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Abstract

In this work, back trajectories of air masses arriving in Toronto were classified into distinct transport patterns by cluster analysis and, for the
first time, by a neural network (Adaptive Resonance Theory—ART-2a). Different similarity criteria were used by the two classification
techniques, the former relying on the Euclidean distances between trajectories, the latter on the Euclidean angles between trajectories.
Nevertheless, both techniques provided similar conclusions as to the location of PM2.5 emission sources and the level of pollution associated with
a given air transport pattern. Both techniques illustrated the cleaner nature of northerly and northwesterly transport patterns in comparison to
southerly and southwesterly ones, as well as the effect of near stagnant air masses. In addition, ART-2a resolved a much larger percentage of
trajectories than cluster analysis into groups with clearly identifiable transport patterns and compared favourably with cluster analysis with respect
to the precision of the classification.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Identifying the sources of airborne pollutants is of great
importance to the study of fine particulate matter (PM2.5),
which has been linked to adverse health effects [1]. The
examination of transport patterns of air masses through the
use of back trajectories is commonly performed for source
identification. Unlike wind direction, back trajectories provide
visualization of not just the local air direction, but transport
over a continental scale. While back trajectories are on
average accurate to within 20% of the distance traveled,
individual back trajectories may be completely incorrect [2].
Thus, a large dataset is required to provide meaningful source
identification.

Two approaches have recently emerged for the visualization
of air quality data. The first consists of the generation of a
probability map of the areas around a receptor site that
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contribute to its poor air quality days, as characterized by
high PM2.5 and/or trace gas levels (the so-called Potential
Source Contribution Function approach). This is the focus of
our work in an upcoming publication [3]. The second approach
was the focus of the present work and was based on grouping
back trajectories with similar distances traveled or similar
overall direction. It has been concluded that grouping back
trajectories with similar distances traveled or similar overall
direction is the best approach for the visualization of air quality
data [4]. Cluster analysis, which uses physical distances
between trajectories, has typically been used to group similar
trajectories during the last two decades via algorithms like
average-linkage clustering, Ward’s method and k-means
clustering [4]. These algorithms generate different classification
results and their interpretation is often subjective. Consequently,
there is no one best grouping algorithm [2,4–8].

Another grouping technique that has so far been overlooked
for the classification of air mass back trajectories is neural
network analysis. Neural networks have long been known as
useful for analyses in synoptic climatology [9]. Since then,
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Fig. 1. Choosing an optimal number of clusters via changes in RMSD.
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neural networks have found some use in general circulation
models as they provide the tightest possible mapping of the
complex, non-linear relationships between the atmosphere and
the surface environment [10]. However, a study of transport
patterns of air masses, a less complex problem, has not
emerged.

The neural network approach differs from cluster analysis
in that a desired degree of separation must be specified rather
than a desired number of clusters. Secondly, the dot product
used in neural net classification incorporates an angular
component, relatable in this application to wind direction,
rather than the geometric distance used in cluster analysis.
Finally neural nets are designed to learn: when a novel
trajectory is encountered, a neural net will create a new class
with this trajectory as its sole member. This feature can be
incorporated into some cluster analysis algorithms but it is not
fundamental to this method. Hence sufficient differences
existed to suggest that the methods might produce different
insight.

Air masses arriving in Toronto have diverse histories ranging
from clean, fast-moving Arctic air to polluted, nearly stagnant
Ohio Valley air. In fact, Southern Ontario PM2.5 concentrations
have been reported to be 2 to 4 times higher under southerly or
southwesterly flow conditions than under northerly flow
conditions [11]. Thus, the ideal trajectory taxonomy would
not group trajectories that pass through both northerly and
southerly regions before arriving in Toronto with purely
northerly or southerly trajectories. Grouping of air trajectories
has been used to study the origins of ozone pollution in Toronto
[12]. However, this approach has not previously been applied to
particulate matter in the region.

For this reason, the main goal of this work was a comparison
of the air pollution information provided by cluster analysis and
an artificial neural network, Adaptive Resonance Theory (ART-
2a) [13–15], for back trajectories ending in Toronto during a
thirteen month sampling duration. The adaptation of cluster
analysis and ART-2a to interpret atmospheric pollutant
concentration is described. The inter-cluster variation of
atmospheric species concentration was also explored, with
special attention devoted to those trajectory groups that
displayed abnormally large or small concentrations of atmo-
spheric particulate matter. Some reasons for the dissimilarity of
the classifications are also suggested.

2. Methodology

2.1. Sampling of airborne pollutants

Urban Toronto PM2.5 mass and number concentration, SO2

concentration and Nitrate PM2.5 mass concentration were
measured for each hour in the sampling duration by a tapered
element oscillating microbalance (TEOM 1400A, Rupprecht &
Pataschnick Co.), aerodynamic particle sizer (APS) (Model
3321, TSI Inc.), and a real-time nitrate analyzer (Series 8400N,
Rupprecht & Pataschnick Co.), respectively. Note that the APS
provided a total particle number concentration between 0.5 and
2.5 μm in this work.
2.2. Compilation of back trajectories

Five-day back trajectories at an altitude of 500 m in Toronto,
Ontario (43.8° N and −79.0° W), were calculated between
January 14th 2002 and February 5th 2003 using HYSPLIT.
HYSPLITwas provided by the Air Resources Laboratory of the
United States National Oceanic and Atmospheric Administra-
tion [16]. Each back trajectory contained endpoints describing
the hourly location of an air mass in latitude and longitude
coordinates. Hence, every 5-day back trajectory had 120
endpoints (5×24), and 2880 endpoints (5×24×24) defined a
single day. In this work, 10,100 back trajectories (24 per day
over 421 days) were assigned to clusters and classes by cluster
analysis and neural network analysis, respectively.

2.3. Cluster analysis of back trajectories

The application of cluster analysis to back trajectory
taxonomy has been documented in detail by Cape et al. [4]
and Dorling et al. [8]. In particular, Dorling's method, which
was used in this work, has been noted to discriminate distinct
flow patterns and large scale circulation features effectively
[17]. Briefly, the distances between Toronto and each of the 120
endpoints of a trajectory were calculated as kilometers north and
east of Toronto, assuming a spherical earth. As suggested by
Cape et al. [4], trajectories were then reduced to 11 endpoints,
representing the location of the trajectory at 12-h intervals
starting from Toronto. Next, average-linkage clustering using
the Euclidean distances between trajectory endpoints was
performed on these reduced trajectories [4,8].

Finally, the optimal number of clusters was deduced by
calculating the root mean square deviation between the average
trajectory of a cluster and its member trajectories. A cumulative
root mean square deviation (RMSD) was determined for all the
clusters, and recalculated as clusters with the most similar
average trajectories were combined. Fig. 1 illustrates the percent
change in the total RMSD as the number of clusters decreased
from an initial 25. Values immediately preceding local minima
represent the joining of dissimilar clusters [8], thus permitting a
logical, if somewhat subjective, choice for the optimal number
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of clusters [4]. While 6, 12 and 20 cluster solutions were
favourable, the 12 cluster solution was chosen because it
represented a compromise between significant transport pattern
variation and ease of analysis.

2.4. Neural network analysis of back trajectories

The latitude and longitude 12-hourly endpoints of all the 5-
day back trajectories (ending 500 m above Toronto) were first
organized into latitude and longitude matrices. Note that the
same data was used in the cluster analysis procedure described
in Section 2.3. Each row in both matrices represented an
individual back trajectory, while each column represented the
location of a trajectory for each hour prior to arrival in Toronto.
Thus, both matrices had 10,100 rows and 11 columns. Every
column was standardized to a mean of zero and standard
deviation of unity across its 10,100 back trajectories to enhance
the classification ability of the neural network ART-2a.
Standardized back trajectories were subsequently normalized
to yield unit vectors, a necessary step for classification by ART-
2a [13–15]. While the necessity of normalization becomes
evident in the next paragraph, the standardization of the data
was necessary to reduce computational difficulty of the
classification.

Typically, the centroids of each created class were stored
as vectors called “weights” in a weights matrix. In this case,
each trajectory was represented by two variables, and thus
the centroids of each class were stored in latitude weights
and longitude weights matrices. Furthermore, the dot-product
of a latitude weight vector and a trajectory latitude vector, as
well as that of the corresponding longitude vectors, described
the extent of similarity between each trajectory and a created
class. The smaller of the two dot-products needed to be
larger than a user-defined similarity criterion (termed the
vigilance factor) for the given back trajectory to be classified
as a resonant trajectory.
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where xi and yi are latitude and longitude trajectory vectors,
ui and wi are latitude and longitude weight vectors of a given
class, respectively, and ρ denotes the vigilance factor. Note
that a novel class was only created after the dot products of a
trajectory vector with all the existing class weight vectors
had been evaluated and not found to satisfy the above
criterion. Typically, a trajectory is chosen at random to be the
weight vector for the first class, and other trajectories are
compared to this. As new classes are created, a small percentage
(termed the learning rate and set to 6% in our work) of the
trajectories newly added into a given class is added to the
individual weight vectors to better reflect the instantaneous class
population. The weight vectors at the end of the first iteration
were the input weights for the beginning of the second iteration.
Trajectories were again sampled randomly and reclassified. In
this manner, ten iterations, called epochs, were run. We had
previously determined that using ten epochs and a 6% learning
rate reduces misclassifications (defined as trajectories that are
continually classified into different classes in each iteration) to
less than 5%. If a trajectory was resonant with more than one
class, it was added to the class with whose weight vectors it had
the largest dot product.

In this work, a solution containing 12 ART-2a classes was
generated to facilitate comparison with the 12 cluster solution.
This represented a choice of 0.02 for the vigilance factor. Note
that increasing the vigilance could help identify exceptional
trajectory patterns. While this increases the overall number of
classes, it is still a great advantage of using ART-2a.
Additionally, classification of hourly latitude and longitude
endpoints, and thus a 10,100×121 sized matrix, produced
results very similar to those from the classification of 12-hourly
endpoints. For the sake of simplicity, however, only the results
of the ART-2a and cluster analysis classifications of 12-hourly
endpoints are presented in this work.

Finally, the precision of both solutions was determined. The
angle between a trajectory endpoint and its corresponding class/
cluster average trajectory endpoint, with Toronto as the vertex,
was calculated. The median angular deviation of the members
of a class/cluster from its average trajectory (based on several
thousand angular deviations) was chosen to represent the
similarity of trajectories grouped together and thus the precision
of the trajectory assignments generated.

3. Results and discussion

3.1. Comparison of cluster analysis and ART trajectory
classifications

Since this was the first application of ART-2a to back
trajectory analysis, a comparison between the ART and cluster
analysis solutions follows. Due to the different similarity
criteria, each ART class was composed of trajectories that were
placed in different clusters. Fig. 2 illustrates an example to
explain the reasons behind the different trajectory assignments
and to highlight some associated implications.

Trajectories 1 and 3 were assigned to one ARTclass (class 7),
while trajectories 1 and 2 were assigned to the same cluster
(cluster 8). Note that while trajectories 1 and 2 traveled similar
distances, trajectories 1 and 3 were alike in their overall shape.
Hence, cluster analysis did not appear to consider the overall
shape of trajectories as important as the inter-trajectory
distances. The reasons behind this difference are twofold:
firstly, while the ART input data was standardized and
normalized, the cluster analysis input data was not, by
necessity; secondly, the ART-2a similarity criterion was
bounded between −1 and 1, whereas that of cluster analysis
was not. This resulted in two alternate but equally valid
classifications, one based on the inter-trajectory distances, the
other on similarity of overall shape. While inter-trajectory
distances must be considered to prevent the grouping of fast-
and slow-moving trajectories and thus the obscuring of
stagnation effects, the overall direction must also be borne in



Fig. 2. Demonstrating the classification schemes by three trajectories grouped differently by cluster analysis and ART-2a.
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mind to prevent the grouping of trajectories passing through
different geographic areas and thus the misidentification of
possible source regions.

Finally, the precision of both solutions was determined as
described in Section 2.4. Fig. 3 shows that while the median
angles for the 12 clusters are less scattered than the 12
corresponding ART-2a angles, one of these angles (cluster 2) is
quite large. Thus, a risk of data misinterpretation existed, as is
described in the following discussion.

Overall, however, both techniques can be seen to provide
similarly precise solutions. Note that those classes/clusters that
exhibited median angles beyond the interquartile range (shown
as larger points on Fig. 3) are referred to as “blurred” in the
following discussion.

3.2. Cluster analysis classification results

Fig. 4 illustrates the average trajectories, also referred to as
transport patterns, of the twelve clusters created by cluster
analysis. The “blurred” clusters 2, 4, 8, 10, 11 and 12 accounted
for 63% of the trajectories. In addition, clusters 2, 8, and 12
were short transport patterns indicative of slow-moving air
masses. Consequently, assuming the presence of upwind
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Fig. 3. The precision of the cluster analysis and ART-2a solutions. Each point
represents the median value of the angles between trajectory endpoints and their
corresponding cluster/class average trajectory endpoints. The dotted and solid
horizontal lines represent the interquartile ranges of the 12 median angles for
cluster analysis and ART-2a, respectively.
emission sources and low mixing heights, elevated airborne
pollutant concentrations were anticipated in Toronto for these
transport patterns.

3.3. Application to air pollution data

The clusters were ordered to provide an approximate north-
to-south, anti-clockwise variation. Clusters containing less than
50 trajectories were not displayed. Fig. 5A and B illustrate the
variation of the median concentration of atmospheric particulate
matter in Toronto with transport pattern.

In general, all three pollutant measurements exhibited
smaller concentrations for northerly transport patterns, and
larger concentrations for those passing through the Midwestern
United States. This observation may be attributed to the large
numbers of power plants and industries located south and
southwest of Toronto, consistent with previous work [11].
These regions have three Canadian power plants, Lakeview
(Mississauga, Ontario), Lambton (Sarnia, Ontario) and Nanti-
coke (Nanticoke, Ontario), and the many U.S. power-generating
stations in the Ohio Valley. However, clusters 2, 8, 10, 11 and 12
displayed unusual behaviour in this general trend. Note that
clusters 10 and 11 were small clusters containing about 1% of
the trajectories each. Detailed explanations for these observa-
tions follow.

The largest PM2.5 mass concentrations were found in clusters
2, 8, 11, and 12. Some of the trajectories assigned to cluster 2
were northerly ones that entered the Ohio Valley before
doubling back to Toronto. Meanwhile, cluster 8 displayed
northwesterly trajectories that passed both north and south of
the Great Lakes, resulting in the “blurring” of this cluster. Its
elevated PM2.5 mass concentration was suggested to originate
from agricultural areas in Michigan and Southern Ontario and to
be enhanced due to its slow-moving nature causing the
accumulation of PM2.5. The similar but smaller PM2.5 mass
concentrations of adjacent clusters support this hypothesis.
Clusters 11 and 12 displayed the largest PM2.5 mass concentra-
tions, which were expected due to their transport through the
industrialized Ohio Valley. Finally, the Toronto PM2.5 mass
concentration appeared to be dependent more on the transport
pattern than the season the pattern appeared most frequently in.
For example, clusters 4 and 11 exhibit very different PM2.5 mass
concentrations even though they both appeared primarily in the
winter and spring seasons.



Fig. 4. Transport patterns created by cluster analysis.
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Clusters 2, 8, 11, and 12 also displayed elevated PM2.5

number concentrations. The explanation suggested for the
PM2.5 mass concentrations of these clusters was applicable once
again. Interestingly, the median of the ratios of each cluster's
PM2.5 number and mass concentrations was approximately 1.1.
While the absolute value of the ratio held little meaning, large
deviations from the median ratio value highlighted the relative
size of particles in each cluster. Clusters 11 and 12 displayed
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Fig. 5. Effect of changing cluster analysis transport patterns on Toronto (A)
PM2.5 mass and number median concentrations, and (B) PM2.5 nitrate median
concentration. All median concentrations are in μg/m3 or #/cm3. The standard
errors on the median values and the season(s) during which over 25% of
trajectories in a given cluster were observed are also noted.
ratios of 3.2 and 2.3, respectively, indicating the presence of
finer particles in Toronto air under southerly and southwesterly
flow conditions than under north and northwesterly flow
conditions. Hence, the secondary formation of PM2.5 leading
to finer particles was suggested to be relatively larger for
southerly regions than northerly regions. This is supported by
the number /mass ratio of cluster 6, a very long transport pattern
that contained the coarsest PM2.5 observed. This is understand-
able since industrial sources were present in regions south of
Toronto. Similar to the PM2.5 mass concentration, the PM2.5

number concentration appeared to be dependent more on the
transport pattern than the season the pattern appeared most
frequently in.

Clusters 10 and 11 exhibited elevated PM2.5 nitrate mass
concentration. These were primarily winter-based clusters
(cluster 11 also appeared during the spring) and their elevated
nitrate concentrations were understandable given the bias of
nitrate towards cooler seasons [18]. Furthermore, agricultural
activity is known to be an important source of nitrate precursors
like NH3 [19], although cars have recently been proposed to be
a substantial source of NH3 in urban environments [20]. In
addition, less oxidation of SO2 to sulphate occurs during winter,
leaving more NH3 for gaseous nitric acid to react with [19]. The
condensation of ammonium nitrate from biogenic activities in
Southern Ontario and Michigan during colder temperatures
onto particles originating upwind is proposed. This hypothesis
is supported by the small nitrate content of cluster 12, a
primarily summer based group. Note that clusters 4, 6, and 7,
which are also winter-based clusters, did not exhibit elevated
nitrate concentrations stressing the importance of transport
through Southern Ontario and Michigan for the appearance of
PM2.5 nitrate in Toronto. If the ammonium nitrate observed in
Toronto was only produced from local NOx and NH3 emissions,
then one would not expect the PM2.5 nitrate concentration to
show a trajectory-related dependence. Conversely, the trajectory
independent background concentration of about 1 μg/m3 might
be taken as a measure of the locally produced PM2.5 nitrate
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concentration. This also suggests that much of the NH3 and NOx

precursors of ammonium nitrate produced within Toronto go on
to produce nitrate PM downwind.

3.4. ART classification results

Fig. 6 illustrates the twelve, five-day transport patterns, also
called classes, created by ART-2a. The “blurred” classes 2, 3, 4,
5, 10, and 12 accounted for 47% of the trajectories (cf. 63% in
the cluster analysis case). This suggested a somewhat more
effective separation of trajectories into distinct transport
patterns by ART-2a than by cluster analysis. In addition,
classes, 9, 11, and 12 displayed shorter transport patterns than
others, indicative of a longer residence time. Since they also
traveled through the Midwestern United States, larger airborne
pollutant concentrations in Toronto were anticipated for these
transport patterns.

3.5. Application to air pollution data

The classes were ordered to provide an approximate north-
to-south, anti-clockwise variation. Fig. 7A and B illustrates the
variation of the median concentration of each atmospheric
pollutant measurement with transport pattern. Similar to Fig.
5A, the median PM2.5 mass and number concentrations were
generally largest under southerly and southwesterly flow
conditions. Furthermore, the northernmost flow pattern of
Class 1 is not as polluted as that of the northernmost cluster
2, demonstrating the removal of the northerly trajectories that
Fig. 6. Transport patterns created by ART-2a.



Fig. 8. Depiction of the differences between the northern-most cluster and class produced through cluster analysis and ART-2a.
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traveled south before doubling back to Toronto. ART-2a
assigned these trajectories to class 5, as seen in Fig. 8.
However, the PM2.5 nitrate concentrations follow somewhat
different trends, as evidenced by Fig. 7B, which have been
explained in the following discussion. The impact of stagnant
conditions on downwind pollution levels was evident for
classes 9, 11, and 12, and similar to the behaviour of clusters
8, 11 and 12, respectively. As with the cluster analysis
results, the combination of stagnant conditions and the
presence of emission sources in Southern Ontario pollution
and the Ohio Valley is suggested to account for the ART-2a
results.

The largest PM2.5 mass concentrations were found in classes
5, 9, 10, 11, and 12. The large concentration associated with
class 5, which goes against the general trend of cleaner
northerly air, is due to the passage of its member trajectories
through areas south of Toronto, western New York in this case.
Note that this concentration is comparable to those associated
with transport patterns traveling through the Ohio Valley,
classes 9 through 12. Note also the lack of seasonal effects on
the PM2.5 mass concentration: clearly, transport through regions
south and southwest of Toronto in any season results in higher
mass levels as compared to passage through north and
northwesterly regions. An argument similar to that for PM2.5

nitrate shown in the previous section suggests that a trajectory
independent PM2.5 mass concentration of 10 μg/m3 is likely
emitted and/or produced locally. This agrees closely with
previous studies [19].

Classes 5, and 9 through 12, also emerged dominant for the
PM2.5 number concentrations. The explanation suggested for
the PM2.5 mass concentrations of these classes was applicable
once again. While the median of the ratios of each cluster's
PM2.5 number and mass concentrations was approximately 1.1,
the corresponding ART-2a value was 1.25. The largest
deviations were evident for classes 9 through 12, once again
demonstrating the finer nature of particles in Toronto under
southerly and southwesterly flow conditions. Similar to the
PM2.5 mass concentration, no appreciable seasonal effects were
observed on the variation of Toronto PM2.5 number concentra-
tion with change in transport pattern.

The PM2.5 nitrate mass concentrations of classes 4, 5, and 9
were distinctly elevated. Note that the winter-based class 9
passed through Southern Ontario and Michigan, and as with
clusters 10 and 11, the condensation of ammonium nitrate from
biogenic activities onto particles originating upwind during
colder temperatures is proposed. This hypothesis is supported
by the back trajectories in Class 9 occurring mainly during the
winter season, and by the smaller nitrate levels of Classes 11
and 12, which favoured warmer seasons. Similarly, although
classes 4 and 5 displayed more northerly transport patterns, they
also traveled through Southern Ontario and thus displayed
comparable nitrate content.
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4. Conclusions

In this paper, back trajectories of air masses arriving in
Toronto were classified into distinct transport patterns by clus-
ter analysis and a neural network (ART-2a). The application of
bulk data to the classification of air mass back trajectories by
cluster analysis and a neural network (ART-2a) demonstrated
that both techniques provide similar conclusions as to the
location of emission sources and the level of pollution
associated with a given air transport pattern. Both techniques
illustrated the cleaner nature of northerly and northwesterly
transport patterns in comparison to southerly and southwest-
erly ones, as well as the effect of near stagnant air masses,
despite the different similarity criteria used by the two
classification techniques. In addition, ART-2a resolved a
somewhat larger percentage of trajectories than cluster analysis
into groups with clearly identifiable transport patterns, and
compared favourably with it with respect to the precision of
classification.
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