
ARTMAP neural networks for information fusion and data mining:

map production and target recognition methodologies

Olga Parsons, Gail A. Carpenter*

Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston MA 02215, USA

Received 18 September 2002; accepted 17 December 2002

Abstract

The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the ARTMAP neural network as the

recognition engine of a hierarchical system for fusion and data mining of registered geospatial images. The Lincoln Lab system has been

successfully fielded, but is limited to target/non-target identifications and does not produce whole maps. Procedures defined here extend

these capabilities by means of a mapping method that learns to identify and distribute arbitrarily many target classes. This new spatial data

mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of

canonical algorithms and a benchmark testbed has enabled the evaluation of candidate recognition networks as well as pre- and

post-processing and feature selection options. The resulting mapping methodology sets a standard for a variety of spatial data mining tasks.

In particular, training pixels are drawn from a region that is spatially distinct from the mapped region, which could feature an output class mix

that is substantially different from that of the training set. The system recognition component, default ARTMAP, with its fully specified set of

canonical parameter values, has become the a priori system of choice among this family of neural networks for a wide variety of applications.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: ARTMAP; Adaptive resonance theory; Information fusion; Data mining; Remote sensing; Mapping; Image analysis; Pattern recognition

1. Introduction

Neural network models for vision, learning, and

recognition form the foundation of a system for multisensor

image fusion and data mining developed by Allen Waxman

and colleagues, first in the Sensor Exploitation Group at

MIT Lincoln Laboratory (Ross et al., 2000; Streilein et al.,

2000; Waxman et al., 2001) and recently in the Boston

University CNS Technology Lab (Waxman et al., 2002).

While the primary domain of the Lincoln Lab (LL) system

is geospatial image analysis, it has also been tested for other

spatially defined applications, including medical imaging

(Aguilar and Garrett, 2001).

Fuzzy ARTMAP was chosen to perform category

recognition and output class prediction in the LL fusion

system because of its computational capabilities for

incremental training, fast stable learning, and visualization.

ARTMAP networks learn to predict specified output classes

from critical patterns of input features, with the system

creating as many of these internally defined categories as

needed to meet accuracy criteria. The interpretability of the

learned category structure with respect to input features

suggests straightforward feature selection methods, which

are often important for efficient on-line image processing

and search of large images.

Despite extensive development of other functions, the

LL system still relies on the originally implemented

simplified ARTMAP algorithm (Kasuba, 1993). Mean-

while, new ARTMAP systems that have been developed

over the past decade include ART-EMAP (Carpenter &

Ross, 1995), ARTMAP-IC (Carpenter & Markuzon, 1998),

and distributed ARTMAP (Carpenter, Milenova, & Noeske,

1998). Network capabilities and design options have been

tested, and system performance has been compared with

that of other neural and statistical algorithms, on many

application domains, including remote sensing, data mining,

and visualization (e.g., Carpenter, Gjaja, Gopal, & Wood-

cock, 1997; Carpenter, Gopal, Macomber, Martens, &

0893-6080/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0893-6080(03)00007-8

Neural Networks 16 (2003) 1075–1089

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ1-617-353-9483; fax: þ1-617-353-7755.

E-mail addresses: gail@bu.edu (G.A. Carpenter), oparsons@bu.edu

(O. Parsons).

http://www.elsevier.com/locate/neunet

Woodcock, 1999; Gopal, Liu, & Woodcock, 2000; Gopal,

Woodcock, & Strahler, 1999).

The studies described in this paper have examined the

performance of several ARTMAP networks in the

context of the LL image mining system. To test

candidate general-purpose algorithms, a challenge pro-

blem was constructed that specifies eight target classes

and identifies a corresponding ground truth data set for

an image on which the LL system had previously been

demonstrated (Streilein et al., 2000). A systematic

mapping methodology, alternative labeling protocols,

post-classification adjustment techniques, and feature

selection were also defined and tested. This standardized

procedure assumes that training pixels come from an area

that is spatially separate from the test region to be

mapped, and that the training and testing regions

typically contain different output class distributions.

These methods extend the capabilities of the LL system,

which is designed for one-class (target/non-target)

labeling, to allow on-line learning of an arbitrary number

of target classes and to produce whole maps.

This investigation has identified a system, called default

ARTMAP, that has produced accurate results on difficult

recognition tasks while featuring comparative simplicity of

design and robust performance in many application

domains. An important aspect of this algorithm is its

continuous-valued distributed predictions across target

classes. Labels are chosen based on the sum of these

distributions across a set of network voters, which learn with

different orderings of a shared training set. ARTMAP

variants with winner-take-all coding and discrete target

class predictions, including the one implemented in the LL

system, showed consistent deficits in labeling accuracy and

post-classification map adjustment capabilities. The default

ARTMAP algorithm and parameter values specified here

define a ready-to-use general-purpose system for supervised

learning and recognition.

The paper is organized as follows. Section 2 introduces

a prototype map containing three target classes, defines a

protocol for systematic assessment of map creation

methods, and defines the default ARTMAP algorithm.

Section 3 illustrates alternative mapping methods on the

prototype example. Section 4 describes the Monterey

benchmark image to be used for evaluation of mapping

methods, and demonstrates default ARTMAP performance

and post-classification adjustment capabilities on this

example. Section 5 evaluates the performance of a nested

family of ARTMAP networks on the Monterey benchmark

problem, Section 6 shows an eight-class map produced

from the image, and Section 7 describes how feature

selection can reduce the number of input components

without loss of accuracy. Sections 8–11 specify algorithms

for map production and classifier evaluation method-

ologies, default ARTMAP training and testing, and input

feature selection.

2. Map production methodology

A 1.5 million pixel image of the Monterey Naval

Postgraduate School (Fig. 1(a)) provided inputs to the

benchmark testbed for classifier comparisons. In order to

maintain a valid comparison of candidate recognition

networks within the context of the LL spatial data mining

system, this analysis uses the same feature vectors

(produced by Mario Aguilar) as were used in previously

published demonstrations of the Monterey image (Ross

et al., 2000; Streilein et al., 2000; Waxman et al., 2001,

2002). Specifically, the LL system describes each pixel as a

20-dimensional feature vector: contrast-enhanced values

(G, R, NIR, B) of the four original color bands (green, red,

near infrared, blue); eight single-opponent (G/R, R/G, NIR/

B, B/NIR, G/NIR, G/B, R/NIR, R/B) and four double-

opponent (G/R, R/G, NIR/B, B/NIR) measures of local

color contrasts; three selected linear combinations of the

four contrast-enhanced bands (G þ R, NIR þ B, G þ R þ

NIR þ B); and one height measure, obtained from low-level

digital terrain elevation data. The contrast-enhanced color

bands were computed by shunting center-surround proces-

sing (Grossberg, 1973) within each color layer. Measures of

single- and double-opponent processing in the visual system

(Lennie, 2000) were also modeled by center-surround

networks, with contrast enhancement between bands

(e.g. R center, G surround). In the LL system, surrounds

are represented by a 7 £ 7 matrix of pixels, and centers by

the pixel at the center of this matrix.

To construct a benchmark problem on which to test

performance of supervised learning systems, eight target

output classes (red cars, non-red cars, roofs, roads, foot

paths, grass, trees, other) were specified, and ground truth

pixel sets located, by observation of the Monterey image

(Section 4). In order first to illustrate map production

methodologies, a simplified testbed, called the prototype

image (Fig. 1(b)), with three target classes and 160,000

pixels, is first defined (Section 2.1). Section 2.2 outlines a

cross-validation protocol for training, validation, and

testing; and Section 2.3 characterizes the default ARTMAP

system, which is used for classification on this example.

Default ARTMAP will later be compared with other

ARTMAP variations on the Monterey mapping task

(Section 5). Section 2.4 describes how continuous-valued

outputs are summed across voting networks to produce class

predictions.

2.1. Defining the prototype map

The prototype map was constructed using three of the

Monterey class labels: trees, roads, and cars (non-red).

Each pixel was assigned a 20-component feature vector

corresponding to a pixel from the same class in the

Monterey image. A majority of feature vectors assigned to

contiguous pixels from a given class were drawn from

contiguous pixels in the original image, although this

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891076

approximate topography could not be fully preserved

throughout the prototype map, especially for small objects

(cars). Note that the prototype testbed retains a challenging

feature found in many mapping problems, namely, an

unbalanced distribution of target classes, with fewer than

1% of the pixels labeled car (Table 1).

2.2. Map production and classifier evaluation protocols

A cross-validation procedure was defined for systematic

assessment of map creation methods, candidate classifiers,

post-processing techniques, and input feature selection.

Each image was divided into four vertical strips. Training set

pixels were drawn from two strips; a third strip provided a

validation set for methods that required parameter selection;

and pixels from the remaining strip were used for testing. As

is typical for cross validation, training, validation, and

testing sets are disjoint. In addition, the mapping protocol

imposes a stricter standard, with pixels from the three sets

drawn from spatially distinct regions. The procedure thus

emulates the task of map production by a system trained and

tested in geographically separate locations.

Vertical strips in the prototype map measure 100 £ 400

pixels (Fig. 2). Table 1 shows the pixel distribution in each

strip across the three target classes. One hundred pixels from

Fig. 1. (a) Monterey Naval Postgraduate School image. Dimensions: 987 £ 1510 ¼ 1,490,370 pixels ø 500 m £ 750 m. (b) Prototype image with three target

classes: trees (black), roads (gray), and cars (white). Prototype feature vectors were drawn from corresponding classes in the Monterey image. Dimensions:

400 £ 400 ¼ 160,000 pixels. Each ‘car’ is 4 £ 6 pixels.

Table 1

Distribution of pixels among target classes in the whole prototype image

and within each vertical strip

Pixel distribution (%) Trees Roads Cars

Prototype image 78.78 20.47 0.75

Strip 1 77.86 21.36 0.78

Strip 2 75.88 23.10 1.02

Strip 3 78.47 21.11 0.42

Strip 4 82.90 16.32 0.78

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1077

each class were selected at random from each strip.

This fixed set of designated pixels (0.75% of each strip)

produced the training, validation, and testing sets for all

prototype simulations.

2.3. The default ARTMAP classifier

The classifier used for the prototype example is a version

of the ART-EMAP network (Carpenter & Ross, 1995).

This system, specified as an algorithm in Sections 9 and 10,

codes the current input as a winner-take-all activation

pattern during training and as a distributed activation pattern

during testing. For distributed coding, the transformation of

the filtered bottom-up input to an activation pattern across a

field of nodes is defined by the increased-gradient CAM rule

(Carpenter et al., 1998). The network also implements the

MT2search algorithm (Carpenter & Markuzon, 1998), with

the baseline vigilance parameter set equal to zero,

for maximal code compression. Other ARTMAP design

choices for default ARTMAP include fast learning,

whereby weights converge to asymptote on each learning

trial; single-epoch training, which emulates on-line learn-

ing; and a choice-by-difference signal function (Carpenter &

Gjaja, 1994) from the input field to the coding field.

When a supervised learning problem has more than two

output classes, a single system may be trained to predict all

the classes at once. Alternatively, multiple systems, one

for each output class, can each be trained to make a

target/non-target decision. In the latter case, test set

predictions pool output activations of all trained networks.

Results for the prototype map reported here are obtained

from a single network trained on three output classes. For the

Monterey benchmark problem, results of training on both

eight-class networks and groups of eight target/non-target

networks are compared. When, as is generally the case

for the mapping problems considered here, the two training

strategies produce similar results, the single-network

strategy has the advantage of simplicity.

2.4. Distributed voting

ARTMAP’s capacity for fast learning implies that the

system can incorporate information from examples that are

important but infrequent and can be trained incrementally.

Fast learning also causes each network’s memory to vary

with the order of input presentation during training.

Voting across several networks trained with different

orderings of a given input set takes advantage of this

feature, typically improving performance and reducing

variability as well as providing a measure of confidence

in each prediction (Carpenter, Grossberg, Markuzon,

Reynolds, & Rosen, 1992). While the number of voting

systems is, in general, a free parameter, five voters have

proven to be sufficient for many applications. This a priori

choice of five voting systems (for each training set

combination) was used in all studies described here.

Even with the number of voters fixed, other design

choices appear in systems where output activations may be

distributed. In particular, default ARTMAP, which produces

a continuous-valued distribution sk across target classes k

for each test set item, presents options for combining

weighted predictions across voters to make a final class

choice. One strategy sums the sk values of individual

networks to produce a net distributed output pattern, which

is then used to determine the predicted class. An alternative

strategy first lets each voting network choose its own

winning output class, then assigns the test set inputs on the

basis of these individual votes.

In most applications, the first of these two voting

strategies produces better results. This was also found to

be the case in pilot studies for the current mapping problem,

with the second strategy showing poorer performance on

under-represented classes. Thus in all simulations reported

here target class decisions are based on the distributed

output sum of all voting networks. In fact, the continuous

nature of distributed output class predictions will prove to

be an essential characteristic of the default ARTMAP

system.

3. Assigning target class labels

Assume now that voting networks have been trained on

different orderings of a given set of labeled pixels drawn

from two vertical strips in an image, and that the output

patterns sk have been summed across voters for each pixel

to be labeled. This section examines methods for using the

summed output activation patterns to produce a map by

assigning class labels to each pixel in the image.

Fig. 2. A cross-validation methodology designates spatially distinct regions

for training, validation, and testing, with each map divided into four vertical

strips (Strips 1–4, left to right).

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891078

3.1. Three methods for choosing target class labels

A natural method for producing a class label for an input

pixel takes the predicted class to be the one with the largest

summed output. However, this method may produce target

class representations in the resulting map that are far from

their true proportions. A second class label selection method

imposes a prior class distribution estimate, when this

information is available. A third method uses a validation

procedure to bias labeling decisions. Note that, for each test

set input, all three methods operate on the same output class

distribution pattern, which is equal to the summed

predictions of the previously trained voting networks.

We now consider the performance of these three class

label assignment procedures on the prototype mapping

problem. For each, the training set consists of 200 pixels per

class, from two strips. Reported results (hit and false alarm

rates) are averages across the six possible combinations of

two strips that provide training set pixels for each

simulation.

In addition to using quantitative measures such as test-set

accuracy, maps can be evaluated qualitatively, in terms of

appearance and utility. For this purpose, images of whole

labeled prototype maps are produced by training on

the designated pixels subsets from strips 1, 2, and 4.

3.1.1. Baseline method

The baseline method labels each pixel as belonging to the

output class k with the largest sum of predictions sk:

This method uses neither prior class distribution estimates

nor parameter selection by validation. Table 2 shows hit and

false alarm rates produced by the baseline method on test set

strips of the prototype image, averaged across the six

training strip combinations. These results indicate that the

straightforward baseline method for target class labeling

produces reasonable hit and false alarm rates on test set

pixels. The statistics are misleading, however, as is often the

case for classification problems with highly skewed class

label distributions. In fact, the baseline method labels 4.9%

of test strip pixels as cars, which is more than six times the

fraction of actual car pixels (0.75%) in the true image

(Table 1). Overproduction of labeled car pixels is clearly

visible in the baseline map (Fig. 3(a), upper row), even

without knowledge of their true proportion.

A confusion matrix (Table 3) for one typical combination

(training on strips 1 and 4, testing on strip 3) provides

additional details about the pattern of class labeling errors.

Rows in Table 3 show the output class predictions for the

100 test set pixels that actually belong to each class.

Diagonal terms, equal to the numbers of correctly labeled

pixels, show that the class-specific (98/84/95%) and overall

(92.3%) accuracy rates on this strip are close to the

corresponding average rates (98.3/84.0/95.0% and 92.4%)

in the first row of Table 2. Similarly, off-diagonal terms in

the confusion matrix generate false alarm rates.

For example, the third column shows that 18 of the 200

non-car pixels in the test strip are incorrectly labeled car,

producing a false alarm rate of 9% for this class. The false

alarm rates for this combination (1/1.5/9%) are again close

to the corresponding average rates (1.3/1.3/8.8%) from the

six training strip combinations.

Although entries in the 3 £ 3 confusion matrix show

cross-class error patterns only on the 300 test set pixels in

Table 2

Prototype map test set classification performance (%) using three class label

assignment methods: (a) baseline, (b) prior probabilities, and (c) validation.

All methods used the same 100 pixels per class from each strip. Results

represent averages from the six possible combinations of two training

strips. Boldface: best result (a–c) for each matrix entry

Overall Trees Roads Cars

(a) Baseline

Hits 92.4 98.3 84.0 95.0

False alarms 1.3 1.3 8.8

Class distribution 77.6 17.6 4.9

(b) Prior probabilities

Hits 89.2 98.7 94.0 75.0

False alarms 10.5 5.2 0.5

Class distribution 78.9 20.4 0.76

(c) Validation

Hits 94.4 99.0 92.8 91.5

False alarms 1.4 2.8 4.1

Class distribution 77.9 19.6 2.5

Fig. 3. Prototype map class label assignments by three methods:

(a) baseline, (b) prior probabilities, and (c) validation. Upper row: without

post-processing. Lower row: with post-processing by a voting filter.

Table 3

Confusion matrix for the prototype map in a typical test strip (3) using the

baseline method for class label assignment. Rows show true distributions

(100 pixels per class) and columns show the predicted distributions.

Boldface: diagonal, where predicted ¼ actual class

Baseline Trees Roads Cars Overall (actual)

Trees 98 2 100

Roads 84 16 100

Cars 2 3 95 100

Overall (predicted) 100 87 113 300

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1079

strip 3, this information can be combined with knowledge of

actual class distributions to estimate the fractions of each

output class that this trained system would produce on all

40,000 pixels in the strip. Namely, multiplying the row

vector of a priori class distributions (78.47/21.11/0.42%)

for strip 3 (Table 1) by the confusion matrix produces

an estimate of this strip’s predicted whole-map class

distribution pattern (76.4/17.7/5.9%), which is close to

the average class distribution pattern (77.6/17.6/4.9%)

predicted by the baseline method, as shown in the last row

of Table 2.

3.1.2. Prior probabilities method

Where a known or estimated distribution of target classes

in the whole map is available, a prior probabilities method

may be used to bias class label assignments to match the

specified output class distribution. At each step in this map

labeling process, a target class is selected at random

according to the a priori distribution. The still-unlabeled

pixel with maximum activation for the selected class is

assigned that class label. Compared to the baseline method,

labeling with prior probabilities misses more true car pixels

in the prototype map, reducing the hit rate to 75.0%

(Table 2). However, the represented proportion (0.76%) of

the class cars is now correct. The improved appearance

of the whole map, visible in Fig. 3(b), must be attributed in

part to the fact that this method supplies more information to

the classifier, in the form of the true class distribution.

Even when it is not possible to estimate in advance an

approximate target class distribution, a user can still make

use of the prior probabilities method to improve the

appearance of a labeled map. Suppose, for example, that a

map produced by the baseline method appears, upon visual

inspection, to have too many car pixels. The user can then

adjust the pixel distribution initially produced by that

method (as in Table 2) to specify a new distribution for the

prior probabilities method, and can continue to balance a

priori target classes until the appearance of the map

becomes satisfactory. A graphics tool that overlays the

labeled map on the original image one class at a time assists

the estimation process, especially for sparsely represented

classes. Since all labeling methods begin with the same

summed output patterns from the already trained networks,

iterations of the final labeling methods are rapid and

straightforward.

3.1.3. Validation method

The validation method adjusts class label percentages

without requiring a priori estimation of their true distri-

bution in the map. Rather, this method allows the user to

bias the labeling process by checking outcome statistics on a

validation set. The method used here introduces output class

decision thresholds as new free parameters, and estimates

their values from the validation strip, which was not used by

the baseline and prior probabilities methods. An alternative

method could adapt ARTMAP output class weights Wjk by

gradient descent, as in Carpenter et al. (1998).

All three methods begin with the same output

distribution across target classes computed by the trained

voting system. For a given pixel, let sf denote the

fraction of this distribution assigned to the class label f:

Whereas the baseline and prior probabilities methods

assign class labels according to values of sf; the

validation method assigns the label so as to maximize

the amount by which sf exceeds a class-specific decision

threshold gf: Decision thresholds are computed one class

at a time, as follows.

The baseline method assigns a pixel to a target class f

whenever sf is maximal. This corresponds to the validation

method with all decision thresholds set equal to zero.

Imagine, now, biasing the system against choosing one

particular class f by replacing sf with ðsf-gÞ: Increasing g

reduces the fraction of validation set pixels ðHitRategÞ

correctly predicting class f; but it also reduces the fraction

of pixels ðFalseAlarmgÞ predicting f that actually belong to

a different class. As g increases parametrically from 0 to 1,

the graph of HitRateg as a function of FalseAlarmg traces an

ROC curve. The decision threshold g ¼ gf is chosen so as

to maximize the difference ðHitRateg 2 FalseAlarmgÞ on

the validation set. This choice corresponds to the point

where the ROC curve intersects the highest possible line

with unit slope. Once a decision threshold has been set for

each class, pixels are labeled as the target class f that

maximizes ðsf 2 gfÞ:

Additionally, this method specifies an upper bound on

the estimated false alarm rate for each class: if the chosen

threshold produces a false alarm rate higher than 10% on

the validation set, its value is raised until the false alarm

rate falls to just below 10%. An upper bound helps ensure

that classes with few pixels in the true map are not

over-represented in the labeled map. For example, on six

training set combinations of one typical prototype simu-

lation, the validation method produced decision thresholds

gcars between 0.085 and 0.165, while gtrees and groads each

remained equal to 0 for all but one combination. As shown

for the Monterey map below, designated upper bounds can

also be adjusted for certain target classes, to balance their

representation in the whole map. As with prior probabil-

ities, iterative corrections by visual inspection of maps

produced by the validation method are rapid and easy to

test.

Table 2 shows that validation produces the best overall

predictive accuracy (94.4%) of all the methods.

Despite being given no prior information about class

probabilities, this method produced a class distribution

that was much improved compared to the baseline method.

Nonetheless, the validation method labeled as cars over

twice as many test pixels as in the true map, a trend that can

also be seen by comparing the labeled whole maps in the

upper row of Fig. 3(b) and (c).

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891080

3.2. Post-processing a labeled map

The methods described in Section 3.1, which label pixels

independently, tend to produce speckle in the final maps

(Fig. 3, upper row). Post-processing can improve both

test-set classification performance and the look of a map.

Standard post-processing techniques include averaging,

smoothing filters, and morphological operations (Shapiro

& Stockman, 2001; Matlab Image Processing Toolbox,

http://www.mathworks.com/access/helpdesk/help/toolbox/

images/images.shtml). Post-processing by a simple voting

filter is tested here. Namely, each pixel assumes the label

originally assigned to the majority of abutting pixels

(eight neighbors) plus three copies of itself, with ties

broken in favor of the class with the fewest pixels in the

original labeling.

Comparing Table 4 with Table 2 shows that post-proces-

sing the prototype map by the averaging filter increased the

overall pixel-by-pixel test-set accuracies for all three

methods. Post-processing also brought the fraction that the

baseline and validation methods assigned to the difficult

under-represented class cars closer to that of true map

(0.75%). A comparison of the upper and lower rows of

Fig. 3(c) illustrates how post-processing can reduce speckle

in maps produced by the validation method. Post-processing

tends to be even more effective on real images than on

the prototype. This is due to a construction artifact of

the prototype image, where a substantial fraction of feature

vectors for neighboring pixels in small objects (cars) were

drawn from spatially separated objects in the source

Monterey image, thereby reducing the meaning of spatial

contiguity in this example. In addition, whereas the a priori

class distribution is exact in the prototype example, errors in

the distribution estimates for real images produce

additional mapping errors which can be usefully corrected

at a post-processing stage.

4. The Monterey benchmark mapping problem

The methods illustrated on the prototype example will

now be used to compare candidate ARTMAP classifier

modules and to produce a labeled map of the Monterey

location. To prepare for training, validation, and testing, a

ground truth dataset was created by visual inspection of the

original image (Fig. 1(a)). Pixels or regions were assigned

labels from eight target classes: red cars, non-red cars,

roofs, roads, foot paths, grass, trees, other. The total

number of pixels labeled was 225,828, covering about 15%

of the image.

In synthetic examples such as the prototype map

(Section 2), the true distribution of classes is known by

construction. In most real examples, where ground truth

typically covers only a small fraction of the image, global

class distributions are not known. In order still to be able to

test a priori distribution methods (Section 3.1.2), approxi-

mate class distributions were obtained by visual inspection

of the Monterey image. Because such estimates are typically

imprecise, distributions calculated independently by eight

observers were averaged (Table 5).

To prepare for cross validation, the Monterey image was

partitioned into four vertical strips. If available, 250 pixels

were randomly selected and fixed for each class in each

strip. If a strip contained fewer labeled pixels for a particular

class, then all available pixels were chosen. On average,

1738 pixels of the 372,592 in each strip constituted the

training/validation/test set.

4.1. Default ARTMAP performance

on the Monterey example

Table 6 summarizes the results of applying the mapping

methodologies developed in Sections 2 and 3 to the

Monterey image, using default ARTMAP without post-

processing. Comparing the class distribution statistics in

Table 6 with Table 5 shows that, as on the prototype map

Table 4

Prototype map test set classification performance using the three class label

assignment methods of Table 2, plus post-processing: (a) baseline, (b) prior

probabilities, and (c) validation. Boldface: best result (a–c) for each matrix

entry

Overall Trees Roads Cars

(a) Baseline þ post

Hits 94.6 99.2 87.2 97.5

False alarms 0.3 1.0 6.8

Class distribution 77.8 18.3 3.9

(b) Prior probabilities þ post

Hits 90.4 99.5 96.8 75.0

False alarms 7.4 6.8 0.1

Class distribution 78.7 20.7 0.62

(c) Validation þ post

Hits 96.3 99.5 96.0 93.5

False alarms 0.6 2.6 2.3

Class distribution 78.1 20.2 1.7

Table 5

A priori distribution of eight target classes in the Monterey image, averaged across estimates made by eight observers. The range of values indicates the

variability of estimates

Monterey class distribution estimates Red cars Non-red cars Roofs Roads Foot paths Grass Trees Other

Average (%) 0.9 2.6 20.8 23.9 2.9 10.4 36.1 2.4

Range (min, max) ,1 [1,5] [9,34] [16,36] [1,7] [6,18] [28,49] [1,5]

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1081

http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.shtml
http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.shtml

(Table 2), the baseline and validation methods label too

many pixels as belonging to under-represented classes

(e.g. red cars, non-red cars, foot paths), generally at the

expense of roofs and roads. Validation has the greatest

effect on non-red cars, where positive decision thresholds in

five of the six training combinations eliminated about half of

the over-representation of that class, transferring most to the

adjacent road pixels.

4.2. Post-classification adjustments

Post-processing by a voting filter (Section 3.2) improves

the overall accuracy of all three methods by about 2%,

but has a negligible effect on class distributions. A more

important benefit of post-processing is removing speckle

from the labeled image. This is particularly true for the prior

probabilities method (Fig. 4(a)), where the approximate

nature of initial distribution estimates leads to forced

over-labeling of over-estimated classes.

In addition to locally defined post-processing, the prior

probability and validation methods allow the user to make

rapid adjustments to balance map classes. After a map

has been generated, the user can view the results of

classification and decide whether adjustments are needed.

Fig. 4 shows the result of adjusting a class percentage with

the prior probabilities method (Fig. 4(b)) and of adjusting an

upper bound on the false alarm rate with the validation

method (Fig. 4(c)). An effective way to visualize per class

performance is to overlay the results of recognition on the

original image one class at a time. The left image of Fig. 4(b)

shows the classification results for roofs in a portion of

the Monterey image. Here, a majority of roof pixels are

labeled correctly but some tree and road pixels are also

labeled as roof. After the roof percentage was reduced from

30 to 14%, most incorrectly labeled pixels disappeared, as

seen in the right image of Fig. 4(b). Post-classification

visualization helps the user to correct errors in initial

estimates of class distributions, which can vary widely

(Table 5).

Similar adjustments can be performed with the validation

method. At the beginning, maximum false alarm rates were

set to 10% for all classes. The result of the label assignment

for non-red cars with this constraint is illustrated in the left

image of Fig. 4(c). In the whole map, more than twice as

many pixels as desired were labeled as non-red cars.

The map was corrected by lowering the upper bound on the

false alarm rate for non-red cars. When the false alarm rate

was lowered from 10 to 0.2%, the map became more

accurate as shown in the right image of Fig. 4(c). Table 6

also shows that adjusting maximum false alarm rates with

the validation method can bring class distributions closer to

their target values.

5. Evaluating ARTMAP classifiers and map production

methods on the Monterey benchmark

The studies described in this section compare perform-

ance of ARTMAP variants on the Monterey benchmark

problem. The learning systems under consideration differ

primarily in terms of their code representations (distributed

vs. winner-take-all) during training and testing.

Table 6

Monterey map test set classification performance using default ARTMAP and four class label assignment methods: (a) baseline, (b) prior probabilities,

(c) validation with maximum false alarm rates set to 10%, and (d) validation plus a maximum false alarm rate chosen for each target class during the validation

step. As in Table 2, performance results show averages of training default ARTMAP networks, each on one of the six combinations of selected pixels from two

image strips, without post-processing. Note that, although the prior probability method has the lowest overall test set accuracy, this method also produces the

exact (estimated) class distribution from Table 5. Boldface: Best result (a–d) for each matrix entry

Overall Red cars Non-red cars Roofs Roads Foot paths Grass Trees Other

(a) Baseline

Hits 74.9 90.3 82.4 93.2 68.5 62.7 60.3 87.1 2.0

False alarms 1.3 10.9 0.5 3.8 2.9 2.5 6.9 0.2

Class distribution 2.1 13.2 12.1 13.9 8.2 9.9 40.3 0.2

(b) Prior probabilities

Hits 71.7 84.3 54.8 92.3 92.3 46.1 60.7 83.0 22.8

False alarms 0.6 2.5 8.2 7.4 1.1 2.6 6.3 3.8

Class distribution 0.9 2.6 20.8 23.9 2.9 10.4 36.1 2.4

(c) Validation

Hits 77.3 91.3 77.8 92.3 83.6 66.2 63.4 86.4 2.4

False alarms 1.2 7.1 0.4 5.0 3.1 2.8 6.3 0.2

Class distribution 2.0 8.3 12.0 18.3 8.9 10.9 39.4 0.2

(d) Validation þ max FA

Max FA rate in validation 0.2 2 10 10 2 10 3 0.1

Hits 76.8 87.5 60.0 94.7 92.1 63.9 76.1 80.4 5.6

FA (testing) 0.8 4.8 1.3 8.7 2.7 4.3 3.9 0.5

Class distribution 1.6 4.9 12.7 22.7 6.6 17.0 34.0 0.5

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891082

Tested systems include a straightforward fuzzy ARTMAP

network and the variant used in the Lincoln Lab

implementation (LL), both of which employ winner-take-

all coding during training and testing; default ARTMAP,

which is the same as fuzzy ARTMAP during training but

uses a distributed code representation during testing;

ARTMAP-IC, which equals default ARTMAP plus instance

counting, which biases a category node’s test-set output by

the number of training-set inputs coded by that node; and

distributed ARTMAP, which employs a distributed code

(and instance counting) during both training and testing.

The versions of these networks tested here form a nested

sequence:

fuzzy ARTMAP , default ARTMAP , ARTMAP-IC

, distributed ARTMAP

That is, distributed ARTMAP reduces to ARTMAP-IC

when coding is set to winner-take-all during training;

ARTMAP-IC reduces to default ARTMAP when counting

Fig. 4. Class adjustment via (a) post-processing by a voting filter (prior probability method), (b) reducing class fraction roofs (pink overlay) from 30%

(overestimated) to 14% (prior probability method), and (c) reducing false alarm rate of non-red cars (blue overlay) from 10 to 0.2% (validation method).

Color code for (a): red–red car, light gray-non-red car, pink-roof, dark gray-road, white-foot path, dark green-grass, light green-tree.

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1083

weights are set equal to 1; and default ARTMAP reduces to

fuzzy ARTMAP when coding is set to winner-take-all

during testing as well as training.

The LL system incorporates the original fuzzy ARTMAP

algorithm (Carpenter et al., 1992) as codified in a simplified

form by Kasuba (1993). This algorithm differs somewhat

from the version of fuzzy ARTMAP described above in that

it uses the MT þ search algorithm (instead of MT 2),

a Weber Law choice function (instead of choice-by-

difference), and exhaustive search of learned categories

before activating an uncommitted node. Additional vari-

ations in the LL system include the use of two training

epochs; two baseline vigilance values, a higher one

for targets and a lower one for non-targets; and a

discrete-valued confidence measure that is finer than a

simple count of winner-take-all voters. Despite these

additions, performance of the LL system on the Monterey

map benchmark was found to be similar to that of the basic

fuzzy ARTMAP network.

In order to identify eight map classes, the LL system needs

to train eight individual networks on target/non-target

recognitions. All other networks are tested both with this

method and with single-system training for eight outputs

classes.

Table 7 shows class distribution predictions made by the

networks under consideration, each using the baseline

method for class labeling without post-processing.

Boldface entries indicate which predictions are closest

(over- and/or under-estimates) to the average a priori class

distribution of the Monterey image (Table 5). Although the

distribution pattern produced by ARTMAP-IC is closest to

the target, all the networks produce class label percentages

that differ from the estimates. Therefore, the prior

probabilities method was selected for making a valid choice

among classifiers. This labeling method evaluates test-set

hit rates with class distribution patterns held constant.

Table 8 shows that the continuous-valued classifiers

consistently produced the highest class-specific and overall

accuracies. For the discrete-valued LL and fuzzy ARTMAP

networks, ties frequently needed to be broken among classes

with equal output values, which also produced speckle in the

corresponding maps. Although the LL system adds inter-

mediate confidence values to the voting system, which

would seem to produce outputs more like those of

the continuous-valued systems, this addition did not improve

performance over that of basic fuzzy ARTMAP with five

binary-valued voters. Output ties also created speckle in

maps produced by fuzzy ARTMAP or the LL system.

Table 7

Class distributions (%) predicted by candidate ARTMAP classifiers on the Monterey benchmark map. Results are averaged across six training set

combinations, using the baseline method for class label assignment without post-processing. Boldface: best performance in each row

Baseline Average estimated class distribution Lincoln Lab (LL) system Fuzzy

ARTMAP

Default

ARTMAP

ARTMAP-IC Distributed

ARTMAP

8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys

Red cars 0.9 3.7 3.4 5.3 2.1 2.0 6.7 5.0 4.9 2.1

Non-red cars 2.6 9.0 7.7 10.3 13.2 14.5 5.2 4.5 4.7 1.3

Roofs 20.8 14.2 12.6 13.3 12.1 12.2 12.1 19.4 12.1 13.5

Roads 23.9 14.9 16.7 14.2 13.9 14.9 21.1 17.8 21.6 25.9

Foot paths 2.9 8.1 9.0 8.1 8.2 3.9 3.9 3.2 4.9 4.8

Grass 10.4 12.1 13.9 14.1 9.9 10.3 10.9 10.5 14.1 20.7

Trees 36.1 36.1 36.0 33.2 40.3 42.0 40.2 39.6 37.7 31.7

Other 2.4 1.9 0.7 1.4 0.2 0.2 0 0 0.1 0

Table 8

Comparative accuracies (%) on the Monterey benchmark map, averaged across six training set combinations, using the prior probabilities method for class

label assignment, without post-processing. Boldface: best performance in each row

Prior probabilities Lincoln lab (LL) system Fuzzy ARTMAP Default ARTMAP ARTMAP-IC Distributed

ARTMAP

8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys

Overall 67 66 69 72 74 74 73 73 62

Red cars 71 63 73 84 86 88 85 84 72

Non-red cars 47 45 52 55 55 55 52 51 43

Roofs 97 96 96 92 96 93 98 93 93

Roads 87 90 90 92 91 91 88 93 79

Foot paths 41 42 44 46 51 56 55 51 34

Grass 59 53 56 61 69 72 65 71 40

Trees 81 81 83 83 86 81 85 80 84

Other 4 9 5 23 12 7 5 10 2

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891084

Default ARTMAP and ARTMAP-IC (both 1- and

8-system versions) produced overall average test-set

accuracies several points above those of the discrete-valued

systems. Performance of 1-system distributed ARTMAP

was also close to that of default ARTMAP, but performance

dropped markedly for the 8-system version, where coding

can be unpredictable on the target/non-target discrimination

tasks and where performance also varied dramatically from

one strip to the next. Continuous-valued networks have the

added benefit of superior class adjustment capabilities

(Fig. 4(b) and (c)). The instance counting feature of

ARTMAP-IC adds a processing complexity to the default

ARTMAP network, as does training a target/non-target

network for every output class. In addition, instance

counting may introduce sensitivity to numbers of training

samples presented for each class. Thus, given their similar

test-set accuracies, one-system default ARTMAP was

chosen as the network standard. The mapping problem

considered here is sufficiently general as to recommend this

system as the starting point for applications.

6. Producing a whole map

Fig. 5 shows a whole map of the eight Monterey classes

produced by the validation method, after training one

default ARTMAP system to label eight target classes.

Training pixels were drawn from strips 1, 2, and 4, and

validation pixels from strip 3. While training and validation

pixels are included in the whole map, their sum constitutes

only 0.35% of all pixels. The map was also post-processed

with a voting filter.

With maps evaluated by visual inspection, one-system

and eight-system default ARTMAP appeared to perform

better than other candidates. Both prior probability and

validation methods gave reasonable results without user

adjustments, though the tuning of method parameters

(a priori class distributions or maximum false alarm rates)

improved the maps visibly. As in Fig. 4(a), maps produced

by prior probabilities benefited most from post-processing

by a voting filter, since they almost always contain speckle

produced by errors in class distribution estimates.

Fig. 5. Whole map production. (a) Monterey image. (b) Map of target classes. A single default ARTMAP network was trained to recognize the eight classes,

using validation and post-processing by a voting filter. Training was performed on pixels from strips 1, 2, and 4, with validation on pixels from strip 3.

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1085

Maps produced by validation also improved with post-

processing but this step was not essential. A map produced

by the LL system contained a lot of speckle. Post-processing

removed some of the speckle but sacrificed details.

The problem of speckle can be traced to winner-take-all

coding, which implies that the summed system output

assumes at most twenty possible values.

7. Selecting input features

In order to decrease the time required to identify target

pixels in an entire image, the LL system is designed to select a

subset of input features for the search, based on a criterion of

maintaining performance on training pixels (Streilein et al.,

2000). Feature selection also identifies which data layers are

important for defining objects of interest. The LL feature

selection method uses an algorithm similar to one developed

for ARTMAP systems in the context of medical database

analysis (Carpenter & Milenova, 2000). These selection

algorithms use the fact that, in a network trained with

complement coded inputs, each feature of a learned category

is represented as an interval of values. The algorithms

calculate interval overlap of target vs. non-target nodes for

each feature, delete features with the greatest interval

overlaps, and retrain using subsets of the original feature

set. The LL algorithm starts with the most promising feature,

then adds others one by one while calculating training set

performance. Only features that incrementally improve

performance are retained. This section evaluates this method

and extends it from the target/non-target setting to systems

with arbitrarily many output classes, with features selected

on a validation set. Section 11 specifies this algorithm.

The feature selection method tested with the default

ARTMAP system identified 11 components of the Monterey

input vector as the most useful across six training set

combinations. Selected features were: 5 single-opponents

(G/R, B/NIR, G/NIR, G/B, R/NIR), 3 double-opponents

(G/R, R/G, NIR/B), 2 linear combinations (NIR þ B,

G þ R þ NIR þ B), and height. It is interesting to note

that the four individual contrast-enhanced color bands (G,

R, NIR, B) were almost never chosen. Table 9 shows that

the system trained and tested using only the 11 selected

input components produced performance that was better

than (or equal to) that of the same system using all 20 of the

original features in all categories.

Feature selection is one way in which the structure of

ARTMAP memories supports interpretation and analysis.

Further development of rule-based methods for spatial data

mining is the subject of ongoing research.

8. Mapping methodology

The following steps outline a procedure for labeling an

arbitrary number of object classes in an image.

Options include production of a whole map or evaluation

of candidate classifiers on disjoint training and testing sets.

Each image pixel is represented by a feature vector which

may have an arbitrary number of feature components.

Map labeling and adjustment procedure

8.1 Define object classes for the image to be mapped.

8.2 Estimate the a priori distribution of classes in the

image.

8.3 If not provided, create a ground truth set for each class

by assigning labels to selected regions of the image.

8.4 Divide the image into four strips, choosing vertical

or horizontal to balance class distributions across

strips.

8.5 In each strip, randomly choose P labeled pixels for

each class (or all pixels in a given class if fewer than

P have been labeled). Fix five randomly chosen

orderings of designated pixels in each strip.

8.6 Choose training, validation, and testing strips:

8.6.a For labeling a whole map: Choose three strips

for training and one for validation.

8.6.b For classifier evaluation: Choose two strips

for training, one for validation, and one for

testing.

8.7 Train V systems (voters), each with E presentations

of input vectors from one of the ordered pixel sets.

8.8 For each voter, choose parameters by validation (if

required).

8.9 Present to each voter all pixels to be labeled in the

whole map (mapping) or in the test strip (evalu-

ation). Produce output class predictions sk for each

pixel (Section 9).

8.10 Sum the distributed output class predictions across

the V voters.

8.11 Label pixels by one of three methods (breaking ties

by random choice):

8.11.a Baseline: Assign the pixel to the output class

k with the largest summed prediction.

Table 9

Hit rates with feature selection for the Monterey map, using single-system

default ARTMAP for classification and the baseline method for label

assignment. Reducing the number of input components from the original 20

to the selected 11 improved (or leaves unchanged) performance in every

category. Boldface: best performance in each row

Default ARTMAP

Baseline (1 system)

Original 20 features Selected 11 features

Overall 75 76

Red cars 90 91

Non-red cars 82 82

Roofs 93 94

Roads 68 68

Foot paths 63 65

Grass 60 65

Trees 87 87

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891086

8.11.b Prior probabilities: Select an output class at

random according to the estimated a priori

distribution in the image. Assign that class

label to the still-unlabeled pixel with the

largest summed prediction for this class.

8.11.c Validation: Bias the summed output class

distribution, evaluating performance on the

validation set. In this paper, decision

thresholds are selected for each output class

(Section 3.1.3), with an upper bound of 10%

set for each false alarm rate. Alternatively,

the distributed prediction of each voter (or of

the sum) could be weighted by a steepest

descent algorithm. Use the biased summed

distribution to label the pixel by the baseline

or prior probabilities method.

8.12 Map adjustment:

8.12.a Local image processing: Post-processing for

speckle removal may be implemented as a

simple voting filter, which assigns to each

pixel the label originally assigned to a

majority of its eight neighbors plus three

copies of itself.

8.12.b Class distribution adjustment: Starting with

the output class predictions produced by any

method (Step 8.11), target distribution per-

centages may be adjusted up or down (e.g.

based on inspection of the resulting map),

and class labels recomputed by the prior

probabilities method.

8.12.c False alarm rate adjustment: A decision

threshold for an over-represented class may

be increased to reduce the validation set false

alarm rate.

8.13 Classifier evaluation: Compute average performance

statistics across six combinations of two training

strips (each with five voters). Classifier evaluation

measures include test strip output class distributions,

hit and false alarm rates for each class and overall

accuracy on the test set, performance variability

between tasks, map appearance (overall and by

overlays for each class), and degree of improvement

by post-processing.

9. Default ARTMAP training

The default ARTMAP algorithm specified here is a

special case of the distributed ARTMAP (dARTMAP)

algorithm described in Carpenter et al. (1998) (Tables 10

and 11).

Default ARTMAP training (with winner-take-all code

representation)

9.1 Complement code M-D feature vectors a to produce

2M-D input vectors A:

A ; ða; acÞ and lAl ¼ M

Table 10

Default ARTMAP notation

Notation Description

i Input component index

j Coding node index

k Output class index

M Number of input features

a Feature vector ðaiÞ; 0 # ai # 1

A Complement coded input vector:

A ; ða; acÞ

K Output class of current

input

y Coding field activation pattern

(CAM): ðyjÞ

J Chosen coding node (winner-take-all)

C Number of committed coding

nodes

L;L0 Committed node subsets

Tj Signal from input field

to coding node j

sk Signal from coding field

to output node k

wj Coding node weight vector

j : ðwijÞ

Wk Output class weight vector

k : ðWjkÞ

r Vigilance variable

^ Component-wise minimum (fuzzy intersection):

ðp ^ qÞi ; minðpi; qiÞ

l·l Vector size (L1-norm): lpl ;
P

i lpil
pc vector complement: ðpcÞi ; 1 2 pi

Table 11

Default ARTMAP parameters and their default values

Name Parameter Range Default value Description

Signal rule parameter a (0,1) 0.01 a ¼ 0þ maximizes code compression

Learning fraction b [0,1] 1.0 b ¼ 1 implements fast learning

Match tracking 1 (21,1) 2 0.001 1 , 0 (MT 2) codes inconsistent cases

Baseline vigilance �r [0,1] 0.0 �r ¼ 0 maximizes code compression

CAM rule power p (0,1] 1.0 Increased gradient (IG) CAM rule converges to WTA as p !1

No. of training epochs E $1 1

No. of voting systems V $1 5

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1087

9.2 Set initial values: wij ¼ 1; Wjk ¼ 0; C ¼ 1

9.3 Select the first input vector A, with associated output

class K

9.4 Set initial weights for the newly committed coding

node j ¼ C :

wC ¼ A

WCK ¼ 1

9.5 Set vigilance to its baseline value ðr ¼ �rÞ and set

y ¼ 0

9.6 Select the next input vector A, with associated output

class K (until the last input of the last training epoch)

9.7 Calculate signals to committed coding nodes j ¼

1…C :

Tj ¼ lA ^ wjlþ ð1 2 aÞðM 2 lwjlÞ

9.8 Search order: Sort committed coding nodes with

Tj . aM in order of Tj values (max to min)

9.9 Search for a coding node that meets the matching

criterion and makes the correct output class prediction:

9.9.a Code: For the next sorted coding node ðj ¼ JÞ

that meets the matching criterion

lA ^ wJ l
M

$ r

� �
; set yJ ¼ 1 ðWTAÞ

9.9.b Output class predictions: sk ¼
PC

j¼1 Wjkyj ¼WJk

9.9.c Match tracking: If the active code fails to

predict the correct output class

ðsK ¼0Þ;

raise vigilance

r¼
lA^wJ l

M
þ1

� �
:

Return to Step 9.9.a (continue search).

9.10 Learning: Update coding weights:

wnew
J ¼bðA^wold

J Þþð12bÞwold
J :

Return to Step 9.5 (next input).

9.11 After unsuccessfully searching the sorted list,

increase C by 1.

Return to Step 9.4 (add a committed node).

10. Default ARTMAP testing

Default ARTMAP testing (with distributed code rep-

resentation)

10.1 Complement code M-D feature vectors a to produce

2M-D input vectors A

10.2 Select the next input vector A, with associated output

class K

10.3 Set y ¼ 0

10.4 Calculate signals to committed coding nodes j ¼

1…C :

Tj ¼ lA ^ wjlþ ð1 2 aÞðM 2 lwjlÞ

10.5 Let L ¼ {l ¼ 1…C : Tl . aM} and L0 ¼ {l ¼

1…C : Tl ¼ M} ¼ {l ¼ 1…C : wj ¼ A}

10.6 Increased Gradient (IG) CAM Rule:

10.6.a Point box case: If L0 – f (i.e. wj ¼ A for some

j), set yj ¼ 1=lL0l for each j [L0

10.6.b If L0 ¼ f; set

yj ¼

1

M 2 Tj

" #p

X
l[L

1

M 2 Tl

� �p for each j [L

10.7 Calculate distributed output class predictions: sk ¼PC
j¼1 Wjkyj

10.8 Until the last test input, return to Step 10.2

10.9 Predict output classes from sk values, according to

chosen labeling method (see Step 8.11).

11. Feature selection

Feature selection methods may be employed after an

ARTMAP system has been trained on complete input

vectors. The algorithm is based on methods, developed by

Carpenter and Milenova (2000) and Streilein et al. (2000),

which respect the geometry of ARTMAP memory

representations.

11.1. DðkliÞ : Diffentiability of class k by feature i

DðkliÞ indicates how well the feature i alone differentiates

the output class k from all the other classes. It is based on the

degree of overlap of the weight intervals ½wiJ ;w
c
iþM;J� of

coding nodes J predicting k ðWJk ¼ 1Þ with weight intervals

½wij;w
c
iþM;j� of coding nodes j predicting all other classes

ðWjk ¼ 0:Þ Smaller overlaps (or disjoint intervals) corre-

spond to higher degrees of differentiability.

For each output class k and each feature i let:

DðkliÞ ¼
X

J:WJk¼1
j:Wjk¼0

lwiþM;J 2 wiþM;jlþ lwiJ 2 wijl
1 2 ðwiþM;J ^ wiþM;jÞ2 ðwiJ ^ wijÞ

" #

11.2. DðiÞ : Differential power of feature i

For each class k; order the M input features i based on the

values DðkliÞ (max to min), and let OðkliÞ equal the position

of feature i in the ordered list for class k:

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–10891088

For each feature i; let the differential power

DðiÞ ¼
X

k

1=OðkliÞ:

Order features i based on their DðiÞ values.

11.3. UðiÞ : Marginal predictive utility of feature i

Derive an index set F of features i that show

marginal predictive utility UðiÞ on the validation set.

Features are tested one at a time, in order of their

differential power DðiÞ:

Let F ¼ {i}; where i is the feature with largest DðiÞ: Test

validation set performance with only component i

presented in the input vector. Let UðiÞ equal the number

of validation samples classified correctly.

Let i be the index with the next greatest DðiÞ: Test

validation set performance with only components F<
{i} presented in the input vector. Let UðiÞ equal the

number of validation samples classified correctly, less

the number that were classified correctly with only input

components F:

Add i to F if UðiÞ $ 1:

Continue until UðiÞ has been computed for all M input

features.

11.4. Final selection of features

Features are ordered and tested for each voter of each

training set. Features are selected according to their high

utility values and frequency of use. In Section 7, selected

features were defined as those that had a marginal predictive

utility UðiÞ greater than half the maximum value for any

training set; or were identified as useful ðUðiÞ $ 1Þ by all

five voters on two or more training sets. These criteria can

be adjusted by the user to increase or decrease the number of

selected features.

Acknowledgements

This research was supported by grants from the Air

Force Office of Scientific Research (AFOSR F49620-01-

1-0397 and AFOSR F49620-01-1-0423) and the Office

of Naval Research (ONR N00014-01-1-0624).

References

Aguilar, M., & Garrett, A. L. (2001). Biologically-based sensor fusion

for medical imagery. Proceedings of SPIE Sensor Fusion:

Architectures, Algorithms, and Applications Conference, Orlando,

Florida.

Carpenter, G. A., & Gjaja, M. N. (1994). Fuzzy ART choice functions (Vol.

I). Proceedings of the World Congress on Neural Networks (WCNN-

84), Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 713–722.

Carpenter, G. A., Gjaja, M. N., Gopal, S., & Woodcock, C. E. (1997). ART

neural networks for remote sensing: vegetation classification from

Landsat TM and terrain data. IEEE Transactions on Geoscience and

Remote Sensing, 35, 308–325.

Carpenter, G. A., Gopal, S., Macomber, S., Martens, S., & Woodcock, C. E.

(1999). A neural network method for mixture estimation for vegetation

mapping. Remote Sensing of Environment, 70, 138–152.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen,

D. B. (1992). Fuzzy ARTMAP: a neural network architecture for

incremental supervised learning of analog multidimensional maps.

IEEE Transactions on Neural Networks, 3, 698–713.

Carpenter, G. A., & Markuzon, N. (1998). ARTMAP-IC and medical

diagnosis: instance counting and inconsistent cases. Neural Networks,

11, 323–336.

Carpenter, G. A., & Milenova, B. L. (2000). ART neural networks for

medical data analysis and fast distributed learning. In H. Malmgren, M.

Borga, & L. Niklasson (Eds.), Artificial neural networks in medicine

and biology (pp. 10–17). Springer series perspectives in neural

computing, London: Springer.

Carpenter, G. A., Milenova, B. L., & Noeske, B. W. (1998). Distributed

ARTMAP: a neural network for fast distributed supervised learning.

Neural Networks, 11, 793–813.

Carpenter, G. A., & Ross, W. D. (1995). ART-EMAP: a neural network

architecture for object recognition by evidence accumulation. IEEE

Transactions on Neural Networks, 6, 805–818.

Gopal, S., Liu, W. G., & Woodcock, C. (2000). Visualization based on the

fuzzy ARTMAP neural network for mining remotely sensed data. In

H. J. Miller, & J. Han (Eds.), Discovering geographic knowledge in

data-rich environments. Heidelberg: Springer.

Gopal, S., Woodcock, C., & Strahler, A. (1999). Fuzzy ARTMAP

classification of global land cover from the 1 degree AVHRR data

set. Remote Sensing of Environment, 67, 230–243.

Grossberg, S. (1973). Contour enhancement, short-term memory, and

constancies in reverberating neural networks. Studies in Applied

Mathematics, 52, 217–257.

Kasuba, T. (1993). Simplified fuzzy ARTmap. AI Expert, 8(11), 18–25.

Lennie, P. (2000). Color vision. In E. R. Kandel, J. H. Schwartz, & T. M.

Jessell (Eds.), Principles of neural science (4th ed.) (pp. 572–589).

New York: McGraw-Hill.

Ross, W. D., Waxman, A. M., Streilein, W. W., Aguilar, M., Verly, J., Liu,

F., Braun, M. I., Harmon, P., & Rak, S. (2000). Multi-sensor 3D image

fusion and interactive search. Proceedings of Third International

Conference on Information Fusion, Paris, I.

Shapiro, L., & Stockman, G. (2001). Computer vision. New York: Prentice-

Hall.

Streilein, W., Waxman, A., Ross, W., Liu, F., Braun, M., Fay, D., Harmon,

P., & Read, C. H. (2000). Fused multi-sensor image mining for feature

foundation data. Proceedings of Third International Conference on

Information Fusion, Paris, I.

Waxman, A. M., Verly, J. G., Fay, D. A., Liu, F., Braun, M. I., Pugliese, B.,

Ross, W. D., & Streilein, W. W. (2001). A prototype system for 3D

color fusion and mining of multisensor/spectral imagery. Proceedings

of Fourth International Conference on Information Fusion, Montreal, I,

3–10.

Waxman, A. M., Fay, D. A., Rhodes, B. J., McKenna, T. S., Ivey, R. T.,

Bomberger, N. A., Bykoski, V. K., & Carpenter, G. A. (2002).

Information fusion for image analysis: Geospatial foundations for

higher-level fusion. Proceedings of Fifth International Conference on

Information Fusion, Annapolis.

O. Parsons, G.A. Carpenter / Neural Networks 16 (2003) 1075–1089 1089

	ARTMAP neural networks for information fusion and data mining: map production and target recognition methodologies
	Introduction
	Map production methodology
	Defining the prototype map
	Map production and classifier evaluation protocols
	The default ARTMAP classifier
	Distributed voting

	Assigning target class labels
	Three methods for choosing target class labels
	Post-processing a labeled map

	The Monterey benchmark mapping problem
	Default ARTMAP performance on the Monterey example
	Post-classification adjustments

	Evaluating ARTMAP classifiers and map production methods on the Monterey benchmark
	Producing a whole map
	Selecting input features
	Mapping methodology
	Default ARTMAP training
	Default ARTMAP testing
	Feature selection
	&f;D(k&z.sfnc;i):&/f; Diffentiability of class &f;k&/f; by feature &f;i&/f;
	&f;D(i):&/f; Differential power of feature &f;i&/f;
	&f;U(i):&/f; Marginal predictive utility of feature &f;i&/f;
	Final selection of features

	Acknowledgements
	References

