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Abstract - In support of the AFOSR program in
Information Fusion, the CNS Technology Laboratory at
Boston University is developing and applying neural
models of image and signal processing, pattern learning
and recognition, associative learning dynamics, and 3D
visualization, to the domain of Information Fusion for
Image Analysis in a geospatial context. Our research is
focused by a challenge problem involving the emergence
of a crisis in an urban environment, brought on by a
terrorist attack or other man-made or natural disaster.
We aim to develop methods aiding preparation and
monitoring of the battlespace, deriving context from
multiple sources of imagery (high-resolution visible and
low-resolution hyperspectral) and signals (GMTI from
moving vehicles, and ELINT from emitters). This context
will serve as a foundation, in conjunction with existing
knowledge nets, for exploring neural methods in higher-
level information fusion supporting situation assessment
and creation of a common operating picture (COP).
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1 Introduction
In support of the AFOSR program in Information Fusion
[1], the CNS Technology Laboratory of Boston
University’s Department of Cognitive and Neural Systems
has developed a partnership in research and technology
transition with the Information Directorate of the Air
Force Research Laboratory (AFRL/IF Rome Research
Site), national laboratories (MIT Lincoln Laboratory and
Los Alamos National Laboratory), and industry affiliates
(ERDAS, Kodak, RSI/Kodak, ESRI, and Spectral
Sciences). We are developing and applying neural models
of image, signals, pattern, and information processing, to
the domain of Information Fusion for Image Analysis,
organized in a geospatial context. Insights into brain
mechanisms of multisensor fusion, relevant to multiple
levels of information processing, have recently been
summarized [2]; (also see refs. in [3]). Our approach
builds on substantial prior work conducted with our
colleagues at MIT Lincoln Laboratory, on neural methods
with human-in-the-loop guidance for multisensor image
fusion and search agent training, supporting both 3D site

visualization and foundation feature extraction. This work
was presented at the Fusion 2001 and Fusion 2000
conferences [3-7].

Our current research and development is conducted in
the context of a challenge problem, an urban crisis
involving multiple hot-spots unfolding in a domestic
city. We are concerned with preparation and monitoring
of the battlespace from available multisensor imagery and
signals data, as well as the ongoing interpretation of the
situation and assessment of the threat as the crisis
unfolds. Fused imagery with integrated live signals data,
3D site models and extracted foundation features, will
support 3D visualization of a common operating picture
(COP) for mission (re)planning and situational awareness
during operations. We are focusing our attention on an
area in the city of Mobile, Alabama, including urban
infrastructure, a rail yard, and a port area on a river. Our
data set includes hyperspectral imagery from the HyMap
sensor in conjunction with high-resolution color visible
imagery from the CitiPix sensor, collected over Mobile in
Spring 2001 (made available to us by our affiliate, Kodak
Commercial and Government Systems unit). In addition,
GMTI and ELINT signal data streams will be simulated
(by AFRL/IF Rome Research Site) for this area, covering
time periods before, during, and after the crisis.

Image and signals fusion at Levels 0 & 1 will be
developed as an extension of our methods for image
fusion and interactive mining of geospatial data, training
search agents to find foundation features (e.g., roads,
intersections and buildings) and other objects/events (e.g.,
traffic choke points). Fusion at Level 2 will be developed
in the form of  object and event groupings, associations
and trends across space and time. Information fusion at
Levels 2+ will be realized in the dynamics of semantic
information networks, sculpted by associative learning
laws in conjunction with existing knowledge sub-nets,
and human-in-the-loop guidance. More generally, we
believe our approach to higher-level information fusion
can be combined with other complementary approaches
involving genetic, statistical, model-based, and rule-based
methods, in order to create an information fusion system
that addresses the needs of the decision maker. Sensors
with adaptive tasking capabilities, and a distributed secure
communications infrastructure will enable delivery of the
right information to the right user at the right time. This
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paper summarizes our approach, example data sets, and
progress to date.

2 Fusion Architecture & Data Sets
Our information fusion architecture extends the conceptual
framework for multisensor image fusion described in our
earlier work [3-5], and will be described below in the
context of specific data sets being assembled for the urban
site of interest.

2.1 Data & information fusion architecture

Figure 1 illustrates our system architecture for integrating
multisensor data in a geospatial context. It conveys a way
to organize surveillance imagery and signals taken from
airborne and space-based platforms, terrain data, and 3D
site models, in order to fuse the data for interactive 3D
visualization, and enable analysts to rapidly train neural
network search agents that find foundation features (e.g.,
roads, rails, rivers, buildings, parking lots, forests,
orchards, etc.) for mapping, and targets (e.g., vehicles) for
localization and tracking. By establishing a geospatial
foundation for the site, live imagery and signals can be
registered to that site model, and activity monitoring and
analysis can be performed using the trained search agents.
In this fashion, object groupings and trends can be
detected, classified and fed to higher-levels of information
fusion.

Figure 1. System architecture for multisensor and
information fusion in a geospatial context.

2.2 Data sets and 3D models

We are concerned with the unfolding of a crisis brought
on by a terrorist attack or other man-made or natural
disaster in an urban environment. Therefore, it will be
necessary to first establish a geospatial foundation for an
urban data set. We have obtained multi-source imagery for
such a data set from our affiliate, Kodak Commercial &
Government Systems, for an area over Mobile, Alabama
[21]. The area of interest covers approximately 1.5km x
6km as outlined in the map shown in Figure 2, and
includes an urban grid, buildings, major and local roads,
rails, a port facility on a river, and various kind of foliage.

Figure 2. Map of urban area of interest in Mobile, AL.

Image data for this area consists of 6-inch resolution color
visible CitiPix imagery (  http://kei.kodak.com   ), and 3m
resolution hyperspectral imagery from the HyMap sensor
(   www.aigllc.com  ). HyMap imagery consists of 126 bands
in the 0.4 – 2.5 micron region of the spectrum, corrected
for atmospheric and sensor effects using the ATREM and
EFFORT methods [8]. An improved method of correcting
for atmospheric absorption effects is FLAASH [9]. These
image data sets were collected on an airborne platform in
Spring 2001, at two different times, and so require
georectification and registration. Example imagery and
spectra are shown in Figures 3 & 4.

The CitiPix imagery is collected in overlapping
frames, so we can use it as stereo imagery to construct a
3D site model (terrain and 20 buildings) for the area by
first calibrating the sensor geometry. We have done this
manually using the OrthoBase Pro and Stereo Analyst
tools in ERDAS Imagine (   www.erdas.com  ). For a large
urban area of interest, it is essential to utilize automatic
3D site modeling tools like RealSite from Harris Corp.
(   www.govcomm.harris.com/realsite/index.html  ). Figure 5
illustrates two views of our limited Mobile site model
(shown within Imagine VirtualGIS), one from the river
looking into the port, and the other looking along a road
towards the port. We have also indicated icons to suggest
detections of moving vehicles from a GMTI sensor, and
emissions as detected by an ELINT sensor. Such GMTI
and ELINT data streams will be simulated for our crisis
scenario by AFRL/IF Rome Research Site.
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Figure 3a. CitiPix imagery of the port area in Mobile, AL

Figure 3b. Full resolution CitiPix imagery of Mobile, AL

Figure 4a. HyMap imagery of the port area in Mobile, AL

Figure 4b. 126-band spectra sampled from pixels in the
above HyMap image (brown=rooftop, gray=road,

green=tree, blue=water). HyMap imagery and spectra are
easily viewed using ENVI (   www.rsinc.com   ).

A 3D site model such as this, created from multi-
sensor archived imagery, is useful for extracting roads,
buildings, and other foundation features. It also provides a
substrate against which to register live imagery collections
using an automatic registration algorithm such as HART
(High Accuracy Registration Technique) from BAE
Systems [10]. It also provides context for interactive 3D
viewing (using Imagine VirtualGIS) of live data streams,
tracks, and statistics such as those derived from GMTI
and ELINT (signals) sensors. We will illustrate this in a
future presentation and paper.
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Figure 5a. Local 3D site model of the port facility in
Mobile, AL, constructed from overlapping CitiPix data. It
is constructed and viewed with tools in ERDAS Imagine.

Figure 5b. Local 3D site model of Mobile, AL, viewed
from a road towards the port facility. Icons superimposed

are suggestive of GMTI detections (red ellipses) and
ELINT detections (yellow stars).

3 Fusion & Mining for Roads
In the context of an urban crisis, intelligence preparation
of the battlespace would consist of providing up-to-date
electronic maps indicating the locations (and relevant info)
of foundation features like roads, rails, buildings, rivers,
ports, foliage, and the full suite of urban infrastructure. In
addition, a 3D site model would be needed to support
multisensor data registration (using standard photo-
grammetry techniques), as well as interactive 3D
visualization for operations planning and situational
awareness. This information would easily be represented

within a geospatial information system like ArcGIS from
ESRI (   www.esri.com   ). It will also be necessary to update
the status of foundation features and infrastructure from
sensor data, as the crisis unfolds. Thus, tools which are
able to learn to extract such features as necessary, directly
from fused multisensor data, can prove valuable.

Our prior work on multisensor image fusion and
mining [3-5] can be used to train search agents which
learn to find foundation features in hyperspectral imagery
from the HyMap sensor. We utilize both spectral features
and multi-resolution spatial features in the imagery, and
have the learning system discover which image features
are sufficient to conduct the search. In future work we will
utilize both the HyMap spectral imagery and the CitiPix
high-resolution visible imagery for this purpose. Here we
report results for road extraction using only HyMap data.

Figure 6 illustrates the recovered reflectance spectra
for a variety of road pixels. Removing the strong
atmospheric absorption bands leaves 100 bands of useful
data from 0.4 – 2.5µ. Due to varying terrain orientation
on a small scale, as well as partial blockage of road pixels
(by dirt, tar, etc.), we can see that the spectral shapes (Fig.
6-upper) are quite similar, though they are scaled versions
of one another. Using the normalized spectra instead, their
similarity becomes more apparent (Fig. 6-lower).

Figure 6. Sample road spectra from HyMap imagery
Upper: Unnormalized; Lower: Normalized spectra

0.5              1.0               1.5              2.0              2.5
Wavelength (microns)
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Mining the hyperspectral HyMap imagery for roads
is accomplished by training search agents to recognize
patterns [11] across prepared layers of processed data, as
explained in [2-5]. Hyperspectral processing here consists
only of normalizing the 100 remaining reflectance values
at each pixel (following the atmospheric correction and
deletion of strong absorption bands). Neural models of
visual (retinal and cortical) processing are applied on three
scales to the HyMap imagery after it is first aggregated
into four broad bands: visible (0.4 – 0.7µ), near-IR (0.7 –
1.0µ), SWIR-1 (1.0 – 1.75µ), and SWIR-2 (2.0 – 2.5µ).
These four broad-bands are used to create two opponent-
color channels (visible vs. near-IR, and SWIR-1 vs.
SWIR-2), each producing single and double-opponent
layers based on center-surround shunting dynamics [12,
6]. Each broad-band image is then processed using twelve
oriented Gabor filters that compete across orientation and
local image space, but cooperate across scales in a manner
that approximates the Boundary Contour System [13, 14].
These oriented filter responses are also used to create
various measures of image texture, and they are then
combined with the opponent-color and contour imagery
on three scales into a stack of 108 layers. Finally, the 100
normalized spectral layers can be combined with the 108
spatial layers to create a spatio-spectral stack, where each
pixel corresponds to a feature vector of 208 elements.

In each case, we utilize the prototype system for
image mining we developed at Lincoln Laboratory [3-5],
where a user can select (with the mouse) examples and
counter-examples of target pixels, and rapidly train a
search agent consisting of 5 ARTMAP neural networks
[15, 16], which then searches the entire image (stack) for
other target pixels. Voting among the 5 ARTMAP
networks is used to establish a confidence level for pattern
recognition. The results can then be displayed as
detections and post-processed into vectors for mapping
purposes. In addition, we had developed a method to
reduce the large feature space into a small sub-set of
features sufficient to correctly classify all the selected
training data, and thereby accelerate the search process.

Figure 7 shows the results of mining the 100-layer
stack of normalized spectral data for roads, displaying
results for 53% and above confidence. It also shows the
user interface where examples and counter-example pixels
are selected. The ARTMAP networks learn a maximum of
only 7 categories (2 road and 5 non-road), and the feature
space is reduced to a maximum of 11 spectral layers with
good consistency across the 5 ARTMAP nets. Figure 8
illustrates road detections obtained by mining the 108-
layer spatial feature stack, displaying results for 75% and
above confidence, having learned a maximum of only 4
categories and selected only 7 feature layers. The best
results are obtained by mining the 208-layer spatio-
spectral stack, as shown in Figure 9. In this case a
maximum of 6 categories are learned (4 road and 2 non-
road), and a reduced sub-set of only 16 features are
selected, about half of which are spectral and the other half
being spatial across all three scales. Results are shown (in
white) for the 100% confidence level only.

Figure 7. Mining for roads in HyMap normalized spectral
imagery (100 bands). Results displayed at 53% confidence
and above are in yellow, with 100% confidence in white.

Future work will make use of registered high-
resolution CitiPix imagery for the multi-resolution spatial
contours and texture signature, in conjunction with
contrast enhanced spectral signatures from HyMap. A key
objective is to incorporate the non-imaging modalities of
GMTI and ELINT detections, tracks and statistics, as
additional layers of registered data, enabling for example,
a search for roads carrying unusual traffic patterns at night.
We will soon address this challenge by utilizing
simulated GMTI and ELINT data streams in conjunction
with the multi-sensor IMINT.
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Figure 8. Mining for roads in HyMap imagery processed
as 4-band multi-resolution (108-layer) data. Search results

are displayed at 75% confidence and above.

Figure 9. Mining for roads in HyMap imagery of Mobile,
processed as multi-resolution spatio-spectral data (208

layers). Detection results are displayed at 100% confidence
in white. A reduced set of 16 features is found sufficient,
and only 6 categories are learned (4 road and 2 non-road).

4 Fusion & Mining in Imagine++++

In order to enable widespread dissemination and use of
our neural methods for multisensor/spectral image fusion
and mining for foundation features and targets, we have
refined and enhanced our prototype system [3], and
reimplemented it within an extensible commercial image
exploitation environment, ERDAS Imagine This allows
us to take advantage of the significant software
infrastructure and capabilities of the Imagine suite, while
supporting technology transfer to the National Imagery
and Mapping Agency, the Air Force Research Laboratory
AFRL/IF, and our other affiliates.

Figure 10. Workflow for multisensor/spectral image
fusion (red boxes) and mining (green boxes), integrated

into the ERDAS Imagine environment (blue boxes).

The process workflow for image fusion and mining
is shown in Figure 10, where the red and green boxes
correspond to our own modules, and the blue boxes are
modules developed from existing Imagine functionality.
Figure 11 illustrates the opponent-color image fusion user
interface, with an area in Monterey, CA, imaged in four
spectral bands (red, green, blue, near-IR) and a
panchromatic band, being fused into a color presentation.

Figure 11. User interface for opponent-color image fusion
of four bands/sensors, integrated into ERDAS Imagine.

                                                
+ This component of our work has been supported by the
National Imagery and Mapping Agency (NIMA/NTA).
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Figures 12 and 13 illustrate the image mining
interface, whereby a search agent (5 ARTMAP networks)
is easily trained to find targets pointed out by example
and counter-example. Also, a subset of sufficient feature
layers is discovered that is able to support 100% correct
categorization of the selected training examples and
counter-examples, and the user is then informed of these
important data layers. As the user points out mistakes or
missed targets in subsequent search areas, the mining
system learns to improve its performance and refines the
trained search agent.

Figure 12. User interface for ARTMAP Image Mining
integrated into ERDAS Imagine, shown with an agent
trained to find red cars (detections marked in green).

Figure 13. Training a search agent to find roads, and
discovering a sufficient subset of feature layers.

5 Higher Levels of Fusion
The methods described above, indicative of Levels 0 & 1
fusion, will lead to the rapid mapping and updating of
urban infrastructure from airborne and space-based spectral
imaging platforms. The results will provide context for
extending this analysis to live signals data, corresponding

to moving vehicles and radio emitters. Level 2 fusion will
also be approached from a neural modeling standpoint, in
which associative groupings will be established among
objects across space and time (e.g., vehicle groups with
certain emission characteristics in proximity to certain
buildings during select time intervals). Such groupings
and trends will be determined from the data streams, both
to establish normalcy models and to detect anomolies that
may become associated with other events. Similarly, such
groupings, trends and events can become associated with
established knowledge structures, also in the form of
networks.

Recalling that trained search agents transform data,
initially in the form of feature layers, into categories and
class hierarchies, provides a means to convert signals to
symbols. These category and class nodes (i.e., symbols)
may then develop associations (both excitatory and
inhibitory) with one another and with pre-constructed
knowledge nets, by means of modified Hebbian learning
[11, 12, 17]. Groupings of these nodes will form
concepts, and higher-order associations will establish a
network of semantic knowledge. Again, we will enable
human-guided input (activating concept nodes) at these
higher-levels of information fusion.

The information networks we envision here are more
than the traditional notion of a semantic network, as they
will be dynamic. Neural models of coupled networks of
excitatory and inhibitory nodes, activated by input data,
are known to exhibit oscillations and resonant states [12,
17, 18]. The inclusion of spiking behavior in these neural
models can then lead to the emergence of  synchronous
spiking activity among sub-nets within the larger network
[19, 20]. It is tempting to interpret these synchronies as
states of transient binding among data-driven categories,
concepts and knowledge. This would then represent a
hypothesis or assessment of the situation, a Level 2+
fusion of information.

6 Conclusions
The architecture shown in Figure 1, and the methods
described in Section 3, have been applied to the extraction
of roads from HyMap hyperspectral imagery. We will
extend this in order to establish an urban mapping
capability from  fused HyMap and CitiPix imagery, and
merge these foundation features with the interactive 3D
visualization capabilities illustrated in Figure 5. We will
soon augment our imagery data set with simulated GMTI
and ELINT streams that span the time period before,
during and after an urban crisis unfolds. This dynamic
data will augment our 3D visualization, as well as create
additional feature layers that will support mining for
movers, emitters, tracks, and utilized infrastructure.

We are quite confident about our neural systems
approach to generating the geospatial foundations for
higher-level information fusion, and its potential to
support fused IMINT, GMTI and ELINT. The challange is
at Levels 2 & 2+, whereby neural models of spatio-
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temporal grouping will be applied to event detection
(expected and anomolous events), and trend learning and
prediction. Still more challenging is the establishment of
a dynamic network of semantic information, combining
data-driven category learning with knowledge networks
via learned associations. We expect that activation of these
networks, by input data streams and human-guided
priming, will establish synchronous dynamics,
oscillations and spiking, among sub-nets that represent
multiple hypotheses about the urban situation and
assessment of the threat.  
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