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Abstract

A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of
curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed
into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space
induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image,
followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate
depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface light-
ness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about
perception of prolate ellipsoids [Todd, J., & Akerstrom, R. (1987). Perception of three-dimensional form from patterns of optical texture.
Journal of Experimental Psychology: Human Perception and Performance, 13(2), 242–255]. In particular, the model represents a high
degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accor-
dance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball
are also presented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Shape-from-texture (SFT) refers to 3D shape perception
resulting from the projection of a surface texture onto the
viewer’s retina. Such projections lead to texture gradients

in the retinal image that can be used as a cue for shape
and depth (Gibson, 1950). Understanding SFT is impor-
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tant because we are constantly confronted with a great
many textures lying on countless object surfaces with which
we interact with on a daily basis. Moreover, such an under-
standing would help one to create machines that could
‘‘see’’ the 3D world and interact with it, such as a machine
that could observe the shape of a terrain (e.g., the Martian
surface) and navigate it depending on whether or not the
ground ahead is too steep to traverse, or a machine that
could observe the shape of an object, enabling the machine
to reach out and grasp the object.

This article presents a neural model of SFT called the
LIGHTSHAFT (LIGHTness-and-SHApe-From-Texture)
model. This model utilizes monocular visual texture infor-
mation to produce a 3D percept of surface lightness. It is
built upon and extends the Form-And-Color-And-DEpth
(FACADE) model (Grossberg, 1987a, 1987b, 1994, 1997;
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Grossberg & Mingolla, 1987; Kelly & Grossberg, 2000)
and the 3D LAMINART model (Cao & Grossberg,
2005; Grossberg & Howe, 2003; Grossberg & Swamina-
than, 2004; Grossberg & Yazdanbakhsh, 2005), which
explain and simulate a large amount of psychophysical
and neurobiological data about 3D vision. FACADE mod-
els 3D perceptual grouping, surface perception, and figure-
ground separation. 3D LAMINART models the laminar
visual cortical circuits that carry out stereopsis and solve
the correspondence problem, leading to 3D boundaries
and surfaces capable of representing slanted and curved
3D surfaces, and properties of transparency, neon-color
spreading, and figure-ground separation. Although these
models deal well with stereopsis and a variety of occlusion
and transparency situations, they need to be further devel-
oped in order for them to account for other depth cues,
including SFT. The model presented herein is a step in this
direction. The model’s main innovation is to further devel-
op FACADE concepts about how multiple scales work
together to generate percepts of 3D shape.

Two basic problems must be solved to achieve this end:
(1) Patterns of spatially discrete 2D texture elements need
to be transformed into a spatially smooth surface represen-
tation of 3D shape. (2) Changes in the statistical properties
of texture elements across space, such as element density,
length and width, need to induce corresponding changes
in the perceived 3D shape of this surface representation.
In the model, multiple filters of different spatial scale pro-
cess the 2D image. Several filters can respond to the same
texture features, but in different ways. The model clarifies
how this ambiguous multiple-scale representation of shape
is disambiguated using cooperative and competitive bound-
ary interactions (Grossberg & Mingolla, 1987) that, in con-
cert with scale-to-depth and depth-to-scale maps
(Grossberg, 1994), carry out coherent perceptual groupings
within depths. Across-depth competition helps to refine the
3D boundary representations. These processes take place
within multiple depth-selective boundary webs (Grossberg,
1987a; Grossberg & Mingolla, 1987) before the boundary
representations regulate the filling-in of a smooth 3D sur-
face representation. The model’s competence is illustrated
by simulating the large set of psychophysical data (involv-
ing 25 images) from Todd and Akerstrom (1987) about the
perception of prolate ellipsoids, as well as 3D shape per-
cepts of 2D images of an elliptical cylinder, a slanted plane,
and a golf ball. This model is a first step in the process of
developing a neural model of shape-from-texture that can
deal with real-world images, where the depth inferred from
texture gradients depends on issues of segmentation, reflec-
tance and illumination.

In Section 2, the Todd and Akerstrom experiments are
described and LIGHTSHAFT model simulations of their
data are summarized. In Section 3, the structure of the
model is described. In Section 4, the model is used to
explain the Todd and Akerstrom results and to simulate
the elliptical cylinder, slanted plane and the golf ball.
Section 5 compares the LIGHTSHAFT model with
previous SFT models and supportive neurophysiological
data.

2. Todd and Akerstrom (1987) experiments

The Todd and Akerstrom (1987) experiments investigat-
ed the perception of curved surfaces and were able to dem-
onstrate that models of surface perception based on local
estimates of depth and/or surface orientation (e.g., Stevens,
1981) are, at best, incomplete. We use the phrase ‘‘surface-
texture’’ to refer to the distribution of texture on a 3D sur-
face model to be rendered, and ‘‘image-texture’’ to refer to
optical characteristics of the projection of surface-texture
onto an image plane. In particular, Todd and Akerstrom
demonstrated that curvature is perceived in cases where
surface-texture element size is varied (i.e., the texture is
inhomogeneous on the depicted surface), or when the sur-
face-texture elements are not isotropic. Both of these
manipulators would ‘‘break’’ a purely local model. More-
over, they demonstrated results contrary to the findings
of Cutting and Millard (1984), who argued that the percep-
tion of curvature was largely dependent on changes in
image-texture element compression. This was done by cre-
ating a stimulus where depth perception of a curved surface
can still be achieved for image-texture elements with con-
stant compression. Todd and Akerstrom gave a partial
explanation of their results in terms of a precursor to
FACADE theory (Grossberg & Mingolla, 1985a, 1985b).
This article extends work by Grossberg and Mingolla
(1987) that gave a partial qualitative explanation of the
Todd and Akerstrom (1987) data by using multiple-scale
boundary webs, and provides an explicit FACADE theory
implementation that qualitatively explains and simulates
Todd and Akerstrom’s results.

Stimuli such as those used in the Todd and Akerstrom
(1987) experiments are shown in Fig. 1 along with depth
maps computed from the LIGHTSHAFT model response.
These stimuli were produced following the descriptions of
Todd and Akerstrom (1987) and using techniques detailed
in Mingolla and Todd (1984) and Todd and Mingolla
(1984). In their experiment, Todd and Akerstrom used five
image conditions for which the image-texture structure for
prolate ellipsoids was varied. The first two conditions cor-
respond to different geometrical projections: high perspec-

tive (HP) and low perspective (LP, which approximates
orthographic viewing; Forsyth & Ponce, 2003). The top
row of Fig. 1 demonstrates black and white images of
HP prolate ellipsoids, where moving from left to right
along the row corresponds to an increase in eccentricity
of the ellipsoids, and thus an increase in the range of depth
perceived in the surface. Just below each ellipsoid image
one can see the corresponding colored depth maps comput-
ed by the model. Black corresponds to regions of the image
where depth is not represented. Going from dark blue,
through to green, yellow, and light yellow correlates with
a shift from far to near depths. Thus, looking at the HP
row of image/depth map pairs, one can see that the model



Fig. 1. Todd and Akerstrom (1987) images and the corresponding depth maps computed from the depth competition stage of the model (for the triangular
map matrix case as explained in Section 3). Top row: image and depth map pairs for HP case, 2nd row: LP, 3rd row: CCE, 4th row: CCS and bottom row:
RO. See text for explanation of image construction and abbreviations. Moving left to right across the rows corresponds to an increase in the simulated
depth of the surface in the image. Note that the human perception of depth for this figure is reduced owing to the small size of each image (Todd et al.,
2005). In each ellipsoid image, the red dashed circle indicates the boundary of the region within which the depth map was computed in order to avoid
spurious effects near the occluding contour, separating the ellipsoid from the large gray background (see Section 3.5). Note that the addition of the dashed
circles further diminishes the reader’s impression of three-dimensional shape in these figures, which is already attenuated by the small visual angle of each
depicted surface, as compared to what Todd and Akerstrom’s subjects viewed (see Todd et al., 2005).

636 S. Grossberg et al. / Vision Research 47 (2007) 634–672



S. Grossberg et al. / Vision Research 47 (2007) 634–672 637
accounts for the increase of perceived depth of the ellip-
soids when moving from the left to the right.

The second row of image/depth map pairs in Fig. 1 cor-
responds to the LP condition. One perceives the LP images
as showing less relative depth than the HP images, and the
depth maps show that the model accounts for this. The
three remaining conditions investigated by Todd and Aker-
strom are derived from the HP images. In particular,
image-texture elements, computed under HP projection,
were either forced to have constant compression (i.e., fixed
aspect ratios) or random orientations. For image-texture
elements with constant compression, they considered two
cases. In the constant compression square (CCS) condition,
image-texture area varied in correspondence with the HP
projection, but each of the elements had an identical square
shape and random orientation. In the constant compression

elongated (CCE) condition, patterns were generated in a
similar way except that the image-texture element was elon-
Fig. 2. Comparison of Todd and Akerstrom (1987) judged depth data with the
different model scale-to-depth maps. (a) Todd and Akerstrom (1987) judge
combinations of projection and texture seen in Fig. 1: HP (solid), LP (dashe
conditions. (b), (c) and (d) plot the standard deviations of depth computed from
map matrix and conservation of synaptic sites, respectively. Section 3 describes
depth of the ellipsoid and in (b), (c) and (d) the y-axis represents the standard d
ellipsoid. (Data replotted from Todd and Akerstrom (1987).)
gated perpendicular to the tilt direction (i.e., the direction
in the image plane along which the distance to the viewed
surface increases most rapidly) with a 3:1 compression ratio.
The third row of image/depth map pairs in Fig. 1 corre-
sponds to the CCE condition. Even though the texture
elements in the CCE images have constant compression,
one still sees surfaces in depth and this is accounted for by
the depth maps computed from the model. The fourth
row of image/depth map pairs in Fig. 1 corresponds to the
CCS condition. The CCS images are perceived as flat and
it is argued in this paper, through simulation results, that
this perceived flatness results from a lack of coherent group-
ing across concentric bands of texture elements (Grossberg
& Mingolla, 1985a, 1985b, 1987; Todd & Akerstrom, 1987).
Analysis of the CCE condition is important because it
shows, contrary to the findings of Cutting and Millard
(1984), that depth perception of a curved surface can still
be achieved for a stimulus with constant compression. The
standard deviations of depth computed from the depth maps of the three
d depth data where the plotted curves correspond to the five different
d), CCE (solid-with-crosses), CCS (solid-with-circles) and RO (dash–dot)

the depth maps of the model with the triangular map matrix, the diagonal

the meaning of these 3 model cases. In (a) the y-axis indicates the judged
eviation of each depth map. The x-axis indicates the simulated depth of the
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CCS condition further illustrates that this result requires
that the image-texture elements be anisotropic (i.e., elongat-
ed) and approximately co-linearly aligned.

In the random orientation (RO) condition, image-texture
shape varied in correspondence with the HP projection, but
each of the elements had constant area, was randomly ori-
ented, and the image-texture density was uniform. The final
row of image/depth map pairs in Fig. 1 corresponds to the
RO condition. As with the CCS images, the RO images are
perceived as flat as a result of a lack of coherent grouping.

The main idea behind how the model works is the fol-
lowing: The primary source of depth information in the
Todd and Akerstrom stimuli is the variation of texture ele-
ment widths, but only those that are elongated and sufficient-
ly aligned with one another so as to form coherent groupings

of texture elements. Coherent groupings at different scales
then convey the change in depth of the ellipsoid, assuming
that scale and depth are largely correlated, such that large
is usually near and small is usually far when a single surface
slanted in depth is viewed (Gibson, 1950; Grossberg,
1987b, 1994, 1997; Grossberg & Mingolla, 1987). The
HP, LP and CCE conditions all contain sufficiently elon-
gated and aligned texture elements in order for the different
scale texture elements to be grouped into the appropriate
depths. The CCS and RO conditions have insufficiently
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Todd and Akerstrom asked observers to judge the depths
of stimuli like those presented in Fig. 1. Observers had to
assign a depth value between 1 and 5, inclusive, to each ellip-
soid image. Fig. 2a plots the quantitative judged depth data
against the simulated depth of the ellipsoids. Considering
first the judged depths corresponding to the HP condition
(solid curve), one can see that observers underestimate the
simulated depth. For the LP condition (dashed) the images
are judged to show slightly less depth than for the HP condi-
tion. The CCE case (solid-with-crosses) is judged to show
depth, but over a narrower range of depths than the high
and LP conditions. The CCS (solid-with-circles) and RO
(dash–dot) cases give flat judged depth curves. The following
sections explain how the model is able to achieve a good
match with the Todd and Akerstrom Data.

3. Model

This section describes the LIGHTSHAFT neural model
for 3D SFT (see Fig. 3). Each subsection presents a stage of
the model. Because of the correspondence that exists
between model stages and their analogs in vivo, we will
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henceforth refer to certain model stages by their corre-
sponding physiological terms. Section 5.2.1 of the discus-
sion reviews physiological evidence for each model stage.
The stages of the model include: Lateral Geniculate Nucle-
us (LGN), oriented simple cells, complex cells, spatial com-
petition, orientation competition, bipole grouping cells,
filling-in cells, and 3D surface representation cells.

These stages of the model can be divided into two main
systems of the FACADE model (Grossberg, 1983, 1994;
Grossberg & Todorović, 1988; Kelly & Grossberg, 2000):
the Feature Contour System (FCS) and the Boundary Con-

tour System (BCS). The FCS represents surface lightness
signals in depth, while the BCS provides boundaries-in-
depth that can trap these surface lightness signals into per-
ceptually appropriate configurations. The LGN provides
inputs to both the FCS filling-in stages and the BCS
boundary grouping stages. In particular, the LGN stage
provides a multiple-scale contrast-enhanced ON and OFF
channel representation of the image contrast that can be
used both as a foundation for a multiple-depth boundary
representation of the image and to provide contrast signals
to the filling-in stages. The multiple-scale boundary repre-
sentation is achieved using the simple cells, and further
processing by the remaining BCS stages produces a multi-
ple-depth boundary web (Grossberg & Mingolla, 1987), or
form- and scale-sensitive plexus of boundaries, that can be
used by the filling-in stages to trap the LGN’s multiple-
scale contrast signals and form a multiple-depth represen-
tation of surface lightness.

This section briefly describes the structure and function
of the model, whose processing stages are shown in Fig. 3.
Subsequent subsections ‘‘unpack’’ the function of each
model component that is mentioned in the present over-
view. Moreover, we explain how each stage of the model
contributes to converting a 2D textured input image into
a neural representation of a 3D surface. As already noted,
an input image is processed by the multiple-scale ON and
OFF channels of the LGN. Multiple-scale ODD and
EVEN simple cells of the Primary Visual Cortex (V1)
detect local oriented contrasts through the combined pro-
cessing of the ON and OFF LGN channels. In order to
form complex cells in V1, the simple cell activations of
opposite contrast polarity are pooled. Multiple-scale com-
plex cells combine odd and even simple cell responses to
produce ‘‘spatial-phase tolerant’’ responses. A coopera-
tive-competitive feedback loop in V1, composed of multi-
ple-scale spatial competition cells, multiple-scale
orientation competition cells, and multiple-depth bipole
grouping cells, realizes the scale-to-depth mapping which
aids in the conversion of different sized image-texture ele-
ments into a representation of surface depth. The spatial
competition cells process the complex cell responses as well
as depth-to-scale feedback from the multiple-depth bipole
grouping cells in order to spatially sharpen bottom-up
complex cell inputs, as well as coherently grouped feedback
signals at different scales. Orientation competition cells
select the strongest orientations from the spatial competi-
tion cell responses to ensure that the bipole cell groupings
are as coherent as possible. Then multiple-depth bipole
cells try to form coherent groupings from the multiple-scale
orientation-competition cell inputs. The depth competition
cells in V2 select the strongest orientation-pooled bipole
signals across depth, providing a multiple-depth boundary
representation that can be used to describe the depth of the
surface. The depth competition cells then gate the filling-in
of ON and OFF LGN feature contour signals in the ON
and OFF filling-in stages in V4. The final multiple-depth
representation of the surface viewed in the image is given
by subtracting the OFF filling-in response from the ON fill-
ing-in response, thereby providing a lightness representa-
tion of the 3D surface in depth.

The LIGHTSHAFT model does not make explicit
assumptions about the homogeneity or isotropy of textured
surfaces, unlike various other approaches to analyzing SFT
(Aloimonos, 1986; Blake, Bülthoff, & Sheinberg, 1993;
Blake & Marinos, 1990; Gårding, 1993; Li & Zaidi, 2004;
Marinos & Blake, 1990; Rosenholtz & Malik, 1997; Todd
& Akerstrom, 1987; Todd, Oomes, Koenderink, & Kap-
pers, 2004; Witkin, 1981; Zaidi & Li, 2002). While such
assumptions are useful for algorithmic purposes and are
consistent with certain psychophysical results, there is no
neurophysiological evidence that the brain uses such
assumptions to estimate shape. Instead, the LIGHT-
SHAFT model embodies statistical properties of the visual
environment in its perceptual filtering and grouping ker-
nels, which enable its scale-to-depth and depth-to-scale
mappings to convert a multiple-scale representation of a
2D image into a multiple-depth representation of the shape
perceived from that image. These statistical properties of
the filtering and grouping kernels are asserted in a heuristic
manner (Grossberg, 1994), are supported by neurobiologi-
cal evidence (DeAngelis, Ohzawa, & Freeman, 1995; Kap-
adia, Westheimer, & Gilbert, 2000; Raizada & Grossberg,
2001; von der Heydt, Peterhans, & Baumgartner, 1984),
and are assumed to be derived through a process of learn-
ing and development (Grossberg & Williamson, 2001). The
model hereby makes use of the idea that the scale distribu-
tion/spatial frequency spectrum in an image is correlated
with changes in 3D surface depth (Grossberg, 1987b,
1994; Sakai & Finkel, 1995, 1997). For the LIGHTSHAFT
model, 6 scales, 16 orientations, and 6 depths were used.
The choice of 16 orientations was made in order to ensure
proper tracking of oriented contrast distributions for
curved surfaces. The 6 scales and 6 depths were selected
in order to provide a sufficiently dense discretization of
scale and depth for the purposes of this study. The para-
graphs that follow describe the biological plausibility,
structure and purpose of each stage of the model.

3.1. ON and OFF channels of the LGN

Retinal processing contributes to the determination of
an absolute lightness scale through two processes: light
adaptation (Grossberg, 1983; Grossberg & Hong, 2006;
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Martin, 1983; Werblin, 1971) and contrast adaptation
(Baccus & Meister, 2002; Demb, 2002; Grossberg & Hong,
2006). The LGN then generates contrast signals using mul-
tiple-scales of antagonistic ON-center OFF-surrounds and
OFF-center ON-surrounds (Grossberg & Hong, 2006;
Hubel & Wiesel, 1961).

This article deals only with static images with similar
lightness ranges. A retinal stage is not included in the mod-
el because it does not have to account for adaptation
effects. Instead the LGN stage processes the image directly,
producing a multiple-scale contrast-enhanced representa-
tion of the image. The LGN stage consists of six spatial
scales in order to sufficiently track the changes in the size
of texture in the image. The different scale representations
are extracted using both ON-center OFF-surround (ON
units) and OFF-center ON-surround (OFF units) kernels.
The ON units are excited when light signals fall in the cen-
ter of their receptive field and inhibited when light falls in
their surround. OFF units react in the opposite way (Schil-
ler, 1992). For each scale, the center-surround kernels have
fixed narrow centers so as to preserve fine image lightness
information for the purposes of filling-in (Grossberg &
Hong, 2006; Grossberg, Mingolla, & Williamson, 1995;
Mingolla, Ross, & Grossberg, 1999), while surround sizes
differ in order to provide the different scale sensitivity.

The LGN stage is simulated using feedforward shunting
equations (Grossberg, 1973, 1983). These equations,
defined in Appendix A.1, provide a formulation for the
ON and OFF channels and their push–pull interactions
which are common to the LGN and V1 layer 4 (Living-
stone & Hubel, 1984, 1988). The relative sizes of the
LGN center-surround filters are presented in Appendix
B. As mentioned above, the purpose of the LGN stage is
to provide a multiple-scale contrast-enhanced representa-
tion of image contrast that can be used to produce both
a multiple-depth boundary representation of the image
and signals to drive the surface filling-in stage. Fig. 4 sche-
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Fig. 4. Schematic of model circuit. LGN ON and OFF channels first
process the image using center-surrounds and then push–pull interactions
(see Appendix A.1). Their activations project to both the BCS and the ON
and OFF filling-in channels. The BCS gates filling-in of the LGN lightness
signals at the appropriate depths. The OFF filling-in response is
subtracted from the ON filling-in response to obtain the 3D surface
representation.
matizes how the ON and OFF LGN cells of the FCS pro-
vide input to both the BCS and the ON and OFF filling-in
channels of the FCS. The LGN ON and OFF channels first
process the image using center-surrounds, and then push–
pull interactions spatially sharpen the contrast signals pro-
duced by the center-surrounds. In response to the LGN
input, the BCS computes a multiple-depth boundary web
that gates filling-in within ON and OFF filling-in networks
whose responses are used to create a 3D surface lightness
representation. Fig. 5 demonstrates how the ON and
OFF LGN cells provide input to the model BCS by pro-
jecting to the odd and even simple cells.

3.2. Simple cells

One of the first stages of V1 cortical processing is per-
formed by oriented simple cells (Hubel & Wiesel, 1959,
1962). These cells have elongated excitatory and inhibitory
zones that form an oriented receptive field. This allows
simple cells to produce a multiple-scale boundary
representation of the image by processing the multiple-
scale un-oriented signals of the LGN (Grossberg, 1983;
Grossberg & Todorović, 1988; Hubel & Wiesel, 1962). In
the LIGHTSHAFT model, simple cells have multiple-scale
odd-symmetric and even-symmetric receptive fields which
are self-similar, that is, for a given receptive field symmetry
- - + 

FEEDBACK 

OFF Push-Pull 

EVEN ODD 

+ - - 

ON Push-Pull 

ig. 5. Schematic of the BCS circuit. ODD and EVEN simple cells process
e ON and OFF LGN input. Complex cells pool the simple cell
sponses. Spatial competition cells spatially sharpen the complex cell
sponse. Orientation competition cells then orientationally sharpen the
atial competition cell responses. Bipole cells group the orientation

ompetition signals, then feed back to the spatial competition cells to
lectively enhance the groupings. Finally depth competition cells refine
e bipole cell depth representation, before projecting to the ON and OFF

lling-in channels.
F
th
re
re
sp
c
se
th
fi



S. Grossberg et al. / Vision Research 47 (2007) 634–672 641
(odd or even), different sized fields have the same structure,
up to a uniform scaling of the two-dimensions of the field
(Grossberg, 1983). Each receptive field consists of ON-
and OFF-subregions. The ON-subregions receive excitato-
ry ON LGN signals and inhibitory OFF LGN signals,
while the OFF-subregions have the converse relation to
the LGN channels (Hirsch, Alonso, Reid, & Martinez,
1998; Raizada & Grossberg, 2001; Reid & Alonso, 1995).
This structural organization is embodied by the convolu-
tion of the ON- and OFF-subregions with their corre-
sponding LGN inputs. Sixteen discrete orientations are
used in order to be able to track the changes in orientation
in the Todd and Akerstrom stimuli and to approximate the
continuum of orientation selectivity observed for simple
cells (Ringach, Shapley, & Hawken, 2002). Each receptive
field is defined by either a Difference-Of-Gaussians
(DOG, even-symmetric) or a Difference-Of-Offset-Gaussi-
ans (DOOG, odd-symmetric) filters (Grossberg &
McLoughlin, 1997; Malik & Perona, 1990; Parker & Haw-
ken, 1988). Moreover, these filters are sensitive to polarity
of contrast. The responses of the ON- and OFF-subregions
are combined to provide the multiple-scale oriented con-
trast–polarity–sensitive simple cell outputs (Raizada &
Grossberg, 2001).

The simple cells are the main means of tracking changes
in scale of image texture, because their receptive fields are
self-similar; that is, they look the same up to a uniform
scaling. As a result, larger simple cells need more input to
fire as vigorously as smaller simple cells. The simple cells,
however, provide only a local representation of scale in
the image (Sakai & Finkel, 1995, 1997). Without further
processing, it would be hard to generate a depth represen-
tation that is not sensitive to local scale changes or image
noise since individual simple cells have high or low activity
depending on how they align with individual texture ele-
ments. As a result, subsequent grouping and competition
stages are necessary for estimating depth from the image.
The simple cell equations are presented in Appendix A.2.
The relative sizes of the simple cell DOG and DOOG filters
are presented in Appendix B. Fig. 5 schematizes how the
odd and even simple cell responses are derived from the
ON and OFF LGN cell responses.

3.3. Complex cells

The first and simplest model of complex cells in V1 was
presented by Hubel and Wiesel (1959, 1962). They demon-
strated that complex cells were oriented, contrast-polarity
insensitive and also phase-insensitive. They argued that
these properties arose from the spatial pooling of oriented
simple cells with opposite contrast-polarity sensitivities.
This model has been incorporated as one piece of more
elaborate filtering and boundary grouping models pub-
lished by Grossberg and colleagues (Grossberg, 1983,
1987a, 1987b; Grossberg & Howe, 2003; Grossberg & Min-
golla, 1987; Grossberg & Todorović, 1988; Kelly & Gross-
berg, 2000). However, these models typically combine
spatial-phase insensitivity with a spatial competition stage
which performs competition both across-position and with-

in-orientation. The spatial competition stage usually occurs
after the pooling of opposite contrast-polarity simple cell
signals into complex cell receptive fields at each point in
the image; cf., Fig. 3.

In the LIGHTSHAFT model, complex cells pool both
odd-symmetric and even-symmetric simple cells of opposite
contrast-polarities at each point in the image (Grossberg &
McLoughlin, 1997; Raizada & Grossberg, 2001). This
pooling is defined in Appendix A.3. Combining both odd
and even simple cells gives a more complete estimate of
the local changes of scale in the image. Fig. 5 demonstrates
how the odd and even simple cell responses are pooled to
generate complex cell responses.

3.4. Cooperative-competitive feedback loop

The complex cells provide a multiple-scale-and-orienta-
tion boundary representation of the image. How can this
boundary representation be converted into a depth repre-
sentation of the image? Complex cells are sensitive to bin-
ocular disparity, but there are no binocular disparity cues
in response to a monocularly-viewed textured object.
Grossberg (1994) analyzed how the brain exploits the
size-disparity correlation (Julesz & Schumer, 1981; Kuffler,
1978; Prince, Cumming, & Parker, 2002; Prince & Eagle,
1999; Richards & Kaye, 1974; Schor & Tyler, 1981; Schor
& Wood, 1983; Schor, Wood, & Ogawa, 1984; Smallman &
MacLeod, 1994; Tyler, 1975, 1983) to generate a 3D repre-
sentation of a 2D scene by pooling selective responses of
multiple scales of complex cells to generate a 3D boundary
representation that is capable of supporting a 3D represen-
tation of surface lightness. This is accomplished by a (mul-
tiple scale)-to-(multiple depth) mapping that combines
output from multiple scales to compute the total evidence
for an object at a prescribed depth. This scale-to-depth
mapping is embodied within a cooperative-competitive
feedback loop (Grossberg, 1994; Grossberg & Mingolla,
1985a, 1985b, 1987) that coherently groups texture-element
signals into the appropriate depths, thus helping to solve
the problem of how to convert oriented responses to dis-
crete texture elements in the image into a smooth three-di-
mensional surface representation of that image. Spatial and
orientation competition stages select the input signals
which have more statistical support, while the bipole cell
grouping stage creates coherent groupings of the selected
signals. The feedback loop takes the complex cell responses
as input and involves the following sequence: competition
across position! competition across orientation! bipole
grouping! competition across position (see Fig. 3). The
two competition stages are multiple-scale, while the bipole
grouping stage is multiple-depth. Thus when the orienta-
tion competition cells project to the bipole grouping cells
there is a scale-to-depth map, and when the bipole cells
feedback to the spatial competition cells there is a depth-

to-scale map (see Fig. 3). This framework results in bipole
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cell responses that provide a multiple-depth-and-orienta-
tion boundary representation of the surface and helps to
determine the final 3D surface representation.

While interactions between scale and depth have been
implemented within the FACADE framework (Kelly &
Grossberg, 2000), this article investigates the robustness
of the LIGHTSHAFT model with novel implementations
of three different scale-to-depth maps: triangular map

matrix, diagonal map matrix and conservation of synaptic

sites. Moreover, consideration of the performance resulting
from of a variety of scale-to-depth maps could shed some
light on the, poorly understood, physical structure of the
scale-to-depth map used in the brain. Since the model
involves feedback, the scale-to-depth map requires both a
scale-to-depth map matrix for the 6 orientation competi-
tion scales to project to the 6 bipole depths, and a depth-
to-scale map matrix for the 6 bipole depths to feed back
to the 6 spatial competition scales.

The triangular map matrix case involves scale-to-depth
and depth-to-scale map matrices in forms that are consis-
tent with the size-depth correlation (Brown & Weisstein,
1988; Grossberg, 1994; Sakai & Finkel, 1995) and the
size-disparity correlation (Julesz & Schumer, 1981; Kuffler,
1978; Prince et al., 2002; Prince & Eagle, 1999; Richards &
Kaye, 1974; Schor & Tyler, 1981; Schor & Wood, 1983;
Schor et al., 1984; Smallman & MacLeod, 1994; Tyler,
1975, 1983). The size-depth correlation is important for
SFT since variations in spatial frequency (i.e., size) are cor-
related with variations in perceived depth for SFT stimuli.
The basic idea behind the size-depth correlation is that, for
continuous surfaces that can be segmented from a visual
scene, large surface features (i.e., low spatial frequencies)
are typically perceived to be nearer than small surface fea-
tures (i.e., high spatial frequencies). The size-disparity cor-
relation, defined in psychophysical terms, is the
relationship between the disparity range for binocular ste-
reopsis and spatial frequency. Essentially, low spatial fre-
quencies can be fused over a larger range of disparities
than high spatial frequencies.

In the triangular map matrix case, the furthest depth
receives inputs from all scales with the strongest connec-
tions coming from the smaller scales. Nearer depths pro-
gressively receive less input from smaller scales than
further depths receive. This occurs to the point where the
nearest depth only receives input from the largest scale.
The exact values of the scale-to-depth and depth-to-scale
map matrices, Wds and Wsd, respectively, used by the model
are presented in Appendix C. The diagonal values of the
scale-to-depth and depth-to-scale map matrices are stronger
than the other weights of the matrix. This indicates that the
scale-to-depth map is biased by the size-depth correlation
since small scales are predominately mapped to far depths
and large scales are predominantly mapped to near depths.

Although LIGHTSHAFT does not model binocular
vision, aspects of SFT are related to mechanisms for
perceiving binocular depth. Indeed, FACADE theory laid
a foundation for understanding how 3D percepts of 2D
images may be generated by using the brain’s mechanisms
for perceiving the binocularly viewed world in depth
(Grossberg, 1994, 1997). In particular, both binocular
vision and SFT depend on multiple-scale processing. The
size-disparity correlation posits that large scales can fuse
over both large and small disparities, while small scales
can only fuse over small disparities. This can be taken to
mean that large scales provide input to a larger range of
depths than small scales. The off-diagonal weights of the
scale-to-depth and depth-to-scale map matrices take this
idea into account by allowing the larger scales to provide
input to more depths than do the smaller scales.

The conservation of synaptic sites case is a variation of
the triangular matrix map case where the sum of the input
weights projecting to each depth in the scale-to-depth map,
or each scale in the depth-to-scale map, is constant across
all depths and scales, thus conserving the number of synap-
tic sites attaching to a bipole cell of a given depth, or a spa-
tial competition cell of a given scale. This case is consistent
with the size-depth and size-disparity correlations in a sim-
ilar way as the triangular map matrix case. For this case,
the values of the scale-to-depth and depth-to-scale map
matrices, Wds and Wsd, respectively, used by the model
are presented in Appendix D.

Fig. 6a illustrates a schematic of the scale-to-depth map
for the triangular map matrix and conservation of sites
cases where the multiple-scale cells project to the multi-
ple-depth bipole grouping cells, which in turn provide feed-
back to the multiple-scale cells, thus completing the
cooperative-competitive feedback loop. The left bipole cell
(labeled as an infinity-type symbol) corresponds to the far-
thest depth, and in accordance with the scale-to-depth map
of these cases, receives input from, and provides feedback
to, cells of all the scales (indicated by ellipses). The middle
bipole cell corresponds to a mid-range depth and receives
input from, and provides feedback to, only the larger
scales. The right bipole cell corresponds to the nearest
depth and receives input from, and provides feedback to,
only the largest scale.

In the diagonal map matrix case, scale maps to depth in
a one-to-one manner that is consistent with the size-depth
correlation, but does not try to consider the size-disparity
correlation. For this case, the values of the scale-to-depth
and depth-to-scale map matrices, Wds and Wsd, respective-
ly, used by the model are presented in Appendix E. Fig. 6b
illustrates these maps for the diagonal map case. Note that
each bipole cell receives input from, and feeds back to, only
one scale. The far bipole connects to the small scale, the
middle depth to the middle scale, and the near bipole to
the large scale.

Each stage of the cooperative-competitive feedback loop
is computed using the equilibrium form of the model equa-
tions. The feedback loop is repeated until equilibrium is
reached, through a process of relaxation. This speeds up
simulation times compared to when numerical integration
is used. Moreover, in order to speed up simulations the
complex cell response was sub-sampled, by taking every



Fig. 6. (a) Schematic of scale-to-depth map for the triangular map matrix and conservation of sites cases where the multiple-scale cells (indicated by
ellipses) project to the multiple-depth bipole grouping cells (indicated by infinity-type symbol), which in turn provide feedback to the multiple-scale cells,
thus completing the cooperative-competitive feedback loop. The left bipole cell corresponds to the farthest depth, and in accordance with the scale-to-
depth map of these cases, receives input from, and provides feedback to, all of the scales. The middle bipole cell corresponds to a mid-range depth and
receives input from, and provides feedback to, only the larger scales. The right bipole cell corresponds to the nearest depth and receives input from, and
provides feedback to, only the largest scale. (b) For the diagonal map matrix case the far bipole connects to the small scale, the middle depth to the middle
scale, and the near bipole to the large scale.
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12th pixel along both of the image dimensions. This means
that the complex cell array (see Appendix A.3) which had
original dimensions 481 · 481 · 16 · 6 was reduced to the
size 41 · 41 · 16 · 6. These dimensions are also used by
the spatial competition, orientation competition, bipole
grouping and depth competition cells. When the depth
competition cell responses are projected to the filling-in
stage they are resized back to the original dimensions using
nearest neighbors interpolation in order to preserve image
detail in the final 3D surface representation.

3.4.1. Spatial competition cells

The spatial competition cells (Gove, Grossberg, & Min-
golla, 1995; Grossberg & Mingolla, 1985b, 1987; Grossberg
et al., 1995) are modeled as hypercomplex cells in V1. See
Appendix A.4. They are represented by a multiple-scale
shunting neural network which performs competition both
across position and within orientation. Moreover, the spatial
competition stage uses radially-symmetric kernels of differ-
ent scale that are self-similar. See Appendix B for these ker-
nels. Each scale of the spatial competition stage spatially
sharpens the combination of bottom-up inputs from multi-
ple-scale complex cells and feedback from multiple-depth
bipole cells. Fig. 5 illustrates how the spatial competition
cells receive lateral inhibition from the bottom-up complex
cell input and top-down bipole cell feedback. This diagram
depicts feedback from one bipole cell. However, in the
model, a spatial competition cell of a given scale can
receive feedback from bipole cells of up to 6 depths
depending on the scale-to-depth map (schematized in
Fig. 6 and detailed in Appendices C–E).

The spatial competition cell responses are passed onto
the multiple-scale orientation competition cells (Fig. 3).
The scale-to-depth map occurs between the multiple-scale
orientation competition cells and the multiple-depth bipole
cells. Feedback from the bipole cells to the spatial compe-
tition cells carries out the depth-to-scale map (Fig. 3).

3.4.2. Orientation competition cells

The orientation competition cells (Gove et al., 1995;
Grossberg & Mingolla, 1985a, 1985b, 1987; Grossberg
et al., 1995) are also modeled as hypercomplex cells in
V1. They are represented by a multiple-scale shunting neu-
ral network where competition occurs both across orienta-

tion and within position. This competitive interaction is the
same for all scales. The multiple-scale orientation competi-
tion stage preserves strong-orientation signals from the
spatial competition stage while inhibiting weaker orienta-
tion signals, thus helping the bipole cells to form more
coherent groupings. The outputs of the orientation compe-
tition cells project to the multiple-depth bipole cells
through the scale-to-depth map (see Appendices C–E).
The equations for the orientation competition cells are pre-
sented in Appendix A.5. Fig. 5 shows how the orientation
competition cells apply cross-orientation inhibition to the
spatial competition cell outputs.
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3.4.3. Bipole grouping cells

Bipole cells realize the grouping of texture elements nec-
essary for a coherent depth representation (Grossberg &
Mingolla, 1985a, 1985b, 1987; Grossberg et al., 1995;
Grossberg & Swaminathan, 2004; Mingolla et al., 1999;
Raizada & Grossberg, 2001; see also Field, Hayes, & Hess,
1993; Heitger, von der Heydt, Peterhans, Rosenthaler, &
Kubler, 1998; Kellman & Shipley, 1991). The bipole cells
are modeled as V2 neurons in layer 2/3 (Bosking, Zhang,
Schofield, & Fitzpatrick, 1997; McGuire, Gilbert, Rivlin,
& Wiesel, 1991; Schmidt, Goebel, Löwel, & Singer, 1997;
von der Heydt et al., 1984). In particular, bipole cells can
form a boundary web (Grossberg & Mingolla, 1987)
through cooperative grouping and competitive selection
of boundaries. Boundary webs help to trap lightness signals
within appropriate surfaces in depth.

In the model, the multiple-scale orientation competition
cells project to the multiple-depth bipole cells (Fig. 5).
Boundary grouping then occurs in each depth using the
bipole filter defined in Appendix A.6.1 and presented in
Appendix B. The bipole cell formulation described in
Appendix A.6 is based on the formulations used in Gove
et al. (1995), Grossberg and Mingolla (1987), and Raizada
and Grossberg (2001). For each bipole cell, there are two
inhibitory interneurons, or interneuronal populations
(Grossberg & Howe, 2003; Grossberg & Swaminathan,
2004; Grossberg & Yazdanbakhsh, 2005), rather than just
one (Raizada & Grossberg, 2001). This hypothesis makes
the bipole cell groupings more robust to parameter
changes. Although the bipole cells provide a multiple-
depth-and-orientation boundary representation of the
image, this representation is enhanced by the depth compe-
tition stage which receives the orientation-pooled bipole
cell activations as input. Fig. 5 depicts input from
orientation competition cells of a single scale to a bipole
cell of a single depth. In the model, an orientation
competition cell of a given scale can connect to bipole cells
of up to 6 depths depending on the scale-to-depth map
(schematized in Fig. 6 and detailed in Appendices C–E).

3.5. Depth competition cells

The depth competition cells are also modeled as V2 neu-
rons. They are represented by a multiple-depth shunting
network with uniform competition across depth and within

position. The depth competition cells process the orienta-
tion-pooled bipole cell responses to give a multiple-depth
boundary web which represents the BCS output. These
cells project to the ON and OFF filling-in domains, or
FIDOs, to gate the filling-in of surface feature signals pro-
jected from the LGN. The equations describing the depth
competition cells are defined in Appendix A.7. Fig. 5 illus-
trates how the depth competition cells apply across-depth
inhibition to their bipole cell inputs. This diagram depicts
only input from one bipole cell.

In the model, a depth competition cell of a given depth
receives excitation and inhibition from bipole cells of all 6
depths. The depth maps, as shown in Fig. 1, are computed
from the depth competition response by determining the
activation-based weighted average of depth at each pixel.
For the pixel at position (i, j) in the image plane, the acti-
vation-based weighted average of depth, �dij, is given by:

�dij ¼
X6

d¼1

d
GijdP6
y¼1Gijy

 !
; ð1Þ

where Gijd is the activation of the depth competition cell at
position (i, j) and depth d, and y is a dummy index. See
Appendix Eq. (A.57). Moreover, the depth maps are com-
puted only in the region of the image where the continuous
surface is present. This assumes that there is a figure-
ground segmentation process going on that separates the
textured surface in the image from the background; cf.,
Grossberg (1994, 1997).
3.6. ON and OFF filling-in domains and the 3D surface

representation

The ON and OFF FIDOs are modeled as V4 neurons.
Filling-in has typically been modeled by a diffusion net-
work (Cohen & Grossberg, 1984; Grossberg & Hong,
2006; Grossberg & Todorović, 1988; Hong & Grossberg,
2004; Pessoa, Mingolla, & Neumann, 1995). However,
alternatives to a physical diffusion process in the form of
long-range interactions for filling-in have been proposed
and shown to run 1000 times faster (Grossberg & Hong,
2006; Hong & Grossberg, 2004). The ON and OFF FIDOs
in the present model are based on the diffusion network
used by Grossberg and Todorović (1988). The multiple-
depth boundary webs computed by the BCS trap the diffu-
sion of surface lightness signals generated from the LGN
output. This boundary-gated surface filling-in concept
has been used to describe many psychophysical data about
brightness, color, and 3D figure-ground perception (Gross-
berg, Hwang, & Mingolla, 2002; Grossberg & Mingolla,
1985a; Grossberg & Yazdanbakhsh, 2005; Kelly & Gross-
berg, 2000).

When projecting the multiple-scale ON and OFF LGN
signals to the multiple-depth ON and OFF filling-in chan-
nels, the scale-to-depth map described for the BCS is not
used. Instead, scale-pooled LGN signals are projected to
each depth. Fig. 4 schematizes how the ON and OFF
FIDOs receive input from the LGN cells and the BCS. In
Fig. 4, there are LGN cells of only one scale and filling-
in cells of only one depth. In the model, 6 LGN scales pro-
ject to each filling-in depth and each filling-in depth
receives gating signals from its corresponding BCS depth.

Before inputting to the filling-in stages, the BCS multi-
ple-depth representation computed on a sub-sampled
image grid is resized back to the original image grid in
order to preserve image detail. Multiple-depth filling-in of
LGN signals then occurs within these depth-selected
boundaries. Within each depth and position, the OFF
filled-in response is subtracted from the ON filled-in
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response to obtain the 3D surface representation, that is
interpreted to lie in V4 (Schiller, 1994, 1995; Schiller &
Lee, 1991; Zeki, 1983a, 1983b). The 3D surface representa-
tion is a multiple-depth representation of the surface per-
ceived in the input image. The equations describing the
ON and OFF FIDOs are defined in Appendix A.8, while
the equation describing the 3D surface representation is
defined in Appendix A.9.

4. Computer simulations

This section discusses how the LIGHTSHAFT model
fits the Todd and Akerstrom (1987) data seen in Figs. 1
and 2. Simulations of an elliptical cylinder, slanted plane
and golf ball image are also summarized.

4.1. LIGHTSHAFT model simulations of the Todd and

Akerstrom (1987) data

Generating a 3D surface percept from a 2D input image
relies on scale-to-depth and depth-to-scale maps (described
in Section 3), which help to transform a multiple-scale
representation of the 2D image into a multiple-depth repre-
sentation of the image. To demonstrate the robustness of
the LIGHTSHAFT model framework, three cases of the
scale-to-depth and depth-to-scale maps were simulated: a
triangular map matrix, a diagonal map matrix and
conservation of synaptic sites (see Section 3 and Appendi-
ces C–E). Fig. 1 shows the depth maps computed using the
triangular map matrix case. Fig. 2b–d display the standard
deviation of the model’s depth maps for each of the 25
ellipsoid images presented in Fig. 1 computed using the
triangular map matrix, diagonal map matrix and conserva-
tion of sites cases, respectively. Comparing Fig. 2a with
Fig. 2b–d shows that there is a good qualitative match of
the curves for all of the Todd and Akerstrom stimulus cases
and scale-to-depth map cases. For the HP, LP and CCE
conditions, the model-data matches arise because the mod-
el is able to form groupings of the oriented energy of suffi-
ciently aligned and elongated texture elements. These
groupings form in different depths depending on the differ-
ent scales of the texture elements, thus giving rise to model
percepts with strong variations in depth (see Fig. 1; 1st row
of image/depth map pairs: HP; 2nd row: LP; 3rd row:
CCE). For the CCS and RO conditions, the model-data
matches arise because the texture elements are either not
aligned or isotropic. Thus there is little ability to form
strong groupings. This allows the near depth to dominate
at the depth competition stage of the model, leading to flat
model percepts (see Fig. 1; 4th row: CCS; 5th row: RO).

4.1.1. Simulations of the high perspective condition

In order to better understand how the model works,
consider first the number 5 HP condition (top right image
in Fig. 1) simulated using the triangular map matrix case.
Fig. 7a and b show the LGN ON and OFF channel
responses, respectively. Each panel in each figure corre-
sponds to a scale. The top left panel corresponds to the
smallest scale, then moving right along the rows and down
along the columns corresponds to an increase in scale. For
each panel, the brighter the image at a given point, the
stronger the activation at that point. Moreover, each panel
is 481 · 481 pixels in size. These LGN stages provide a mul-
tiple-scale, contrast-enhanced representation of the image,
where each scale response has been computed using cen-
ter-surround kernels that have a fixed center size, but a dif-
ferent surround size depending on the scale.

Fig. 7c shows the sub-sampled multiple-scale-and-ori-
ented complex cell responses that pool odd and even simple
cell responses to the ON and OFF LGN channels (Section
3.4 explains the need for sub-sampling). The complex cell
responses are plotted using needle plots, wherein a longer
needle of a given orientation indicates greater activation
for that orientation. For each panel, there are 41 · 41 nee-
dle sites corresponding to the cell locations of that scale.
This low spatial resolution version of the complex cell
responses helps one to better visualize the prevalence of
oriented energy at different image locations. The bottom
panel helps one to see this more clearly by showing a
zoomed in version of the largest scale response panel (3rd
down on the right). From the complex cell response one
can see that there is a significant amount of oriented energy
in the direction perpendicular to the direction of tilt, espe-
cially in the smaller scales. The goal of the cooperative-
competitive feedback loop is to take advantage of this
appropriately aligned energy to form circular bands of
grouping within the appropriate depths.

Fig. 8a displays the multiple-scale-and-oriented spatial
competition cell equilibrium responses. These cells spatially
sharpen both the bottom-up complex cell responses as well
as the depth-to-scale mapped bipole grouping cell respons-
es using center-surrounds that vary with scale. Here, small
scales are sharpened on a small spatial scale while large
scales are sharpened on a large spatial scale. This can be
seen mainly for scales 3–5 in Fig. 8a where the thickness
of the bands increases with an increase in scale.

Fig. 8b illustrates the equilibrium responses of orienta-
tion competition cells, notably their multiple-scale-and-ori-
ented properties. These cells orientationally sharpen the
spatial competition cell responses using center-surrounds
across orientation that are the same for all scales. This
sharpens the orientation representation of the model by
eliminating weak orientation signals at each point in the
image. This can be observed through the reduced variation
of orientations seen when comparing Fig. 8b of the orien-
tation competition cells with Fig. 8a of the spatial compe-
tition cells.

This orientation sharpening helps to make more
coherent circular groupings within depth, as can be seen
in Fig. 8c where the multiple-depth-and-oriented bipole
grouping cell responses are displayed. As depth gets nearer,
the circular bands become thicker and the peak activation
of the bands shifts towards the center of the image; cf.,
Grossberg and Mingolla (1987). These strong bands arise



Fig. 7. Number 5 HP case: (a) LGN ON response, (b) LGN OFF response, and (c) complex cell response. In (a), (b) and (c), the top left panel corresponds to
the smallest scale, then moving right along the rows and down along the columns corresponds to an increase in scale. The bottom panel in (c) shows a
zoomed in version of the largest scale response (3rd panel in (c) down on the right). For each panel with gray scale images, here and in Figs. 8–14, the
brighter the image at a given point the stronger the activation at that point. For each panel in (a) and (b), and in the filling-in stage figures, the dimensions
are 481 · 481 pixels. For each panel in (c) and in the needle plots in Figs. 8–14, a longer needle of a given orientation indicates greater activation for that
orientation. Moreover, for each panel here and the other figure needle plots, there are 41 · 41 needle sites.
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Fig. 8. Number 5 HP case: (a) spatial competition cell response, (b) orientation competition cell response, (c) bipole grouping cell response, and (d) depth

competition cell response. In (a) and (b), the top left panel corresponds to the smallest scale, then moving right along the rows and down along the columns
corresponds to an increase in scale. In (c) and (d), the top left panel corresponds to the furthest depth, then moving right along the rows and down along
the columns corresponds to moving nearer in depth. These simulations involved the triangular map matrix case (see Section 3).
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from a combination of the scale-to-depth map (when the
orientation competition cells project to the bipole cells)
and the bipole grouping kernel. The depth-to-scale mapped
feedback from the bipole cells to the spatial competition
cells also helps to reinforce the formation of these strong
bands of grouping.

Fig. 8d demonstrates the multiple-depth depth compe-
tition cell responses to their bipole grouping cell input.
For each panel, there are 41 · 41 pixels corresponding
to the cell locations of that depth. This figure shows that
depth competition allows one to compute a multiple-
depth boundary web that can be used to trap surface
lightness signals into the appropriate depths. This is seen
by noting that, for the number 5 HP surface, the periph-
ery is represented at further depths, while there is a shift
towards a central representation for nearer depths. Since
the boundary webs shown in Fig. 8d are thick bands of
activation lying on a sub-sampled image grid, this repre-
sentation is resized back to the original image dimensions
using nearest neighbors interpolation, so that the model
can properly gate the filling-in of the image-texture
elements.

Fig. 9a and b show the ON and OFF filling-in responses,
respectively. For each FIDO (ON or OFF), the filled-in
responses are obtained through the diffusion of their
LGN feature inputs summed across all scales (Fig. 7a
and b show the LGN ON and OFF responses before sum-
mation over scale) trapped into the appropriate depths by
the multiple-depth boundary representation (Fig. 8d). A
final representation of the number 5 HP surface is obtained
simply by subtracting the OFF filling-in response from the
ON filling-in response. For each panel, there are 481 · 481
pixels corresponding to the cell locations of that depth.
This final result (Fig. 9c) is a multiple-depth representation
of surface brightness.

The simulation results for the number 1–4 HP condi-
tions arise in a similar way to the number 5 case. However,
as the depth of the surface decreases, the texture elements
become more isotropic and, although perspective projec-
tion leads to colinear texture elements in the periphery,
grouping signals in the further depths become progressively
weaker. This increasingly allows for the nearer depths to
dominate, thus giving rise to flatter percepts when decreas-
ing the surface depth (i.e., decreasing from surface number
5 down to 1). This result is observed clearly in the top row
of image/depth map pairs in Fig. 1, where moving from
right to left corresponds to a decrease in perceived surface
depth which is matched well by the model. To understand
more directly how weak grouping signals allow depth com-
petition to produce flatter percepts, consider the responses
of the bipole grouping and depth competition stages to the
number 1 HP condition in Fig. 10a and b, respectively.
While the bipole grouping cells appear to show some
grouping at the further depths, the actual activations are
not strong enough to completely survive the depth compe-
tition stage. This is illustrated by the strong near-depth
responses in Fig. 10b.
4.1.2. Simulations of the low perspective condition

The LP condition simulations provide similar, but less
deep, results when compared to the HP condition. This is
demonstrated by the lower slope of the LP curve compared
to the HP curve in Fig. 2 for both the psychophysical data
(Fig. 2a) and the model (Fig. 2b–d). Thus the model is con-
sistent with the general result that orthographic projections
(LP) give less deep stimuli than (high) perspective projec-
tions. The model is able to account for this result by the
simple fact that the LP images (2nd row of input images
in Fig. 1) have a narrower range of texture-element size
variation when moving from the center of the image to
its periphery, than do the HP images (1st row of input
images in Fig. 1). Going by the size-depth correlation
(see Section 3.4), the narrower range of texture-element siz-
es implies a narrower range of depth.

The LIGHTSHAFT model thus processes the narrower
range of texture-element sizes and creates less deep percepts
for the LP case than when compared to the HP case. We
can see this more directly by comparing simulations of
the number 5 LP and number 5 HP conditions. The end
panels in the 1st and 2nd rows of input images in Fig. 1
show the images of the number 5 HP and LP cases, respec-
tively. It can be clearly seen that the LP case has a narrower
range of texture-element sizes (biased more towards large
scales) compared to the HP case. This narrower range of
scales is exemplified by the responses of the complex cells.
Figs. 7c and 11a display complex cell responses for the HP
and LP cases, respectively. For the LP case, one observes
more activation in the larger scale complex cells than in
the smaller scales, while for the HP case activation is more
distributed across the scales.

This greater bias towards the larger scales for the LP
case (resulting from the bias of larger scales in the input
image as opposed to some built-in model bias) leads to
a greater bias towards nearer depths. Figs. 8d and 11b
show the depth competition cell responses for the number
5 HP and LP cases, respectively. If one considers just the
nearest depth in these figures, the central activation is
slightly broader and stronger (i.e., brighter in terms of
the figure) for the LP case than for the HP case. This bias
towards nearer depths for the LP case gives rise to less
deep model depth maps when compared with the HP
case. This can be observed by considering Fig. 1 where
the 5th column displays number 5 image/depth map pairs
for the HP (1st row of image/depth map pairs) and LP
(2nd row of image/depth map pairs) conditions. Although
the difference is only slight, one can see that the central
region for the LP case has a larger distribution of white
and yellow (nearest depths) than does the HP case. This
qualitative observation is quantified in Fig. 2b–d where
the standard deviation of the depth maps is plotted for
the HP and LP cases, and for the three scale-to-depth
map cases, respectively. Focusing on the HP and LP
curves at the points corresponding to the number 5 sur-
face condition (i.e., simulated depth of 5), one can see
that the standard deviation of the depth maps is less for



Fig. 9. Number 5 HP case: (a) ON filling-in, (b) OFF filling-in, and (c) 3D surface representation. In (a), (b) and (c), the top left panel corresponds to the
furthest depth, then moving right along the rows and down along the columns corresponds to moving nearer in depth. These simulations involved the
triangular map matrix case (see Section 3).
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the LP case. Thus the LIGHTSHAFT model is capable of
explaining how LP projection leads to less deep percepts
than HP projection.
4.1.3. Simulations of the CCE condition

As discussed in Section 2, the CCE condition (the 3rd
row of image/depth map pairs in Fig. 1) was introduced



Fig. 10. Number 1 HP case: (a) bipole grouping cell response and (b)
depth competition cell response. In (a) and (b), the top left panel
corresponds to the furthest depth, then moving right along the rows
and down along the columns corresponds to moving nearer in
depth. These simulations involved the triangular map matrix case
(see Section 3).

Fig. 11. Number 5 LP case: (a) complex cell response and (b) depth

competition cell response. In (a), the top left panel corresponds to the
smallest scale, then moving right along the rows and down along the
columns corresponds to an increase in scale. In (b), the top left panel
corresponds to the furthest depth, then moving right along the rows and
down along the columns corresponds to moving nearer in depth. These
simulations involved the triangular map matrix case (see Section 3).
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to test the idea that perception of depth and curved surfac-
es depends largely on changes in texture-element compres-
sion (Cutting & Millard, 1984; Todd & Akerstrom, 1987).
The CCE case demonstrates the Todd and Akerstrom
(1987) finding that depth percepts can still be obtained
when texture-element compression is constant and the tex-
ture-elements are elongated perpendicular to the tilt direc-
tion. Figs. 1 and 2 show that the model can account for the
judged depths of the CCE stimuli for different simulated
surface depths. The model also accounts for the relative
relationships of the judged depth curves for the CCE, HP
and LP conditions (i.e., for low simulated depths the
CCE curve is above the HP curve, while for high simulated
depths the CCE curve is below the HP curve).

The model is able to create percepts with strong var-
iation in depth for the CCE stimuli because, even though
image-texture element compression is constant (i.e., they
have the same axis-ratios), the texture elements still

decrease in size when shifting from the center of the image

to the periphery and they are elongated in the direction

perpendicular to the tilt direction. The colinear alignment
of the elongated texture elements allows for bipole
grouping, and the variations in scale enable these group-
ings to be formed in particular depths. This can be
understood in more detail by considering the simulation
of the number 5 CCE image (end of the 3rd row of
image/depth map pairs in Fig. 1) using the triangular
map matrix case. Fig. 12a shows that the complex cells
are able to detect the oriented energy of the elongated
texture elements of different scales, and Fig. 12b illus-
trates that the bipole cells can form groupings of these
oriented signals in the appropriate depth planes. Depth
competition (see Fig. 12c) then helps to refine the multi-
ple-depth boundary representation that leads to the final
3D surface representation shown in Fig. 12d.

The model accounts for the relative relationships of
the judged depth curves for the CCE, HP and LP condi-
tions (see Fig. 2) mainly because the scale-to-depth map
depends heavily on the size-depth correlation. This can
be further understood by focusing on the number 1 sim-
ulated depth. For the number 1 simulated depth, the
range of scale variation is largest for the CCE condition,
2nd largest for the HP condition and smallest for the LP
condition (left-most images in 3rd, 1st, and 2nd row of
input images in Fig. 1, respectively). The perceived depth
of these images also decrease in this order (see Fig. 2a).
The model complex cells detect the different scale ranges
of the different images. Since the scale-to-depth map
depends on the size-depth correlation, the variation of
depths activated at the bipole cell stage is largely propor-
tional to the variation of scales activated at the complex
cell stage. This leads to final surface representations that
match well with the perceived depth ordering of the
CCE, HP and LP conditions for the number 1 simulated
depths. Moreover, the model percepts also capture the
perceived depth orders of the same conditions for simu-
lated depths 2–5.
4.1.4. Simulations of the CCS condition

The CCS condition (4th row of image/depth map pairs
in Fig. 1) illustrates that the size-depth correlation cannot
be used as the only cue for judging depth from textured
images. This is true because, even though the greater simu-
lated depth images of the CCS case contain texture ele-
ments that vary in size moving from the center of the
image to the periphery, all of the CCS images are perceived
as flat (see Fig. 2a). The model is able to prevent these scale
variations from being interpreted as depth variations
through the bipole grouping mechanisms and the subse-
quent depth competition stage. For the CCS images, the
image texture elements are square and randomly oriented,
thus making it difficult for the model to form strong
boundary groupings from the multiple-scale complex cell
responses. Compared to the HP, LP and CCE cases, the
groupings formed at the bipole cell stage are much weaker
in response to CCS stimuli, especially for the farther
depths. This allows the depth competition stage to favor
the near depths, leading the model to produce flat percepts.

This result can be understood by considering the simula-
tion of the number 5 CCS condition image (end of the 4th
row of image/depth map pairs in Fig. 1) using the triangu-
lar map matrix case. Fig. 13a shows that the complex cells
are able to detect the oriented energy of the texture ele-
ments of different scales, although these activations show
much less colinear alignment and are weaker than those
detected for the number 5 CCE condition (Fig. 12a). As
a result, the groupings formed by the bipole cells
(Fig. 13b) are weaker, especially for far depths when com-
pared to the CCE condition. The depth competition stage
weakens the far depth representations, thereby allowing
the nearest depth to win the competition (Fig. 13c). The
output of the depth competition stage is then used to gate
the surface filling-in that leads to the final surface represen-
tation (Fig. 13d). Since the nearer depths are the only ones
to survive the competition, filling-in within texture-element
boundaries only occurs in the nearer depths. Thus the
image is perceived as a flat surface.

The same mechanisms that produced a flat model per-
cept for the number 5 CCS condition image are also the
cause of the flat percepts produced for simulated depths
numbers 1–4.

4.1.5. Simulations of the RO condition

The model explanation for the flat percept (Fig. 2a) of
the RO condition images (5th row of image/depth map
pairs in Fig. 1) is similar to that given for the CCS condi-
tion. Although the simulated depth images of the RO case
contain texture elements that vary in size in a different
manner to the CCS case (because of their constant area),
the texture elements have very little colinear alignment.
As was true for the CCS case, the model is able to prevent
these scale variations from being interpreted as depth vari-
ations through the bipole grouping mechanisms and the
subsequent depth competition stage. Since the RO condi-
tion image contains randomly oriented texture-elements,



Fig. 12. Number 5 CCE case: (a) complex cell response, (b) bipole grouping cell response, (c) depth competition cell response, and (d) 3D surface

representation. In (a), the top left panel corresponds to the smallest scale, then moving right along the rows and down along the columns corresponds to an
increase in scale. In (b), (c) and (d), the top left panel corresponds to the furthest depth, then moving right along the rows and down along the columns
corresponds to moving nearer in depth. These simulations involved the triangular map matrix case (see Section 3).
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Fig. 13. Number 5 CCS case: (a) complex cell response, (b) bipole grouping cell response, (c) depth competition cell response, and (d) 3D surface

representation. In (a), the top left panel corresponds to the smallest scale, then moving right along the rows and down along the columns corresponds to an
increase in scale. In (b), (c) and (d), the top left panel corresponds to the furthest depth, then moving right along the rows and down along the columns
corresponds to moving nearer in depth. These simulations involved the triangular map matrix case (see Section 3).
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Fig. 14. Number 5 RO case: (a) complex cell response, (b) bipole grouping cell response, (c) depth competition cell response, and (d) 3D surface

representation. In (a), the top left panel corresponds to the smallest scale, then moving right along the rows and down along the columns corresponds to an
increase in scale. In (b), (c) and (d), the top left panel corresponds to the furthest depth, then moving right along the rows and down along the columns
corresponds to moving nearer in depth. These simulations involved the triangular map matrix case (see Section 3).
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Fig. 15. Elliptical cylinder (left column), slanted plane (middle column)
and golf ball (right column) depth maps computed using the triangular
map matrix, the diagonal map matrix and conservation of sites (2nd, 3rd
and 4th rows, respectively). In order to remove image edge-effects, the
elliptical cylinder and slanted plane, shown here, are cropped versions of
larger images that were used as input to the model. The golf ball image, on
the other hand, was not cropped since the surface of the ball is reasonably
distant from the edges of the image, except for the top edge, and is thus
less subject to image edge-effects. In addition, for the elliptical cylinder and
the golf ball, the red dashed lines indicate the boundary of the region
within which the depth map was computed in order to avoid spurious
effects near the occluding contour, separating the surface from the
background (see Section 3.5). The golf ball photo was adapted from Clerc
and Mallat (2002).
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it is difficult for the model to form strong boundary group-
ings from the multiple-scale complex cell responses. Com-
pared to the HP, LP and CCE cases, the groupings
formed at the bipole cell stage are much weaker in response
to randomly oriented texture-element stimuli, especially for
the farther depths. Subsequent processing by the depth
competition stage leads to flat percepts.

This result can be further understood by considering the
simulation of the number 5 RO condition image (end of 5th
row of image/depth map pairs in Fig. 1) using the triangu-
lar map matrix case. Fig. 14a shows that the complex cells
are able to detect the oriented energy of the texture ele-
ments of different scales. However, these activations show
much less colinear alignment than those detected for the
number 5 HP condition (Fig. 7c), from which the RO con-
dition was created. As a result, the groupings formed by the
bipole cells (Fig. 14b) are weaker, especially for far depths
when compared to the HP condition. The depth competi-
tion stage weakens the far depth representations, thereby
allowing the nearest depth to win the competition
(Fig. 14c). The output of the depth competition stage is
then used to gate the surface filling-in that leads to the final
surface representation (Fig. 14d). While the nearest depth
dominates most of the surface representation, there is some
middle depth representation of the surface, indicating that
it is slightly harder for the model to create flat percept rep-
resentations for the RO case than it is for the CCS case.

The same mechanisms that produced an approximately
flat model percept for the number 5 RO condition image
are also the cause of the flat percepts produced for simulat-
ed depths numbers 1–4.

4.2. Simulation of the elliptical cylinder, slanted plane and

golf ball

The model deals with the elliptical cylinder image (top
left of Fig. 15) in the same ways that it dealt with the
HP, LP and CCE conditions. Namely, the variation in
scale gives rise to the variation in depth seen in the depth
maps for the three scale-to-depth map cases (left column
of Fig. 15). Similar statements hold for the slanted plane
and golf ball simulation. The slanted plane (middle column
of Fig. 15) has a slant of 55� at the center of the image,
assuming line of sight is perpendicular to the image plane.
(Slant is defined as the angle between the surface normal at
a point and the line of sight.) This slant results in a large
range in the sizes of image-texture elements, which is cap-
tured in the depth maps computed by the model. The tex-
ture elements in the golf ball image (right column of
Fig. 15) have a fair amount of large scale bias since the golf
ball is spherical, as opposed to having a long depth axis like
the prolate ellipsoids of Todd and Akerstrom. This large
scale bias leads to depth maps that favor the near depths
as a result of the size-depth correlation that is sensed by
the scale-to-depth map. Both the elliptical cylinder and
slanted plane images contain texture lying next to the
image edge. Since the spatial competition stage of the
model uses large filters (see Appendix B), the model is sub-
ject to large edge effects in these two cases. To counteract
this, the elliptical cylinder and slanted plane were simulated
with initial image dimensions of 781 · 781 pixels and sub-
sampling down to 71 · 71 pixels. The results displayed in
Fig. 15 for the cylinder and plane correspond to the central
481 · 481 pixels of the image and the central 41 · 41 pixels
of the computed depth map.

5. Discussion

5.1. Comparison of LIGHTSHAFT with previous SFT

models and neurophysiological data

Since Gibson began the scientific study of SFT, a major
research focus has been to perceptually isolate different
kinds of texture gradients (i.e., scaling/perspective,
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foreshortening/compression, density, or area) and study
their effects on 3D shape perception (Blake et al., 1993;
Braunstein, 1976; Braunstein & Payne, 1969; Cumming,
Johnston, & Parker, 1993; Cutting & Millard, 1984; Ste-
vens, 1981, 1984; Todd & Akerstrom, 1987). These percep-
tual studies have been accompanied with computational
studies that have tried to explain how these different gradi-
ents can induce shape perception (Aloimonos, 1988; Bajcsy
& Lieberman, 1976; Purdy, 1958; Witkin, 1981). Derivation
of the mathematical relationship between these gradients
and projective scene geometry for both planar (Stevens,
1981) and curved (Gårding, 1992) surfaces has lead to the
development of algorithms that use local affine texture dis-
tortion measurements to estimate local surface orientation
and curvature parameters (Clerc & Mallat, 2002; Malik &
Rosenholtz, 1997) from which shape can be calculated. A
variety of other algorithms have also been developed that
either use linear/non-linear filtering (Freeman & Torralba,
2002; Torralba & Freeman, 2002; Torralba & Oliva, 2001,
2002) or statistical approaches (Aloimonos, 1988; Blake &
Marinos, 1990; Brown & Shvayster, 1990; Davis, Janos, &
Dunn, 1983; Forsyth, 2001; Gårding, 1993; Ikeuchi, 1984;
Kanatani, 1984; Kanatani & Chou, 1989; Marinos & Blake,
1990; Super & Bovik, 1995; Witkin, 1981) to estimate SFT.
The focus of this line of research has been computational
modeling of how the problem of SFT might be solved algo-
rithmically, rather than on modeling the neural circuitry of
the primate visual system. Despite the limited biological
focus of these models, many of them take into account a
variety of psychophysical phenomena.

Two neural models of SFT are the Sakai and Finkel
(1995, 1997) Average Peak Frequency (APF) model and
the Zaidi and Li (2000) Matched-Filters for Shape Identifi-
cation model. The latter is a model of shape identification
(i.e., it determines if a shape is concave or convex) rather
than a model which provides a neural representation of
perceived shape. Fleming, Torralba, and Adelson (2004)
have provided a similar framework for shape based on
specular reflections. The APF model begins with neurons
depicting the multiple-scale-and-orientation structure of
the early visual stages, but then the output of these neurons
is transformed into an APF map of the image. A processed
version of the APF map corresponds to the shape estimat-
ed from the textured image. Although the APF model can
account for a large set of stimuli, this final representation
requires that at each point in the image only one neuron
is needed to encode any depth based on its firing rate. Such
cells have not been found to date in the visual system,
neither for SFT (Connor, 2002; Howard, 2003; Liu, Vogels,
& Orban, 2004; Tsutsui, Sakata, Naganuma, & Taira,
2002; Tsutsui, Taira, & Sakata, 2005) nor for the more
studied topic of stereo-disparity defined depth (Cumming
& Parker, 1999, 2000; Hinkle & Connor, 2002; Janssen,
Vogels, & Orban, 1999, 2000a, Janssen, Vogels, & Orban,
2000b; Nguyenkim & DeAngelis, 2001, 2003; Poggio,
1995; Prince et al., 2002; Sakata et al., 1998; Shikata,
Tanaka, Nakamura, Taira, & Sakata, 1996; Taira, Tsutsui,
Jiang, Yara, & Sakata, 2000; Tsao, 2003). On the other
hand, the LIGHTSHAFT model estimates SFT using a
biologically plausible combination of spatial and rate cod-
ing through interactions between boundary and surface
representations. In addition, the LIGHTSHAFT model
provides a more complete explanation of the Todd and
Akerstrom (1987) data than that given by Sakai and Finkel
(1995), who simulated the perceived depths of prolate ellip-
soids with polka-dot surface texture in only the LP case,
and variations upon the CCS, RO and constant area cases.

Neurophysiological research on SFT, although limited,
has demonstrated that cells in caudal intraparietal cortex
(CIP) (Tsutsui et al., 2002) and inferior temporal cortex
(IT) (Liu et al., 2004) are tuned to specific 3D surface ori-
entations for imaged surfaces whose depth is defined by
texture gradients. In particular, cells in CIP are selective
to the tilt direction of a slanted plane defined by a texture
gradient. Neurons in IT are selective for the tilt of texture-
defined surfaces, largely independent of the surface slant.
In several cases in both CIP and IT, the tilt preferences
are similar regardless of whether the surface is defined by
different textures or disparity gradients. Since CIP and IT
are high in the visual hierarchy, it is not clear whether or
not these surface orientation signals are used to represent
3D shape or depth percepts. An alternative may be that
these signals are computed from a perceptual representa-
tion of shape/depth in order for the brain to perform other
shape-based tasks; for example, guiding hand movements
about an object, because CIP directly projects to the ‘hand’
area, in the anterior intraparietal (AIP) cortex (Sakata
et al., 1998).

The structure of the LIGHTSHAFT model creates a 3D
surface representation without the use of cells that explicit-
ly encode 3D surface orientation. The present article here-
by shows that many challenging SFT data can be explained
by using multiple-scale boundary web perceptual groupings
whose bipole grouping cells preferentially group visual fea-
tures at a single depth. This bipole grouping theory has a
natural extension to grouping by cells that are sensitive
to 3D surface orientation, which becomes an increasingly
important cue when processing surfaces that are tilted or
curved in 3D. Indeed, disparity gradient cells (DeAngelis,
2000; Hinkle & Connor, 2002; Janssen et al., 2000b; Lee,
1999; Nguyenkim & DeAngelis, 2003; Ryan & Gillam,
1993; Sakata et al., 1999; Seyama, Takeuchi, & Sato,
2000; Thomas, Cumming, & Parker, 2002) can form coher-
ent groupings across depths. These types of cells have been
used by Grossberg and Swaminathan (2004) to explain
developmental, attentional and bistability data about 3D
perception of slanted and curved surfaces and of 2D imag-
es. In this work, these disparity gradient cells are predicted
to be specialized types of bipole grouping cells. It remains
to develop a theory of multiple-scale boundary webs whose
bipole cells can group both within and across depth.

Such an extension would allow for strong 3D boundary
groupings along any contour on a surface. For the case of
prolate ellipsoids, the grouping mechanisms, which occur
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within depth, of the LIGHTSHAFT model form the stron-
gest boundary groupings along contours of minimum cur-
vature; i.e., concentric rings on the ellipsoid surface which
are oriented parallel to the image plane for the images pre-
sented here. The inclusion of bipole cells that can group
across depths would also likely lead to strong 3D boundary
groupings along contours of maximum curvature in a man-
ner that is dependent upon the surface texture of the ellip-
soid. Li and Zaidi (2000, 2001; Zaidi and Li, 2002) have
proposed that oriented energy along contours of maximum
and minimum curvature help determine our perception of
SFT, in particular, the perception of the direction of sur-
face slant, or the sign of surface curvature. Todd and col-
leagues argue that this is true only for a specific set of
surfaces, textures, and viewing conditions (Todd & Oomes,
2002; Todd et al., 2004). An extension of the LIGHT-
SHAFT model, to incorporate mechanisms which can
group boundaries across depth, may shed additional light
on this problem because it would have the flexibility to
investigate more completely how the relationship between
surface texture and surface contours influences our percep-
tion of SFT.

The neural code used in the model to create the 3D sur-
face representation of an image is a combination of spatial
and rate coding within interacting boundaries and surface
representations: the spatial and rate code within the bound-
ary representations locates the neurons that code 6 distinct
depths at different positions of the visual field. These
boundary signals are predicted to be amodal, or invisible,
within the (V1 interblob)-to-(V2 pale stripes)-to-V4 cortical
processing stream (Grossberg, 1994). By gating the filling-
in of visible surface brightness, lightness, and color, these
boundary signals enable a second spatial and rate code to
be computed within the (V1 blob)-to-(V2 thin stripe)-to-
V4 cortical processing stream. Here the consciously seen
lightness or brightness at a given spatial location increases
with the response rate of cells at that location.

5.2. Model propositions, predictions and simplifications

The model described in this article is based upon con-
ceptual ideas that have been developed as part of an emerg-
ing unified theory of how the visual cortex sees the world in
depth, including the FACADE and 3D LAMINART mod-
els (Cao & Grossberg, 2005; Grossberg, 1987a, 1987b,
1994; Grossberg & Howe, 2003; Grossberg & Swamina-
than, 2004; Grossberg & Yazdanbakhsh, 2005; Kelly &
Grossberg, 2000), which have explained and predicted a
large amount of neurobiological and psychophysical data.
The key concepts of this theory that have been integrated
and further developed within the LIGHTSHAFT model
are: the size-disparity and size-depth correlations (Gross-
berg, 1994), the use of bipole cells within multiple-scale,
cooperative-competitive feedback loops to create coherent
groupings in the form of boundary webs (Grossberg,
1987b; Grossberg & Mingolla, 1987), and surface capture
via the 3D gating of surface filling-in by these boundary
webs (Grossberg, 1987b, 1994). The size-disparity and
size-depth correlations have been used to define the scale-
to-depth and depth-to-scale maps that are incorporated
into the cooperative-competitive feedback loop, which
takes a multiple-scale representation of the image and con-
verts it into a coherent multiple-depth boundary web. The
model also uses a depth competition stage to refine the
multiple-depth representation.

Two of the most important parameters of the model are
the number of scales and the number of depths. Scale and
depth, two continuous variables in the world, are repre-
sented in a quantized manner in the model because neurons
are discrete elements. The choice of 6 scales and 6 depths
tries to approximate the continuum of scale and depth,
while at the same time keeping the model’s implementation
at a tractable size. In the visual cortex, cells tuned to differ-
ent scales and depths sufficiently cover the continuum of
these two variables (De Valois, Albrecht, & Thorell,
1982; Prince et al., 2002). Grossberg and Swaminathan
(2004) have simulated how the gradually changing distribu-
tion of activity across depths can generate a continuous
representation of depth.

5.2.1. Neurobiological support for the model stages

The different stages of the model embody explanations
and predictions about the structure and function of the
visual system. The LGN, simple cell and complex cell stag-
es have the strongest neurobiological support. In the LGN,
the different scale representations are extracted using both
ON-center OFF-surround and OFF-center ON-surround
kernels. This simulates the cell types having concentric cen-
ter-surround receptive fields in the retina (Barlow, 1953;
Cook & McReynolds, 1998; Kuffler, 1953; Werblin &
Dowling, 1969) and the LGN (Dubin & Cleland, 1977;
Hubel & Wiesel, 1961; Jones, Andolina, Oakely, Murphy,
& Sillito, 2000). Moreover, the changes in scale of the cen-
ter-surround receptive fields is consistent with the lumi-
nance/lightness coding properties of the LGN (Barlow,
Snodderly, & Swadlow, 1978; Kayama, Riso, Bartlett, &
Doty, 1979; Marrocco, 1972; Papaioannou & White,
1972; Rossi & Paradiso, 1999; Rossi, Rittenhouse, &
Paradiso, 1996) and V1 (Bartlett & Doty, 1974; Friedman,
Zhou, & Heydt, 2003; Kayama et al., 1979; Kinoshita &
Komatsu, 2001; Komatsu, Murakami, & Kinoshita, 1996;
MacEvoy, Kim, & Paradiso, 1998). In particular, the
LIGHTSHAFT model uses a fixed narrow center kernel
with the different surround scales (Grossberg & Hong,
2006; Grossberg et al., 1995; Mingolla et al., 1999) and
thereby also simulates the output of a sharp center at the
ganglion cells due to interactions in the retinal network
(Cook & McReynolds, 1998; Roska, Nemeth, Orzo, &
Werblin, 2000).

As in the brain, model simple cells possess an oriented
receptive field that is formed by elongated excitatory and
inhibitory zones (DeAngelis et al., 1995; De Valois & De
Valois, 1980; Hawken & Parker, 1991; Heeger, 1991; Hubel
& Wiesel, 1962; Jones & Palmer, 1987; Parker & Hawken,
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1988; Ringach et al., 2002; Szulborski & Palmer, 1990;
Tsao, Conway, & Livingstone, 2003). The model incorpo-
rates two common receptive field configurations: the odd-
symmetric and even-symmetric cases (Jones & Palmer,
1987; Malik & Perona, 1990; Parker & Hawken, 1988;
Szulborski & Palmer, 1990). Although these cases appear
to be part of a continuum of receptive field configurations
(Parker & Hawken, 1988), they have been commonly used
as archetypal receptive fields in the areas of neuroscience
and neural modeling (De Valois & De Valois, 1980; Gross-
berg, 1983; Grossberg & McLoughlin, 1997; Grossberg &
Mingolla, 1987; Grossberg & Todorović, 1988; Heeger,
1991; Hubel & Wiesel, 1962; Kandel, Schwartz, & Jessell,
1991), in part because of the appeal of symmetry, and also
because they can be used as basis functions for computing
simple cell receptive fields that have neither odd nor even
symmetry.

The properties of the spatial competition cells, orienta-
tion competition cells, and bipole grouping cells receive
support from both psychophysical and neuroscience data
(Callaway, 1998; Field et al., 1993; Gove et al., 1995;
Grossberg & Mingolla, 1985a, 1985b, 1987; Grossberg
et al., 1995; Grossberg & Swaminathan, 2004; Heitger
et al., 1998; Kellman & Shipley, 1991; Mingolla et al.,
1999; Peterhans & von der Heydt, 1989; Raizada & Gross-
berg, 2001; von der Heydt et al., 1984). Since the model
tries to quantitatively simulate complex psychophysical
data about SFT, simplifications are made at the level of
neural circuitry. 3D LAMINART models (Cao & Gross-
berg, 2005; Grossberg & Howe, 2003; Grossberg & Swami-
nathan, 2004; Grossberg & Yazdanbakhsh, 2005; Raizada
& Grossberg, 2001) are more articulated than LIGHT-
SHAFT with respect to incorporating known facts of
detailed laminar local circuit connectivity. Raizada and
Grossberg (2001) have demonstrated the biologically plau-
sibility of bipole cells by simulation and citing evidence of
excitatory horizontal connections between V1 and V2 layer
2/3 pyramidal cells with colinear, co-axial receptive fields
(Bosking et al., 1997; Schmidt et al., 1997). The excitation
of these horizontal connections is balanced by inputs from
inhibitory interneurons in layer 2/3 that are driven by layer
2/3 pyramidal inputs (McGuire et al., 1991). This
cooperative-competitive balance leads to the bipole
property. This laminar bipole design is incorporated within
LIGHTSHAFT.

5.2.2. Texture segmentation assumption
A major assumption applied to computing the depth

maps of the model (Figs. 1 and 15) is that a texture segmen-
tation process separates the textured surface in the image
from the background. The texture segmentation process
is not implemented explicitly in this model. Instead, the
depth maps are computed only in the region of the image
where the surface is present. If depth maps were computed
over the entire image, there would also be signals coding
depth in the background regions, and these signals would
contribute to the computed standard deviation of the depth
map that is used to describe the Todd and Akerstrom
(1987) judged depth data. The occluding boundary in each
input image between the textured surface and the back-
ground contains both large and small scale information
and thus it is difficult to assign it an appropriate depth.
In order to avoid this problem, all depth maps are comput-
ed in the region of the textured surface that is slightly inside
of the occluding contour. Grossberg (1994, 1997), Gross-
berg and Yazdanbakhsh (2005) and Kelly and Grossberg
(2000) describe FACADE theory mechanisms that are
capable of separating 3D figures from their backgrounds.

5.2.3. Sub-sampling

A simplification in implementing the model is sub-sam-
pling of the complex cell responses from 481 · 481 pixels
down to 41 · 41. This simplification ensures that the coop-
erative-competitive feedback loop (spatial competition, ori-
entation competition, and bipole grouping cells) can be
simulated in a reasonable amount of time. For a single
input image, at a resolution of 481 · 481 pixels, the
LGN, simple cell and complex cell stages together take
on the order of 20 min to simulate in MATLAB� (The
Mathworks, Inc., Natick, MA, USA) on a 3 GHz Pentium
IV processor and with 3 GB RAM. This duration results
from the large number of convolutions required. At a res-
olution of 41 · 41 pixels, the cooperative-competitive feed-
back loop takes on the order of 5 min, even though
equilibration requires 20 relaxation steps. At a resolution
of 41 · 41 pixels, the depth competition stage runs on the
order of 10 s. The bulk of the simulation time lies with
the FIDOs, which at a resolution of 481 · 481 pixels
require 15 min to simulate each depth plane.

Given that the sub-sampling used is nearly 12 fold, it is
impressive that these simulations work as well as they do.
The sub-sampling has the strongest effects for the smallest
scales where the activation of the complex cells has transi-
tions over regions only a few pixels in size. With nearly 12
fold sub-sampling, many of these transitions are removed
from the overall small scale signal representation. Since
large scales have slower transitions of activation over
space, less information is lost from sub-sampling. Despite
the reduced sampling, all scales still contain sufficient ori-
entation specificity to form the necessary groupings
required for the final 3D surface representation. In addi-
tion, the representation of the farther depths, which is driv-
en primarily by the ‘‘less spatially informative’’ small
scales, receives extra support from larger scales through
the scale-to-depth map when either the triangular map
matrix or conservation of sites cases are used. This extra
support helps to generate more coherent far-depth
representations.

5.2.4. Sub-sampling vs pyramid architecture

An alternative to the sub-sampling used in the current
model is to use a pyramid architecture (Adelson, Anderson,
Bergen, Burt, & Ogden, 1984; Burt & Adelson, 1983; Free-
man & Adelson, 2002; Simoncelli & Freeman, 1995). Such



S. Grossberg et al. / Vision Research 47 (2007) 634–672 659
an architecture would preserve the high resolution in the
small scales and reduce the resolution of the larger scales
where high resolution is not really necessary. For the pur-
poses of this project, a pyramid was not implemented for
the following reasons: First, if the scales had different pixel
dimensions, the weighted interactions between scales and
depths would be more complicated and harder to control.
Second, pyramids typically require blurring of the large
scales before reducing their pixel dimensions in order to
prevent aliasing (Forsyth & Ponce, 2003). Blurring would
lead to unwanted delocalization of the large scale signals.

The sub-sampling technique used for the model present-
ed here is equivalent to nearest neighbors image reduction.
Since sub-sampling works well, it would be possible to cre-
ate the model with a pyramid architecture that ignored
potential aliasing effects, by not blurring the image before
using nearest neighbors image reduction. However, one
would still have to deal with the first issue of having inter-
actions between scales and depths of different pixel dimen-
sions. In addition, the current sub-sampling framework
takes less time to simulate than a pyramid architecture,
since the current sub-sampling framework samples image
positions less densely than a pyramid architecture would
at smaller scales.

5.2.5. Standard deviation as a measure of depth variation

The standard deviation of depth, used for comparison
with the psychophysical measure of judged depth, was
employed instead of any other metric because it is prob-
ably the simplest metric of depth changes that is robust
to noise, or local variations in the depth map. For exam-
ple, in Fig. 1 the depth maps corresponding to the num-
ber 5 RO and CCS prolate ellipsoid cases contain local
variations in depth (green blips) near the occluding con-
tour of the surface, whereas the depth across the rest of
the surface is relatively constant (yellowish). For such
depth maps, the standard deviation of depth over the
entire depth map will be relatively insensitive to fluctua-
tion in depth measures over small regions. A simple
alternative to using standard deviation would be to mea-
sure the difference between the maximum and minimum
depth values within the depth map. Such a measure
would be sensitive to the local variation seen in the
Fig. 1 depth maps corresponding to the number 5 RO
and CCS prolate ellipsoid cases, and produce larger esti-
mates of depth variation, even though the majority of
the depth map appears relatively flat. Another alternative
to standard deviation would be variance. However, vari-
ance is essentially measured in units of depth, squared,
while standard deviation is measured in units of depth.

5.2.6. Real-world images, isotropy, anisotropy and oblique

views

The LIGHTSHAFT model first estimates the dimen-
sions of the local surface tokens using multiple-scale filters.
Then, using secondary mechanisms involving thresholding,
competition and grouping, a coherent boundary web is
formed across depth in order to trap surface lightness into
the appropriate depths. In particular, the grouping mecha-
nism, which depends on the bipole filters, combines the
local surface token information over larger scales, forming
a global representation of changes of scale in the image.
This general form of hierarchical processing is expected
to work on textures involving other patterns found in
real-world images, besides dots or diamonds. However,
the explicit implementation of these ideas presented in
the LIGHTSHAFT model is sensitive to image illumina-
tion, thresholding, competition, spatial filter structure,
and the use of a discrete representation of continuous
depth. LIGHTSHAFT is able to simulate the depth per-
cept of the real-world example of the golf ball partly
because the image has reasonably constant illumination
throughout, and the contrast of the dots on the golf ball
is sufficiently high, such that filter responses survive
thresholding.

When dealing with real-world images, while threshold-
ing and competition can eliminate noise, it also has the
potential to eliminate signals with relevant depth informa-
tion depending on the sensitivity and the dynamic nature of
the thresholding and competition, and the variations of
illumination in the visual scene (Grossberg & Hong,
2006; Land, 1986; Rahman, Jobson, & Woodell, 2004).
The LIGHTSHAFT model achieves desired functional
properties in a tractable amount of simulation time by sim-
plifying its thresholding and competitive dynamics and
using a discrete representation of continuous depth with
six scales and six depths. Grossberg and Swaminathan
(2004) have shown how a small number of scales can gen-
erate a continuous percept of surface depth. Additional
research will be needed to test if these hypotheses are suffi-
cient to process natural scenes.

Given that the spatial filters in the LIGHTSHAFT
model are isotropic, one might think that the model best
detects isotropic image changes. Thus, the model would
seem less capable of dealing with foreshortened or aniso-
tropic surface textures (e.g., grass). This idea is, however,
confounded by the fact that the model involves stages of
competition and grouping, which also involve the scale-
to-depth map. In particular, the orientation competition
stage helps detect local anisotropic information in the
image by biasing the strongest orientations at different
scales. In addition, grouping detects anisotropic informa-
tion at large scales in the image by using anisotropic
bipole filters. Isotropic and anisotropic information are
further integrated across depth in the case of the triangu-
lar matrix scale-to-depth map, where multiple scales can
map to a single depth.

Treatment of oblique views is also important when
dealing with real-world images. The LIGHTSHAFT mod-
el was developed primarily to account for fronto-parallel
views, as in Todd and Akerstrom (1987) data. In general,
geometric correlations between visible obliquities and
relative depths influences our depth estimation, and while
the size-depth correlation is one heuristic used by
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LIGHTSHAFT to do this, it is actually the interaction of
the size-depth correlation with orientation information
that influences the depth percepts created by the model.
In the model, the size-depth correlation is embodied by
the scale-to-depth map, which maps multiple-scale-and-
orientation information into multiple-depth-and-orienta-
tion information, dependent on competitive and grouping
interactions which detect anisotropies in the image. Thus
the model is sensitive to changes in both scale and aniso-
tropic information, and this implies that various cues for
depth estimation, including size, foreshortening (i.e.,
anisotropic compression) and density (Gibson, 1950;
Rosenholtz & Malik, 1997), play a role within the
LIGHTSHAFT model. While there is evidence to support
the idea that foreshortening is a dominant cue for 3D
shape perception (Cutting & Millard, 1984), including
under different views (Koenderink, van Doorn, Kappers,
& Todd, 2004), it is not always the dominant cue. This
is illustrated by the constant compression elongated pro-
late ellipsoid case developed by Todd and Akerstrom
(1987), and simulated by the LIGHTSHAFT model,
which shows that a stimulus without changes in foreshort-
ening of the texture elements (i.e., anisotropic changes)
can create a percept which varies in depth. Rather, the
depth percept arises from size changes in texture elements
(i.e., isotropic changes) provided that the elements are suf-
ficiently elongated and aligned such that they can be
grouped and mapped into the appropriate depths. Further
work is needed to determine whether the current structure
of the LIGHTSHAFT model is capable of estimating the
shape of surfaces with anisotropic textures, or under dif-
ferent views. In particular, it would be important to deter-
mine if anisotropic variation in the scale of spatial filters
is necessary to account for the psychophysics relating to
both isotropic and anisotropic surface textures, and the
angle of view.

6. Conclusion

This article develops the LIGHTSHAFT model of how
visual cortical areas interact to convert a textured 2D
image into a surface representation of 3D shape. This
was achieved by incorporating and extending ideas from
the FACADE and 3D LAMINART models, with an
emphasis on multiple-scale filtering, boundary grouping,
and surface filling-in. The successful simulation of the
Todd and Akerstrom (1987) data, the elliptical cylinder,
the slanted plane and the golf ball depended on four main
facets of the model: the scale-to-depth and depth-to-scale
maps, cooperative-competitive bipole grouping, depth
competition, and boundary-gated surface capture and fill-
ing-in. These components ensure that coherently grouped
texture elements can be assigned to the appropriate depths,
while incoherently grouped texture elements are typically
mapped to a single depth. It remains to integrate the model
into a larger FACADE theory that is also capable of 3D
figure-ground separation.
Appendix A. Model equations

Here we define the equations of the model described in
Section 3. The parameter values used in the simulations
are presented in Table 1 of Appendix F.

Each model neuron is typically modeled as a single volt-
age compartment in which the membrane potential, v(t), is
given by

Cm

d

dt
vðtÞ ¼ � ðvðtÞ � EleakÞgleak � ðvðtÞ � EexcitÞgexcitðtÞ

� ðvðtÞ � EinhibÞginhibðtÞ; ðA:1Þ

where E represents reversal potentials, gleak is a constant
leakage conductance, and the time-varying conductances
gexcit(t) and ginhib(t) represent the total inputs to the cell
(Grossberg, 1973; Hodgkin, 1964). Most of the following
network equations are instances of this general membrane
equation, where for simplicity, the capacitance term Cm

was set equal to 1, the leakage conductance is relabeled
as gleak = A, the excitatory and inhibitory reversal poten-
tials are relabeled as: Eexcit = B and Einhib = C, and the
leakage reversal potential is set to: Eleak = 0. Then Eq.
(A.1) can be rewritten as a membrane, or shunting
equation:

d

dt
v ¼ �Avþ ðB� vÞgexcit � ðvþ CÞginhib; ðA:2Þ

where A is a constant decay rate, B is a excitatory satura-
tion potential, C is a hyperpolarization parameter, gexcit

is the total excitatory input, and ginhib is the total inhibitory
input.

A.1. Stage 1: LGN shunting network

The first stage of the model is the ON and OFF shunting
network that processes the input image directly. These
equations represent multiple-scale single-opponent net-
works where scale is indexed by s = 1, . . . , 6 (s = 1 for
smallest, s = 6 for largest). The activity aþijs of the ON cell
at image position (i, j) and scale s obeys an on-center off-
surround shunting equation:

d

dt
aþijs ¼ �Aaþijs þ B� aþijs

� �X
pq

UpqijsIpq

� aþijs þ C
� �X

pq

CpqijsIpq: ðA:3Þ

In Eq. (A.3), parameter A represents the decay rate, B rep-
resents the excitatory saturation potential, Upqijs represents
the isotropic normalized Gaussian on-center kernel as de-
fined in Eq. (A.7), Ipq is the input image at position (p,
q), C is the hyperpolarization parameter, and Cpqijs repre-
sents the isotropic normalized Gaussian off-surround ker-
nel as defined in Eq. (A.8). At equilibrium, Eq. (A.3) yields:

aþijs ¼
B
P

pqUpqijsIpq � C
P

pqCpqijsIpq

Aþ
P

pqUpqijsIpq þ
P

pqCpqijsIpq
: ðA:4Þ
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The activity a�ijs is the OFF cell activation at image position
(i, j) and scale s obey the equation:

d

dt
a�ijs ¼ �Aa�ijs þ B� a�ijs

� �X
pq

CpqijsIpq

� a�ijs þ C
� �X

pq

UpqijsIpq: ðA:5Þ

In Eq. (A.5) the excitatory and inhibitory kernels of the
ON cell in Eq. (A.3) are exchanged. At equilibrium, Eq.
(A.5) obeys:

a�ijs ¼
B
P

pqCpqijsIpq � C
P

pqUpqijsIpq

Aþ
P

pqUpqijsIpq þ
P

pqCpqijsIpq
: ðA:6Þ

The two isotropic Gaussian kernels, Upqijs and Cpqijs, obey
the following equations:

Upqijs ¼
1

P
uv exp � 1

2/2
s

ððu� iÞ2 þ ðv� jÞ2Þ
 !

� exp � 1

2/2
s

ððp � iÞ2 þ ðq� jÞ2Þ
 !

; ðA:7Þ

and

Cpqijs ¼
1P

uv exp � 1

2g2
s

ððu� iÞ2 þ ðv� jÞ2Þ
� �

� exp � 1

2g2
s

ððp � iÞ2 þ ðq� jÞ2Þ
� �

; ðA:8Þ

where for the center kernel, Upqijs, the standard deviation,
/s, varies with the scale indexed by s. Likewise, for the sur-
round kernel, Cpqijs, the standard deviation, gs, also varies
with the scale indexed by s. In the normalizing sums in
the denominators of Eqs. (A.7) and (A.8), u and v represent
dummy positional variables.

The activity Aþijs of the ON push–pull cell at image posi-
tion (i, j) and scale s, spatially sharpens the contrast-en-
hanced LGN ON cell activity:

Aþijs ¼ ½aþijs � a�ijs�
þ
; ðA:9Þ

where aþijs is the ON cell activation, and a�ijs is the OFF cell
activation. The activity A�ijs of the OFF push–pull cell at
image position (i, j) and scale s, spatially sharpens the con-
trast-enhanced LGN OFF cell activity:

A�ijs ¼ ½a�ijs � aþijs�
þ
: ðA:10Þ

These ON and OFF push–pull cells provide a multiple-
scale contrast-enhanced representation of the input image.
This formulation for the model’s simplified LGN stage has
been adapted from Grossberg et al. (1995).

A.2. Stage 2: simple cells

The simple cell response depends on the LGN response
convolved with odd or even symmetric kernels. The activity
of the ON, Rijkzsy, and OFF, Lijkzsy, sub-regions of the sim-
ple cells at position (i, j), orientation k, contrast polarity z,
scale s and filter symmetry y (i.e., odd or even) obeys:

Rijkzsy ¼
X

pq

½X pqijkzsy �þAþijs; ðA:11Þ

and

Lijkzsy ¼
X

pq

½�X pqijkzsy �þA�ijs; ðA:12Þ

where Xpqijkzsy represents the odd (y = 1) and even (y = 2)
symmetric simple cell filters (defined in Appendix A.2.1)
of orientation k, contrast polarity z, scale s, and symmetry
y. Aþijs and A�ijs represent the ON and OFF LGN responses,
respectively. In the model implementation, the orientations
take the range k = 1, . . . , 16, while contrast polarities are
positive or negative, z = �1, 1. The simple cell activity,
Bijkzsy, at position (i, j), orientation k, contrast polarity z,
scale s, and symmetry y, is then determined by the follow-
ing equation, in which activity is the rectified sum of the
activities of each sub-region, minus their absolute
difference:

Bijkzsy ¼ ½Rijkzsy þ Lijkzsy � jRijkzsy � Lijkzsy j�þ; ðA:13Þ

where Rijkzsy and Lijkzsy are the ON and OFF subregions of
the simple cells, respectively. This formulation for the sim-
ple cells is adapted from Gove et al. (1995) and Raizada
and Grossberg (2001).

A.2.1. The odd and even filters

The odd-symmetric simple cell filter, Xpqijkzsl, of orienta-
tion k, contrast polarity z, scale s and symmetry y = 1 is
defined by a Difference Of Offset Gaussians (DOOG):

X pqijkzsl ¼ KijkzsXpqijkzs; ðA:14Þ

where the normalization factor, Kijkzs, is given by

Kijkzs ¼
1P

pqjXpqijkzsj
; ðA:15Þ

and the odd-symmetric DOOG filter, Xpqijkzs, with orienta-
tion k, contrast polarity z and scale s is given by

Xpqijkzs ¼ z Gpq i� ds cos � hk �
p
2

� �� �
;

��
j� ds sin � hk �

p
2

� �� �
;us; is; hk

�
�Gpq iþ ds cos � hk �

p
2

� �� �
;

�
jþ ds sin � hk �

p
2

� �� �
;us; is; hk

��
: ðA:16Þ

In Eq. (A.16), Gpq represents a generalized 2D Gaussian,
defined by Eq. (A.17), that can be elongated and oriented.
The parameter us represents the standard deviation of the
Gaussian in the direction perpendicular to the direction of
orientation (width), while is corresponds to the standard
deviation of the Gaussian in the direction of orientation
(length). Parameter ds controls the separation of the Gaus-
sians along the direction perpendicular to the direction of
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orientation. The parameters us, is and ds are all indexed by
scale s, and hk defines the orientations of the DOOG filter.

The generalized 2D Gaussian, Gpq(i, j, a, b, h), used in
Eq. (A.16) is given by:

Gpqði; j; a; b; hÞ ¼
1P

uv expðfuvði; j; a; b; hÞÞ
� expðfpqði; j; a; b; hÞÞ; ðA:17Þ

where positions (i, j) vary over the filter support (centered
at position (p, q)). In the sum, u and v are used as dummy
variables. Parameters a and b are constants determining
the standard deviations of the major and minor axes of
the Gaussian, respectively. They determine how elongated
the Gaussian is. On the other hand the parameter h deter-
mines the orientation of the Gaussian. The function fpq(i, j,
a, b, h) is given by:

fpqði; j; a;b; hÞ ¼
1

2a2b2
aða;b; hÞðp � iÞ2
�

þ2bða;b; hÞðp � iÞðq� jÞ þ cða;b; hÞðq� jÞ2
�
;

ðA:18Þ

where

aða; b; hÞ ¼b2 cos2 h� p
2

� �
þ a2 sin2 h� p

2

� �
; ðA:19Þ

bða; b; hÞ ¼ða2 þ b2Þ cos2 h� p
2

� �
þ sin2 h� p

2

� �
; ðA:20Þ

and

cða; b; hÞ ¼ a2 cos2 h� p
2

� �
þ b2 sin2 h� p

2

� �
: ðA:21Þ

The even-symmetric simple cell filter, Xpqijkzs2, of orienta-
tion k, contrast polarity z, scale s, and symmetry y = 2 is
defined by a Difference Of Gaussians (DOG):

X pqijkzs2 ¼MijkzsHpqijkzs; ðA:22Þ

where the normalization factor, Mijkzs, is given by

Mijkzs ¼
1P

pqjHpqijkzsj
; ðA:23Þ

and the even-symmetric DOG filter, Hpqijkzs, with orienta-
tion k, contrast polarity z and scale s is given by

Hpqijkzs ¼ zðGpqði; j;us; is; hkÞ � Gpqði; j; js; is; hkÞÞ: ðA:24Þ

In Eq. (A.24), Gpq represents the generalized 2D
Gaussian defined by Eq. (A.17). The parameter us rep-
resents the standard deviation of the narrower Gauss-
ian in the direction perpendicular to the direction of
orientation (inner width). As was the case with the
DOOG, the parameter is corresponds to the standard
deviation of the Gaussian in the direction of orienta-
tion (length), while js corresponds to the standard
deviation of the outer Gaussian in the same direction
(outer width). The parameters us, is and js are all
indexed by scale s, and hk defines the orientations of
the DOG filter.
A.3. Stage 3: complex cells

The activity cijks of the complex cell at position (i, j), ori-
entation k, and scale s, depends on the pooled odd and
even simple cell responses of opposite-polarity, in a manner
adapted from Grossberg and McLoughlin (1997):

cijks ¼
X

z2f�1;1g;y2f1;2g
BijkðzÞsy � Bijkð�zÞsy

� �þ
; ðA:25Þ

where

wðx; yÞ ¼ ½x� k�þ ¼ maxðx� k; 0Þ; ðA:26Þ

for which x is a real variable and k is a real parameter (in
the case of Eq. (A.25), k = 0). In Eq. (A.25), the sum is over
the simple cell index z which has the values of either 1 or
�1 depending on the contrast polarity of the filter, and in-
dex y which has the values y = 1 for odd and y = 2 for even
filter symmetry. For the corresponding position, orienta-
tion and scale, Bijk(z)sy and Bijk(�z)sy represent the odd
and even simple cell activations of opposite contrast polar-
ity. The output signal of the complex cells, Cijks, results
from thresholding the activity, cijks:

Cijks ¼ wðcijks; cÞ; ðA:27Þ

where the signal function w(.,.) is given by Eq. (A.26) and c
is the threshold parameter.

A.4. Stage 4: spatial competition cells

The spatial competition cells are represented by a shunt-
ing network with concentric DOG interaction kernels. The
bottom-up input comes from the multiple-scale complex
cells, Cijks, and the top-down feedback comes from the
multiple-depth bipole cells, Fijkd. Both these inputs come
from position (i, j) and orientation k. However, the Cijks

input comes from scale s, while the Fijkd input comes from
depth d. These inputs combine to give a total input Tijks to
the spatial competition cell at position (i, j), orientation k,
and scale s:

T ijks ¼ Cijks 1þ D
X

d

W dsF ijkd

 !
: ðA:28Þ

Here depth is indexed by d = 1, . . . , 6 (d = 1 for furthest,
d = 6 for nearest) and D is the top-down gain parameter.
Parameters Wds correspond to the weights that realize the
scale-to-depth mapping. The activity lijks of spatial compe-
tition cells at position (i, j), orientation k, and scale s obeys
the following on-center off-surround shunting equation:

d

dt
lijks ¼ �Elijks þ ðF � lijksÞ

X
pq

P pqijsT pqks

� ðlijks þ GÞ
X

pq

Y pqijsT pqks; ðA:29Þ

where E represents the decay rate, F represents the excit-
atory saturation potential, Ppqijs represents the on-center
kernel, Tijks is the total input to the spatial competition
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cells, G is the hyperpolarization parameter, and Ypqijs rep-
resents the off-surround kernel. Moreover, the two isotro-
pic Gaussian kernels, Ppqijs and Ypqijs, obey the following
equations:

P pqijs ¼
1

P
uv exp � 1

2#2
s

ððu� iÞ2 þ ðv� jÞ2Þ
 !

� exp � 1

2#2
s

ððp � iÞ2 þ ðq� jÞ2Þ
 !

; ðA:30Þ

and

Y pqijs ¼
1P

uv exp � 1

212
s

ððu� iÞ2 þ ðv� jÞ2Þ
� �

� exp � 1

212
s

ððp � iÞ2 þ ðq� jÞ2Þ
� �

; ðA:31Þ

respectively, where for the on-center kernel, Ppqijs, the
standard deviation of #s is used for each of the scales in-
dexed by s, and for the off-surround kernel, Ypqijs, the
standard deviation of 1s is used for each of the scales in-
dexed by s. In the sums of Eqs. (A.30) and (A.31), u and
v represent dummy variables. At equilibrium, Eq. (A.29)
obeys:

lijks ¼
F
P

pqP pqijsT pqks � G
P

pqYpqijsT pqks

E þ
P

pqP pqijsT pqks þ
P

pqY pqijsT pqks
: ðA:32Þ

The output signal of the spatial competition cells is the
half-wave rectification of the activity lijks:

Lijks ¼ ½lijks�þ: ðA:33Þ

These equations for the spatial competition stage have been
adapted from Grossberg et al. (1995).

A.5. Stage 5: orientation competition cells

The orientation competition cells receive input from the
spatial competition cells, Lijks. The activity eijks of the ori-
entation competition cell at position (i, j), orientation k,
and scale s obeys the following on-center off-surround
shunting equation:

d

dt
eijks ¼ � Heijks þ ðI � eijksÞ

X
r

N krLijrs

� ðeijks þ JÞ
X

r

ZkrLijrs; ðA:34Þ

where H represents the decay rate, I represents the
excitatory saturation potential, r = 1, . . . , 16 indexes over
the orientations, Nkr represents the orientation on-center
kernel, Lijks is the input from the spatial competition
cells, J is the hyperpolarization parameter, and Zkr rep-
resents the orientation off-surround kernel. The two
Gaussian kernels, Nkr and Zkr, both obey the following
equations:

Nkr ¼ K expð�lðr � kÞ2Þ ðA:35Þ
and

Zkr ¼ L expð�vðr � kÞ2Þ; ðA:36Þ
for which k and r index orientation, K and L are weighting
parameters and l and v control the widths of the kernels.
At equilibrium, Eq. (A.34) obeys:

eijks ¼
I
P

rN krLijrs � J
P

rZkrLijrs

H þ
P

rNkrLijrs þ
P

rZkrLijrs
: ðA:37Þ

The output signal of the orientation competition cells is the
half-wave rectification of the activity eijks:

Eijks ¼ ½eijks�þ: ðA:38Þ

These equations for the orientation competition stage have
been adapted from Grossberg and Mingolla (1985b, 1987).

A.6. Stage 6: bipole grouping cells

The multiple-depth bipole cells group signals from the
multiple-scale orientation competition cells. The input Uijkd

to the bipole cells at position (i, j), orientation k, and depth
d is defined as a weighted and thresholded sum of the ori-
entation competition cell responses, Eijks:

Uijkd ¼ w
X

s

W dsEijks; r

 !
; ðA:39Þ

where Eijks and Uijkd lie at position (i, j) and orientation k.
However, Eijks lies at scale s, while Uijkd lies at depth d. Sig-
nal function w(.,.)is defined by Eq. (A.26). Parameters Wds

are the weights that realize the depth-to-scale mapping.
The activity fijkd of the bipole cells at position (i, j),
orientation k, and depth d obey the following shunting
equation:

d

dt
fijkd ¼ �Mf ijkd þ ðN � fijkdÞ

� OU ijkd þ
X
pqr

HL
pqrijkdUpqrd þ

X
pqr

HR
pqrikkdU pqrd

" #

� ðfijkd þ pÞ½ZijkdL þ ZijkdR�; ðA:40Þ

where M represents the decay rate, N represents the excit-
atory saturation potential, O represents the bottom-up in-
put weight, Uijkd is the total input to the bipole cells, H L

pqrijkd

and H R
pqrijkd represent the left and right lobes of the bipole

grouping filter, respectively, and are defined in the immedi-
ately following Appendix A.6.1, P is the hyperpolarization
parameter, and ZijkdL and ZijkdR correspond to the left and
right inhibitory interneurons (see Eqs. (A.42) and (A.43))
that act to assure the selectivity of each bipole cell. At equi-
librium, Eq. (A.40) yields



fijkd ¼
N ½OU ijkd þ

P
pqrH

L
pqrijkdUpqrd þ

P
pqrH

R
pqrijkdU pqrd � � P ½ZijkdL þ ZijkdR�

M þ OU ijkd þ
P

pqrH
L
pqrijkdU pqrd þ

P
pqrH

R
pqrijkdUpqrd þ ZijkdL þ ZijkdR

: ðA:41Þ
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The activations of the left, ZijkdL, and right, ZijkdR, inhibi-
tory interneurons at position (i, j), orientation k, and depth
d are given at equilibrium by:

ZijkdL ¼
P

pqrH
L
pqrijkdU pqrd

1þ QZijkdR

; ðA:42Þ

and

ZijkdR ¼
P

pqrH
R
pqrijkdUpqrd

1þ QZijkdL

; ðA:43Þ

where for the left inhibitory interneuron response, ZijkdL,
the left lobe of the bipole filter, H L

pqrijkd , is convolved with
the total bipole input, Uijkd, and the right inhibitory neuron
activation, ZijkdR, inhibits the left inhibitory interneuron
through the denominator; and vice versa for the right
inhibitory interneuron response, ZijkdR. Parameter Q is
the interneuron cross-inhibitory weight.

The output of the bipole cells Fijkd results from thresh-
olding the activity fijkd:

F ijkd ¼ wðfijkd ; sÞ; ðA:44Þ

where s is the output threshold parameter and the signal
function w(.,.) is defined by Eq. (A.26). These equations
defining the bipole cells have been adapted from Raizada
and Grossberg (2001).

A.6.1. Bipole kernel

The kernels HL
pqrijkd and H R

pqrijkd are obtained from the set
of bipole kernels Hpqrijkd with orientation k, and depth d.
For each orientation k, the kernel H L

pqrijkd is the left (L) lobe
of the bipole that is defined in Eq. (A.53), while HR

pqrijkd is
the right (R) lobe of the bipole that is defined in Eq.
(A.54). The bipole kernel Hpqrijkd for each orientation k is
formed by rotating the coordinate frame of the kernel
below, which corresponds to the vertical bipole filter
Hpqrij1d (i.e., k = 1) and has been adapted from Gove
et al. (1995):

Hpqrij1d ¼ RKijdWpqrijd ; ðA:45Þ

where R is a weighting factor, the normalization factor Kijd

for depth d is

Kijd ¼
1P

pqrWpqrijd
; ðA:46Þ

and the vertical bipole kernel Wpqrijd for depth d is

Wpqrijd ¼ ðp � iÞ exp �ðApqij � qdÞ
2

2ðndÞ2
� ðBpqijÞ2

2ðwdÞ
2
� ðhr � BpqijÞ2

2ðfdÞ2

 !
:

ðA:47Þ
In Eq. (A.47), the first term in the exponential modulates
filter values based on their distance Apqij from the bipole’s
center:

Apqij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp � iÞ2 þ ðq� jÞ2

q
: ðA:48Þ

The parameter qd determines the position of the peak
weights from the center of the bipole filter for each depth
d, and parameter nd determines the overall length of the
bipole.

The second term inside the exponential of Eq. (A.47)
determines the spread of bipole sensitivity about the axis
of orientation. This term depends on the slope of the
tangent at position (p, q) of the circle with radius Tpqij,
centered at (0, Tpqij), which passes through (0, 0) (the
bipole’s origin) and (p, q). The circle and its tangent are
defined by Eqs. (A.51) and (A.52), respectively. The term
Bpqij penalizes orientations in the filter that have large tan-
gent values:

Bpqij ¼
tan�1 ðp�iÞ

T pqij�ðq�jÞ

� �
if q< p;q>�p and q 6¼ 0;

OR if q> p; q<�p and q 6¼ 0;

1 otherwise:

8>><
>>:

ðA:49Þ

The parameter wd constrains the angular spread of the bi-
pole weight strengths away from the axis of orientation. In
Eq. (A.49), the circle radius Tpqij is given by:

T pqij ¼
ðp�iÞ2þðq�jÞ2

2ðq�jÞ if q� j 6¼ 0;

1 otherwise:

8<
: ðA:50Þ

In particular Tpqij is the radius of the following circle
equation:

p2 þ ðq� T pqijÞ2 ¼ ðT pqijÞ2; ðA:51Þ

the tangent of which is

dq
dp
¼ p

T pqij � q
: ðA:52Þ

The third term inside the exponential of Eq. (A.47)
determines the spread of the bipole’s cross-orientational
sensitivity. The parameter hr represents the angle of
each cross-orientation r, and the parameter fd constrains
the angular spread with which an arbitrary cross-orien-
tation can influence the bipole weights. When computing
hr � Bpqij in Eq. (A.47) it is important to make sure
that angular values between [0, 2p] are used for hr

and Bpqij.
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The left H L
pqrij1d and right HR

pqrij1d lobes of the vertical
bipole filter (k = 1) for depth d are given as follows:

H L
pqrij1d ¼ ½Hpqrij1d �þ; ðA:53Þ

and

H R
pqrij1d ¼ ½�Hpqrij1d �þ: ðA:54Þ
Fig. 16. Spatial filters of the model: (a) The relative sizes of the LGN center-
surrounds on the right. (b) The relative sizes of the vertical simple cell DOGs
stage center-surrounds for all six scales. The centers are positioned on the left
needle of a given orientation the stronger the filter weight for that orientation
A.7. Stage 7: depth competition cells

The depth competition cells pool the bipole cell respons-
es from all orientations and then compete across depth
with uniform strength. The activity gijd of the depth compe-
tition cell at position at position (i, j) and depth d thus
obeys the following shunting equation:
surrounds for all six scales. The centers are positioned on the left and the
(left) and DOOGs (right). (c) The relative sizes of the spatial competition
and the surrounds on the right. (d) The vertical bipole filter. The longer a
. In (a)–(d), The dashed box indicates the size of the input image.
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d

dt
gijd ¼ �Sgijd þ ðT � gijdÞ

X
k

wðF ijkd ; tÞ

� ðgijd þ UÞV
X
k;v 6¼d

wðF ijkv; tÞ; ðA:55Þ

where S represents the decay rate, T represents the excit-
atory saturation potential, Fijkd represents the input from
the bipole cell at position (i, j), orientation k, and depth
d, t represents the input threshold, U is the hyperpolariza-
tion parameter, V is the across-depth inhibitory weight
parameter, and v is the dummy variable for the sum over
depth. At equilibrium, Eq. (A.55) obeys:

gijd ¼
T
P

kwðF ijkd ; tÞ � UV
P

k;v 6¼dwðF ijkv; tÞ
S þ

P
kwðF ijkd ; tÞ þ V

P
k;v 6¼dwðF ijkv; tÞ

: ðA:56Þ

The output of the depth competition cells Gijd results from
thresholding the equilibrium activity gijd:

Gijd ¼ wðgijd ;xÞ; ðA:57Þ

where x is the output threshold parameter and w(.,.)is de-
fined by Eq. (A.26).
Fig. 17. Activation values across complex cell scale for the number 5 HP
case. Scale size increases from 1 to 6.
A.8. Stage 8: surface filling-in domain cells

The surface Filling-In Domain, or FIDO, cells within
the FCS, prevent inputs from the ON and OFF LGN cells
(pooled over scale) from spreading across the multiple-
depth boundary inputs that they receive from the BCS.
The total input V �ij from the ON (+) or OFF (�) LGN
cells, respectively, at position (i, j) and summed over scale
s, takes the form:

V �ij ¼
X

s

A�ijs; ðA:58Þ

where A�ijs, as in Eq. (A.9), represents the activity of the ON
(+) or OFF (�) LGN cell at position (i, j) and scale s. The
input from the BCS is the output Gijd of the depth compe-
tition cells, indexed by position (i, j) and depth d, as in Eq.
(A.57). These boundary signals gate the spread of filling-in.
The activity h�ijd of the ON (+) and OFF (�) FIDO cell at
position (i, j) and depth d thus obeys the following diffusion
equation:

d

dt
h�ijd ¼ �Wh�ijd þ

X
ðp;qÞ2Dij

ðh�pqd � h�ijdÞP pqijd þ V �ij ; ðA:59Þ

where W is the decay rate, the boundary gating term equals

P pqijd ¼
d

1þ eðGpqd þ GijdÞ
; ðA:60Þ

and

Dij ¼ fði; j� 1Þ; ði� 1; jÞ; ðiþ 1; jÞði; jþ 1Þg ðA:61Þ

are the nearest-neighbor cells with which the diffusion oc-
curs around cell (i, j). The parameters d and e are non-neg-
ative constants. Increasing d increases diffusion of the
feature signals, while increasing e reduces diffusion where
the boundaries, Gijd, are present.
A.9. Stage 9: 3D surface representation

The activity xijd of the 3D surface representation at posi-
tion (i, j) and depth d is determined by subtracting the OFF
FIDO cell responses h�ijd from the ON FIDO cell responses
hþijd :

xijd ¼ hþijd � h�ijd : ðA:62Þ
Appendix B. Model filters

Four sets of spatial filters were used in this model: LGN
center-surrounds, simple cell DOGs and DOOGs, spatial
competition center-surrounds, and bipole grouping filters.
The sizes of the filter supports are given in Table 1 of
Appendix F. Fig. 16a diagrams the relative sizes of the
LGN center-surrounds for all six scales. The centers are
positioned on the left and the surrounds on the right.
Fig. 16b diagrams the relative sizes of the vertical simple
cell DOGs (left) and DOOGs (right). Fig. 16c diagrams
the relative sizes of the spatial competition stage center-sur-
rounds for all six scales. The centers are positioned on the
left and the surrounds on the right. Fig. 16d shows the ver-
tical bipole filter which is the same size for all depths.
Appendix C. Scale-to-depth map, case 1: triangular map

matrix

Scale-to-depth map, Wds, occurs when the multiple-scale
orientation competition cells project to the multiple-depth
bipole cells (see Appendix A.6), while the depth-to-scale
map, Wsd, occurs when the multiple-depth bipole cells pro-
ject to the multiple-scale spatial competition cells (see
Appendix A.4). Both of these mappings are defined by a
matrix representing ideas based on the size-depth and



Table 1

Name Symbol Value

Stage 1: LGN shunting network

Decay rate A 1
Excitatory saturation potential B 1
Hyperpolarization parameter C 1.01
Center kernel standard deviation for each of the 6 scales /s 1
Surround kernel standard deviation for each of the 6 scales gs 2.0000, 3.2000, 5.1200, 8.1920, 13.1072, 20.9715
Center and surround kernel support size (pixels) for each of the 6 scales 13, 21, 35, 51, 83, 131
General oriented cell parameters

Total number of orientations 16
Orientation angles (radians) hk From p

2 stepping by �p
16 to �7p

16

Stage 2: simple cells

Odd filter Gaussian separation parameter for each of the 6 scales ds 0.5000, 0.8000, 1.2800, 2.0480, 3.2768, 5.2429
Odd and even filter Gaussian width parameter for each of the 6 scales us 0.5000, 0.8000, 1.2800, 2.0480, 3.2768, 5.2429
Odd and even filter Gaussian length parameter for each of the 6 scales is 1.5000, 2.4000, 3.8400, 6.1440, 9.8304, 15.7286
Outer width parameter of the even filter Gaussian for each of the 6 scales js 0.8000, 1.2800, 2.0480, 3.2768, 5.2429, 8.3886
Odd and even filter support size (pixels) for each of the 6 scales 17, 21, 31, 47, 67, 103

Stage 3: complex cells

Threshold parameter c 0.01

Stage 4: spatial competition cells

Depth-to-scale map matrix Wds See Appendices C–E
Bipole-feedback modulation parameter D 17
Decay rate E 1
Excitatory saturation potential F 1
Hyperpolarization parameter G 0.5
Center kernel standard deviation for each of the 6 scales #s 0.6819, 1.0911, 1.7457, 2.7931, 4.4690, 7.1504
Surround kernel standard deviation for each of the 6 scales fs 1.3638, 2.1821, 3.4914, 5.5862, 8.9380, 14.3007
Kernel support size (pixels) for each of the 6 scales 9, 15, 21, 33, 53, 85

Stage 5: orientation competition cells

Decay rate H 1
Excitatory saturation potential I 1
Hyperpolarization parameter J 0.7
Orientation-center weight parameter K 1
Orientation-surround weight parameter L 0.25
Orientation-center width parameter l 0.3
Orientation-surround width parameter v 0.00006

Stage 6: bipole cells

Scale-to-depth map matrix Wsd See Appendices C–E
Decay rate M 4
Excitatory saturation potential N 1
Bottom up input weight factor O 0.01
Hyperpolarization parameter P 1
Interneuron cross-inhibitory weight Q 50
Bipole filter weight factor R 2
Input threshold r 0.00001
Output threshold s 0.00001
Bipole filter term 1 peak-weight shifting parameter for each of the 6 depths qd 4.8880
Bipole filter term 1 standard deviation for each of the 6 depths nd 2.7931
Bipole filter term 2 standard deviation for each of the 6 depths wd 1.6
Bipole filter term 3 standard deviation for each of the 6 depths fd 0.2
Bipole filter support size (pixels) for each of the 6 depths 21

Stage 7: Depth Competition Cells

Decay rate S 1
Excitatory saturation potential T 1
Hyperpolarization parameter U 1
Inhibitory weighting parameter V 0.2
Input threshold for each of the 6 depths t 0 for map matrix cases 1 and 2, 0.001 for map matrix case 3
Output threshold x 0

Stage 8: filling-in cells

Decay rate W 10
Diffusion strength parameter d 100,000
Boundary strength parameter e 100,000
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size-disparity correlations. The scale-to-depth map matrix
is given by

W ds ¼
xd expð�aðd � sÞ2Þ if d 6 s;

0 otherwise

(
ðC:1Þ

where xd = 0.47, 0.41, 0.40, 0.43, 0.65, 1.25 for depths
d = 1, . . . , 6, respectively, (d = 1 for furthest, d = 6 for near-
est) and a=0.08. The depth-to-scale map matrix is given by
Wsd = Wds. The bowing of the depth weights, xd, is consis-
tent with the idea that the middle scales are activated more
optimally than the outlying, large and small, scales since
the optimal sensitivity of the middle scales lies near the cen-
ter of the expected statistical distribution of texture element
sizes of the images investigated. In particular, the depth
weights, xd, are smaller for the middle scales than they
are for the outlying scales. Fig. 17 visualizes this property
by showing that the maximum activation (solid line) of
the complex cells in response to the number 5 high perspec-
tive (HP) ellipsoid is greatest for the middle scales. This
maximum activation curve best reflects the optimal activa-
tion of the complex cells across scale. The average activa-
tion (dashed line) of the complex cells across scale does
not show the same trend. Instead, the average activation
increases with scale size probably because the large scales
are sensitive to more distant regions of the image, allowing
them to respond at more points in the image, whether the
responses be optimal or sub-optimal. The dash-cross and
dash-circle lines represent the average activation plus or
minus half of one standard deviation, respectively.

Appendix D. Scale-to-depth map, case 2: conservation of

synaptic sites

This case is a variation upon the triangular map matrix
which also represents ideas based on the size-depth and
size-disparity correlations. This case ensures that the sum
of the input weights projecting to each depth, or each scale,
is constant across all depths and scales, thereby conserving
the number of synaptic sites attaching to a bipole cell of a
given depth, or a spatial competition cell of a given scale.
The scale-to-depth map matrix is given by

W ds ¼
vP

sMds

Mds; ðD:1Þ

where v = 1.3,

Mds ¼
expð�-ðd � sÞ2Þ if d 6 s;

0 otherwise;

(
ðD:2Þ

and - = 0.08. The depth-to-scale map matrix is given by

W sd ¼
vP

dM sd

M sd; ðD:3Þ

where

M sd ¼
expð�-ðd � sÞ2Þ if s 6 d;

0 otherwise;

(
ðD:4Þ
In this case the depth weights, v=
P

sMds, and scale weights,
v=
P

dM sd, increase with scale size because the near depths
and large scales receive input from fewer scales and depths,
respectively. Thus they need larger weights to ensure that
the sum of the input weights to each depth or each scale
is the same.

Appendix E. Scale-to-depth map, case 3: diagonal map

matrix

For this case, a purely diagonal map matrix was used
such that the scale-to-depth and depth-to-scale maps were
one-to-one. Thus this matrix only represents the size-depth
correlation. The scale-to-depth map matrix is given by

½W ds� ¼

0:66 0:00 0:00 0:00 0:00 0:00

0:00 0:50 0:00 0:00 0:00 0:00

0:00 0:00 0:35 0:00 0:00 0:00

0:00 0:00 0:00 0:33 0:00 0:00

0:00 0:00 0:00 0:00 0:34 0:00

0:00 0:00 0:00 0:00 0:00 0:36

2
666666664

3
777777775
: ðE:1Þ

The depth-to-scale map matrix is given by Wsd = Wds. In
this case, the diagonal depth weights also bow, however
there is greater weight at the far depths, compared with
the triangular map matrix case, because they now only re-
ceive small scale input in a one-to-one manner.

Appendix F. Table of model parameters

Table 1.
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