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1. BRIGHTNESS CONSTANCY AND BRIGHTNESS CONTRAST

A mark of a mature science is its ability to explain
large amounts of diverse data as manifestations of a few
basic principles or laws. Often when a particular empiri-
cal phenomenon is explained as an example of a basic law,
one then recognizes that the same law helps to explain
other data that, on the surface, seem to be unrelated. 1In
this way a basic law may radically reorganize the way we
think about and teach data, and even change our ideas about
what experiments are interesting and important.

In this unit I will review some data about brightness
constancy and contrast (Cornsweet, 1970), and show that
data of this kind are a consequence of a principle that
holds in all cellular systems (Grossberg, 1978). The visu-
al properties should therefore have analogs in nonvisual
cellular systems where the same principle holds. I will
then indicate that variations on this principle imply oth~
er visual properties, such as edge detection, spatial fre-
quency detection, and pattern matching properties, that on
the surface seem to have little to do with brightness con-
stancy and contrast, and that also can be anticipated to
occur in nonvisual cellular systems. ‘

An example of brightness constancy is illustrated in
Figure 1. A white light of prescribed intensity is shined
on the gray circle and its surrounding darker gray annulus.
Each point in this picture reflects a fraction of the in-
cident light back to the observer's eyes. The points in
the circle reflect a larger fraction of the incident light
than do the points in the annulus. The observer's task is
to match the apparent brightness of the gray circle with
the apparent brightness of one of the comparison circles,
which are illuminated separately. Suppose that the compar-
ison circle is chosen that is marked with a star.

Now double the intensity of the white light shining on
the circle and annulus. Each point in the picture reflects
twice as much light back to the observer's eyes. The
points in the circle again reflect more light than the
points in the annulus, because each point reflects a fixed
fraction, or ratio, of the light that reaches it. These
ratios are called reflectances. They are a property of the
paper from which the circle and the annulus are made. The
observer is again asked to match the apparent brightness of
the circle with the apparent brightness of a comparison
circle., Although each point in the circle now reflects
twice as much light, the observer chooses the same
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c?mparison circle as before! 1In fact, the same comparison
?1[Cle‘ls chosen even if the light illuminating the picture
is varied over a surprisingly wide intensity range.

Figpre 1.‘ B?ightness Constancy: Observers match the central gray
c;rcle inside Fhe annulus with the starred gray circle over a
wide range of illuminating intensities.

Thus the observer does not perceive the absolute a-
mount of light that is reflected from each point. Instead
the observer perceives a quantity that is independent of '
the illuminating light intensity over a wide range. Such a
quéntity is the reflectance of the gray circle, or the rel-
atlve.amount of light that is reflected by each point in
the circle. The observer's ability to compute this reflec-
tance‘depends on the fact that the same light illuminates
tbe circle and the annulus. If only the circle were illu-
minated, it would look brighter as the light intensity in-
creased. The observer's ability to estimate reflectances
must therefore be based on a comparison of the relative
amounts of light reflected from the circle and the annulus
since.this relative quantity does not change when the pic—'
ture is illuminated at successively higher levels of
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illumination. Brightness constancy refers to the observ-
er's perception that the brightness does not change as the
illumination of the picture increases.

Brightness contrast illustrates the same principle as
brightness constancy, but in a slightly different experi-
mental paradigm. Brightness constancy teaches us that an
observer often overlooks the absolute level of illumination
and computes instead a collection of ratios, or reflec-
tances, at each point in a picture, 1If we interpret this
jdea literally, and in the simplest way, we might say that
the observer computes a collection of ratios ©; from each
point v; in the picture, and that the sum of these ratios,
namely,

3
6, =1
ke ¢

is the same no matter what the light intensity. Another
way to say this is as follows: The total brightness of a
scene tends to be independent of the light intensity. The
total brightness tends to be "conserved," or is "jnvariant"
under changes in light intensity.

This observation shows why brightness constancy and
brightness contrast are related. Consider Figure 2. In
Fiqure 2, the two gray circles are identical, but one annu-
lus reflects much more light than the other. If the total
brightness tends to be conserved, then the circle that is
surrounded by a lighter annulus should look darker, whereas
the circle that is surrounded by a darker annulus should
look lighter. This is brightness contrast, and it is easi-
ly perceived when the pictures are carefully constructed.

Figure 2. Brightness Constancy: Central gray area on right looks
darker than central gray area on left, although the two circles
are physically identical.
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2., THE NOISE-SATURATION DILEMMA

What causes phenomena like brightness constancy and
brightness contrast? I will now show that all cellular sys-
tems face a very serious dilemma when they try to react to
patterns of incoming signals, and that the mechanism that
overcomes this dilemma has formal properties akin to those
of brightness constancy and brightness contrast.

Suppose that n cells Vir Vor eeer Vpr are given, Let
each cell have a finite number of sites that can be in ei-
ther an excited or unexcited state. For definiteness, sup-
pose that each cell v; has B excitable sites, of which
§i(t) are excited and B - xi(t) are unexcited at any time
t. Call x;(t) the activity, or potential, of v;. Let each
cell vy be perturbed by a continuously changing input I;(t)
that yill excite xj(t) of vi's sites (Figure 3). Thinklof
the size of I;(t) at any time as being the intensity of a
coded message to v at that time, or alternatively the av-
erage intensity of this message in a time interval [t - At
t + AF] measured from shortly before time t to shortly af-'
t?r time t. For example, Ii(t) might be the intensity of
light received at time t by a cell v; in an idealized
retina. '

V. V. v

i j K
TN -

AT /1 \A AT
i [
\ / \ )
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7

A

Ii(t) Ij (t) Ik(t)

Figure 3. Input Ii activates Xy cell sites at the cell

(or cell population) Vis i=1,2, ..., n,

How can the inputs I;(t) change through time? Two
::ry different types of change can be described in terms of
e total input strength
14

n
I(t) = E Ik(t)'

and the i e;(t) = Ij(t)/I(t) at
each vj. For example, let the vj represent cells in a
and expose the retina to a picture drawn in shades

of gray, such as Figure 1 or 2. Changes in I(t) then
n of the picture.

describe changes in the total illuminatio

The picture itself is characterized by the pattern e =
(Byr s wser e,) of ratios, or reflectances, which do not
change through time. Thus it is very important for a sys-—
tem to be able to tell what the pattern weights e(t) =
(81 (t), ©2(t) s coer e,(t)) are, whether or not the total

input I(t) fluctuates through time. We can say this more
generally as follows.

retina,

i

I, have relative

Figure 4a. Let a spatial pattern Il’ Iy, oo
intensity 83 = I;/1 at cell vy, i'= 1, 2, ..., n. The figure
lative intensities through the

interpolates a smooth graph of re

values 0; at the discrete integers i =1, 2, ..., N
X,
i
0 i
Figure 4b. Noise Contamination: Suppose that the inputs 1; have

small overall intensity because I= 0. Suppose also that the

cells vj are perturbed by small noisy inputs, either due to their
interval metabolism or to extraneous inputs. Then the cell acti-
vities x; can register both the inputs and the noise. The rela-

tive intensities 6; are consequently not accurately registered in

the relative sizes of the xj.

B

X.
1

i

Figure 4c. Saturation: Suppose that the inputs I; have large
overall intensity because 1>>0. Since each cell vj has only B
sites, even the smallest input I; may be large enough to turn on
essentially all the sites of vj if 6; > 0. Then all the activ-
ities xj will approximately equal B. Again the relative activ-
ities O: are not accurately registered by the Xx;. The x; are
winsensitive' to the ratios 8; because each of them has saturated

at B.
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The inputs (I;, Iy, ..., I,) form an input pattern at
every time t (Fiqure 4a). How well can a cellular system
register an input pattern in its pattern (x;, Xor seer Xp)
of activities? The ratio ©; measures the relative impor-
tance of the ith input I; in the pattern (I}, Iy, ..., Ip).
How well does the ith activity X; register the ratio 6;7?
In particular, as I is varied (just like the light intensi-
ty in Figure 1), do the activities x; remain sensitive to
the ratios 6;? In other words, can the system discern
which inputs are most important as the background activity
fluctuates?

In the system of Figure 3, the answer is "no." If
I(t) is too small, the inputs can get lost in any noise
that disturbs the cells (Figure 4b). 1If I(t) is too large,
the inputs can turn on all the excitable sites in all the
cells, thereby saturating the system and rendering it in-
sensitive to input differences across the cells (Figure
4c). This is the noise-saturation dilemma: How do cellu-
lar systems overcome insensitivity to input patterns at
both low and high input intensities? How do they balance
between the equally deadly extremes of noise contamination
and saturation in a world where inputs continuously fluc-
tuate through time? Below I indicate how competitive in-
teractions between the inputs allow the cells to retune
their sensitivity automatically as I(t) fluctuates, and to
avoid saturation as I(t) increases. I will consider only
the simplest examples, but they will already possess prop-
erties like constancy and contrast.

MPETITION TION SYSTEM

To understand the saturation problem more precisely,
suppose that the ith ce11 vy receives an input I; that can
turn on its B - X; unexcited sites by mass action. In oth-
er words, each unexcited site can be turned on at a rate
equal to the input intensity Ij, and all the unexcited
sites can get turned on independently of one another. Then
the total rate of turning on unexcited sites is (B - xi)Ii°
In neurophysiology, a multiplicative effect of inputs on
activities is said to obey a ghunting law.

After the input shuts off, we also need a mechanism
whereby the excited sites can shut off, so that the system
returns to an equilibrium point from which it can respond
to a new input without bias. Suppose that this equilibrium
point equals zero, or that all the excited sites can shut
off after the input terminates. The simplest hypothesis is
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that each excited site can spontaneously become unexcited
at a constant rate A, and that excited sites become unex-
cited independently of each other. Then the total rate at
which excited sites spontaneously become unexcited by mass
action is -AXj. )

In all, letting (d/dt)x; denote the net rate at which
sites become excited, we find that
(1) (d/dt)x; = -Axj + (B - x3)I;.

Equation (1) provides a more precise model than w? had
a few moments ago. However, model-building often rqulres
several stages of thinking before a good model is achieved.
One way to test our ideas at each stage is to study wheth-
er, in reponse to constant inputs Ij, the system outp?ts Xi
approach equilibrium values that substantiate the basic in-
tuitive ideas the model is seeking to represent. In gener-
al models, it is not a trivial exercise to prove even that
the outputs approach any equilibrium point in response to a
constant input. The outputs might, for example, oscillate
persistently in response to the input. 1In the present sit-
uation, this does not happen because (1) is a first-order
linear equation in the unknown variable Xxj, and can‘be ex-—
plicitly solved in any of several ways (Boyce and DiPrima,
1977). We do not need this general solution to analyze the
equilibrium responses that help us to build our Todel, but
once the model is built, we would need to study its dynam-
ics through time to achieve a complete understanding.

System (1) is inadequate for the following reéson.
Let the inputs form a spatial pattern I; = 6;1I. Given a
fixed pattern of "reflectances" € = (87, 63/¢ «c.y o)«
choose a background intenstity I and let the system reach
equilibrium. At equilibrium, (d/dt)x; = 0, so that (1)
implies that the equilibrium activities are

B6.I
(2) I TA+e1 "
Now keep © fixed and increase I. That is, process t?e
same pattern at different background activiti?s, as in
Figure 1. By (2), each xj approaches B as I increases,
even if ©; is small. This is saturation (Figure 4c). ‘
How can the system preserve its sensitivity to & as I in-
creases? In other words, how does the ith cell Vi compute
its "reflectance" ©; in response to a spatial pattér? I
=8I, i =1, 2/ ceer Ny of inputs? Since, by defini-
tion,
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_ n -1

each cell v; needs to know what all the inputs I1y Ios evey
I, are in order to compute ©j.

There exist two general ways for information from all
the inputs to reach each cell v;: Directly or indirectly.
Either all the inputs send signals directly to each v;, or
each input I; influences only v; after which all the vj
send signals to each other. The former way is said to use
a feedforward network, since all the signals move forward
from inputs to cells. The latter way is said to use a
feedback network, since signals can pass backwards among
the cells themselves. 1In this note, only the simplest
feedforward networks will be considered. These networks
already display some basic properties on which the study of
the much richer and deeper properties of feedback networks
can be based (Grossberg, 198l1).

In the feedforward case, all the inputs Iy, k =1, 2,
«+ss N, interact at v; so that v; can compute 8;. What
is the nature of this interaction? To understand this, re-
write (3) as:

(4) 8, = I,(I; + k:i 1)1

to emphasize that the ith input I; plays a special role in
determining the ith reflectance 8;. By (4), an increase in
I; increases 64, but an increase in any Iy, k £ i, de-
creases 8;. In other words, Ij "excites" ©; but each Iy,

k # 1, "inhibits" ©; (Figure 5). 1In other words, the

I, (0)

Figure 5. The input I; excites v; and inhibits all v,
k # i, in order to enable the activities xj to compute
the ratios 6;. This anatomy is called a nonrecurrent
(or feedforward) on-center off-surround network.

inputs compete to determine the reflecta?ce 8;. In neuro-
physiology, the inhibitory effect of an input Ik“on a cell
v: in a different input pathway is often c§lled .lateral
i;hibition.“ our way of rewriting the ratio 83 in (4).thgs
suggests that lateral inhibition helps to solve the noise

i ilemma. o
satur:zl::eglmore, however, than the idea of lateral inhib-
ition to model this intuition dynamicallyt We need to.mar—
ry the ideas suggested by (4) to mass action, or shunting,
laws for the activities xj. The excitatory effect.of I; on
v:'s unexcited sites is already cast as a mass acFlo? rule
i; the (B - x;)I; term of (1). To tra?slate our 1ns1ghg
about lateral inhibition into mass action terms, we need to
understand how the sum

L I
kAL X |

of inputs in (4) can shut off vi's excitgd sites. Th?lem—
plest mass action network that models this property d% hi;f
from (1) by adding a term that exp:ess?s the latefal 1n' :
itory effect in mass action terms. This network is define

by the system
- -x; L. I
(5) 3 xg = -Axg 4+ (B - x)Ty - Xi g Tk

i=1, 2, eeer n. In (5), I3 excites vj via the term
(B - xi)Ii just as in (1). The new term,
-x; L I

(6) A K,
describes how the inputs Iy, k # i, inhibit (note the
minus sign) the excited sites of v; (which number xj) by
mass action. . .

The gain of x; is its decay rate. The gain of x; 1is
found in (1) and (5) by grouping together all the terms
that multiply x;. In (1), the sum of these terms is A +
I.; in (5), it is A + I. The two gains differ by the sum
il

I I
kFL K

of inhibitory signals. In both (1) and (5), the inputs
automatically change the gain of xj, but in (5), these i?—
puts include inhibitory inputs. We now note how automatic
gain control by the inhibitory signals overcomes the satu-
ration problem.

Present a spatial pattern Ij = 6;I to (5) and let s
each x; reach equilibrium. Setting (d/dt)x; = 0, we fin

that
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7 BI;

() Xi=m=eix_§-‘}.

In (7), xj remains proportional to 6; no matter how intense
I is, and thus estimates 6; up to a positive constant. The
saturation problem is solved! Furthermore, the positive
constant BI(A+I)'1 depends on the total input intensity, so
that the feedforward network is sensitive to the overall
brightness of the input field. This brightness effect has
a form that is familiar in visual studies. 1Indeed, term
BIi(A+I)_1 in (7) has the form of a Weber-Fechner law
(Cornsweet, 1970). Finally, the total activity,

(8) X = Ekxk = ;%%r

is independent of the number n of active cells. This is
the conservation law that we used to motivate brightness
contrast. Note, however, that x is not independent of the
total input I, although BI(A+I)'1 does approach B as I
increases. The saturation problem is hereby overcome by
competitive mass action interactions. These interactions
imply properties of constancy and contrast as automatic
consequences,

4. NOISE SUPPRESSION AND INSENSITIVITY
TO ZERO SPATIAL FREQUENCY

Equation (5) illustrates a general principle in its
simplest form, and instructs us to study mass action com-
petition as a major problem of cellular design. Our task
is now to classify how more complex competitive systems
solve the saturation problem while accomplishing other
tasks as well. Some illustrations of this classification
are described below.

In (5), each activity x; can fluctuate between B and
O. The inhibitory term

-%x: =

iy Tk

cannot drive X; below its passive equilibrium point 0.

This is not always true in vivo, where a cell potential can
sometimes be inhibited below the passive equilibrium point.
How does this fact alter pattern processing? The simplest

example is the system

(9) H% Xy = -Ax; + (B-xi)Ii - (Xi"‘c) k;ii Ik'
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which differs from (s) only in that xj can fluit:ateoii;n
tween B and -C, rather than B and O, where -C é-
in vivo B represents the saturation point of.a sohzﬁzel

i int of a potassium C ¢
channel, -C the saturation poin : e,

ffler and Nicholls, .
B is much larger than C (Ku : : :

2nd To see how the inhibitory saturation point influences

pattern processing, let (9) process the spatial pattern

I; = 6;1. At equilibrium,
+ __C
(10) x; = B (o; - ) -

i -1 The constant
; only if @; > C(B + C) .
2{8(102;’;112 gn dy o that 83 must exceed to
ite Xx; To see how the inequality B > C influences
Smttern b i i implest case: Suppose
pattern proce551ngi consider the simp s ber ot
i - the ratio o
that the ratio CB matches e
i e number of ce
cells excited by each I;, namely 1, to E? _mnee 1)_1' e
inhibited by Ij. namely (n - 1). If CB =
-1 -
B + C) = 1/n.
. Now, let a uniform pattern Ij = (1/n)1I perturb tge
system. NoO matter how intense I is, all &; = 1/n, an )
thus, by (10), all x5 = 0. In other words, thi networ
supp;esses uniform patterns, Or patterns with 'ieiisizi
is i familiar property 1
tial frequency." This 15 a :
(Cornsweet, 1970), and its physical useful:issfi:n;ﬁ:i;:i-
i ise” the "uniform par o
By suppressing "noise’ or : . :
tirnsp the network can focus on informative diiiire:ceie;n
' i le ustra
i i i space. This examp 1
input intensities across . . raves
ifi i jlluminate the impor
how a classification theory can : o e
design by showing how i
of each aspect of network o .
the transformation from input pattern to activity pattern

5 EDGE ENHANCEMENT. SPATIAL FREQUENCY DISTRIBUTION.

rty generalizes to systems

noise suppression prope :
T interactions can depend on

whose excitatory and inhibitory
intercellular distances, as in the system
n
n
-X I.Cu: - (x;4D) I IyByy
(11) 5% x; = -RAx; + (B-x3) kzl kCki i L ,
where Cpj; (Egj) is the excitatory {inhibitory) ioefft:;::t
i i ression at vj
from v, to v; (Figure 6). Noise supp.
is Xx; 2 0) oécurs in response to a uniform pattern (all
i

ey = 1/n) in (11) if
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k i

Jecrease ;gieexc@t:tory intercellular coefficients Cy; often
efficients E quickly tha? the inhibitory iNterCellutgr co
ki as a function of the distance between v d

Figure 6.

i and V-

(12) B L Cps b
KLy ki LD kgl Exi,

which generalizes cp-1
=(n-1"1in (10)
. . If i -
action coefficients Ck; and Eg; dec tbe e
i ki rease as the distance

between v, and
k and v; increases, t
oropertick prevail. , then several other important
To i
bose thatliustrate the property of edge enhancement, sup-
otouce Ta) tec;angular pattern perturbs such a network
. Then a cell's activi i

{aure Tal. Then c tivity x; will be suppressed

ractions fall so far outside the rectan-

gle or so far inside i

. : it that the pattern lo i

its interaction coefficients Cki and Ep; ot
ie

Consequently,
I
i X,
i
i
(a) '
1.
i X
cjnts /7ét\ N |
_ (b)
Figure 7a. The cells i
gure 7a. 1 suppress activity patterns that they perceive
Figure 7b.

Hence they generate s i
Sines of the tnout rectansle. uprathreshold reactions only at the

only activities near the edge of the rectangle will be en=
hanced (Figure 7b) . More generally, the spatial gradients -
of activity in any input pattern are matched against the
spatial gradients in each cell's interaction coefficients
to enhance the activity of only those cells to whom the
input pattern 1ooks non-uniform. such cells have somé
properties of spatial frequency detectors (Robson, 1976) .
pattern matching is illustrated as follows. Suppose
in (10) that each input I; is a sum of two inputs Jj and Kj
whose patterns J = (Jy v Jor eeer Jn) and K = (Kyr Kor eeer
K,) are to be matched. In many learning and developmental
situations, one of the patterns (say J) is a learned feed-
back template, Or expectancy, against which the other pat-
tern (say K) of afferent data is to be matched (Grossberd,
1980a). In these examples, one seeks the property that a
match between J and K will amplify the activity pattern
(X)r XQr eoer %pn) » whereas a mismatch between J and K will
suppress the activity pattern. To see€ why this happens,
suppose that J and K are maximally mismatched, as in Figure
g8a. Then their peaks and troughs are out of phase and add
up to form an almost uniform total pattern (Il, Inr eeer
I,). By (10), any uniform pattern is suppressed. Thus
pattern mismatch attenuates network activity. BY contrast,
if the two patterns match, then there exists a parameter
o« > 0 such that Jj = oKj i =1, 2¢ eeer N Equation (10)
implies that

(a)

(b)

Figure 8a. The two patterns are mismatched., Hence their sum is more
uniform than either one of them, and tends to be quenched as noise.

Figure 8b. The two patterns are matched, and hence their sum produces
a more vigorous reaction than either one of them would produce alone.
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B+ Q@+ K g _ £,
1 14

(13) T TA+ (1o K B+C

where
K=.g Kl
i=1
and 8; = I;/I. 1In other words, a match between J and K

amplifies each x;, as comparison with (10) shows, without
changing the pattern 6.

6. CLASSIFICATION OF COMPETITIVE CELLULAR SYSTEMS

The examples above show how solving the noise-satura-
tion dilemma leads us to study mass action competitive sys-
tems, and that formal properties of these systems help to
explain and to interrelate visual phenomena from a funda-
mental viewpoint. After a while, one notices that the vi-
sual phenomena are special cases of cellular properties
that occur in nonvisual systems as well, and one begins to
realize that the classification of competitive properties
is a major biological problem. In this module, some of the
most basic properties have been described, but the module
does not even begin to discuss how competitive feedback
signals between the cells themselves can transform input
patterns and store them in a short term memory.

Is there a general way to start a classfication theory
for competitive systems? The answer is "yes," and it is
summarized in the articles by Grossberg (1980b, 1981).
Whether or not you pursue this classification, I hope that
1 have made clear the need to find a principled explanation
of our data, and the conceptual power that such principles
bring when we are lucky enough to find them.

1. EXERCISES

1. Prove that (2) is the steady-state response of (1). Can you solve
(1) at all times t > O given any initial value x;(0)? How does

the rate with which x;(t) approach its steady-state depend on I;?
2. Prove that (7) is the steady-state response of (5).
3. Prove that (10) is the steady-state response of (9).
4. Prove that (12) guarantees noise suppression by (11).

5. Prove that (13) is the steady-state response of (9) to the sum of
two matched patterns.
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6. 1In (11), by contrast with (5), the steady-state activities x; are

not proportional to 8; at all background intensities I. Study
how each ratio

n
X: =x; (2 x)
i 1ol k

deviates from 6; as I increases. Read Cornsweet (1970) to com-
pare how this deviation is related to changes in perceived colors
at high luminances. Why does this deviation occur in (1) but not
in (5)?

7. Philosophical exercise: Is competition good or bad? Discuss in
terms of a dialectic that tries to balance between the two equally
deadly, but complementary, extremes of noise and saturation.

8. GCeneral question: Can you think of other biological systems where
competition occurs? What is the analog of constancy? contrast?
edge detection? etc,
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9., ANSWERS TO EXERCISES
1. Set (d4/dt)x; = 0 in (1). Then
BI,
N ETA+1
i
Since I; = 651, (2) is immediate.
To solve (1), rewrite the equation as
d =
ot i YA I X =1
If 15 is constant, then
(A+1.)t (A+1,)t [dx,
1 _ 1 —i .
d{'% L ac (AT
Consequently,
(A+1.)t (A+1.)t
- t = o,
dt % X € i
Integrate this equation from t = 0. Then
(A+I.)t b oa+I,)v
P ) ~x, (0 =1, | e 1 dv.
€ i i i
Thus : )
-(A+1I)t 1, -(A+I )t
i i . i
xi(t) = xi(O)e Ve l-e .
The rate is A+I;.
2. Set (d/dt)x; = 0 in (5) and use the fact that
n
= I
=8 L
to find (7).
3. Set (d/dt)x; = 0 in (9) to find

BIi -C Z‘ Ik
X, = a »
A+ T I

k=1. k

BI. - C(I-I.)
e SR
i A+ 1
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4.

8.

(B+C)6.1I - CI
S N

3= A+ 1 *
x. = (B+O)1 8. - c
i~ A+1 i B+cC|

The steady-state response of x; to I; = 6;I is

n
1 5§ 6,(BC . - DE .)
k=1 k ki ki .

n
A+1 5 6( . +E.)
k=1 k' ki

x, =
i
ki

If all 6, = 1/n, then by (12) all x; < 0.

Since J; = 0K;, the reflectances of patterns J and K are the
same, namely 8;. However the total activity of the pattern sum

I=31(3;+K;) =(1+ o)X,
i

When these two facts are substituted into (10), (13) results.

The equilibrium value of x; found in Exercise 4 supplies the
tool., Form the ratios

-1
X. =x, (T x) ",
i i k k

and differentiate X; with respect to I. In particular, note how
the maximal and minimal ratios X; change as 1 increases. These
changes are due to the fact that the interactions Cy; and Ep; in
(11) depend on intercellular distance in a nontrivial way.

On the cellular level, competition is needed to process patterns
at all, Many different competitive rules can all solve the
noise-saturation dilemma. Some rules are good for some purposes
but cannot achieve other purposes. Also the competitive rules
can break down to destroy the balancing act. For example, formal
seizures and hallucinations can be traced to shifts of competi-
tive parameters in neural networks.

See Grossberg (1978).



