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ABSTRACT

An ARTMAP neural network is used to integrate visual information and ultrasonic sensory information on a B14 mobile
robot. Training samples for the neural network are acquired without human intervention. Sensory snapshots are retrospectively
associated with the distance to the wall, provided by on-board odometry as the robot travels in a straight line. The goal is to
produce a more accurate measure of distance than is provided by the raw sensors. The neural network effectively combines
sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visual-
izations of the robot’s environment. The maps produced point to specific problems of raw sensory information processing and
demonstrate the benefits of using a neural network system for sensor fusion.
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1. INTRODUCTION: NEURAL SENSOR FUSION

Mobile robots require accurate representations of their surroundings for navigation. Acquiring these representations involves
stages of increasing abstraction, transforming analog streams of sensor values into a symbolic view of the world. Sensor fusion
is a topic of great current scientific interest!>>#, Individual sensors tend to have shortcomings limiting their applicability; sen-
sory data can be fused, however, and the fused percept can be more veridical than that provided by any single sensor. A robot’s
perception of its local environment must be as accurate as possible. To increase this perceptual accuracy, we use a neural net-
work to integrate up to sixteen sensory inputs, from both sonar and visual sources. The estimate of range is based on several
sources, and is less vulnerable to noise or other errors from the individual sensors. This work subsumes an earlier project on

integrating sensors with a neural network>, applying the fused sensor to mapping the robot’s local environment.

Two important aspects of robot motion are reactive control and planned navigation. Reactive control is concerned with ’gener-
ating the robot’s next motor command, based on immediate sensory information. Navigation takes a more global approach.
‘When the robot needs to attain a spatial goal, navigation is required to avoid any obstacles, or to plan complex routes. By find-
ing which of fifteen combinations of sensor inputs yields the best predictive performance with an ARTMAPS7 neural network,
this project first develops a fused sensor adequate for reactive control. The performance measures of these neurally integrated
combinations are compared with one another and with a simpler fusion scheme. This more reliable sensor makes reactive con-
trol safer, minimizing the chances of collision. Navigation, however, requires a map of the environment for path planning. In
the second part of this paper, the best performing combinations of inputs are used to produce maps of the environment. These
maps are produced by mapping sensor predictions onto a grid-based representation. Two forms of sensor fusion are thus devel-
oped: the first integrates raw sensor values, yielding a virtual range sensor, and the second integrates the virtual range sensors
into a map.

Occupancy grids provide a spatial framework for the fusion of sensory data. To be fused, sensory streams must be converted to
a common reference frame. Elfes®? uses a discretized cartesian grid as this framework. Predictions from the range sensors are
described by a model which specifies the expectancies of free space and obstacle locations based on the reported range. These
predictions are iteratively applied to a global map, according to the position and orientation of the sensor. A map of the envi-
ronment is thus constructed, describing the locations of obstacles and of free space. The map encodes uncertainty information
as intermediate occupancy values, which may be used to adjust robot speed, or to weight a heuristic search algorithm.

1. 677 Beacon St., Boston, MA 02215, USA, {sig, gail, gaudiano } @cns.bu.edu, http://neurobotics.bu.edu




H N N EEEENN

image represent the lowest edge in each column, and the relative heights of these points are the distance measures returned by
visual sonar. The sensory input from visual sonar is thus a vector of eight real-valued numbers (VI-V8), with low numbers
indicating a nearby obstacle and high numbers indicating free space. The visual sonar sensor detects the bases of walls well,
but is confused by image discontinuities that do not correspond to obstacles, as resulting for instance from textured carpeting,
door sills, or markings on the floor (e.g., Figure 2(b)).

Sonars are the other main sensors used. They emit an ultrasonic beam and use the amount of time until the echo to calculate

_ distance to obstacles. Sonar’s input to the neural network consists of a vector of up to eight numbers (S7-S8), describing the

distance to obstacles as measured by the B14’s eight frontal sonars. Sonar values exceeding a maximum of six meters, as
occurs when the echo does not return to the sensor, are clipped to the maximum value. The raw sonar data suffer from a variety
of limitations: the returning echo may have been emitted by a different sensor, or may have bounced off several surfaces before
being detected. Ultrasonic and visual sonar both have sensory limitations, but in different circumstances, and so they seem apt
choices for sensor fusion.

2. DATA COLLECTION

A data set of 10,167 data samples was collected over the course of a few hours, each sample consisting of a set of sensor read-
ings and an associated distance reading obtained through odometry as the robot roamed around an enclosed area of our lab.
This data set, which is larger than required for training, was collected in order to get enough data for a thorough and meamng-
ful analysis. Training the ARTMAP network with all of these samples takes on the order of a minute or two.

2.1 Collection of samples

The values recorded are S1-S8 for sonar; VI-V8 for visual sonar; the retrospectively computed distance D from the robot to the
wall; and the angle of approach to the obstacle, specified by the infrared sensor I, which detected it. Samples are recorded
every 20 cm as the robot travels in a straight line. When an obstacle is encountered, as measured by the infrafed proximity
detectors, a new direction is chosen randomly_and the process is repeated. The data collection is conducted in an empty area,
approximately 2 m by 3.5 m, bounded by flat surfaces (walls and styrofoam panels). This training area is L-shaped, so all cor-
ners were concave, except for a single convex one.

2.2 Distance metric

As walls are detected using the B14’s infrared sensors, the recorded distance D is always slightly less than the true distance,
with the error an increasing function of the slant at which the wall is approached. This type of error is not corrected for in this
project (but see section 5.1). The recorded distance D is specified as a continuous value. As it provides the teaching signal to a
classifier, the distances are binned into 20 discrete categories. Binning is nonlinear, with small distance bins up close and bin
size proportional to the square root of the distance. This nonlinearity allows predictions at shorter distances to be more accu-
rate. Figure 3(a) shows these bins, with the column width indicating the range of distances covered by the bin and the height of

_the column representing the number of samples in the bin. The semicircular sector plot in Figure 3(b) gives a spatial view of

the density of the data collected. The data from each distance bin are further subdivided by the impact angle specified by the
infrared sensor I, that detected the obstacle. Notice that in all cases the obstacle detected lies straight ahead; the impact angle

reflects the obstacle slant relative to the robot’s heading. The radial thickness of each cell in the semicircle also reflects the
nonlinear binning of distances. It is also important to note that although in this and subsequent figures we break down the data

Samples

Figure 3. Density of data

sampling. (a) .Data sam- o 599 [ ]
ples for each distance bin. &

(b) Data samples for each E 500
distance bin broken down g 300

by angle of impact. The & 100 |

-li i in size
non _Imear increase in s 05 1 15 2 25 3
of distance bins is shown Distance (m)
in both plots.

O
N’




___taken for an obstacle.

Occuvpancy grids can be the basis for planning, using any of a number of search algorithms, such as the A" algorithm. See
Winston!® for a discussion of this and other search algorithms.

1.1 The B14 robot

This research employs a B14 mobile robot
from Real World Interface, Inc. (Jaffrey,
NH), a cylindrical robot measuring 14” in
diameter (Figure 1), equipped with a syn-
chro drive that permits forward and reverse
translation and rotation in place. Arranged
around the B14’s surface are sixteen infra-
red proximity detectors and sixteen sonar
range finders, distributed uniformly around
the robot’s perimeter, and a camera
mounted on a pan-tilt platform.

Figure 1. Overhead view of the B14
robot, showing its ranging sensors.
Closest to the robot are infrared sen-
sors, labeled 17-18. These detect obsta-
cles at close range, and specify the
angle at which the obstacle is encoun-
tered. Sonars are labeled S7-S8,
(beams emanating radially from the
robot). A camera is mounted on top of
the robot, and provides gray-scale
images. An edge detection algorithm is
applied to these images, yielding visual
sonar, depicted as sensors V71-V8.

1.2 Self-supervised data collection

The robot learns to predict the frontal distance to obstacles using a new version of the ARTMAP neural network!!"12, Devel-
oped for applications in remote sensing and medicine, this version implements a new category choice rule which helps maxi-
mize code compression. The training process is self-supervised, i.e., the robot is not provided with the distance to obstacles. A
relative distance measure is obtained using odometry, as the robot randomly explores its training area. Snapshots of the sen-
sory input are recorded as the robot moves in a straight line. When the robot encounters an obstacle detected with the infrared
sensors, on-board odometry provides a relative distance to associate with each sensory snapshot. The neural network is trained
to learn associations between this sensory input and the distance to’the obstacle. The robot thus learns to interpret its sensory
input on its own, without human intervention. Self-supervised learning can allow the robot to explore new environments auton-
omously. This ability is complemented by the ARTMAP network’s capacity for one-shot learning, which allows it to form
associations between inputs and percepts with a single presentation. Unlike many neural networks, ARTMAP learning is
match-based, rather than error-driven. Learning can be fast, as it does not require gradient descent of an error surface, which
can require many epochs of training.

1.3 Visual and sonar inputs to the neural network

Input vectors to the neural network are collected from the camera and from the sonar sensors. The camera provides a crude

estimate of relative distance to objects through visual sonar!3, obtained by dividing the image into eight columns and searching
for edges from the bottom of each column. Under the assumptions that the robot is operating on a flat surface and that obsta-
cles are on the ground, the distance of an edge from the bottom of a column is proportional to the distance of the corresponding
obstacle from the robot. Figure 2 provides an example of visual sonar working in an office setting. The points plotted on the

Figure 2. Visual sonars view of a
room. The heights of the points reflect
their distance from the robot, and are
returned as the values of sensors V1-
V8. Perception is accurate in (a), but
in (b) markings on the floor are mis-




by the impact angle for clarity, the neural network is trained by lumping all inputs from a given distance regardless of slant.
Thus, the neural network learns to predict the distance to obstacles that lie straight ahead, regardless of the obstacle’s slant.

3. CROSS-VALIDATED TESTING
3.1 Evaluating ARTMAP predictions

The fuzzy ARTMARP neural network is applied to the data set, learning to associate different combinations of sensory inputs
with distance. For each data sample i, the network produces a predicted distance p;, which is compared to the recorded dis-

tance D;. Producing one entire set of n predictions is called a simulation, though this term does not imply that the data them-

selves are simulated. Simulations are compared using {, the average absolute predictive error over the test set:
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Fifteen simulations are compared, each with a different combination of inputs provided to the neural network for fusion. Com-
binations range from sonar only or visual only to mixtures of both sensory modalities. Specifically, the sensor combinations
use two, four or eight of the available values (sonar or visual), in each case using the most central sensors, starting with S4, S5
or V4, V5 (Figure 1).

3.2 Cross-validated testing

Five-fold cross validation ensures that the training and test sets are always disjoint. More specifically, the data set is divided
into five partitions. One at a time, each of these data partitions is reserved as the test set while the network is trained with the
remaining four. This process is repeated five times, each time using a separate data partition for testing, and the remainder of
the data set for training. Moreover, to enhance the accuracy of prediction, and the repeatability of the results, five copies of the
neural network are trained, each with a separate ordering of the training set. The final predicted distance p; is the average of

the predictions of these five networks. Thus, for each reported simulation, twenty-five copies of the neural network are used,
one for each of the five orderings of the five training sets.

3.3 Comparing input variations

Table 1 compares the average absolute error for the fifteen simulations performed. The best result, highlighted in boldface,
uses the two most central sonar sensors and the four most central visual sensors (2S+4V). However, all of the results using any
of the sonars and at least four visual sensors are nearly as good. Table 1 demonstrates the advantage provided by sensor fusion,
both within and between sensory modalities. When using only one type of sensor, performance is proportional to the number
of sensors used. The predictive error is always less, however, when both sonar and visual data contribute to the prediction.

Table 1: Average absolute error (cm), for all fused
combinations of sonar and visual sensors.
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3.4 Predictive value of raw sonar
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Figure 4. Predictive error of the raw sonars. (a) S4, and (b) S5. Semicircular plots show average absolute error level in each
radial/distance bin (bins not shown were not sampled in data collection). Small dot plots show error for each datum collected,
one plot for each of the eight impact angles. The Y axis shows predicted minus recorded distance, and is in the range [-200,
300] (cm). The X axis range is [0, 325] (cm). )

Before looking at our results with the ARTMAP network in more detail, we illustrate the accuracy obtained with our data set
using the raw sonar data. Figure 4 shows, for the two frontal sonars (S4, S5), the average absolute error as given by Equation
(1), broken down by impact angle (11-18). Below each semicircle, the raw error data are plotted as a function of distance, again
broken down by angle of impact, with the leftmost box corresponding to obstacles detected by I and the rightmost box corre-
sponding to I8. Each point in these scatter plots is the calculated difference between measured and actual distance.

If each sonar were “perfect”, all the points would be zero, i.e., the data would lie on the horizontal midline. These error plots
show some interesting trends: the majority of the points fall above the horizontal midline, suggesting that sonar tends to over-
estimate, probably due to echoes bouncing against more than one surface or cross-talk between sensors. However, the data
show a tendency to underestimate at large distances. It is unclear whether this is due to the sonar itself {(e.g., through reflected
echoes), or to the fact that we are using odometry to measure “actual” distance, and odometry is known to be flawed over large
distances. It should also be noted that Figure 4 shows that the accuracy of sonar at high impact angles is only marginally worse
than accuracy for head-on obstacles. One might expect performance to decline in proportion to the angle of approach because
of the directional nature of sonar. This phenomenon might be due to the substantial amount of styrofoam bounding the training
area (about 60%). Styrofoam is known to enhance the performance of sonar at high slant angles.

3.5 Fusion of two central sonars: min(S4,S5)

Figure 4 makes clear that relying on raw sonar data can yield very noisy distance estimates. A simple way of getting rid of
some of the noise is to take the minimum value returned by (84, S5). This assumes most of the errors are overestimate, e.g.,
from missing the obstacle altogether. The validity of this idea is shown in Figure 5, which shows the predictive accuracy of a
sensor based on min (S4, $5). Accurate prediction is extended to most of the central angular bins, representing relatively
orthogonal impact angles (Figure 5(a)). It is interesting that the min(S4, S5) seems to do poorly for obstacles straight ahead at
large distances, as is evident in the outermost cells for sectors I4 and I5 in Figure 5(a). The individual scatter plots in Figure 4
suggest the reason for this problem: each sonar, especially at the central angles, tends to underestimate at larger distances, so
that min(S4, S5) worsens the results. In Figure 5(b), the absolute error of the prediction is shown for each sample in the data
set (dots). The averages and the standard deviations of the absolute error values within each of the distance bins are plotted.
The lowest level of error is seen in the middle range, between one and two meters. This is problematic for sonar-based naviga-
tion, as the high level of error close to obstacles increases the likelihood of collisions. Figure 5(a) shows that much of the error
at short distances occurs during approaches to slanted obstacles. In this case, sonar sensors often receive an improper echo.
This can result from the interception of another sensor’s ultrasonic beam, or from receiving the correct beam after more than
one reflection off an obstacle. The result is an overestimate of the distance to the obstacle. Error rises again at higher distances,
between two and three meters, but this is less of a problem than the error at short distances. Having seen this illustration of the
problems of prediction based on raw sonar, we can now look in more detail at the result of fusing sensory information with
fuzzy ARTMAP.
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Figure 5. Predictive error of the min(S4, S5) model. (a) Average absolute error in each sampling bin. Model predictions of dis-
tance are accurate at short distances and head-on approaches, but performance is impaired at longer distances or more
oblique impact angles (b) Absolute error by distance. Dots show absolute predictive error for each sample in the data set, dot-
ted line shows average absolute error for each distance bin, and error bars indicate one standard deviation.

3.6 Neural fusion of two ultrasonic and four visual sensors

Figure 6 illustrates the predictive performance of the neural network fusing 2S+4V, i.e., the two most central sonars and the
four most central visual sonars. Table 1 showed this to be the combination of sensors yielding the overall lowest average abso-
lute error. Figure 6(a) demonstrates predictive improvements for nearly all angle and distance bins. Performance at high
impact angles and distances is dramatically improved. Even more important, prediction at close range is now quite accurate at
all impact angles. This is more clearly visible in Figure 6(b), which shows that average absolute predictive error approximates
a nondecreasing function of distance. Predictive accuracy thus now has the desirable property of being roughly proportional to
distance. Moreover, the standard deviation of the error is significantly smaller than in Figure 5, and it is an approximate func-
tion of distance. As the error for the ARTMAP method is less variable, and this variability is smallest near the walls, the fused
sensors are a safer basis for navigation than the raw sonar data.
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Figure 6. Predictive error of the ARTMAP (2S+4V) fusion model. Plot format and scales are as in Figure 5. (a) Compared to the

min(S4,S5) model, predictive accuracy is equal or better at all distance and angle bins. Prediction of distance is improved at
high angles and at large distances. (b) Average absolute error is less at all distances, and variance of error is smaller.

3.7 Discussion of integration results

The results in Figure 6 and Table 1 demonstrate the viability of ARTMAP as a methodology for integrating data across and
within sensory modalities. Using two sonar and four visual sensors, a fused system has been devised which outperforms the
raw predictions of distance of the two frontal sonars. The obtained system is robust in several key aspects. It is more accurate
at high impact angles to an obstacle, compensating for sonar’s difficulty in detecting obstacles at oblique angles. The errors
made by the fused system are small at short ranges, and the variance of the error follows the same trend. This allows the robot
to navigate with confidence at close quarters. We now use this robust sensor to produce maps of the robot’s environment.




4. OCCUPANCY GRID VISUALIZATION

4.1 The Gaussian sensor model P(Occ)

4

05

Sensor models used to represent the reading from an ultrasonic sensor are gen-
erally composed of Gaussian waveforms. An idealized sensor as discussed by

Elfes® is shown in Figure 7. The abscissa represents distance from the robot
(range), and the coordinate represents the probability of occupancy. A sensor
reading of r produces an occupancy value of 1 at the distance r, of 0 between
the robot and r (the “free space hypothesis™), and values of 0.5 (uncertainty) 0
] beyond the obstacle. Such a model is appropriate if the sensor is perfect. For

real sensors, this model will yield bad results, as noise will produce obstacles

in the wrong place. This justifies the use of a Gaussian model to represent the Figure 7. Occupancy probability profile for an

positional uncertainty of the reading. ideal sensor, given a range measurement r. -

>

Sensor reading r Range

Three Gaussians are used: two with positive amplitude describe the obstacle in two dimensions; a negative one represents the

free space between robot and obstacle. We use a slightly different convention than Elfes for occupancy values: unknown values

) are 0, positive values represent obstacles, and negative values represent free space. A magnified version of the model is shown

in Figure 8. The sensor model shown is 7 pixels by 50 pixels. One gaussian is wide and negative and centered on the robot (the

I left side of the figure). This gaussian is shown in light shades and represents the empty space near the robot. The other gauss-
ians are narrow and positive, and represent the obstacle. The value zero is depicted as a middle grey shade, as shown at right.

I The model in Figure 8 is used to fill

in values in an occupancy grid map.
At start-up, each map cell is initial-
ized to zero. As predictions accu-
mulate, the map is filled in with
white space for empty areas and in
black for the obstacles. For each sensor prediction, the sensor model is applied to the occupancy. grid at the appropriate posi-
tion, based on the position and orientation of the robot. Newer predictions keep accumulating, dynamically updating the map
as information becomes available. Black specifies a value of +1 in the occupancy grid, and is associated with a high probability
of being occupied, and white represents an occupancy value of -1. The value zero represents a lack of information. Occupancy
values saturate at +/-1, though later information can move the occupancy values away from these extremes. This introduces a
bias in the map, which may or may not be desirable: recent information can easily override established obstacles, as occupancy
values are clipped once the extreme values have been reached.

Figure 8. The gaussian sensor model

4.2 Recording of visualization data

A short recording of sensor values provides the data for visualization. It consists of 37 samples, each specifying sixteen sonar
values (mm to obstacle). In contrast to the beginning of this chapter, we now fuse the sonar sensors alone. The sonar provides
a view all around the robot, allowing a rapid filling in of the map. If the visual sonar were used, it could contribute only to a
single sensor aimed in the forward direction, and so it is not used. With sonar, sixteen ARTMAP-derived virtual sensors can be
evenly distributed about the robot. For these visualizations, the robot moves forward 2.25 meters in the training area. A straight
line motion is specified, but the unevenness of the floor causes the actual trajectory to veer slightly to the right. This curve of
the map due to the robot’s drift complicates comparison between maps. Since correcting for drift is not the focus of this
research, a simulation of the robot’s drift is used to correct for the curvature of the path. A turn is added to the robot’s path,
proportional to distance traveled. This method is used in the rest of the paper to correct the curvature error due to odometry.

4.3 Occupancy grid view of raw sonar recording

Figure 9 shows the occupancy grid after the application of 1, 11 and 37 sensor samples. The occupancy grid is shown evolving
in time, as the robot’s motion provides information from different viewpoints. Each sample consists of 16 raw sonar values.
The distortion produced by sonar when near a wall can be seen on the left of the room, where the robot started, and is seen




Figure 9. Occupancy grid map based on sonar data. (I-r) Views after 1, 11 and 37 samples (225 cm total travel). The robot’s
final position is shown as a circle, its trajectory is the line behind it, and the rectangular outline shows the room boundaries
starting to form on the right, as the robot approaches. These horn-shaped misperceptions wrongly indicate free space, which
could be dangerous to a robot navigating in an unknown environment. Perception of the top and bottom walls is accurate either
because the robot never approaches them too closely, or because they are made of styrofoam. The walls on the left and right
sides are smoother, and more difficult for sonar to perceive. The line extending to the left of the robot shows the trajectory fol-
lowed. The actual shape of the room is superimposed on the occupancy grid map.

5. ARTMAP PREDICTIONS
5.1 Preprocessing of the data set

The data used for training the neural network have incorporated a systematic source of error, namely, the robot detects the wall
when the infrared sensor nearest to the wall is activated. The robot is usually at a perpendicular distance of approximately 10
cm from the wall when it is detected. Depending on the robot’s angle of approach, the actual distance remaining before the
robot would have physically encountered the wall can be from 10 cm when the wall is detected by I4 or IS, all the way up to
120 cm when the wall is detected by I or I8. Since which infrared was activated was recorded for the entire data set, all the
data were reprocessed to partially offset this systematic source of error. For each of the 10,167 samples, the recorded distance
has a number added to it, proportional to the tangent of the angle of approach. Most samples are at the middle angles of
approach, and so increase only slightly with correction. Before this reprocessing, the maps produced were smaller than the
room. Reprocessing the data set moves the perception of the walls to the appropriate place, i.e., the room perceived is the right
size in both height and width.

5.2 ARTMAP occupancy maps for two input combinations

(@) 2s (b) 8s
Figure 10. ARTMAP
predictions applied to
the occupancy grid. In
(a) the two central
sonars are used (2s),
in (b) the network is
trained with eight sonar
inputs (8s).

Figure 10 shows occupancy maps produced using ARTMAP. In (a) predic- Table 2: Average absolute error obtained with
tion is based on fusing only the two most central sonars (S4, S5) and is  two and eight inputs to the neural network.

fairly unreliable, whereas in (b), which shows the fusion of all eight sonars,
it is reasonable. The 8s case draws the walls more precisely than does 2s. Inputs 2s 8s
Table 2 shows the average absolute error in both cases. The preprocessing
of the data make these errors slightly larger than those seen in Table 1. Error (cm) | 31.6 | 15.2




Figure 11. Sensor prediction based on median of five votes. Input is 8s. Occupancy grid is shown at beginning, middle and end
of robot's motion. The final map produced is the most faithful to the actual room boundaries.

Five ARTMAP voters are used to produce the maps in Figure 10. Since each voting ARTMAP network is trained with a re-
ordering of the same training set, no additional data are required. Each of the five votes is combined here by averaging. Using
the average of five ARTMAP votes as the prediction of distance sharpens the resulting map, but the average can be vulnerable
to the influence of outliers. Using the median of the votes rather than the average can reduce this effect (Figure 11).

The map seen in Figure 11 matches the boundaries of the room on all four sides, and the corners are accurately rendered. This
map provides a good basis for spatial perception and more high-level processes to operate upon. More importantly, the holes
seen in the corners with raw sonar (Figure 9) could pose serious problems for a path planning algorithm, which might direct
the robot to travel through the illusory holes.

5.3 Code compression with instance-count pruning
While the map produced using the median of five voters is accurate, the need for 8375 categories (across five voting networks),

with the corresponding need for memory and processing time, is excessive. Any method of reducing that number without sig-
nificantly impairing map accuracy would be useful. A variation of ARTMAP called instance-counting!® can serve this pur-
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pose. The instance-count (IC) tracks the number of samples that have been incorporated into a category template. The lower a
category’s instance count, the fewer instances the category is based on, and the less the impact of removing it from the net-
work’s memory. By throwing out categories with instance counts below a threshold, the networks can be pruned of the least
experienced categories. In the map shown in Figure 11, about a third of the categories have instance counts of 1, while half
have count two or less. As shown in Figure 12, removing one half or even two-thirds of the categories formed during training
has little effect on the final map, hinting that many categories are due to noise in the training set.

5.4 Discussion of visualization results

These visualizations convey the advantage of the fused virtual sensor over the raw sensory information. As shown by Figure 9,
the raw sonar tends to make mistakes when the robot is near a wall. The fused virtual sensor overcomes this limitation by con-
sidering information from several sources. ARTMAP learns to recognize the patterns that result from seeing walls at an angle
and associates them with the distance metrics learned in training. This fusion of sensory inputs allows the network to recognize
when the raw signal is in error.

When the sonar does perceive the wall, it does so fairly accurately, as seen in the top and bottom walls in Figure 9. In contrast,
ARTMAP’s prediction is more diffuse. This is mainly due to the limited resolution of ARTMAP’s perceptual output, since it is
trained to predict one of 19 range categories. Its predictions are thus discrete, in contrast to the raw sonar’s continuous valued
output.

It should be noted that the resolution of the maps shown here is greater than would be needed in an actual navigational or reac-
tive robotics application. This level of resolution is used to make more obvious the differences between the models, and is not
necessarily optimal for a real-time system. In particular, while the maps shown are produced in slightly less than real-time,
maps with a bit less resolution could easily be produced in real-time, while preserving enough detail for navigation and obsta-
cle avoidance.

A result which has not been reported so far predicts the angle of the wall relative to the robot’s approach, in addition to its dis-
tance. It was hoped that the angle information might sharpen the map by allowing the gaussian representing the wall to be ori-
ented appropriately. A new network is trained to predict which infrared sensor detected the wall, providing a rough indication
of its orientation. As shown in Figure 13, the map obtained is reasonable, but not a distinct improvement over the map without
the angle information (Figure 11).

Figure 13. Prediction of angle as well as range (8s, median of 5 voters)

A related approach is seen in Ohya, Nagashima and Yuta!4. Rather than using a neural network to predict the angle of the wall,
the authors use a specially designed sonar sensor. The sonar has a single transmitter, but differs from the usual ultrasonic sen-
sor by using two receptors. The timing difference of the echo returns indicates the orientation of the wall relative to the sensor.
This sensor is used to augment grid maps with vector representations of walls.




6. CONCLUSION

There are other possibilities for reducing the error inherent in the raw sonar signal. Borenstein and Koren!® have proposed an
“error eliminating rapid ultrasonic firing” algorithm to reduce the number of erroneous readings returned by the sonars. While
apparently yielding robust results, this method requires detailed control over the timing sequence of firing the sonars, a degree
of control not always available. The method presented here requires nothing more than the sensory data already available.

Others have studied the application of neural networks to the fusion of robot sensor data!®. In particular, Racz and Dubrawski!”
use the fuzzy ARTMAP network to classify a robot’s position within the neighborhood of a door. In their study, however, the
position of the robot within its environment is explicitly specified at the start of data collection. In our approach no such exter-
nal information is provided. It is also interesting to compare our work to that of Thrun!®, in which a neural network is trained
with backpropagation to predict the probability of occupancy of cells within a grid, by combining information from four
sonars. Our approach is different from Thrun’s in that we are estimating only a single frontal distance value rather than individ-
ual occupancy predictions, and in that we are fusing two sensor types. In addition, as with Racz and Dubrawski’s work,
Thrun’s approach requires knowledge of the actual position of obstacles during training, whereas our approach does not
require any external information. All of the results presented here are based on training and testing off-line using a data set that
was collected on-line. The fact that training is done off-line should not be taken as evidence that the ARTMAP network could
not have learned on-line. Rather, off-line learning is used here so that various fusion models may be tested against the same set
of data, yielding comparable results. As mentioned above, although it took a few hours to collect the 10,167 data samples, it
only took a few minutes to train the neural network on these data.

This work makes two novel contributions to the field of robotic sensory integration: it successfully applies an ARTMAP neural
network to the task of integrating sensor data from multiple sources, producing a cleaner distance measure than is possible

with either sensor type alone; and it does so with a training method that is self-supervised, allowing the robot to learn by itself
the relationship between its sensory and odometric senses of distance.
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