodes through time, then
a serious design problem arises, due to the fact that the
total input converging on each node can vary wildly
through time. I have called this problem the noise-sat-
uration dilemma: If the x; are sensitive to large inputs,
then why do not small inputs get lost in internal system
noise? If the x; are sensitive to small inputs, then why
do they not all saturate at their maximum values in
response to large inputs?

Shunting cooperative-competitive networks possess
automatic gain control properties capable of generating
an infinite dynamic range within which input patterns
can be effectively processed, thereby solving the noise-
saturation dilemma. Specialized shunting networks
have been classified in terms of their specific pattern
processing and memory storage properties, thereby
providing a storehouse of networks which serves as a
resource for solving particular computational problems.
Since the design and properties both of feedforward
and feedback shunting networks have been reviewed in
a number of places (Grossberg, 1981, 1982, 1987d),
the present summary considers briefly only the simplest
feedforward and feedback networks to convey some of
the main ideas. First the simplest feedforward network
will be described to illustrate how it solves the sensitivity
problem raised by the noise-saturation dilemma.

Let a spatial pattern I; = 8,1 of inputs be processed
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by thecells vy, i = 1, 2, ..., n. Each 8; is the constant
relative size, or reflectance, of its input I; and [ is the
variable total input size. In other words, I = 2}, I,
so that 7., 6 = 1. How can each cell v; maintain its
sensitivity to 8; when I is parametrically increased? How
is saturation avoided?

To compute 6; = I;(Z}-, 1), each cell v; must have
information about all the inputs I, k= 1,2, ..., n.
Moreover, since 8, = I;(I; + Zisi I)™", increasing I;
increases 6; whereas increasing any I, k # i, decreases
6;. When this observation is translated into an anatomy
for delivering feedforward inputs to the cells v;, it sug-
gests that I; excites v; and that all I, k # i, inhibit v;.
This rule represents the simplest feedforward on-center
off-surround anatomy (Figure 4a).

How does the on-center off-surround anatomy ac-
tivate and inhibit the cells v; via mass action? Let each
v; possess B excitable sites of which x;(f) are excited
and B — x;(1) are unexcited at each time ¢. Then at v;,
I, excites B — x; unexcited sites by mass action, and
the total inhibitory input 2,; Ix inhibits Xx; excited
sites by mass action. Moreover, excitation x; can spon-
taneously decay at a fixed rate A, so that the cell can

(b) .

FIGURE 4. Two types of on-center off-surround networks: (a)
A feedforward network in which the input pathways define the
on-center off-surround interactions; (b) A feedback network in
which interneurons define the on-center off-surround interac-
tions.
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return to an equilibrium point (arbitrarily set equal to
0) after all inputs cease. These rules say that

d
Z.X,' = —AX1 + (B - )Q)l,' = Xi z Ik. (92)
t ki

If a fixed spatial pattern, I; = 6,/ is presented and the
background input / is held constant for awhile, each x;
approaches an equilibrium value. This value is easily
found by setting dx;/dt = 0 in (92). It is

RI

=0
MEC gt

93)
Note that the relative activity X; = x;,(Z%-; xo)~ ' equals
8; no matter how large 7 is chosen; there is no saturation.
This is due to automatic gain control by the inhibitory
inputs. In other words, Z.»; I, multiplies x; in (92).
The total gain in (92) is found by writing

%x,- = —(4 + I)x; + BI,. 94)
The gain is the coeflicient of x;, namely —(4 + I), since
if x;(0) = 0,
xi(f) = 6; AB_-:I (1 — e, 95)

Both the steady state and the gain of x; depend on the
input strengths. This is characteristic of mass action,
or shunting networks but not of additive networks.
Many alternative models cannot retune themselves in
response to parametric shifts in background intensity.

The simple law (93) combines two types of infor-
mation: information about pattern 8;, or “reflectances,”
and information about background activity, or “lu-
minance.” In visual psychophysics, the tendency to-
wards reflectance processing helps to explain brightness
constancy, and the rule I(4 + I)"! helps to explain the
Weber-Fechner law (Cornsweet, 1970).

Another property of (93) is that the total activity

" BI
x'E,""'AH

(96)

is independent of the number of active cells. This nor-
malization rule is a conservation law which says, for
example, that a network that receives a fixed total lu-
minance, making one part of the field brighter tends
to make another part of the field darker. This property
helps to explain brightness contrast (Cornsweet, 1970;
Grossberg & Todorovié, in press). Brightness constancy
and contrast are two sides of a coin: on one side is
Weber-law modulated reflectance processing, as in (93),
and on the other side is a normalization rule, as in (96).

Equation (93) can be written in another form that
expresses a different physical intuition. If we plot the
intensity of an on-center input in logarithmic coordi-
nates K;, then K; = In(I}) and I; = exp(K)). Also write
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the total off-surround input as J; = Z,; I;. Then (93)
can be written in logarithmic coordinates as

S BeX

SRy w4 (C2))

How does the response x; at v; change if we paramet-
rically change the off-surround input J;? The answer is
that x/s entire response curve to KX; is shifted, and thus
its dynamic range is not compressed. Such a shift oc-
curs, for example, in bipolar cells of the Necturus retina
(Werblin, 1971) and in a modified form in the psycho-
acoustic data of Iverson and Pavel (1981). The shift
property says that

xi(Ki + S, J") = xi(K;, ) (98)

for all K; = 0, where the amount of shift S caused by
changing the total off-surround input from J¢" to J$¥
is predicted to be

1)
A+, ) (99)

S= ‘(m

14. PHYSIOLOGICAL INTERPRETATION OF
SHUNTING MECHANISMS AS A
MEMBRANE EQUATION

Equation (92) is a special case of a law that occurs
in vivo; namely, the membrane equation on which
cellular neurophysiology is based. The membrane
equation is the voltage equation that appears in the
Hodgkin-Huxley equations mentioned in Section 6C.
This equation embodies the classical electrical circuit
interpretation (Hodgkin, 1964; Katz, 1966; Plonsey &
Fleming, 1969) which is used to physically interpret
the additive and shunting neural networks.

The membrane equation describes the voltage ¥{(f)
of a cell by the law

Co =V = Vg + (V= Vg™ + (¥ = Vg, (100)

In (100), C is a capacitance; V*, V~, and V” are con-
stant excitatory, inhibitory, and passive saturation
points, respectively; and g*, g7, and g” are excitatory,
inhibitory, and passive conductances, respectively. We
will scale V* and ¥~ so that V* > V™. Then in vivo V'*
=WV =V and V* > VP = V. Often V" represents
the saturation point of a Na* channel and V'~ represents
the saturation point of a K* channel. There is also
symmetry-breaking in (100) because V* — V7 is usually
much larger than V7 — V=, This symmetry-breaking
operation, which is usually mentioned in the experi-
mental literature without comment, achieves an im-
portant noise suppression property when it is coupled
to an on-center off-surround anatomy.

To see why (92) is a special case of (100), suppose
that (100) holds at each cell v;. Then at v;, V = x;. Set
C = 1 (rescale time), V' =B, V- =V?=0,g*" = I,
8™ = ZisiIr, and g? = A.
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The reflectance processing and Weber law properties
(93), the total activity normalization property (96), and
the shift property (98) set the stage for the design and
classification of more complex feedforward and feed-
back on-center off-surround shunting networks. Some
results classifying feedforward on-center off-surround
networks are reviewed in Grossberg (1981, 1987d).

15. SIGMOID FEEDBACK, CONTRAST

ENHANCEMENT, AND SHORT TERM

MEMORY STORAGE BY SHUNTING
FEEDBACK NETWORKS

Feedback additive and shunting networks possess
useful CAM properties that eventually led to the Cohen-
Grossberg model reviewed in Section 9. During the last
few years, many investigators have realized the impor-
tance of sigmoid feedback signals for generating effective
pattern processing and CAM properties; (e.g., Ackley,
Hinton, & Sejnowski, 1985; Hopfield, 1984; Mc-
Clelland & Rumelhart, 1986). The first complete global
analysis which rigorously demonstrated these properties
was provided in Grossberg (1973). There the impor-
tance of sigmoid feedback was clarified by classifying
the manner in which different types of feedback signal
functions—linear, slower-than-linear, faster-than-linear,
and sigmoid—transform input patterns and store the
transformed patterns in STM. The simplest shunting
on-center off-surround feedback network was chosen
for this demonstration because it possessed the key
properties of: (a) solving the noise-saturation dilemma
by using the interaction between automatic gain control
and on-center off-surround interactions, (b) normal-
izing or conserving its total activity, and (c) being ca-
pable of absolutely stable STM.

This simplest such network is defined by the equa-
tions

2 = —Ax+ (B = 5L + £ — 5l + Z S0,
d ki

(101)

i=1,2,...,n(Figure 3b). Suppose that the inputs J;
and J; acting before ¢ = 0 establish an arbitrary initial
activity pattern (x;(0), x2(0), . .., x,(0)) before being
shut off at # = 0. How does the choice of the feedback
signal function f(w) control the transformation of this
pattern at t = oo? The answer is schematized in
Table 3.

Table 3 displays choices of the feedback signal func-
tion f(w) and the corresponding function g(w)
= w™!f(w) which measures how much f(w) deviates
from linearity at prescribed activity levels w. The net-
work’s responses to these choices are summarized using
the functions X; = x;(Z}-; x;)" and x = 2}~ xi. The
relative activity X; of the ith node computes how the
network transforms the input pattern through time.
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The functions X; play the role for feedback networks
that the reflectances 6; in (93) play for feedforward net-
works. The total activity x measures how well the net-
work normalizes the total network activity and whether
the pattern is stored (x(c0) = limw, x(f) > 0) or not
(x(o0) = 0). Variable x plays the role of the total input
Iin (93).

Using these functions, (101) can be rewritten as the
system

d n

7z Xi = BX; 2 Xilg(Xix) — g(Xix)] (102)
k=1

and

c%x =x[—A4 + (B — x) 2 Xig(Xix)]. (103)
k=1

Using system (102)-(103), the following types of results
were proved.

A. Linear Signal: Perfect Pattern Storage and Noise
Amplification

If f(w) is chosen linear, as in f(w) = Cw, then g(w)
= C = constant. Hence by (102), all d/d! X; = 0, so
that X;(f) = constant in response to an arbitrary initial
pattern x;(0). This system thus possesses a continuum
of nondistorting CAM states. Why, therefore, is not a

S. Grossberg

linear feedback signal a perfect choice for sensory pat-
tern processing?

The answer becomes clear through consideration of
the total activity variable x(¢). In the linear case, (103)
reduces to

& x=x{-4 + (B~ xCl. (104)

Hence such a system either cannot store any pattern
(x(0) = 0if B — AC™! < 0), or it amplifies noise as
vigorously as it amplifies signals if it is capable of CAM
(x(0) = B— AC™'if B — AC™' > 0, no matter how
small x(0) > 0 is chosen). This amplification property
generalizes to other models, and challenges those mod-
els, such as the BSB model (Section 9B), whose feedback
signals are linear at small activity values.

Equation (102) suggests how to define slower-than-
linear, faster-than-linear, and sigmoid feedback signals
for purposes of pattern processing. Just as a linear f(w)
= Cw generates a constant g(w) = C, a slower-than-
linear f(w), such as Cw(D + w)™!, generates a decreasing
g(w), such as C(D + w)™!; a faster-than-linear f(w),
such as Cw" with n > 1, generates an increasing g(w),
such as Cw"™!; and a sigmoid f(w), such as Cw"(D"
+ w")~! with n > 1, generates a hill-shaped g(w), such
as Cw" (D" + w")™L.

TABLE 3

Xjlo)|

AMPLIFIES NOISE

AMPLIFIES NOISE

H QUENCHES NOISE

JI\I

|QUENCHES NOISE

A A
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B. Slower-than-Linear Signal: Pattern Compression
and Noise Amplification

Slower-than-linear signal functions f(w) also amplify
noise. Analysis of (102) and (103) shows that a slower-
than-linear feedback signal exerts a compressive effect
on the reverberating activity pattern which obliterates
all differences between initially active nodes (X;(o0)
= 1y if the network is capable of CAM (x(o0) > 0).

C. Faster-than-Linear Signal: Winner-Take-All,
Noise Suppression, and Total Activity Quantization
in an Emergent Finite State Machine

A faster-than-linear signal function can tell the dif-
ference between small and large initial values by am-
plifying and storing only sufficiently large activities.
Analysis of (102) and (103) shows that a faster-than-
linear signal function amplifies the largest initial activ-
ities so much more than smaller initial activities that
it makes a choice: Only the node with the largest initial
activity gets stored in STM. This is a remarkable prop-
erty from several perspectives.

It shows how a very large network of nodes can
quickly choose a winner in a single processing step
without any search, simply by letting its nodes compete.
Choice networks were originally designed for use in the
many applications wherein the computational task is
to choose a winner from noisy data. Feldman and Bal-
lard (1982) have called this choice property winner-
take-all. Platt and Hopfield (1986) have, for example,
mentioned this property in their discussion of error-
correcting codes.

A faster-than-linear signal function also generates
remarkable normalization and quantization properties
in the total activity domain. Combined with the winner-
take-all property, the quantization property shows that
a faster-than-linear signal function generates emergent
properties of a finite-state machine, even though system
(101) is defined by continuous laws. In particular, at
large times, (103) is approximated by the equation

%x ~ x[—A4 + (B — x)g(x)]. (105)
Thus the stored total activity x(oo) is a root of the
equation
A

gw) - y— (106)
where both g(w) and A(B — w)™! are increasing func-
tions of w. The stored total activity is normalized be-
cause the roots of (106) are independent of the number
n of competing nodes.

Total activity quantization and noise suppression
supplement the normalization property if the following
hypotheses are satisfied. Suppose that 4 > Bg(0) and
that there are mroots E; < E; < -+ + < E,, < B of
equation (106). Then the roots E,, Es, + « « are unstable
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equilibrium points of x(#), whereas the roots E, < E,
< -+« - are stable equilibrium points of x(z). Root E,
defines the level below which x(f) is treated as noise
and suppressed. Roots E,, E4, « + + are stable, quan-
tized, normalized limit values of x(co). Function g(w)
can also be chosen to equal A(B — w) along an interval
of values, thereby leading to a continuum of stable
equilibrium values. Thus, one can use system (101)
with a faster-than-linear feedback signal function to
design infinitely many finite-state machines or contin-
uous energy spectrum machines capable of rapidly
making choices in noise and possessing as many nor-
malized asymptotic activity levels as one pleases.

D. Sigmoid Signal: Tunable Filter, Quenching
Threshold, Noise Suppression, and Normalization

Although a faster-than-linear signal function sup-
presses noise, it does so with such vigor that only the
node with maximal initial activity survives in CAM.
In many applications, one needs a spatially distributed
CAM code, albeit one that contrast-enhances and
thereby compresses an input pattern before the trans-
formed pattern is stored in CAM. A sigmoid signal
function generates these properties. Indeed, the clas-
sification of signal function properties in (A)~(C) shows
that a signal function f(w) which suppresses noise must
be faster-than-linear at small activity values w. In ad-
dition, every physical signal function is bounded at large
activity values w, thereby suggesting the use of a hybrid
signal function which is faster-than-linear at small ac-
tivities, slower-than-linear at large activities, and thus,
by continuity, approximately linear in between; viz., a
sigmoid signal function (Table 3).

Grossberg (1973) proved that a sigmoid signal func-
tion generates a quenching threshold (QT): Activities
less than the QT are suppressed, whereas the pattern
of activities that exceeds the QT is contrast-enhanced
before being stored in STM. Speaking heuristically, the
QT property is a consequence of pattern processing
properties of faster-than-linear and linear signal func-
tions combined with normalization properties in the
total energy domain: The faster-than-linear property at
small activity levels begins to contrast-enhance the in-
put pattern as the total activity shifts due to normal-
ization. As the partially contrast-enhanced activity pat-
tern is normalized, it is influenced by the (approxi-
mately) linear range of the sigmoid signal function,
which stores whatever pattern it detects (Table 3), in-
cluding the partially contrast-enhanced pattern. Thus
a sigmoid signal function can be used to design a noise-
suppressing network with infinitely many stable equi-
librium points, representing partially contrast-en-
hanced, or compressed, input patterns.

Any network that possesses a QT can be adaptively
tuned. By increasing or decreasing the QT, the criterion
of which activities represent functional signals—and
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hence should be processed and stored in STM—and of
which activities represent functional noise-—and hence
should be suppressed—can be flexibly modified
through time. An increase in the QT can cause all but
the largest activities to be quenched. Then the network
behaves like a choice machine. A sudden decrease in
the QT can cause all recently presented input signals
to be stored. If a novel or unexpected event suddenly
decreases the QT, then all recently presented data can
be stored in CAM until the cause of the unexpected
event can be determined and learned. This property is
important in actively regulating the focus of attention
of a neural network sensory processor (Grossberg,
1982).

It cannot be overemphasized that the existence of
the QT and its desirable tuning and CAM properties
follow from the use of a nonlinear sigmoid signal func:
tion. When these properties were first proved in the
early 1970s, the popularity of linear control models
and of digital serial models in applications to intelligent
systems prevented their acceptance, or often even their
toleration. The recent popularity of connectionist
models and of Liapunov methods have turned the ob-
scure into the obvious, which is a sure sign of major
progress.

The QT has been explicitly computed in a special
case (Grossberg, 1973, pp. 355-359). In system (101)
with I,' = Ji = O, let

J(w) = Cwg(w) (107)

where C = 0, g(w) is increasing for 0 < w < x, and
gw) = 1for x < w < B. Then

(D
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Thus all the parameters of the network influence the
QT. An important open problem is to compute the QT
of more general cooperative-competitive networks that
arise in computational applications.

In summary, several factors work together to gen-
erate desirable pattern transformation and STM-CAM
properties: the dynamics of mass action, the geometry
of competition, and the statistics of competitive feed-
back signals work together to define a unified network
module whose several parts are designed in a coordi-
nated fashion through development. How such a net-
work module is self-organized in vivo is a profound
open problem whose solution is worthy of a major sci-
entific effort. A great deal more mathematical work
will also be needed to fully understand even the prop-
erties of those shunting and additive networks which
have already arisen in applications. For example, mixed
cooperative-competitive nonlinear feedback networks
have been designed to analyze and predict properties
of emergent visual segmentation (Grossberg, 1987a,
1987b; Grossberg & Mingolla, 1985a, 1985b, 1987).
Although the computer simulations of these networks
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were guided by previous theorems about competitive
and cooperative nonlinear feedback networks, no global
theorems have yet been proved about these mixed co-
operative-competitive feedback networks. The addi-
tional insights that such theorems are bound to bring
are much to be desired if only because of the great
practical importance of emergent visual segmentation
in a number of applications.

16. COMPETITIVE LEARNING MODELS

Another application of a choice network occurs in
competitive learning models. In the simplest compet-
itive learning model, normalized input patterns pass
through an adaptive filter before the maximal filter out-
put is chosen by a winner-take-all network. The winning
population then triggers associative pattern learning
within the vector of LTM traces which sent its inputs
through the adaptive filter. Such a competitive learning
model is a particular type of adaptive vector quanti-
zation scheme (Gray, 1984) which possesses Bayesian
processing properties (Duda & Hart, 1973). In cognitive
psychology, competitive learning properties are used to
model categorical perception (Anderson, Silverstein,
Ritz, & Jones, 1977; Elman, Diehl, & Buchwald, 1977;
Hary & Massaro, 1982; Miller & Liberman, 1979; Pas-
tore, 1981; Sawusch & Nusbaum, 1979; Sawusch,
Nusbaum, & Schwab, 1980; Schwab, Sawusch, & Nus-
baum, 1981; Studdert-Kennedy, 1980). During cate-
gorical perception, input patterns are classified into
mutually exclusive recognition categories which are
separated by sharp categorical boundaries. A sudden
switch in pattern classification can occur if an ihput
pattern is deformed so much that it crosses one of these
boundaries.

The development of competitive learning models was
achieved through an interaction between results of
Grossberg (1970b, 1972b, 1973) and of Malsburg
(1973), leading in Grossberg (1976a, 1976b) to the
model in several forms which have subsequently been
further analyzed and applied by a number of authors
(e.g., Amari & Takeuchi, 1978; Bienenstock, Cooper,
& Munro, 1982; Carpenter & Grossberg, 1985, 1987a;
Grossberg, 1982; Grossberg & Kuperstein, 1986;
Rumelhart & Zipser, 1985). Kohonen (1984) has made
particularly strong use of competitive learning models
in his work on self-organizing maps. His important
theorem on the statistical distribution of such maps
extends to the stochastic case the Grossberg (1976a)
theorem on the stability of map learning in response
to sparsely distributed input patterns. Kohonen’s anal-
ysis of the distribution properties of a self-organizing
map in the stochastic case reflects the property in the
deterministic case that LTM vectors in the adaptive
filter are a time average of their learned input vectors,
and thus track the distribution of these input vectors
within their convex hull under suitable conditions. Such
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deterministic analyses include stochastic analyses in the
sense that they predict the time course of learning in
response to arbitrary sequences of input patterns, in-
cluding stochastically controlled input patterns. A his-
torical discussion of the development of competitive
learning models is given in Grossberg (1987¢).

Although competitive learning models are useful in
many situations, their learning becomes unstable in re-
sponse to a variety of input environments, as was first
shown in Grossberg (1976a). An effort to understand
how to design an adaptive pattern recognition and map
learning system that could self-stabilize its learning in
response to arbitrary input environments led to the
introduction of adaptive resonance theory in Grossberg
(1976b). In this theory, competitive learning mecha-
nisms are embedded in a larger network which includes
learned top-down expectations and other modulatory
mechanisms that were identified through an analysis
of data concerning perception, cognition, condition-
ing, attention, event-related potentials, and neuro-
physiology.

In addition to suggesting mechanistic explanations
of many interdisciplinary data from these subjects, the
theory also made a number of predictions which have
since been partially supported by experiments. For ex-
ample, Grossberg (1976b) predicted that both norepi-
nephrine (NE) mechanisms and attentional mecha-
nisms modulate the adaptive development of thala-
mocortical visual feature detectors. Kasamatsu and
Pettigrew (1976) and Pettigrew and Kasamatsu (1978)
described NE modulation of feature detector develop-
ment and Singer (1982) reported attentional modula-
tion. Grossberg (1978a) predicted a word length effect
in word recognition paradigms. Samuel, van Santen,
and Johnston (1982, 1983) reported a word length effect
in word superiority experiments. Grossberg (1978a,
1980b) predicted a hippocampal generator of the P300
event-related potential. Halgren et al. (1980) reported
the existence of a hippocampal P300 generator in hu-
mans. The existence and correlations between other
event-related potentials, such as processing negativity
(PN), early positive wave (P120), and N200 were also
predicted in these theoretical articles (see Banquet &
Grossberg, in press, for further discussion). 7

The next section describes a number of the key
properties which emerged from such data analyses and
subsequent mathematical developments and compu-
tational analyses of Carpenter and Grossberg (1985,
1987a).

17. STABLE SELF-ORGANIZATION OF
PATTERN RECOGNITION CODES

A number of basic computational distinctions can
be used to differentiate neural network architectures
and to clarify the applications for which they are best
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suited. Since a given computational property may be
advantageous for one application and disadvantageous
for a different application, such a classification is well
worth keeping in mind.

In this section, I compare and contrast properties of
the adaptive resonance theory (ART) for the stable self-
organization of pattern recognition codes with prop-
erties of alternative models for the learning of pattern
recognition codes. Since ART was introduced in
Grossberg (1976b), it has undergone substantial devel-
opment and analysis. A number of articles which con-
tributed to the theory are brought together in several
books (Grossberg, 1982, 1987¢, 1987d, 1988). The dis-
cussion herein will be based upon properties of an ART
architecture, called ART 1, whose key properties were
developed, proved mathematically, and illustrated
through extensive computer simulations in Carpenter
and Grossberg (1987a). The architecture and processing
cycle of ART 1 are summarized in Figures 5 and 6.
The main computational distinctions to be discussed
are outlined under separate headings:

ATTENTIONAL ORIENTING
SUBSYSTEM SUBSYSTEM
GAIN
CONTROL | DIPOLE FIELD
+ | s™ F,

LT™

INPUT
PATTERN

FIGURE 5. Anatomy of the ART 1 architecture: Two successive
stages, F, and F,, of the attentional subsystem encode patterns
of activation in short term memory (STM). Bottom-up ancl top-
down pathways between F, and F, contain adaptive long term
memory (LTM) traces which multiply the signals in these path-
ways. The remainder of the circuit modulates these STM and
LTM processes. Modulation by gain control enables F, to dis-
tinguish between bottom-up input patterns and top-down prim-
ing, or template, patterns, as well as to match these bottom-
up and top-down patterns. Gain control signals aiso enable F,
to react supraliminally to signals from F, while an input pattern
is on. The orienting subsystem generates a reset wave to F,
when mismatches between bottom-up and top-down patterns
occur at F,. This reset wave selectively and enduringly inhibits
active F, cells until the input is shut off. (Reprinted with per-
mission from Carpenter & Grossberg, 1987a, p. 56.)
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A. Real-Time (On-Line) Learning Versus Lab-Time
(Ofi-Line) Learning

An ART architecture is designed to run in real-time,
or on-line, when it is implemented in hardware. Various
other architectures can only be run in lab-time, or off-
line. This is perhaps the most important distinction
that separates neural network architectures. Although
some problems, such as the traveling salesman problem
(Hopfield & Tank, 1985, 1986), can be run off-line,
other problems, such as learning to recognize novel
objects in a rapidly changing environment, must be
solved on-line. Many of the computational properties
which set apart ART architectures from other currently
available learning algorithms are imposed to enable
them to learn and recognize well in real-time.

B. Nonstationary Unexpected World Versus
Stationary Controlled World

Real-time environments are often nonstationary;
their statistical properties can change unexpectedly
through time. In addition, the world does not stop in
a real-time environment. A ceaseless flow of input pat-
terns of variable complexity can occur. ART architec-
tures are designed to cope with nonstationary worlds
of unlimited complexity. In contrast, many alternative
learning and recognition schemes are off-line models
that work well only in a stationary world whose inputs
are carefully controlled both in number and statistical
properties. The following discussion sharpens this basic
difference.

C. Self-Organization Versus Teacher as a Source of
Expected Output

An ART architecture self-organizes its recognition
code, without a teacher, through a direct interaction
with its input environment. Self-organizing networks
contrast sharply with learning networks which require
an external teacher who presents an explicit correct
answer, in the code of the network, for comparison with
every output generated by the network, as in back
propagation. Back propagation uses the Adeline learn-
ing rule of Widrow (1962). It is a steepest descent al-
gorithm which was discovered by Werbos (1974), re-
discovered and further developed by Parker (1982,
1985, 1986) under the name learning-logic, and pop-
ularized and applied to cognitive science applications
by Rumelhart, Hinton, and Williams (1986) under the
name back propagation.

The off-line nature of back-propagation, at least as
it is used in many applications, is illustrated by the fact
that its teaching signals often have no analog with anal-
ogous learning experiences in vivo. For example, the
popular NETtalk back-propagation simulation of
Sejnowski and Rosenberg (1986) uses a phoneme-by-
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phoneme matching scheme that has no analog during
human real-time learning to read. The use of such a
pre-coded teacher also has major implications for the
structure of the learned code—notably the invariants
of this code (see items F and G below)—and the way
in which matching occurs within the network (see item
H below).

D. Self-Stabilization Versus Capacity Catastrophe

An ART architecture can self-stabilize its learning
in response to arbitrarily many inputs. New inputs may
either refine the criteria for accessing already established
recognition codes, or may initiate the learning of a new
recognition code, until the full capacity of the archi-
tecture is utilized. Input patterns which cannot refine
prior knowledge, or which are first experienced after
full capacity is utilized, are rejected by the architecture’s
self-stabilizing mechanisms.

In architectures which cannot self-stabilize their
learning, later input patterns can wash away the learning
of prior input patterns, leading to an unstable cycle of
learning and forgetting. These architectures include es-
sentially all the classical versions of autoassociators,
competitive learning mechanisms, and steepest descent
algorithms such as back propagation.

Effective use of a non-self-stabilizing architecture
depends upon results which estimate the architecture’s
capacity. The capacity estimates the maximum number
of input patterns which the architecture can learn, rec-
ognize, or remember. Typically, an autoassociator’s ca-
pacity is ~.15n, where the autoassociator’s memory is
defined by an n X n matrix (Anderson, 1983; Hopfield,
1984; Kohonen, 1984; McEliece, Posner, Rodemich,
& Venkatesh, 1980; Psaltis & Park, 1986; Venkatesh,
1986). Thus an autoassociator cannot effectively use
its full capacity. Moreover, if the number of input pat-
terns exceeds this capacity, a capacity catastrophe oc-
curs which renders the architecture’s output unreliable.
Such non-self-stabilizing architectures are thus inher-
ently off-line machines whose lab-time world of inputs
is under strict control. In an ART architecture, esti-
mates of capacity play a different role than in an au-
toassociator or steepest-descent algorithm, since no ca-
tastrophe occurs when the input world contains more
patterns than the architecture can encode.

E. Maintain Plasticity in an Unexpected World
Versus Externally Shut Off Plasticity

An ART architecture retains its plasticity, or ability
to learn, for all time; that is, the parameters which en-
able its adaptive weights, or long-term memory (LTM)
traces, to learn are not switched off as time goes on.
The self-stabilization property is due to a dynamic
buffering scheme which protects these LTM traces from
changing except during appropriate circumstances.
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(a)
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FIGURE 6. Search for a correct F, code: (a) The input pattern |
generates the specific STM activity pattern X at F, as it non-
specifically activates A. Pattern X both inhibits A and generates
the output signal pattern S. Signal pattern S is transformed into
the input pattern T, which activates the STM pattern Y across
F,;(b) Pattern Y generates the top-down signal pattern U which
is transformed into the template pattern V. if V mismatches |
at F,, then a new STM activity pattern X* is generated at F,.
The reduction in total STM activity which occurs when X is
transformed into X* causes a decrease in the total inhibition
from F; to A; (¢) Then the input-driven activation of A can release
anonspecific arousal wave to F,, which resets the STM pattern
Y at F,; (d) After Y is inhibited, its top-down template is elim-
inated, and X can be reinstated at F,. Now X once again gen-
erates input pattern T to F,, but since Y remains inhibited T
can activate a different STM pattern Y* at F,. If the top-down
template due to Y* also mismatches | at F,, then the rapid
search for an appropriate F, code continues. (Reprinted with
permission from Carpenter & Grossberg, 1987a, p. 61.)

Thus, if an unfamiliar event occurs at any time in the
future, an ART architecture can learn about it, without
destabilizing its prior knowledge, just so long as it has
not already committed its full capacity to prior learning.

In contrast, if a non-self-stabilizing architecture is
exposed to a never-ending time-series of input patterns,
as in vivo, then it will experience a fatal capacity ca-
tastrophe unless its plasticity is shut off; that is, unless
the parameters of its individual LTM traces are
switched to a no-learning mode by an external or in-
ternalized teacher.

Such a switching-off of plasticity does not work well
in nonstationary environments whose properties are
not predictable in advance. If learning is switched off
too soon, then important later events cannot be learned.
Iflearning is switched off too late, then important earlier
learning may be washed away due to a capacity catas-
trophe. An omniscient teacher is needed to switch off
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learning at just the right time in response to an arbitrary
input environment. If an effective mode! of an omnis-
cient teacher is available, however, then a potentially
unstable learning device will not be needed.

F. Self-Scaling Computational Units

An ART architecture can learn to distinguish arbi-
trary pairs of input patterns. In contrast, a number of
alternative recognition architectures depend upon or-
thogonality, linear predictability, or other statistical
constraints on input patterns in order to function well.
In order to achieve this property, an ART architecture
self-scales the processing of its input patterns. Individual
input features are automatically given less weight when
they occur within more complex input patterns. A side
benefit of this type of feature normalization is that suf-
ficiently small noisy changes in a complex input pattern
may not force recoding of the pattern.

As a result of the self-scaling property, an input fea-
ture may be encoded in L'TM when it occurs within a
simple input pattern, yet be rejected from LTM when
it occurs within a complex input pattern. In the former
case, the input feature becomes a critical feature by
being learned by the LTM code that helps to recognize
the pattern. In the latter case, the input feature becomes
a noise element by being deleted from the LTM code
that helps to recognize the pattern. This decision de-
pends upon the entire history of learning that has pre-
ceded the presentation of an input pattern which con-
tains the feature. Thus, the concept of critical feature
is an emergent property of the network rather than a
property which can be defined solely by choice of an
input filter.

G. Learn Internal Expectations Versus Impose
External Costs

An ART architecture learns its own top-down ex-
pectations as a function of the unique input environ-
ment to which it is exposed. These expectations are
emergent internal representations which capture in-
variant statistical properties of the entire input envi-
ronment. Such learned top-down expectations are a
key ingredient of ART architectures. They function as
prototypes for an entire recognition category, and ab-
stractly encode the similarity properties which are
shared by all exemplars of the category. On the other
hand, the manner in which these expectations are
learned and manipulated sets them apart from classical
prototype ideas. They may also be interpreted as “costs”
which the architecture learns for itself, such that dif-
ferent costs are learned in response to different input
environments (Figure 7). In order to avoid misinter-
pretations of these expectations due to such analogies
with previous ideas, Carpenter and Grossberg (1987a)
have called them critical feature patterns.
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In contrast, architectures which use an external
teacher often represent this teacher as a set of target
patterns, or externally imposed costs. In NETtalk, for
example, the mismatch between a target phoneme out-
put code and the actual phoneme output code is used
to drive learning at all the model’s stages, from the
visual representation of input letters to the auditory
representation of output phonemes. Thus, an auditory
mismatch is used to determine the learned properties
of a visual code. In vivo, by contrast, many objects can
be visually recognized based upon visual invariants,
even if the objects have no names; for example, the
familiar face of a check-out person at the supermarket.
The verbal phrase “check-out person™ does not deter-
mine how we visually recognize such a person’s face,
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any more than we would visually recognize the same
face differently if the same job were renamed “cashier
attendant.” o
In ART, self-organization of invariant critical featur
patterns can occur within each modality before inter-
modality transformations between these invariants,
such as between a visual representation of a face and
an auditory representation of a name, are learned via
associative mechanisms (Grossberg, 1978a, 1982).

H. Active Attentional Focusing and Priming Versus
Passive Weight Change

A top-down learned expectation in ART is actively
matched against bottom-up information (Figure 6).

(a) TOP—DOWN TEMPLATES (b) TOP—DOWN TEMPLATES
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FIGURE 7. Alphabet learning: Code learning in response to the first presentation of the first 20 letters of the alphabet is shown.
Two different vigilance levels were used, (a) p = .5 and (b) p = .8. Each row represents the total code that is learned after the letter
at the left-hand column of the row is presented at F,. Each column represents the critical feature pattern that is learned through
time by the F, node listed at the top of the column. The critical feature patterns do not, in general, eq.ual the pattern exemplars
which change them through learning. Instead, each critical feature pattern acts like a prototype for the entire set of these exemplars,
as well as for unfamiliar exemplars which share invariant properties with familiar exemplars. The simulation iIIustratgs th_e “fast
learning” case, in which the altered LTM traces reach a new equilibrium in response to each new stimulus. Slow learning is more
gradual than this. (Reprinted with permission from Carpenter & Grossberg, 1987a, p. 72.)
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This matching process takes place within a processing
stage, or level, and can rapidly reorganize the activa-
tions, or short-term memory (STM) traces, that are
computed at the nodes of this stage. In particular, a
top-down critical feature pattern can prime a lower level
to get ready for an exemplar from an expected class of
input patterns. It can amplify and thereby speed up
processing of an input pattern that belongs to an ex-
pected class, while it actively reorganizes the infor-
mation processing of this input. A top-down expecta-
tion can also attenuate processing of unexpected inputs
through a mismatch between the bottom-up input and
the top-down expectation.

In this way, a top-down expectation enables an ART
architecture to function like an intentional machine
that generates an active focus of attention. In contrast,
the top-down mechanisms of a teacher-driven archi-
tecture such as back propagation does not directly
prime the system, or focus its attention, or reorganize
its fast information processing. Instead back propaga-
tion merely causes slow changes in the bottom-up
adaptive weights of the network (Figure 8).

1. Closing Versus Opening the Fast-Slow Feedback
Loop

The bottom-up and top-down interactions in an
ART architecture close the feedback loop between fast
activations at network levels and slower learned changes
in the pathways between levels (Figure 6). This fun-
damental property is what enables the ART architecture
to learn stably in real-time. In contrast, back propa-
gation opens this feedback loop (Figure 8), which makes
this network easier to understand but computationally
less robust.

J. Expectant Priming Versus Grinding All Memory
Cycles

Due to the closed feedback cycle in ART, a top-down
prime that is locked into STM by a large gain control
signal can prevent any input that is not in the expected
recognition category from activating higher levels of
the architecture, much as the verbal command to look
for oranges enables one to avoid being too distracted
by other objects.

In contrast, an architecture without a top-down ex-
pectation capable of actively suppressing mismatched
exemplars will become fully engaged by any input pat-
terns that may happen to occur. Its memory cycles may
thus be so fully engaged by irrelevant inputs when a
crucial event occurs that it cannot respond in time.

K. Learning in the Approximate Match Phase
Versus in the Mismatch Phase: Hypothesis Testing
Avoids the Noise Catastrophe

Due to its possession of learned top-down expecta-
tions which actively suppress mismatched input pat-
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FIGURE 8. Circuit diagram of the back propagation model: In
addition to the processing levels Fy, F,, F,, there are also levels
F4, Fs, Fg, and F; to carry out the computations which control
the learning process. The transport of learned weights from
the F, — F, pathways to the F, — F; pathways show that this
algorithm cannot represent a learning process in the brain. All
teedback within the levels F; - F, — F; is expressed through
learning signals which slowly change bottom-up adaptive
weights but do not quickly reorganize the network’s fast in-
formation processing.

terns while prototypically deforming and amplifying
matched input patterns, an ART architecture learns in
the approximate match phase. In other words, if an
input pattern causes the read-out of a learned top-down
expectation which matches it well enough to prevent a
reset event, then the matching process selects the in-
formation that is consistent between the input and the
expectation. If these matched data include novel ele-
ments, they are used to refine the learned code of that
recognition category. In other words, if the compressed
recognition code, or hypothesis, generated by the input
pattern does not cause reset due to read-out of its top-
down expectation, then the architecture deems this in-
put pattern to be consistent enough with that hypothesis
to refine or update the hypothesis based upon any ad-
ditional information that the pattern may contain. If
reset does occur and leads to selection of an uncom-
mitted code, then this code learns a complete repre-
sentation of the input pattern, which is intuitively rea-
sonable because the pattern could not be assimilated
into any previously learned code.

Because an ART architecture learns in the approx-
imate match stage, it is not degraded by noise fluc-
tuating at its input level. If a noise pattern is very dif-
ferent from its learned codes, the architecture dynam-
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ically buffers these codes against relearning and selects
an uncommitted code to learn the noise. If the noise
does not repeat itself often enough and learning pro-
ceeds slowly, the noise will not cause significant learning
within the uncommitted code. It will not, in any case,
interfere with the codes of sufficiently different patterns
even if learning proceeds quickly.

Architectures without a fast-slow feedback loop, such
as back propagation, are designed so that learning oc-
curs in the mismatch mode. Thus if noise can activate
the teacher, or expected output stage, then all the LTM
traces of the architecture can eventually be recoded.
This noise catastrophe can be prevented only if the noise
is infrequent and learning is slow. In ART, even frequent
noise is simply treated as a new source of input that
does not endanger the corpus of previously learned in-
formation.

Although learning in the mismatch phase can cause
a noise catastrophe in an architecture which is designed
to learn a recognition code in real-time, it is a useful
type of learning in a number of alternative situations,
notably during adaptive sensory-motor control (see
Sections 18-21).

L. Fast or Slow Learning: The Oscillation
Catastrophe

Another consequence of learning in the approximate
match phase is that ART can learn at either a fast or
slow rate. Fast learning occurs when each LTM trace
can reach a new equilibrium value on a single learning
trial. Successive learning trials may or may not cause
the LTM trace to assume different equilibrium values.
Slow learning may require many trials before the LTM
traces reach any equilibrium point of the system.

When learning occurs in the mismatch phase, as in
back propagation, fast learning can cause wild oscil-
lations to occur in the network’s LTM traces, since
each mismatch can drag the LTM traces to a totally
different region of phase space. Thus such architectures
must learn slowly, which emphasizes their off-line
character. Contrast the vivid recollection of an exciting
movie after one-trial on-line learning in vivo.

M. Self-Adjusting Parallel Memory Search and
Global Energy Landscape Upheaval Versus Search
Trees and Local Minima

Learning in the approximate match phase could be
disastrous were it not for the existence in ART of a
self-adjusting parallel memory search that maintains
its efficiency as the learned code becomes more com-
plex. When an input pattern causes read-out of a top-
down expectation with which it cannot form an ap-
proximate match, the attenuation of activity due to the
mismatch event resets the compressed code, or hy-
pothesis, that caused the mismatch (Figure 6c). A par-
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allel memory search is hereby triggered that rapidly
tests a series of such hypotheses. This hypothesis testing
scheme actively and globally reorganizes the energy
landscape of the architecture. In this way, the architec-
ture circumvents the problem of local minima that has
plagued alternative architectures such as autoassocia-
tors, simulated annealing, and the Boltzmann machine.

The need to escape local minima has influenced the
design of all content-addressable memory and learning
architectures. Architectures which do not possess self-
adjusting hypothesis testing schemes typically use two
alternative approaches. In autoassociators, simulated
annealing, and the Boltzmann machine, noise is used
to help the classification to jump out of a local mini-
mum. Such a scheme does not globally reorganize the
energy landscape based upon the outcome of active in-
formation processing. Instead the nonspecific action of
noise tries to exploit the fact that the local minima of
a fixed energy landscape may be easier to escape than
a global minimum, and that a nonspecific external
temperature parameter may be used to control the rate
of approach to equilibrium.

Steepest-descent methods, such as back propagation,
use a mismatch to drag the system’s LTM traces out
of local minima, and do so slowly enough to reduce
the potentially destabilizing effects of the oscillation ca-
tastrophe.

‘Traditional Al architectures often include search
trees to escape erroneous classifications. Although a
search tree may be efficient at one stage of learning, it
cannot remain efficient at an arbitrary stage of learning
unless it has a self-adjusting capability, as in ART.

N. Rapid Direct Access Versus Increase of
Recognition Time with Code Complexity

In ART, as learning self-stabilizes in response to a
set of input patterns, the search mechanism is auto-
matically disengaged. Thereafter rapid direct access to
the recognition code occurs in response to familiar in-
put exemplars as well as to novel exemplars that share
invariant properties with familiar input exemplars. Di-
rect access occurs because read-out of the top-down
expectation of a familiar input pattern always leads to
an approximate match (Carpenter & Grossberg, 1987a).
Then the initial bottom-up event that led to top-down
readout (Figure 6) can generate a resonant recognition
event without causing reset. Thus an ART architecture
reconciles the ostensibly conflicting demands of direct
access and search. It uses reset and self-regulating search
to build globally self-consistent recognition codes which
avoid local minima in response to arbitrarily complex
time-series of input patterns. It uses direct access to
recognize familiar events with a speed as fast as one’s
hardware can run.

In contrast, an Al architecture with a search tree
takes longer and longer to recognize an event as it needs
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to search more and more codes. If this were the case
in vivo, it could take orders of magnitude more time
to recognize our parents when we were 30 years old
than it did when we were 5 years old. Fortunately, this
is false.

O. Asynchronous Versus Synchronous Learning

In ART 1, each LTM trace oscillates at most once
through time in response to an arbitrary time-series of
binary input patterns (Carpenter & Grossberg, 1987a).
Were it not for the architecture’s active reorganization
of the energy landscape through hypothesis testing, this
remarkable monotonicity property could easily cause
the architecture to learn a local minimum. As it is,
learning is allowed to occur only when the energy land-
scape reaches a configuration that leads to an approx-
imate match. Due to these properties, an ART 1 ar-
chitecture can learn asynchronously or synchronously:
If input patterns come in too quickly to generate an
approximate match or to terminate a search, then no
learning occurs. If the input pattern stays on long
enough for some learning to occur, then it does not
matter too much how long it stays on because, due to
the monotonicity property, the LTM traces will tend
to change in the same direction no matter how long it
stays on.

In contrast, if mismatch drives learning in such a
way that each LTM trace can oscillate persistently as
it approaches equilibrium, then variable durations of

the input patterns may destabilize the learning process. .

The limiting case of this property is the oscillation ca-
tastrophe, which occurs if sufficiently many input pat-
terns stay on long enough for LTM traces to reach equi-
librium on each such learning trial.

P. Discriminative Tuning via Attentional Vigilance

Although an ART architecture self-organizes its
learning, it can be tuned by environmental feedback
to learn coarser or finer discriminations; that is, it can
learn to categorize the same set of input patterns into
larger or smaller groupings depending upon how strictly
the performance demands of the external environment
are imposed. ’

Such environmental feedback acts to change a single
parameter of the network that is called the vigilance
parameter (Carpenter & Grossberg, 1987a). This pa-
rameter determines how fine the mismatch between
bottom-up input and top-down expectation must be in
order to reset the code which reads-out the expectation.
A large vigilance parameter demands a high degree of
match to prevent reset, hence finely categorizes the in-
put patterns. A small vigilance parameter tolerates
larger mismatches before forcing reset, hence more
coarsely categorizes the input patterns.

This tuning parameter depends for its existence upon
the fact that bottom-up and top-down matches occur
as part of the real-time feedback cycle that determines
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the classification of input patterns. In particular, it can
change dramatically the global reorganization of the
energy landscape that regulates self-regulating search
and learning by modifying the overall attentiveness, or
sensitivity, of the circuit.

Q. Towards a General-Purpose Machine for
Cognitive Hypothesis Testing, Data Search, and
Classification

In ART, adaptive pattern recognition is a form of
hypothesis discovery, testing, learning, and recognition
in response to a nonstationary input environment. This
property would seem to be essential for any cognitive
theory which hopes to understand how ever-more-
complex knowledge invariants are discovered, tested,
and recognized, at any level of abstraction.

In particular, future ART machines may be designed
to learn, search, and classify complex hierarchically or-
ganized data files. The properties of automatic self-sta-
bilization and self-scaling will be essential for such an
architecture to work reliably and quickly on enormous
data bases. The advantages of such a self-organizing
system become greater as the data sets are chosen larger,
because the decision task for hand-sorting so much data
or the discovery of rules for automatically sorting all
the data, especially when new data are added later on,
rapidly become unmanageably difficult as a function
of scale.

The postulates of ART thus define a class of models
for a broad range of cognitive science applications,
which include examples that may or may not even pos-
sess an orienting subsystem and search mechanism
(Figure 5), as discussed by Carpenter and Grossberg
(in press). McClelland (1987) has proposed that models
of this class be renamed the “interactive activation
framework™ after the interactive activation model that
was introduced by McClelland and Rumelhart (1981)
and Rumethart and McClelland (1982). The postulates
of the interactive activation model are, however, incon-
sistent with those of an ART model. The postulates of
the interactive activation model have been abandoned
in favor of ART postulates because they are inconsistent
with key cognitive data and possess some undesirable
computational properties, as noted in Grossberg (1984,
1986, 1987¢). Since ART was an established cognitive
theory (Grossberg, 1978a, 1980b) before the interactive
activation model was published, it seems historically
and scientifically justified to retain the name Adaptive
Resonance Theory for such models.

18. INTERNALLY REGULATED LEARNING
AND PERFORMANCE IN NEURAL
MODELS OF SENSORY-MOTOR CONTROL:
ADAPTIVE VECTOR ENCODERS AND
COORDINATE TRANSFORMATIONS

In many real-time nonlinear neural network archi-
tectures other than ART architectures, learning is reg-
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FIGURE 9. (a) Learning in sensory-motor pathways is gated by
a difference vector (DV) process which matches target position
command (TPC) with present position command (PPC) to pre-
vent incorrect associations from forming between eye-head
TPCs and hand-arm TPCs; (b) A GO signal gates execution of
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ulated by pattern matches and mismatches. For ex-

ample, learning of intermodality associative maps be-

tween the target position commands of different

sensory-motor systems (Figure 9a) is gated on and off
by intramodality pattern matches and mismatches, re-

spectively. These same matching processes transform

automatically such a target position command into a

synchronous multijoint trajectory which automatically

compensates for variable initial positions in a manner

that quantitatively explains a large body of data about
human and monkey arm movements (Bullock &

Grossberg, in press-a). Thus just as in an ART model,

model neural architectures which have been identified

for the learning and performance of arm movements

use internal matching processes to regulate both the

fast information processing and the slower learning of
the system.

The circuit depicted in Figure 9 schematizes key
processing stages in a Vector Integration to Endpoint,
or VITE, circuit. In its simplest form, the VITE circuit
obeys the equations:

Difference Vector

4Vi=a-v+1,- Py (109)

and
Present Position Command

d = +
- Pi=Gir, (110)

where [V]]* = max(V;, 0). Equations (109) and (110)
describe a generic component of a target position com-
mand (T, T3, ..., T,), a difference vector (V,, V5,

-» V), and a present position command (P,, P,, . . .,
P,) in response to a time-varying velocity command,
or GO signal G{(¢); see Figure 9b. The difference vector
computes a mismatch between target position and
present position, and is used to update present position
at a variable rate determined by G(¢) until the present
position matches the target position.

Such a scheme permits multiple muscles, or other
motor effectors, to contract synchronously even though
the total amount of contraction, scaled by T;(0) — P;(0),
may be different for each effector (Figure 10). Unlike
many alternative schemes for motor control, present
position in (110) is not computed using inflow signals
from the muscles. Rather, it is determined by nonlinear
integration of vectors computed by matching an out-
flowing target position command with feedback from
outflowing present position signals.

The VITE circuit is not sufficient in itself to accom-

a primed movement vector and regulates the rate at which the
movement vector updates the present position command. (Re-
printed with permission from Buliock & Grossberg, 1987a).
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plish all the tasks required of a variable-speed variable-
load arm movement system. In concert with several
parallel circuits, however, it can generate flexible and
adaptive trajectories without suffering from the com-
binatorial explosions and rigid performance of control
systems which preplan an entire trajectory. Herein I
outline some of the adaptive control issues which arise
in the design of such neural architectures for movement
control and mention where internal matching processes
regulate their processes of learning and performance.
Quantitative neural network solutions to such problems
are suggested by Bullock and Grossberg (in press-a, in
press-b) and Grossberg and Kuperstein (1986).

The computation of a hand or arm’s present position
illustrates the complexity of the problem. As mentioned
above, two general types of present position signals have
been identified in discussions of motor control: outflow
signals and inflow signals. Figure 11 schematizes the
difference between these signal sources. An outflow sig-
nal carries a movement command from the brain to a
muscle (Figure 11a). Signals that branch off from the
efferent brain-to-muscle pathway in order to register
present position signals are called corollary discharges
(Helmbholtz, 1962; von Holst & Mittelstaedt, 1950). An
inflow signal carries present position information from
a muscle to the brain (Figure 11b). A primary difference
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between outflow and inflow is that a change in outflow
signals is triggered only when an observer’s brain gen-
erates a new movement command. A new inflow signal
can, in contrast, be generated by passive movements of
the limb. Both outflow and inflow signals are used in
multiple ways to provide different types of information
about present position. The following summary item-
izes some of the ways in which these signals are used
in our theory.

Although one role of an outflow signal is to move a
limb by contracting its target muscles, or motor plant,
the operating characteristics of the motor plant are not
known a priori to the outflow source. It is not known
a priori either how much the muscle will actually con-
tract in response to an outflow signal of prescribed size,
or how much the limb will move in response to a pre-
scribed muscle contraction. In addition, even if the
outflow system somehow possessed this information at
one time, it might turn out to be the wrong information
at a later time, because muscle plant characteristics can
change through time due to development, aging, ex-
ercise, changes in blood supply, or minor tears. (State-
dependent and history-dependent plant changes may
occur on the factory assembly line or in a freely-moving
robot, no less than in a living muscle.) Thus the rela-
tionship between the size of -an outflow movement
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FIGURE 10. With equal GO signals, movements of different size have equal durations and perfectly superimposable velocify proﬁlgs
after velocity axis rescaling. (a, b): GO signals and velocity profiles for 20 and 60 unit movements lasting 560 ms. (Reprinted with

permission from Bullock & Grossberg, 1987a).
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FIGURE 11. Both outflow (a) and inflow (b) signals contribute
to the brain’s estimate of the limb’s present position, but in
different ways.

command and the amount of muscle contraction is, in
principle, undeterminable without additional infor-
mation which characterizes the muscle plant’s actual
response to outflow signals.

To establish a satisfactory correspondence between
outflow movement signals and actual muscle contrac-
tions, the motor system needs to compute reliable
present position signals which represent where the out-
flow command tells the muscle to move, as well as re-
liable present position signals which represent the state
of contraction of the muscle. Corollary discharges and
inflow signals can provide these different types of in-
formation. Grossberg and Kuperstein (1986) have
shown how a match between corollary discharges and
inflow signals can be used to modify, through an au-
tomatic learning process, the total outflow movement
signal to the muscle in a way that effectively compen-
sates for changes in the muscle plant (Figure 12). Mis-
matches act as error signals which change the gain of
the total outflow movement signal. This automatic gain

S. Grossberg:

control process generates adaptively a linear corre-
spondence between an outflow movement command
and the-amount of muscle contraction even if the mus-
cle plant is nonlinear. The process which matches out-
flow and inflow signals to linearize the muscle plant
response through learning is called adaptive lineariza-
tion of the muscle plant.

The cerebellum is implicated by both the theoreti-
cally derived circuit and experimental evidence as the
site of learning. Early cerebellar learning models were
proposed by Albus (1971), Brindley (1964), Grossberg
(1964, 1969d, 1972b), and Marr (1969). Later models
and experimental support were provided by Fujita
(1982a, 1982b), Ito (1974, 1982, 1984), McCormick
and Thompson (1984), Optican and Robinson (1980),
Ron and Robinson (1973), Vilis and Hore (1986), and
Vilis, Snow, and Hore (1983). The present model in-
troduces new features which are critical to its success
in correcting behaviorally well-characterized types of
movements €rrors.

For example, an adaptive gain (AG) stage in our
theory—which is interpreted as a model cerebellum—
is used by multiple circuits that contribute to both eye
movement and arm movement accuracy and postural
stability. Each of these circuits involves different—and
specific—input, output, and error signal pathways, but
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FIGURE 12. Some main features of the muscle linearization
network, or MLN: The outflow-inflow interface (Oll) registers
matches and mismatches between outflow signals and inflow
signals. Mismatches generate error signals to the adaptive gain
(AG) stage. These error signals change the gain of the con-
ditioned movement signal to the motoneurons (MN). Such an
MLN adaptively linearizes the responses of a nonlinear muscle
plant to outflow signals. The outflow signals can therefore also
be used as a source of accurate corollary discharges of present
eye position. (Reprinted with permission from Grossberg &
Kuperstein, 1986, p. 136.)
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all of these pathways are mediated by the same internal
AG stage architecture. These AG stage results signifi-
cantly extend recent data and models concerning the
cerebellum’s role in the conditioning of movements
(Fujita, 1982a, 1982b; Ito, 1984; McCormick &
Thompson, 1984; Optican & Robinson, 1980). For ex-
ample, push-pull opponent processing of the error sig-
nals which govern adaptive gain changes at the AG stage
is a novel, and computationally critical, part of this
model. Such an arrangement enables the AG stage to
correct undershoot, overshoot, or directionally skewed
eye movement errors, as well as errors due to sustained
wearing of curvature-distorting contact lens.

Although adaptive linearization is, like back-prop-
agation, a form of error-driven learning in the mismatch
mode, it is not susceptible to the instabilities of back-
propagation because it merely changes the gains of in-
ternal command pathways via internal mismatches. It
does not put at risk the spatial encoding of the com-
mands that activate the pathways and is not subjected
to noise fluctuations from the external environment.

Given that corollary discharges are matched with
inflow signals to linearize the relationship between
muscle plant contraction and outflow signal size, out-
flow signals can also be used in other ways to provide
important information about present position. As Fig-
ure 9 illustrates, outflow present position signals can
then be matched with target position commands to
generate a trajectory with synchronous properties. Thus
outflow signals are used in at least three ways, and all
of these ways are automatically registered: They send
movement signals to target muscles; they generate cor-
ollary discharges which are matched with inflow signals
to guarantee linear muscle contractions even if the
muscle plant is nonlinear; and they generate corollary
discharges which are matched with target position sig-
nals to generate synchronous trajectories.

Inflow signals are also used in several ways. One way
has already been itemized. A second use of inflow sig-
nals is suggested by the following gedanken example.
When you are sitting in an armchair, let your hands
drop passively towards your sides. Depending upon a
multitude of accidental factors, your hands and arms
can end up in any of infinitely many final positions. If
you are then called upon to make a precise movement
with your arm-hand system, this can be done with great
accuracy. Thus the fact that your hands and arms start
out this movement from an initial position which was
not reached under active control by an outflow signal
does not impair the accuracy of the movement.

Much evidence suggests, however, that comparison
between target position and present position informa-
tion is used to move the arms and that, as in Figure 9,
this present position information is computed from
outflow signals. In contrast, during the passive fall of
an arm under the influence of gravity, changes in out-
flow signal commands are not responsible for the
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changes in position of the limb. Since the final position
of a passively falling limb cannot be predicted in ad-
vance, it is clear that inflow signals must be used to
update present position when an arm is moved passively
by an external force, even though outflow signals are
used to update present position when the arm moves
actively under neural control.

This conclusion calls attention to a closely related
issue that must be dealt with to understand the neural
bases of skilled movement: How does the motor system
know that the arm is being moved passively due to an
external force, and not actively due to a changing out-
flow command? Such a distinction is needed to prevent
inflow information from contaminating outflow com-
mands when the arm is being actively moved. The mo-
tor system uses internally generated signals to make the
distinction between active movement and passive
movement, or postural, conditions. Computational
gates are opened and shut based upon whether these
internally generated signals are on or off.

Bullock and Grossberg (in press-a) have suggested
that the GO signal schematized in Figure 9b helps to
computationally define the postural state. Offset of the
GO signal is hypothesized to open a learning gate which
enables inflow signals to be adaptively recalibrated until
they are computed in the same measurement scale as
outflow signals (Figure 13). This type of learning occurs

DV
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+ | UPDATE
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FIGURE 13. A passive update of position (PUP) circuit. An
adaptive path PPC — DV, calibrates PPC-outflow signals in the
same scale as inflow signals during intervals of posture. During
passive movements, output from DV equals zero. Hence the
passive difference vector DV, updates the PPC until it equals
the new position caused by any passive movements that may
occur due to the application of external forces.
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in the mismatch mode, rather than the approximate
match mode, using the mismatch between the coor-
dinate systems as an error signal to drive the learning
process. Offset of the GO signal is also hypothesized to
open a gate which enables an outflow-inflow mismatch
due to a passive movement to update the outflow pres-
ent position command (Figure 13).

The circuit which accomplishes both of these learn-
ing and update functions is called the Passive Update
of Position, or PUP, circuit. The equations of a typical
PUP circuit are:

Present Position Command

d

Z P; = GIVi]* + G [M]* (111)
Outflow-Inflow Match
d
- M;=—M; + vI; — z;P; (112)
dt
Adaptive Gain Control
g;z,- = 0G(—ez; + [M]*). (113)

Equation (111) supplements equation (110) with an
update signal G,[M]* that is turned on only when the
passive gating function, or “pauser” signal, G, becomes
positive in the passive, or postural, state. Function z;
in (113) is an LTM trace, or associative weight, which
adaptively recalibrates the gain of outflow signals P;
until they are in the same scale as outflow signals v/I;
in (112).

In summary, offset of the GO signal within the VITE
circuit enables a pauser signal within the PUP circuit
to drive its learning and reset functions. Such pauser-
modulated learning of mismatches seems to occur in
several adaptive sensory-motor control circuits. For ex-
ample, Grossberg and Kuperstein (1986) have suggested
that a pauser signal which defines the postural state of
the ballistic eye movement system enables a mismatch
signal analogous to M; in (112) to adaptively recode
the representation of a light-activated target position
command into motor coordinates. This adaptive re-
coding scheme, which is called the Head-Muscle In-
terface, or HMI, permits the recoded target position to
be matched against the present position of the eye,
which is also coded in motor coordinates. Such a
matching process generates a movement command in
the form of a difference vector which measures the mis-
match between target position and present position,
much as in the VITE circuit of Figure 9.

Typical equations for an HMI circuit are:

Head-Muscle Match

d < <
X = A+ GZSY-Z Szp+ 1),  (114)
dl Jj=1 Jj=1
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Adaptive Gain Control

gt' z; = P{—Bz; + Sj[x]*},
and
Vector
V=00l bl ., Y
where
Match Gate
. 1 if f} S;>0
G S)= ~ (117)
! 0 i3 S=0

J=1

and [x;]* = max(x;, 0). In (114), I, is the corollary dis-
charge signal that represents the position of the ith
muscle, S; is the light-activated representation of the
Jth target position, z;; is the LTM trace that adaptively
adjusts the gain between S; and I;, P is a gating signal
that switches on in the postural mode, and V is the
output vector. Variable x; in (1 14) plays the role of vari-
able M;in (112).

Due to the general importance of schemes such as
the PUP circuit of (111)-(113) and the HMI circuit of
(114)-(117) for adaptively recalibrating coordinate
systems using vector computations, I have called all
schemes of this type Adaptive Vector Encoders.

A third role for inflow signals is needed due to the
fact that arms can move at variable velocities while
carrying variable loads. Because an arm is a mechanical
system embedded in a Newtonian world, an arm can
generate unexpected amounts of inertia and accelera-
tion when it tries to move novel loads at novel velocities.
During such a novel motion, the commanded outflow
position of the arm and its actual position may signif-
icantly diverge. Inflow signals are needed to compute
mismatches leading to partial compensation for this
uncontrolled component of the movement.

Such novel movements are quite different from our
movements when we pick up a familiar fountain pen
or briefcase. When the object is familiar, we can pre-
dictively adjust the gain of the movement to compensate
for the expected mass of the object. This type of au-
tomatic gain control can, moreover, be flexibly switched
on and off using signal pathways that can be activated
by visual recognition of a familiar object. Inflow signals
are used in the learning process which enables such
automatic gain control signals to be activated in an
anticipatory fashion in response to familiar objects
(Bullock & Grossberg, in press-b).

19. EXTERNAL ERROR SIGNALS FOR
LEARNING ADAPTIVE MOVEMENT GAINS:
PUSH-PULL OPPONENT PROCESSING

The previous discussion outlined several of the types
of learning whereby internal mismatches generate error



Nonlinear Neural Networks

CHOICE

J

ERROCA
SIGNAL

MOVEMENT
COMMAND
SIGMAL

g |

SSTM

i

SAMPLING ¢
SIGNAL

UNCONDITIONED
PATHWAY

CONDITIONED
PATHWAY

4

A
o ¥
FIGURE 14. The representation of the chosen first light gives
rise to an unconditioned movement signal and a conditioned
movement signal. The unconditioned signal causes movements
that are corrected by the conditioned movement signal via
learning. The conditioned pathway carries sampling signals
whose strength can be altered by second-light mediated error
signals. These sampling signals give rise to the conditioned
movement signal. The representation of the first light must be
stored until after the end of the saccade, so that the second-

light mediated error signal can act. (Reprinted with permission
from Grossberg & Kuperstein, 1986, p. 38.)

signals capable of adaptively recalibrating a coordinate
system or adaptively changing the gain of a movement
command. External error signals are also used to alter
the gain of a movement command. Such error signals
function like an external “teacher.” Unlike the hypo-
thetical teachers employed in many examples of back-
propagation, these error signals correspond to events
which actually occur in the external environment dur-
ing real-time learning.

Grossberg and Kuperstein (1986) have, for example,
demonstrated how the accuracy of eye movements
which do not successfully foveate a light can be im-
proved by using the position of the light on the retina
after the movement terminates as an error signal (Figure
14). Such an error signal adaptively changes the gain
of the movement command. Mathematical and com-
puter analyses demonstrate how to design such a system
so that external error signals due to nonfoveated lights
cooperate with internal error signals due to outflow-
inflow mismatches to generate movements capable of
adaptively maintaining their accuracy without the in-
tervention of a human teacher (Figure 15).
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The success of this learning model depends critically
upon the hypothesis that errors are corrected in a push-
pull, or opponent, fashion (Figure 16). The eye muscles,
or other effectors, are assumed to be organized in re-
ciprocal push-pull pairs, such as a pair for pulling to
the right (R) and the left (L). Typical learning rules for
such pairs are (expressed for convenience in discrete
time (n):

Hemifield Gradient Learning Rule
zri(n + 1) = dzgi(n) + [L(E)])* (118)

zpn + 1) = dzy(n) + [-L(ENT (119)
and the

Fractured Somatotopy Learning Rule
zpi(n + 1) = [dzp(n) + L(E)]* (120)
zri(n + 1) = [6z,:(n) — L(E)]* (121)

where in both cases E, represents the position of the
light error on the nth trial, and L(E,) is the error signal
by which it drives the learning of adaptive gains. Func-
tion L(w) is assumed to be an increasing function of w
= 0, and to be an odd function of w; viz., L(w)
= —L(—w). Variables zz; and z;; are the LTM traces
controlled by the ith command source to the right and
left motor effectors.

Due to the push-pull organization of the learning
process, the output signal Og(n) to the right muscle
depends upon the differences zz;(n) — z.;(n) of these
LTM traces, whereas the output signal O,(n) to the left
muscle depends upon the differences z;;(n) — zz;(n).
Such push-pull terms suggest a physical way to instan-
tiate the types of formal comparisons between incre-
ments and baseline terms that have been hypothesized
in a number of learning models (Rescorla & Wagner,
1972; Sutton & Barto, 1981). Opponent processing has
also been assumed to regulate learning in real-time
neural network models of classical and instrumental
conditioning (Grossberg, 1972a; Grossberg & Schma-
juk, 1987).

20. MATCH-INVARIANTS: INTERNALLY
REGULATED LEARNING OF AN
INVARIANT SELF-REGULATING

TARGET POSITION MAP

Among the most important types of problems in
neural network theory are those which concern the
adaptive emergence of recognition invariants. Many
different types of invariants can be identified; for ex-
ample, the emergent invariants encoded by the critical
feature patterns in an ART architecture enable the ar-
chitecture to group all exemplars that share certain
similarity properties into a single recognition category.
As in ART, a number of other types of invariants are
learned through a match-regulated process which gates
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Grossberg & Kuperstein, 1986, p. 89.)

on and off the learning mechanisms that enable indi-
vidual events to be grouped together adaptively. I call
such invariants match invariants to distinguish them
from invariants that arise (say) due to a passive filtering
process, such as Fourier-Mellin filtering.

Another model of a match invariant process was
developed by Grossberg and Kuperstein (1986). This
model shows how a matching process which defines the
postural state can regulate the learning of an invariant
self-regulating target position map in egocentric, or
head-centered, coordinates. This problem arises when

one considers how a visual signal to a moveable eye,
or camera system, can be efficiently converted into an
eye-tracking movement command.

To solve this problem, the positions of lights regis-
tered on the retina of an eye need to be converted into
a head-coordinate frame so they can be compared with
present eye positions which are also computed in a
head-coordinate frame. In order to convert the position
of a light on the retina into a target position in head
coordinates, one needs to join together information
about the light’s retinal position with information about
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FIGURE 16. Two ways to achieve opponent conditioning of ag-
onist-antagonist muscles: (a) An error signal increases the
conditioned gain at the agonist muscle strip and decreases
the conditioned gain at the antagonist muscle strip; (b) An error
signal increases the conditioned gain at the agonist muscle
strip. Competition between agonist and antagonist muscle strip
outputs causes the decrease in the net antagonist output. (Re-
printed with permission from Grossberg & Kuperstein, 1986,
p. 70.)

present position of the eye in the head (Figure 17).
Kuperstein and I suggested that this type of transfor-
mation is learned. Otherwise, the retinal system and
the eye position system—which are widely separated
in the brain and designed according to different internal
constraints—would have to be pre-wired with perfectly
chosen parameters for their mutual interaction. We
have shown how such a transformation can be learned
even if parameters are coarsely chosen initially and if
significant portions of either system are damaged or
even destroyed. This type of learning exhibits properties
which are of general interest in other biological move-
ment systems, in cognitive psychology, and in the design
of freely moving robots. I will therefore describe its
major elements here.

The most important properties of this transforma-
tion are that it is many-to-one, invariant, and self-reg-
ulating. As Figure 17 illustrates, many combinations
of retinal position and eye position correspond to a
single target position with respect to the head. When a
single target position representation is activated by all
of these possible combinations, the transformation is
said to be invariant (Figure 18a). The key difficulty in
understanding how such an invariant transformation
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is learned arises from its many-to-one property. The
many-to-one property implies that each retinal position
and each eye position can activate many target positions
in head coordinates (Figure 18b). Even after learning
takes place, each pair of retinal and eye positions can
activate many target positions in head coordinates, but
only the correct targét position should receive the max-
imal total activation.

What prevents learning due to one pair of retinal
and eye positions from contradicting learning due to a
different pair of positions? In particular, if pairing ret-
inal position R, with eye position E, strengthens the
pathways from these positions to target position Ty,
then why does not future pairing of R, with a different
eye position E; continue to maximally excite 7 instead

EYE
POSITION
& ~ " TARGET
7N
,1“
,J'
e 8
04
'O
RETINAL
POSITION
RETIN

FIGURE 17. Many combinations of retinal position and eye po-
sition can encode the same target position.
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and eye position that correspond to each fixed target position
all activate the same internal representation of that target po-
sition in head coordinates, the ensemble of such head coor-
dinate representations is said to form an invariant map; (b)
Every eye position and retinal position can send signals to
many target position representations.

of the correct target position corresponding to R, and
E,? How is a globally consistent rule learned by a net-
work, despite the fact that all computations in the net-
work are local? How can a target position map be im-
plicitly defined, such that each eye position and retinal
position, taken separately, activates a large number of

S. Grossberg

target positions, yet in combination always maximally
activate the correct target position?

Finally, the property of self-regulation means that
the map can correct itself even if a large fraction of the
retinal positions and/or eye positions are destroyed, or
if their parameters are otherwise altered through time.
Destruction of a single retinal position eliminates all
the combinations which that position made with all
eye positions to activate target positions. In a similar
fashion, destroying a single eye position can disrupt all
target positions with which it was linked. A self-regu-
lating map must thus be able to reorganize all of its
learned changes to maintain its global self-consistency
after removal of any of its components.

The self-regulation property is illustrated by the
computer simulation from Grossberg and Kuperstein
(1986) that is summarized in Figure 19. Each row in
Figure 19 depicts learning of target positions corre-
sponding to a different number of retinal and eye po-
sitions. More combinations of positions are represented
in each successive row. The first column in each row
depicts an intermediate learning stage, and the second
column depicts a late learning stage. The abscissa plots
topographic positions across the retinal and eye posi-
tions maps, whereas the ordinate plots the sizes of the
adaptive path strengths, or learned long term memory
(LTM) traces, in the pathways from these maps to the
target position map. Such a scheme clarifies how the
eye-head target position map that is schematized in
Figure 9 may self-organize.

The LTM traces in Figure 19 were randomly chosen
before learning began. A comparison of panels (b), (d),
and (f) shows that the LTM traces can reorganize
themselves when more combinations of positions are
associated in such a way as to (approximately) preserve
that part of the map which was learned when fewer
combinations of positions were associated. This self-
regulation property also holds when more combinations
are replaced by fewer combinations, or if the initial
LTM traces are not randomly chosen (Figure 20).

21. PRESYNAPTIC COMPETITION FOR
LONG TERM MEMORY: SELF-REGULATING
COMPETITIVE LEARNING

A complete model of how an invariant self-regulating
target position map can be learned, as well as variants
of this model, are described in Grossberg and Kuper-
stein (1986). Herein I emphasize one key point about
the model.

The invariance and self-regulation properties of the
TPM are due to the fact that all the LTM traces whose
pathways project to a single TPM cell readjust them-
selves in a compensatory fashion when any one of these
LTM traces changes due to learning (Figure 18). We
suggested that the synaptic endings in which these LTM
traces are computed contain autoreceptors (Cubeddu,
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Hoffmann, & James, 1983; Dubocovich & Weiner,
1982; Groves & Tepper, 1983; Groves, Fenster, Tepper,
Nakamura, & Young, 1981; Niedzwiecki, Mailman, &
Cubeddu, 1984; Siever & Sulser, 1984; Tepper, Young,
& Groves, 1984). In a network whose cells contain au-
toreceptive synapses, when a transmitter is released by
one synaptic ending, a portion of it can undergo reup-
take via the autoreceptors of other active and nearby
synaptic endings. Reuptake has an inhibitory effect on
the LTM trace of each active synaptic ending. Thus
autoreceptors realize a type of presynaptic competition
among all the LTM traces whose pathways converge
upon the same cell within the TPM. Autoreceptors

hereby mediate a novel type of self-regulating compet-
itive learning.

Such an LTM trace obeys an equation of the form:

Autoreceptive Associator

4 7= Sil—Fz; + Gx;— H 3 Sezig). (122)
dt k=1

In (122), z; is the LTM trace in the pathway from the
ith cell in the retinotopic map or eye position map to
the jth cell in the TPM; S; is the signal emitted by the
ith cell into this pathway; and Xx; is the activity of the
jth TPM cell. The terms ¢, F, G, and H are constants.
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FIGURE 20. Same as in Figure 19, except initial values of LTM traces were chosen equal to zero. Note that learned spatial maps
in Figures 19 and 20 agree, thereby illustrating the ability of map learning to overcome noise. (Reprinted with permission from

Grossberg & Kuperstein, 1986, p. 239.)

Equation (122) says that reuptake via autoreceptors of
a fraction of released transmitter, as in term —H
X Z%-1 Skz, inhibits the growth of the corresponding
LTM trace.

Match-regulated learning processes also occur in
applications to such spatio-temporal learning problems
as speech and language learning, and planned sensory-
motor control (Grossberg, 1982, 1987b; Grossberg &
Kuperstein, 1986). The totality of such known exam-
ples illustrate how combinations of internal matching
processes and external error signals derived from nat-
ural real-time environments can regulate stable self-

organized learning, recognition, and action in response
to noisy and unpredictable environments.
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