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Abstract - The raw sensory input available to a
mobile robot suffers from a variety of shortcomings.
Sensor fusion can yield a percept more veridical than
is available from any single sensor input. In this
project, the fuzzy ARTMAP neural network is used
to fuse sonar and visual sonar on a B14 mobile robot.
The neural network learns to associate specific
sensory inputs with a corresponding distance metric.
Once trained, the network yields predictions of
range to obstacles that are more accurate than those
provided by either sensor type alone. This
improvement in accuracy holds across all distances
and angles of approach tested.

I. INTRODUCTION

Mobile robots require accurate representations of their
surroundings  for navigation. Acquiring these
representations  involves stages of increasing
abstraction, transforming analog streams of sensor
values into a symbolic view of the world. Sensor fusion
is a topic of great current scientific interest (Luo and
Kay, 1989; Huntsberger, 1992; Murphy, 1994; Murphy,
1996). Individual sensors tend to have shortcomings
limiting their applicability; sensory data can be fused,
however, and the fused percept can be more veridical
than that provided by any single sensor.

This research employs a B14 mobile robot from
Real World Interface, Inc. (Jaffrey, NH), a cylindrical
robot measuring 14” in diameter (Figure 1), equipped
with a synchro drive that permits forward and reverse
translation and rotation in place. Arranged around the
B14’s surface are sixteen infrared proximity detectors
and sixteen sonar range finders, distributed uniformly
around the robot’s perimeter; and a camera mounted on
a pan-tilt platform. This project uses only the frontal
eight of the B14’s sixteen sonar and infrared sensors.

The robot learns to predict the frontal distance to
obstacles using variations of the fuzzy ARTMAP neural
network (Carpenter, Grossberg, and Reynolds, 1991;
Carpenter, Grossberg, Markuzon, Reynolds, and Rosen,
1992). The training process is self-supervised, i.e., the
robot is not provided with the distance to obstacles. A
relative distance metric is obtained using odometry, as
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Figure 1: Overhead view of the B14 robot, showing
its ranging sensors. Closest to the robot are infrared
sensors, labeled 11-18. These detect obstacles at close
range, and specify the angle at which the obstacle is
encountered. Sonars are labeled S1-S8 (beams
emanating radially from robot). A camera is
mounted on top of the robot, and provides gray-scale
images. An edge detection algorithm is applied to
these images, yielding visual sonar, a distance metric
depicted as sensors VI-V8 (See Fig. 2). Odometry
provides the distance D to the nearest obstacle.

the robot randomly explores its training area. Snapshots
of the sensory input are recorded as the robot moves in a
straight line. When the robot encounters an obstacle
detected with the infrared sensors, the on-board
odometer provides a relative distance to associate with
the sensory snapshots. The neural network is trained to
learn the association between the robot’s sensory input
and the distance to the obstacle. The robot thus learns to
interpret its sensory input on its own, without human
intervention. This self-supervised learning can allow the
robot to explore new environments on its own. This
ability is complemented by the ARTMAP network’s
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Figure 2: Visual sonar’s view of a room. The height
of the points reflect their distance from the robot,
and are returned as the values of sensors VI-V8.
Perception is accurate in (a), but in (b) markings on
the floor are mistaken for an obstacle

capacity for one-shot learning, which allows it to form
associations between inputs and percepts with a single
presentation.

Input vectors to the ARTMAP neural network are
collected from the camera and from the sonar sensors.
The camera provides a crude estimate of relative
distance to objects through visual sonar (Horswill,
1994), obtained by dividing the image into eight
columns and searching for edges from the bottom of
each column. Under the assumptions that the robot is
operating indoors and that obstacles are on the ground,
the distance of an edge from the bottom of a column is
proportional to the distance of the corresponding
obstacle from the robot. Figure 2 provides an example
of visual sonar working in an office setting. The points
plotted on the image represent the lowest edge in each
column, and the relative heights of these points are the
distance metrics returned by visual sonar. The sensory
input from visual sonar is thus a vector of eight real-
valued numbers (VI-V8), with low numbers indicating a
nearby obstacle and high numbers indicating free space.
The visual sonar sensor detects the bases of walls well,
but is confused by image discontinuities that do not
correspond to obstacles, as resulting for instance from
textured carpeting, door sills, or markings on the floor
(e.g. Figure 2(b)).

Sonars are the other main sensors used. They emit
an ultrasonic beam and use the amount of time until the
echo to calculate distance to obstacles. The input to the
neural network from the sonars consists of a vector of
up to eight numbers (S1-S8), describing the distance to
obstacles as measured by the B14’s eight frontal sonars.
The raw sonar data suffer from a variety of limitations;
the returning echo may have been emitted by a different
sensor, or may have bounced off several surfaces before
being detected. Ultrasonic and visual sonar both have
sensory limitations, but in different circumstances, and
so they seem apt choices for sensor fusion.

II. DATA SET COLLECTION

A data set of 10167 data samples has been collected,
each consisting of a set of sensor readings and an
associated distance metric obtained through odometry.
The values specified are SI-S8 for sonar, VI-V8 for
visual sonar, the associated distance value D, and the
angle of approach to the obstacle, specified by the
infrared sensor I, which detected it. Samples are

recorded every 20 cm as the robot travels in a straight
line. When an obstacle is encountered, as measured by
the infrared proximity detectors, a new direction is
chosen randomly and the process is repeated. The data
collection is conducted in an empty area, approximately
2m by 3.5 m, bounded by flat surfaces (walls and
styrofoam panels).

The recorded distance D is specified as a
continuous value. As it provides the teaching signal to a
classifier, the distances are binned into 20 discrete
categories. Binning is nonlinear, with small distance
bins up close and bin size proportional to the square root
of the distance. This nonlinear binning allows for more
accurate predictions at shorter distances. Figure 3(a)
shows these 20 distance bins, with the width of the
column indicating the range of distances covered by the
bin and the height of the column representing the
number of samples in the bin. The semicircular sector
plot in Figure 3(b) gives a spatial view of the density of
the data collected. The radial bins correspond to the
different angles of approach specified by the infrared
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Figure 3: Density of data sampling. (a) Data
samples for each distance bin. (b) Data samples for
each distance bin broken down by angle of
approach. The non-linear increase in size of
distance bins is shown in both plots.
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detector I, which detected the obstacle. The radial

thickness of each cell in the semicircle also reflect the
non-linear binning of distances. It is important to note
that although in this and subsequent figures we break
down the data by the angle of approach for clarity, the
neural network is trained by lumping all inputs from a
given distance regardless of angle. Figure 3 shows that
most encounters are at head-on approaches, though all
bins except some of the outermost are represented.

III. RESULTS

The fuzzy ARTMAP neural network is applied to the
data set, learning to associate different combinations of

sensory inputs with the distance D. For each of the n
data samples, the network produces a predicted distance

Pi» which is compared to the recorded distance Di'

Simulations are compared using € , the average absolute
predictive error over the data set:

2 |pi-D|
eoizl 1)

n

Fifteen simulations are performed, each with a different
combination of inputs provided to the neural network
for fusion. Combinations range from sonar only or
visual only to mixtures of both sensory modalities.
Specifically, the sensor combinations use two, four or
eight of the available values (sonar or visual), in each
case using the most central sensors, starting with S4, S5
or V4, V5.

Five-fold cross validation ensures that the training
and test sets are always disjoint. More specifically, the
data set is divided into five partitions. One at a time,
each of these data partitions is reserved as the test set
while the network is trained with the remaining four.
This process is repeated five times, each time using a
separate data partition for testing, and the remainder of
the data set for training. Moreover, to enhance the
accuracy of prediction, and the repeatability of the
results, five copies of the neural network are trained,
each with a separate ordering of the training set. The

final predicted distance p; is the average of the

predictions of these five networks. Thus, for each
reported simulation, twenty five copies of the neural
network are used, one for each of the five orderings of
the five training sets. Table 1 compares the average

absolute error for the fifteen simulations performed.

Table 1: Average absolute error (cm), for all fused
combinations of sonar and visual sensors.

Sonar

0 2 4 8

31.1 | 155 | 13.1

347 [ 12.6 | 11.2 | 11.1

Visual

250 | 10.3 | 10.5 | 10.7

®w AN O

16.7 | 10.6 | 10.7 | 10.7

The best result, highlighted in boldface, uses the two
most central sonar sensors and the four most central
visual sensors (25+4V). However, all of the results
using any of the sonars and at least four visual sensors
are nearly as good. Table 1 demonstrates the advantage
provided by sensor fusion, both within and between
sensory modalities. When using only one type of sensor,
performance is proportional to the number of sensors
used. The predictive error is always less, however, when
both sonar and visual data contribute to the prediction.

Before showing our results with the ARTMAP network
we illustrate the accuracy obtained with our data set
using the raw sonar data. Figure 4 shows, for the two
frontal sonars (S4, S5), the average absolute error as
given Equation 1, broken down by impact angle (11-18).
Below each semicircle, the raw error data are plotted as
a function of distance, again broken down by angle of
impact, with the leftmost box corresponding to I1 and

. the rightmost box corresponding to I8. Each point in

these scatter plots is the calculated difference between
measured and actual distance. If each sonar were
“perfect”, all the points would be zero, i.e., the data
would lie on the horizontal midline. These error data
show some interesting trends: the majority of the points
fall above the horizontal midline, suggesting that sonar
tends to overestimate, probably due to echoes bouncing
against more than one surface or cross-talk between
sensors. However, the data show a tendency to
underestimate at large distances. It is unclear whether
this is due to the sonar itself (e.g., through reflected
echoes), or to the fact that we are using our odometry to
measure “actual” distance, and odometry is likely to
contain a systematic error over the range of distances we
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Figure 4: Predictive error of the raw sonars. (a) S4,
and (b) S5. Semicircular plots show average absolute
error level in each radial/distance bin (bins not
shown were not sampled in data collection). Small
dot plots show error for each datum collected, one
plot for each of the eight angles of approach. Y axis
thus shows predicted distance minus recorded, and is
in the range [-200, 300] (cm). The X axis range is
from [0, 325] (cm).

used. It should also be noted that these results for sonar
at high angles of approach are unusually good. One
might expect performance to decline.in proportion to
this angle. One explanation can be seen in the small
plots showing the raw data. Note that each sonar
displays a trend: underestimating at short distances and
overestimating at long distances. Necessarily, there will
be a transitional point where predictions are accurate.
For example, in (b), prediction at I, D=3m is
unusually good. Looking at the leftmost raw data plot,
however, we see that at large distances, i.e. to the right
in the plot, the few predictions made fall right on the
axis. This is an artifact of the crosstalk, and should not
be taken for an accurate prediction. Most of the
diagonally oriented trends in the raw data are indicative
of noise due to crosstalk between the sonars and
complicate the extraction of useful information.

These figures make clear that relying on raw sonar

Avg. Abs. Error (cm)

140
120
100 |
80
60
40 }
20 k

0 50 100 150 200 250 300 350
distance to obstacle (cm)

Figure 5: Predictive error of the min(S4, S5) model.
(a) Average absolute error in each sampling bin.
Model predictions of distance are accurate at short
distances and head-on approaches, but performance
is impaired at longer distances or more oblique
angles of approach (b) Absolute error by distance.
Dots show absolute predictive error for each datum,
dotted line shows average absolute error for each
distance bin, and error bars indicate one standard
deviation.

data is inadequate for safe navigation. A simple way of
getting rid of some of the noise is to take the minimum
value returned by (84, $5).This assumes that at least one
of the pair will register the appropriate echo. The
validity of this idea is shown in Figure 5, which shows
the predictive ability of a sensor based on min (s4, s5).
Accurate prediction is extended to most of the central
angular bins, representing relatively orthogonal angles
of approach (Fig. 5(a)). It is interesting that the
min(S4,55) seems to do poorly for obstacles straight
ahead at large distances, as is evident in the outermost
cells for sectors I4 and IS5 in Fig.5(a). The individual
scatter plots in Figure 4 suggest the reason for this
problem: notice that both sonars, especially at the
central angles, tend to generate a lot of underestimates at
larger distances, so that min(S4,S5) actually worsens the
results. In Figure 5(b), the absolute error of the
prediction is shown for each sample in the data set
(dots). The averages of the absolute error values are
plotted, as well as the standard deviation within each of
the distance bins. The lowest level of error is seen in the
middle range, between one and two meters. This is
problematic for sonar-based navigation, as the high
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Figure 6: Predictive error of the fuzzy ARTMAP
(25+4V) fusion model. Plot contents and scales are
the same as in Figure 5. (a) Predictive accuracy is
equal or better at all distance and angle bins. In
particular, prediction of distance is improved at high
angles as well as at large distances. (b) The average
absolute error is less at all distances, and the
variance of the error is smaller.

level of error close to obstacles increases the likelihood
of collisions. Figure 5(a) demonstrates that much of the
error at short distances occurs during oblique
approaches. Neither S4 nor S5 receive the appropriate
echo, and so overpredict the distance to the obstacle.
Error rises again at higher distances, between two and
three meters, but this is less of a problem than the error
at short distances. With this illustration of the problems
of prediction based on raw sonar, we can look in more
detail at the result of fusing sensory information with
fuzzy ARTMAP.

Figure 6 illustrates the predictive performance of
the neural network fusing 2S+4V, i.e. the two most
central sonars and the four most central visual sonars.
Table 1 showed this to be the combination of sensors
yielding the overall lowest average absolute error.
Figure 6(a) shows improvements in prediction in nearly
every angle and distance bin. Performance at high
angles of approach and distances is dramatically
improved. Even more important, prediction at close
range is now quite accurate at all angles of approach.
This 1s more visible in (b), which shows that average
absolute predictive error is a nondecreasing function of
distance. Predictive accuracy thus now has the desirable
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Figure 7: Fusion wi
frontal sonars are fused. (b) Four central visual
sensors are fused.

property of being roughly proportional to distance.
Moreover, the standard deviation of the error is
significantly smaller than in Figure 5, and it is also
proportional to distance. Together, these features make
the fused sensors a safer basis for navigation than the
raw sonar data.

IV. CONCLUSION

These results demonstrate the viability of fuzzy
ARTMAP as a methodology for fusing data across and
within sensory modalities. Using two sonar and four
visual sensors, a fused system has been devised which
outperforms the raw predictions of distance of the two
frontal sonars. The obtained system is robust in several
key aspects. It is more accurate at high angles of
approach to an obstacle, compensating for sonar’s
inability to detect walls at oblique angles. Furthermore,

- the errors made by the fused system are small at short

ranges and larger at long ranges, and the variance of the
error follows the same trend. This allows the robot to
navigate with confidence at close quarters.

To demonstrate the benefit of fusing sensors across
modalities, Figure 7 plots the predictive error obtained
by training the network with either (a) two sonars, or (b)
four visual sonars. These are the sensory components
that were fused to produce the results in Figure 6. In
either case, with only one modality available, more
errors are made (Table 1). Note, however, that the errors
are in different areas. In Figure 7(a), the sonar based
fusion system makes most of its errors at large
distances, and does fairly well at short ranges. In (b) by
contrast performance at a distance is reasonable, and
short-range prediction suffers. When the robot is too
close to a wall, visual sonar misses the wall entirely. It
needs to see the edge at the bottom of the wall to detect
it successfully. As the two sensory modalities make
errors in different areas, the neural network is able to




combine them to produce a system that exceeds the
capability of either separate modality. It was noted that
the presence of styrofoam panels helps the performance
of the sonar sensors. The improvements from fusing
sensor types might be even more pronounced in a more
typical indoor environment where specular reflections
from walls severely limit the functionality of sonars.

There are other possibilities for reducing the error
inherent in the raw sonar signal. Borenstein and Koren
(1995) have proposed an “error eliminating rapid
ultrasonic firing” algorithm to reduce the number of
erroneous readings returned by the sonars. While
apparently yielding robust results, this method requires
detailed control over the timing sequence of firing the
sonars, a degree of control not always available. The
method presented here requires nothing more than the
sensory data already available.

Others have studied the application of neural
networks to the fusion of sensor data (e.g. van Dam,
Krose and Groen, 1996) In particular, Racz and
Dubrawski (1995) use the fuzzy ARTMAP network to
classify a robot’s position within the neighborhood of a
door. In their study, however, the position of the robot
within its environment is explicitly specified at the start
of data collection. In this research no such supervision is
necessary, as the robot discovers the retrospective
distance to obstacles on its own, through self-guided
exploration of its environment. Such a capacity allows
the robot to adapt to new environments on its own, a
process aided by the fuzzy ARTMAP network’s ability
to learn incrementally.

All of the results presented here are based on off-
line training and testing using a data set. The fact that
training is done in batch mode should not be taken_ as
evidence that the fuzzy ARTMAP network cannot learn
on-line. Off-line learning is used here so that various
fusion models may be tested against the same set of
data, yielding comparable results.

Future work on this project will move beyond this
off-line paradigm. The best performing algorithms will
be put into the robot and used to perform visualization
studies. Some work has been done in this area by having
the robot rotate and plotting the range predictions,
yielding a view of the room in polar coordinates. To
make the work more directly comparable to existing
work, however, we plan to implement an occupancy
grid framework (e.g. Elfes, 1989). Using this
framework, range predictions will be used to fill in the
cells of the occupancy grid, gradually filling in a picture
of the room as the robot moves about.
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