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Abstract 

This paper presents a method for recognizing graphics 
symbols of electronic components in a database of cir- 
cuit layouts. The method is based on the One-Class 
Problem approach on our ability to recognize a 20-  
objects without making an explicit decomposition. To 
satisfv these requirements, a Fuzzy A R T M  P recognition 
module was developed with the objective of recognizing 
the graphics symbols of 19 electronic components. Each 
Fuzzy A R M P  was trained with 2 0  images of graphic 
symbols of one component only (positive patterns only). 
The recognition module was then used to search for  a 
specijic component in a database of 30 images of circuit 
layouts. The training and test sets contained, respec- 
tively, 380 images (20 images/component), and 2051 
images (an average Of I08 images/componeno. Experi- 
mental results show an average percentage error of 
3.49%. 

1. Introduction 
The growing use of Electronic Document Man- 

agement Systems (EDMS), in offices and industry, to 
store and manage a huge database of document images, 
has stimulated the interests of many researchers and de- 
velopers to come up with computational tools to search 
for specific pictorial information in image databases. 

At the Laboratory of Document Image Analysis and 
Neural Networks (LADIANN) of the Pontificia Universi- 
dade Catblica do Parana (PUC-PR), research has been 
conducted to develop a page-reading system for inter- 
preting and reconstructing technical drawings from 
scanned images. The system must be autonomous, capa- 
ble of learning from positive examples only, adaptive to 
changes in its environment, and able to operate on-line. 
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Initially, we are concerned with electronic circuit layouts 
similar to those shown in figure 1. Those types of circuits 
have predefined structures, i.e., the size and shape of 
each component is almost constant in all layouts. The 
structure of the complete system (currently under- 
development) is composed of several modules, each of 
which is developed separately. In this work we are con- 
cerned with the recognition module, whose objective is to 
recognize the 2-D shapes (Graphics Symbols) of elec- 
tronic components in circuit layouts. At this stage of our 
work we are concerned with 19 components only, 
namely: resistors, capacitors, inductors, opamps (Opera- 
tional Amplifiers), transistors, diodes, and logic gates 
(NOT, AND, NAND, OR, NOR and XOR). The graphics 
symbols of most of these components are shown in figure 
2.  

1.1. The Method 
As mentioned above, we are interested in recognizing 
graphics symbols that are scale-invariant, exist in a pre- 
defined orientation and composed of simple constituents 
as shown in figure 2. When recognizing such patterns, 
the question becomes that of deciding what is the appro- 
priate strategy to solve the problem in hand: Classical or 
Computational Neural Networks approach. 

In graphics application, one could group the classical 
approaches of recognizing the graphic symbols under 
three categories: syntactical pattern recognition [ 11 [2], 
graph rewriting technique [3][4], and knowledge-directed 
[ 5 ]  [6]. Those approaches, explicitly, decompose the 
graphics symbol into its constituents (lines, curves, cir- 
cles, etc.) and then recognize each constituent individu- 
ally. The final decision is reached using some sort of 
grammars, graph representation or a priori rules. These 
approaches require a lot of pre-processing operations 
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and, hence, may be computationally expensive, especially 
when dealing with simple shapes. However, they are effi- 
cient when dealing with complex engineering drawilngs 
or when recognizing graphics symbol given its definition. 
. For a complete literature on graphics recognition, please 
refer to [7][8][9]. 

It is our believe that the problem of visual pattern 
recognition is better solved by borrowing some concepts 
from the Biological Pattern Recognition (BPR) system. 
We all know that adults and children alike are able to 
recognize simple 2D visual patterns, such as graphics 
symbols, with incredible ease and precision. In this re- 
gard, one would like to pose the following questions: 
How does the human’s brain recognize a visual pattern? 
Does it 4ecompose the pattern into its constituents m d  
then uses its knowledge of each constituent to reach the 
final answer? If this is true, then a child must learn to 
recognize the geometrical primitives (lines, curves, e tc.) 
before he/she is able to recognize visual patterns such 
graphics symbol. Evidence from practice proves the con- 
trary. Children are able to perform visual pattern recog- 
nition of simple shapes without knowing the names oY its 
primitives. Little is known about the exact process by 
which the human’s brain develops a cognitive informa- 
tion learning processing. Nevertheless, evidence from 
current theories of Visual Cognition and Computational 
Neuroscience [ 101 tell us that intensity variations and 
directions in a 2D visual pattern, e.g. graphics symbol of 
a resistor, produce neuronal activities and that these ac- 
tivities are built into compact representation and then 
associated with whatever a word we attribute to the en tire 
pattern. This association is learned with time and stays 
forever. It is provoked every time similar patterns are 
presented to the human visual system. Of course and 
without any doubt, we adults sometimes use some sort of 
deep knowledge, reasoning for example, to build up a 
rather complex cognitive learning process. This is evi- 
dent when we perform complex visiial pattern recogni- 
tion task, such as reading cursive words written by writ- 
ers of different cultural backgrounds and or writing 
styles. In such a task we use our knowledge of the various 
shapes that a character might have. In comparison, a 
child at the early learning stage has limited knowledge 
and, thus, will have some difficulty in reading cursive 
words written with different style and or speed. 

The above features of the BPR system are the princi- 
ple characteristics of Computational Neural Netwlsrks 
(CNNs). In addition, CNNs provide a model-free ap- 
proach. They estimate a solution without a mathema iical 
model of how outputs depend on inputs. They learn from 
examples, and recognize visual patterns that are other- 
wise difficult to define. 

To understand the distinction between the classical 
and CNNs approaches, let’s consider the problem of de- 
veloping a method for recognizing the graphics symbol of 
a transistor, for example. On the one hand, if one adopts 
the classical approach, one would have to develop an 
algorithm and specify how this algorithm must perform 
the required task. This might be accomplished by ex- 
tracting the syntactical constituents (vertical, horizontal 
and diagonal lines, and arrow) and, thereafter, building a 
set of grammars to perform the decision. On the other 
hand, if one adopts the CNNs approach, one needs to 
select an appropriate topology and then train the network 
by presenting it with samples of input-output mapping. 
The network itself extracts the most prominent features 
from the input patterns, builds these features into a com- 
pact representation, and associates this representation 
with the output pattern. By comparing the two ap- 
proaches, two differences could be observed. First, in the 
classical approach one need to impede in the algorithm 
knowledge of how to recognize the symbol, whereas, in 
the case of CNNs the knowledge is acquired during 
training. Second, to recognize a different type of graphics 
symbol one must, in the case of the classical approach, 
modify the algorithm and probably provide a new set of 
grammars; and only provide new samples of input-output 
mapping, in the case of on-line CNNs. The ability of a 
system to learn from examples and continue learning 
without forgetting its previously acquired knowledge is 
important if the system is to operate on-line with little 
interference from the outside world. 

Based on the above, we have developed a NNs-based 
module for the recognition of the graphic symbols of the 
electronic components mentioned above. The module is 
composed of a number of the Fuzzy ARTMAF’ neural 
networks that is equal to the number of graphics symbols 
to be recognized. The reasons for selecting the Fuzzy 
ARTMAP are its ability to learn from positive examples 
only [I11 and operate autonomously. A detailed discus- 
sion of the Fuzzy ARTMAP can be found in [12]. The 
following two sections present, respectively, the archi- 
tecture of the proposed model and the experimental re- 
sults. Conclusions and bibliographical references are 
given in sections four and five, respectively. 

2. Architecture of the Recognition Module 
A block diagram of the recognition module is shown 

in figure 3. It is composed of three stages: pre-processing, 
normalization and recognition. At the pre-processing 
stage, a thresholding, based on Otsu’s algorithm [13], is 
applied to the input image. The binary image is then 
scanned by a window whose size depends on the graphic 
symbol to be recognized (Refer to figure 2). Each ex- 
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tracted segment is normalized to half of the size of the 
scanning window and, thereafter, is applied to the recog- 
nition stage. As seen from figure 3, the recognition stage 
is composed of 19 Fuzzy ARTMAP NNs, each of which 
is responsible for recognizing the 2-D shape of one elec- 
tronic component only. The purpose of such structure is 
to reduce the complexity of the problem to a manageable 
level and to allow for a possible expansion in the future 
to other graphics symbols. 

2.1. Normalization 
The purpose of the normalization stage is to produce a 
thinned image whose size is half of that of the scanning 
window. The Nearest Neighbor E141 and Zhang & Suen 
[15] algorithms were used, respectively, to perform the 
thinning and scaling operations. The quality of the re- 
duced, thinned image depends on the sequence by which 
those two algorithms are performed. As it is seen in fig- 
ure 4a, the sequence: scaling-and-then-thinning produces 
a good reduce, thinned image, without any line disconti- 
nuities; as opposed to the sequence in figure 4b. How- 
ever, if the gray image is of poor quality, the result of the 
normalization process will be poor as well (Figure 5a). 

To overcome this problem, we have applied a dilation 
operation on the reduced image prior to the thinning op- 
eration (Figure 5b). We have found that, in general, bet- 
ter results can be obtained when the dilation operation is 
performed right after the thresholding operation (Figure 
5c). In the proposed recognition module, we have used 
the normalization operations shown in figure 5c. 

3 Experimental Results 
The performance of the proposed recognition module 

was evaluated by first training each Fuzzy ARTMAP 
with segmented images of the respective electronic com- 
ponent, only. This is based on the One-Class Problem 
Approach, as mentioned in section 1.1. Variations of the 
same image were also included in the training set. These 
variations were found to reduce the search time signifi- 
cantly. The parameters of each Fuzzy A R W  were: p 
= 0.85, /I = 0.6, and a =1.0. The training iteration and 
epoch size were, respectively, 1000 and 16. 

After training is completed, the Fuzzy ARTMAP- 
based module was used to search for specific component 
in a database of circuit layouts. The search process starts 
by scanning each image of a circuit layout with a window 
that belongs to the component under search. Each 
scanned block is then fed into the recognition module. 
Noise-removal operations were applied, prior to the nor- 
malization process, to remove any spots and text that 
might exist in the scanned image. The search process is 

continued until the entire image is scanned. It should be 
noted that to search for a specific component, only one 
Fuzzy ARTMAP is activated. Performance of the recog- 
nition module was measured according to the False Ac- 
ceptance (FA) and False Rejection (FR) error criteria. FA 
and FR indicate, respectively, the umber of negative pat- 
terns that are classified as being positive, and, number of 
positive patterns that are classified as being negative. 

The training set was composed of 380 images (20 
imagedcomponent), and the test set contained 30 images 
of electronic circuit layouts. The initial results, in terms 
of FA and FR errors for each Fuzzy ARTMAP, are 
shown in table 1. The average percentage error, Et, of the 
system is 3.73% and is calculated according to the fol- 
lowing equation: 

E, = FR+FA *loo 
2(#of Patterns) 

4 Conclusions 
In this paper we have presented our initial investiga- 

tion for developing a CNNs-based module for recogniz- 
ing graphic symbols of electronic components in circuit 
layouts that are scale-invariant and exist in predefined 
orientation. The approach was based on some concepts of 
the BPR system, i.e., recognition by association and 
without making an explicit decomposition of the graphics 
symbol. The implementation of such approach was possi- 
ble with the Fuzzy ARTMAP neural network. As pre- 
sented above, each Fuzzy ARTMAP was trained to rec- 
ognize the graphic symbol of one electronic component 
only. After training has been completed, the recognition 
module was used to locate graphic symbols, given their 
names, in a database of 30 images of electronic layouts. 
During the search process, only one Fuzzy ARTMAP is 
activated. 

As demonstrated in table 1, each Fuzzy ARTMAP 
performed well with respect to the graphic symbol that 
was taught to recognize. Most of the errors were due to 
the existence of text at the proximity of a graphic symbol, 
which the noise-removal operation failed to clean. Due to 
the distinct shape characteristics of the graphic symbols, 
each Fuzzy ARTMAP did not make any negative classifi- 
cation errors. 

At this stage, the proposed approach is limited to spe- 
cific application, Le., locating graphics symbols that are 
scale-invariant and exist in predefined orientation. How- 
ever, the general structure of the module can be adopted 
to locate graphics symbols of different sizes and orienta- 
tions. 

Despite the promising results obtained in this work, 
we are aware that further tests and analysis are required 
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with a larger database. In addition, extensive study will 
be conducted to reduce the FR errors to acceptable values. 
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Fig. 1. Examples of electronic circuit layouts (Actual size is reduced to fit in the page) 
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8 4 x 6 4  

Fig. 2. Example of Graphic symbols of electronic components each of which is fit into its scan- 
ning windows. layouts (Actual size is reduced to fit in the page). 
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Fig. 3. Block diagram of the Fuzzy ARTMA.P-based recognition module 
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Fig. 4. Two sequences of normalization processes performed on the graphic symbol of a resistor It can 

be observed that sequence (a) produces better result than sequence (b), as far as the quality of 
the output image is concerned The quality of the reduced, thinned image depends on the se- 
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quence by which those two algorithms are performed. In figure 5a, the application of the scaling 
algorithm prior to the thinning one produces good result, without any line discontinuities. 

Binary D Image 

(56x50) 
holding 

Fig. 5. Three distinct normalization processes performed on the graphic symbol of an OPAMP. a) 
Same as in Fig. 5 .  Observe the discontinuity in the thinned image. This is due to the rather 
poor quality of the input gray image. b) Alternatively, one can improve the quality of the output 
image by applying a Dilation operation on the reduced image of process (a) and, then, apply 
the thinning operation. c) A second alternative is to apply the dilation operation on the binary 
image, prior to the scaling and thinning operations. 

Table 1. Evaluation results of the proposed recognition module. 
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