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Abstract: Engineering design is a complex activity, and is heavily reliant on the know-how of engineering designers. Hence, capturing, storing,
and reusing design information, design intent, and underlining design knowledge to support design activiies is a key issue in engineering
knowledge management.

To meet the demand for engineering designers regarding functional feature and engineering specification-based knowledge resources, this
study proposes a novel scheme for functional feature and engineering specification-based reference design retrieval using an integrated
clustering approach for providing engineering designers with easy access lo relevant reference design and associated knowledge. The
research objectives can be achieved by performing the following five tasks: (i) designing a functional feature and engineering specification-
based reference design retrieval process, (i) developing a functional feature and engineering specification representation, (jii) investigating
and integrating ART1 (adaptive resonance theory 1) neural network, GA (genetic algorithm), and fuzzy ART (fuzzy adaptive resonance theory)
clustering techniques, and (iv) implementing a functional feature and engineering specification-based reference design retreval mechanism
and experimenting with an example. The retrieval process involves three steps: functional feature and engineernng specification-based query,
similar design case search and retrieval, and similar design case ranking. The techniques involved include: (i} a binary code-based
representation for functional feature and an EXPRESS language-based representation for engineering specification, (i) ART1 neural network
and genetic algorithm for functional feature-based similar design case clustering, (iii) fuzzy ART for engineering specification-based similar
design case clustering, (iv) similarity calculation for ranking similar design cases, and (v} a case-based representation for designed entities.

Key Words: engineering knowledge management, reference design retrieval, adaptive resonance theory (ART), genetic algorithm (GA),

fuzzy adaptive resonance theory (fuzzy ART).

1. Introduction

Knowledge is an important asset for any enterprise
owing to global competition and the rapid development
of information technology in the 2Ist knowledge
economy era. Knowledge Management (KM) is consid-
ered an important factor in improving the competitive
edge of enterprises. Consequently, effectively capturing,
storing, and re-using useful knowledge within an orga-
nization to accumulate intellectual capital is essential
for modern businesses.

Engineering design [4,5,15] is the systematic process
of identifying ‘customer requirements’, translating
them into the ‘functional requirements’ of a product,
and then mapping these functional requirements into
‘functional features and engineering specifications’
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that can be economically met during manufacture, by
exploiting creativity, scientific principles, and technical
knowledge. This design procedure can be considered
a process of product design information or a process
of transforming product design information. Various
design states contain different extents of product design
information: however, the transformation from one
product design information state to another results
from a decision process, driven by the design knowledge
and experience of engineering designers. Effectively
organizing, storing, and retrieving such knowledge
and experience is a key factor in increasing product
development capability and quality, and reducing
the development cycle time and cost. Consequently,
organizing, storing, and retrieving product design
information, design intent, and underlying design
knowledge constitute the foundation of engineering
knowledge management.

Owing to their high dependency on information,
many companies can significantly improve the perfor-
mance and efficiency of their service or product delivery
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by adopting traditional information systems or knowl-
edge management systems. These systems generally
comprise a set of interrelated computer-based elements
that retrieve, process, store, and distribute information
to support activities at either the enterprise or inter-
enterprise levels [3.7.8]. No technology has yet been
developed for retrieving engineering knowledge (such as
design intent and experience) by querying functional
features and its engineering specifications. Such retrieval
creates a bottleneck in sharing valuable product
information and engineering knowledge, and thus a
satisfactory engineering knowledge management system
has not yet been realized.

This study proposes an integrated clustering approach
to developing technology for functional feature and
engineering specification-based reference design retrieval
to provide engineering designers with easy access to
relevant reference designs and associated knowledge. It
is part of the findings of our research on collaborative
knowledge management in allied concurrent engineer-
ing. This study also presents a distributed knowledge
management framework and an engineering knowledge
management cycle alongside the development of the
functional feature and engineering specification-based
reference design retrieval technology.

Development of the research includes the following
tasks: (i) designing a functional feature and engineering
design-based reference design retrieval process,
(ii) developing a functional feature and engineering
specification representation, (iii) investigating and inte-
grating ART1 (adaptive resonance theory 1) ncural
network, GA (genetic algorithm), and fuzzy ART (fuzzy
adaptive resonance theory) clustering techniques,
(iv) implementing a functional feature and engineering
specification-based reference design retrieval mechanism
and experimenting with an example. Technology related
techniques comprise a binary code-based representation
for functional feature and an EXPRESS language-based
representation for engineering specification, ARTI
neural network and genetic algorithm for functional
feature-based clustering of similar design cases, fuzzy
ART for engineering specification-based clustering of
similar design cases, similarity calculation for ranking
of similar design cases, and a case-based representation
for designed entities.

2. Research Scope

This section first introduces the framework of
collaborative knowledge management in allied concur-
rent engineering [12]. The functional framework of
engineering knowledge management is then presented
based on the concept of knowledge management for
supporting the collaborative knowledge management
framework.

2.1 Collaborative Engineering
Knowledge Management

Two types of knowledge management are proposed to
support levels of knowledge management in an allied
concurrent engineering project, namely personal knowl-
edge management and team knowledge management.
Personal knowledge management involves knowledge
management of individual team members, and connects
a team knowledge management unit, while team knowl-
edge management involves knowledge management
for a team of project members. It may be equipped with
a knowledge repository and be able to communicate
with other team knowledge management units.

Furthermore, two levels of knowledge repositories are
designed for knowledge storage, namely personal
knowledge repository and team knowledge repository.
A personal knowledge repository, which is managed by
personal knowledge management, is a private storage
area for individual team members. Meanwhile, a team
knowledge repository comprises a group storage arca
managed by team knowledge management.

Based on the characteristics of allied concurrent
engineering [12,16], an allied concurrent engineering
project may consist of several collaborative processes,
involving several individual and/or collaborative activ-
ities. Therefore, to support knowledge management, a
team knowledge management unit may play the role
as project knowledge management, process knowledge
management, or collaborative activity knowledge man-
agement, forming a hierarchical, distributed, flexible,
and dynamic-configurable knowledge management
framework for allied concurrent engineering, as shown
in Figure 1.

2.2 Functional Framework of Engineering
Knowledge Management

Based on the collaborative engineering knowledge
management framework above, the functional frame-
work for a collaborative engineering knowledge manage-
ment system is designed to support knowledge-intensive
activities in engineering design. Figure 2 shows the
functional framework as a knowledge management
life cycle, which consists of the creation, capture,
compilation and storage, and retrieval/reuse/query of
engineering knowledge. The elements of the knowledge
management life cycle are briefly outlined below.

2.2.1 ENGINEERING KNOWLEDGE CREATION
Engincering designers generally use different methods
of structured design to perform and achieve their
design objectives. Examination of engineering designer
behavior reveals four commonly employed structured
design methods: feature-based design, engineering
change, design by modification and design by reference.
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In feature-based design, product modeling uses a library
of 2D or 3D features as design primitives. Product
functional requirements are transformed into functional
features, which are then converted into design specifica-
tions and manufacturing features. The engineering
knowledge involved in feature-based design includes
design intent, engineering principles, design experience,
creativity, and product information. Moreover, product
information can be subdivided into the areas of
customer needs, functional requirements, functional
features, and engineering specifications. Engineering
change is usually defined as a change in the form, fit,
or function of a product or part to satisfy customer
requirements. Engineering change is triggered by an
engineering change request, following which the engi-
neering change is proposed, investigated, authorized/
rejected, executed, reviewed, and archived in an orderly,
structured design manner. Knowledge of enginecering
change can be specialized as change knowledge, which
can be categorized into a reason for change and the
content of the change, as well as the applied engineering
principles. Design by modification/design by reference
is employed to reduce the design time and increase the
working efficiency of engineering designers. This
method enables a most similar engineering model to be
retrieved from the historical knowledge repository
according to the product information, which is then
slightly modified to generate a new engineering model,
or provides a reference model for a new design.
Engincering knowledge is involved in both design
by modification and design by reference, and
includes product information, design intent, engineering
principles and design experience.

2.2.2 ENGINEERING KNOWLEDGE EXTRACTION,
COMPILATION, AND STORAGE

Design intent, applied engineering principles and
heuristics, and information related to engineering
collaboration can be extracted during the engineering
design, and are associated with the design object as
notes for reference. Once an engineering model is
completed and checked into a project knowledge
repository, product information and knowledge relating
to the engineering model are captured and stored in
the product information and engineering knowledge
libraries, respectively. Additionally, the product infor-
mation and engineering knowledge are compiled in rule
format and deposited in an engineering rule base. Upon
completion of a design project, the engineering models
and associated knowledge are stored in a historical
knowledge repository for future reuse.

2.2.3 ENGINEERING KNOWLEDGE RETRIEVAL/
REUSE/QUERY

Product information and engineering knowledge can

be retrieved when an engineering model is examined or

copied from the project knowledge repository. Similarly,
historical engineering models, related product informa-
tion and engineering knowledge can also be referenced
or copied to provide a reference for new projects.
Moreover, engineering designers can conveniently query
engineering knowledge by using the knowledge query
function to solve related design problems.

Some studies [17-19] have examined enabling
technology in the proposed functional framework of
engineering knowledge management, including “captur-
ing,” ‘representation,” ‘storage,” and ‘retrieval’ of engi-
neering knowledge. Meanwhile, the ‘retrieval’ portion
can be classified into customer requirement-based
reference design retrieval, functional requirement-based
reference design retrieval, and functional feature
and engineering specification-based reference design
retrieval, to satisfy the knowledge demand of engineer-
ing designers regarding the phases of ‘customer
requirement establishment,” ‘functional requirement
establishment,” and ‘functional feature and engineering
specification design,’ respectively.

To pursue the proposed framework and system more
completely, this study focuses primarily on functional
feature and engineering specification-based reference
design retrieval, as indicated by the shaded areca
surrounded by the broken line in Figure 2.

3. Functional Feature and Engineering
Specification-based Reference Design Retrieval

This section first describes the process of functional
feature and engineering specification-based reference
design retrieval. Subsequently, a number of crucial
techniques used in the functional feature and engineer-
ing specification-based reference design retrieval process
are presented, including: (i) a binary code-based repre-
sentation for functional feature and an EXPRESS
language-based representation for engineering specifica-
tion, (ii) an integrated clustering approach containing
the ART1 neural network and GA for functional
feature-based similar design case clustering, and fuzzy
ART for engineering specification-based similar design
case clustering, (iii) similarity calculation for similar
design case ranking, and (iv) case-based representation
for designed entities. These techniques help to realize
a functional feature and engineering specification-based
reference design retrieval mechanism.

3.1 Functional Feature and Engineering
Specification-based Reference Design
Retrieval Process

Functional feature and engineering specification-
based reference design retrieval attempts to retrieve the
most similar design cases from the reference design case
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Figure 3. Functional feature and engineering specification-based reference design retrieval process.

repository as references based on user functional feature
and engineering specification-based query. To achieve
the above goal, the functional feature and engineering
specification-based reference design retrieval process is
designed based on the concept of the case-based
reasoning (CBR) cycle, as illustrated in Figure 3.

Four main steps are involved in running functional
feature and engineering specification-based reference
design retrieval process.

Step 1: Definition and representation of functional
feature, feature relationship, and engineering specification
for historical design cases. Functional feature, feature
relationship, and engineering specification for historical
design cases are defined and represented by experts in
engineering design according to the investigation of
feature-based design and product data representation.
After that, all completed design cases can be represented
by the defined functional features and engineering speci-
fications, providing the basis for searching and matching
functional feature and engineering specification-based
reference design cases.

Step 2: Establishment of functional feature and engineer-
ing specification-based query. Using the defined and
represented functional features and engineering specifi-
cations, designers can easily establish a functional
feature (including feature relationship) and engineering
specification query as a search target to trigger
the execution of functional feature and engineering
specification-based reference design retrieval process.

Step 3: Functional feature and engineering specification-
based reference design case searching and matching.
Similar reference design case searching and matching is
conducted based on Step I and Step 2 above. In this
section, this study proposes an integrated clustering
approach, which combines the three techniques of
ART1 neural network, GA and fuzzy ART. The first
two techniques are applied first, and reference design
cases are selected in terms of functional features and
feature relationships, while the latter case is mainly used
to refine the retrieved reference design cases in terms
of engineering specifications.

Step 4. Similar design cases ranking. Before the refined
reference design cases are delivered to the designer, they
should be ranked in the order of calculated coefficients
of similarity. The most similar design case is then pre-
sented to the designer as a possible reference or scenario
to be reused for the design problem under consideration.

3.2 Definition and Representation of Functional
Feature and Engineering Specification

This subsection employs object-oriented modelng
techniques [1] and data abstraction to model the
feature-based part definition data. A part and its
clements are represented in terms of objects.

Figure 4 shows that a part is the aggregation of func-
tional features, feature relationships, and engineering
specifications. Each feature relationship is associated
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‘rib’ and ‘boss.” For engineering specification, it is
roughly classified into ‘length,’ ‘width,” ‘depth,” ‘radius,’
and ‘angle.’

A part is characterized using a list of functional
features, which can be treated as binary variables. Based
on the functional features defined above, these func-
tional features are required to describe specific part
features. When coding a part based on the list, ‘one’
means that the part has a given functional feature while
‘zero® indicates that it does not. Figure 5(a) shows the
binary code-based representation of the functional
features of the sample part illustrated in Figure 5(b).

Figure 6. (a) EXPRESS for feature relationship (relationship
number) and (b) EXPRESS for engineering specification (specifica-
tion value).

Besides functional feature representation, the
EXPRESS language. which supports the descriptions
of the feature relationship (i.e., relationship number)
and the engineering specification, is defined in
Figure 6(a) and (b). This EXPRESS represents each
entity instance using a rectangle, while each data type
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(a)

SCHEMA Functional Feature Relationship;
ENTITY Functional Feature Relationship;
Meet_Number : O;
Adjacent_Number : 2;
Overlap_Number : {;
Conver_Number: 0;
Inside_Number: 1;
END_ENTITY;
END_SCHEMA

Relationship (Step, Hole_1) = Adjacent
Relationship (Step, Boss) = Adjacent
Relationship (Step, Hole_2) =Inside

(b)
SCHEMA Engineering Specification;
ENTITY Functional Feature_Slot;

Length_Value : 4.55;
Width_Value : 2.25;
Depth_Value : 3.80;
Radius_Value: Null;
Angle_Value : Null;

END_ENTITY;
END_SCHEMA
Length_Value
.-l-""-r o
=
/ 7
- E
PR,
'
J 2.25 7 /
’ cm -
-~
Depth_Value s A
Width_Value

Figure 7. (a) Example of feature relationship representation in EXPRESS and (b) example of engineering specifications representation in

EXPRESS.

is represented using a rectangle with a right double-line.
According to the above EXPRESS, two examples
with the structures of the feature relationship and
the engineering specification in EXPRESS syntax are
presented in Figure 7.

3.3 An Integrated Clustering Approach

This study combines the ART1 neural network, the
GA, and the fuzzy ART techniques into an integrated
clustering approach to effectively search out the most
similar design case from the reference design case
repository by querying functional features (including
feature relationships) and engineering specifications.
Their details are further discussed as follows.

3.3.1 ART1 NEURAL NETWORK FOR
FUNCTIONAL FEATURE-BASED
CLUSTERING OF SIMILAR DESIGN CASES

The ARTI1 neural network [2,11] is adopted as the
first clustering technique for solving the problem of
functional feature-based clustering of similar design
cases. The ART1 neural network can be introduced in
terms of ART]1 characteristics, ART1 architecture, and

ART]1 algorithm, respectively. Moreover, an illustrative

example involving the application of ARTI neural

network to functional feature-based similar design case
clustering is given.

ART1 CHARACTERISTICS

e Binary vector space representation: ART1 can process
patterns expressed as vectors with components
of either 0 or 1.

e Stability and plasticity: The ART1 network is suffi-
ciently stable to preserve significant past learning,
while remaining adaptable enough to Incorporate
new clusters whenever they appear.

e Unsupervised learning: In unsupervised learning, no
environmental feedback exists to indicate the nature
or correctness of network outputs. The network must
discover for itself any significant relationships that
may exist in the input data and translate the
discovered relationships into outputs.

e Quick learning capability: In ART1 network, if the
input pattern resembles any earlier exemplar, then it
is clustered with that cluster. However, if the input
pattern does not resemble any earlier exemplar,
then a new cluster is created to represent that
pattern.

ART1 ARCHITECTURE

Figure 8 shows the architecture of ARTI. The
network consists of two layers: the comparison layer
and the recognition layer. The input values to the
ART]1 network are binary values. Moreover, each unit
in the classification layer corresponds to a cluster, and
units in the two layers are completely connected. Two
types of connections exist: bottom up and top down.
Units in the recognition layer also are connected by
lateral connections. The ART1 architecture has three
additional modules: Gainl, Gain2, and Reset, that
provide control functions needed for training and
classification. The comparison layer receives the
binary vector, and the recognition layer compares and
classifies the pattern.
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ART1 ALGORITHM

The ART 1 algorithm is applied to discover clusters of
a set of binary-based pattern vectors. The algorithm can
be summarized via the following steps:

Step 1. Initialize parameters:

Lk

;0) =1, by0) =

L—1+N
where 0 <i<N-land0<j<M-1lset0<p=<l

(1)
In Equation (1), b;(7) denotes the bottom-up and #;(1)
the top-down connection weight between input node i
and output node j at time 7. Meanwhile, the fraction p
represents the vigilance threshold, which indicates how
close the input vector must be to a stored exemplar
being considered to match it.

Step 2. Feed a new input.

Step 3. Compute the output, which is given by

N-1
wi=Y bi(t)x;, 0<j<M-—1 (2)

where j1; denotes the output of output node j and x;
represents element i of the input vector.

Step 4. Select the best matching exemplar:

pj = max(y) (3)

Step 5. Use the following vigilance test:

N=I
lIxl| = ) xi (4)
i=()

N-1
17 xl =" tyx; (5)

i=l)

if similarity v=(/|T- x||/|/x||) > p then proceed to Step 7,
otherwise go to Step 6.

Step 6. Disable the best matching exemplar. The output
of the best matching node selected in Step 4 is
temporarily set to zero, and no longer participates
in the maximization performed in Step 4. Then go to
Step 3.

Step 7. Adapt the best matching exemplar:

fg(k].l}'

tilk +1)=i(k)x;, bylk+1)= |
j( ) j{ ) j[ } U'5+EL'—-I|'] I?j(k]xf

(6)

Step 8. Enable any node disabled in Step 6. Repeat by
returning to Step 2.

AN ILLUSTRATIVE EXAMPLE

The functional features of ten design cases listed in
Table 1 are chosen as an example illustrating the ART]I
algorithm for functional feature-based similar design
case clustering, as discussed below.

From the initialization process of ART]I, the initial
weights are o=t L L L L L Ll 1} and b=
1/12{1,1,1,1,1,1,1,1,1, 1, 1}. Meanwhile, the vigilance
parameter p is set to 0.5. The ten input samples are then
fed to the ARTI1 algorithm individually. At least ten
free output nodes are assumed to be available.

Sample 1 (Case 01). when sample 1 is fed, the
one among the ten output nodes with the largest output
is denoted as number 1. Since matching value uj=
5/12=0.417 and similarity v=35/5=1.00 > p=0.5,
the sample 1 is assigned to the first cluster.
Additionally, the weights are then changed based on
Equation (1), as #;={1,0,1,0,0,1,0,0,1,1,0} and
b;=1/5.5{1,0,1,0,0,1,0,0,1,1,0}.

Sample 2 (Case 02): when sample 2 is fed, no top
layer node is competing clustering since only one active
node exists; that is, node 1 is the unconditional winner.
The matching value pu =2/5.5=10.364 and the similarity
v=2/5=0.40< p=0.5; therefore it fails the test, and
sample 2 is considered a new cluster represented by
another output node, number 2. The corresponding
weights 1,,=1{0,1,1,1,0,1,0,1,0,0,0} and bip=1/
4.5{0,1,1,1,0,1,0,1,0,0,0}.

After all the samples in the Table 1 are fed in
order, their matching value 7, similarity v, top-down
weight 7;, and bottom-up weight b; are calculated
and presented in table form, as shown in Table 2.
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Table 1. Samples of binary code-based functional features of design cases.
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Primary Feature Secondary Feature
Case No Boss Rib Hole Pocket Step Slot Bore Conic Flat Round Sink
01 1 0 1 0 0 1 0 0 1 1 D
02 0 1 1 1 0 1 0 1 0 0 0
03 0 0 1 1 0 1 1 0 0 0 0
04 0 1 1 0 1 1 0 0 0 1 0
05 1 0 0 0 1 0 1 0 0 0 0
06 0 0 0 0 1 0 1 1 0 0 0
07 1 0 0 0 1 0 0 1 0 1 0
08 1 0 0 0 0 0 D 1 D 1 0
09 1 0 0 0 1 0 0 1 0 0 0
10 1 0 1 D 1 D 0 0 0 0 0
Table 2. Clustering result of ten functional feature-based design cases.
Case I V= "T[J" t by; Cluster
01 pj=512 Vi =5/5>p ty ={1,0,1,0,0,1,0,0,1,1,0} by =1/5.5{1,0,1,0,0,1,0,0,1,1,0} 1
02 ny=2/5.5 vi =2/5<p t-={0,1,1,1,0,1,0,1,0,0,0} bp=1/5.5{0,1,1,1,0,1,0,1,0,0,0} 2
03  w=2/55 p3=>3/45 v, =2/4  vi=3/4>p t»={0,0,1,1,0,1,1,0,0,0,0} b»=1/5.5{0,0,1,1,0,1,1,0,0,0,0} 2
04 ut=3/55 p,=2/45 vi=3/5>p v,=2/5 ty ={0,1,1,0,1,1,0,0,0,1,0} b, =1/5.5{0,1,1,0,1,1,0,0,0,1,0} 1
05 jpy=1/55 us=1/45 v,=1/3  vi=1/3<p ts={1,0,0,0,1,0,1,0,0,0,0} bz=1/35{1,0,0.0,1,0,1,0,0,0,0} 3
06 =165 p=1/45 pu3=135 v,=13 vo=1/3 v;=2/3>p t3={0,0,0,0,1,0,1,1,0,0,0} bi =1/3.5{0,0,0,0,1,0,1,1,0,0,0} 3
07 wy=2/55 p=0/45 u3=2135 v,=2/4 v, =0/4 vi=2/4>p t3={1,0001,00,1,0,1,0} bz=1/45{1,0,0,0,1,0,0,1,0,1, 0} 3
08 py=1/55 up=0/45 pi=3/45 v,=1/3 v,=0B v;=3B8>p 13={1,0,0,0,0,0,0,1,0,1,0} b;=1/35{1,0,0,0,0,0,0,1,0,1,0} 3
09  uy=1/55 u>=0/45 pi=2/35 v,=1/3 v,=08 vi=2/3>p t3={1,0,0,0,1,0,0,1,0,0,0} b;3=1/3.5{1,0,0,0,1,0,0,1,0,0,0} 3
10 p1=2/55 po=1/45 ui=2/35 v,=21 v, =1/3 vi=2B8>p t3={1,0,1,0,1,0,0,0,0,0,0} bz =1/3.5{1,0,1,0,1,0,0,0,0,0,0} 3

The clustering result in Table 2 shows that these
design cases are grouped into three categories: the
first category contains Case01 and Case04, the second
category includes Case02 and Case03, and the third
category comprises Case05, Case06, Case(7, Case08,
Case09, and Casel0. In this illustrative example, if a
query pattern is {1,0,1,0,1,0,0,0,1,0,0}, then Case05,
Case06, Case07, Case08, Case09, and Casel0 are similar
design cases to this query pattern in functional features.

3.3.2 GENETIC ALGORITHM FOR FEATURE
RELATIONSHIP-BASED CLUSTERING OF
SIMILAR DESIGN CASES

The GA has also been used in developing clustering
techniques with specific domains [6,10]. This study
applies the genetic clustering algorithm to deal with
the problem of feature relationship-based similar design
case clustering due to the characteristic of processing
data for feature relationship in clustering presented in
the following paradigm. The key steps of the GA should
be summarized before illustrating the example.

CONCEPT OF GENETIC ALGORITHM

The GA belongs to a class of search techniques that
mimic the principles of natural selection to develop
solutions to large optimization problems. The genetic
algorithm operates by maintaining and manipulating

a population of potential solutions known as chromo-
somes. Each chromosome has an associated fitness
value, which is a qualitative measure of the goodness
of the associated solution. The fitness value is used to
guide the stochastic selection of chromosomes, which
are then used to generate new candidate solutions
through crossover and mutation. Crossover generates
new chromosomes by combining the selection of two or
more selected parents. Mutation acts by randomly
selecting genes, which are then altered, thereby prevent-
ing sub-optimal solutions from persisting and increasing
population diversity. The process of selection, cross-
over, and mutation continues for a fixed number of
generations or until a termination condition is satisfied.

GENETIC CLUSTERING ALGORITHM

The genetic clustering algorithm involves two stages.
The first stage is the nearest neighbor algorithm. Objects
are grouped in the nearest neighbor algorithm based on
the average of the necarest neighbor distances. The
nearest neighbor algorithm is used during the first stage
to reduce the computational time and space. The second
stage consists of a heuristic method and a genetic
algorithm. Meanwhile, the heuristic method is used to
identify a good clustering by applying the GA. The GA
contains an initialization step and the iterative genera-
tions with three phases, namely the reproduction,
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crossover, and mutation phases. These phases are
described as follows.

Initialization Step: A set of chromosomes is randomly
generated in the initialization step. This set of chromo-
somes is termed the population. Each chromosome
contains m bits, where the value of m is the number
of components in the data set.

Reproduction Step: The fitness of each chromosome
is calculated during this phase. After calculating the
fitness for each chromosome in the population, the
reproduction operator is implemented using a roulette
wheel with slots sized based on fitness. The roulette
wheel selection can be visualized by imagining a wheel
on which each chromosome occupies an area related to
its fitness value. When the wheel stops spinning, a fixed
marker determines which chromosome will be selected
to reproduce into the mating pool. Some critical
formulas in this step are defined as:

T'={Blei=1,1=<i=<u (7

T'={Bjlc;=0,1<j <} (8)

where T denotes one set of including 1°s element in the
chromosome, while T’ represents other set of including
0’s element in the chromosome.

SCORE(C;) = Dint & (Ci)W — Dinge ra(Ci) (9)

where D, . (C;) represents the maximum distance
between two elements in the cluster C;, and Dy, .(C))
represents the minimum distance between cluster C;
and the other clusters.

> =1 SCORE(C)

Fitness(R) = -

(10)

Crossover Phase: Chromosomes are chosen through
pairs. For each chosen pair, two random numbers are
generated to decide which pieces of the chromosomes
are to be interchanged. Assuming that the length of the
chromosome is m, each random number is an integer in
[1, m]. If a pair of chromosomes R and Q are chosen for
applying the crossover operator, two random numbers
e and fin [1, m] are generated to decide which pieces of
the chromosomes require interchanging. Suppose ¢ </,
then the bits from positions e to f of chromosome R are
interchanged with those bits in the same positions
of chromosome Q.

Mutation Phase: During the mutation phase, the bits
of the chromosomes in the population are chosen from
[1, m] with probability P,. Each chosen bit is then
changed from 0 to 1 or from 1 to 0. If the chosen bit is b;,
then for 1 <i<m, it indicates a chosen cluster being
discarded or produced in a chromosome.

AN ILLUSTRATIVE EXAMPLE

Based on the result of processing ARTI1 with the
above example, the similar design cases (i.c., Cases 05,
06, 07, 08, 09, and 10) can be further refined through the
genetic clustering algorithm. Table 3 presents the feature
relationships between functional features design cases
possess. Moreover, the feature relationship as a query
pattern is also defined at the bottom of Table 3.

The numbers of different feature relationships for
each design case are counted using the feature relation-
ships between features in Table 3, as listed in Table 4.

At first, an initial population of size 4 is randomly
selected as shown below, and the mutation probability
P 15 set as 0.005.

Case Case Case Case Case Case
Chromosome 05 06 07 08 09 10  Query

R, 0 1 0 0 1 0 0
Rs 1 0 0 0 0 0 1
Ra 1 0 1 1 0 0 0
Rq 0 0 0 0 1 1 0

Following calculating the fitness of each individual
chromosome based on Equation (10), Table 5 lists the
results.

Chromosome numbers R, R,, and R, have the highest
fitness values. Deleting the one with the least fitness
value (i.e., Chromosome R3) provides a temporary
reduced population ready to undergo reproduction and
crossover. Pairs of chromosomes are now chosen at
random: R, is paired with R, R; with R4. A crossover
section for each pair of chromosomes is randomly
selected and marked by a * 1°. Table 6 lists the result of
the processing crossover.

For the mutation process, the random value of
mutation probability p,, is assumed to be 0.001, which
is below the initial setting value p,,, = 0.005. Thus, no bits
undergo mutation at this probability value 0.001 during
this run of GA.

Re-running the algorithm from the same reproduction
phase, the fitness values for four new populations in
Table 6 are determined, as displayed in Table 7.

Due to the R,’s least fitness value, the chromosome
R, is deleted and replaced by Rsi, which has the
highest fitness value, 0.0089. Subsequently, performing
crossover from the fourth to the seventh bits in two
random pairs of chromosomes {R;, Ry} and {Rj, Ry},
producing another four new chromosomes, as shown
in Table 8.

In this time of running GA, the random mutation
probability p,, is assumed to be higher than the setting
value p,,, = 0.005, and the chromosome Rj is mutated in
its third bit (i.e., Case07). In this example, illustrated in
Table 9, the third bit value ‘0’ of chromosome Rj3 thus
is replaced by the value °1°.



Integrated Clustering Approach to Developing Technology 267

Table 3. Feature relationship between features.

Feature Relationship

Case_No Serial_No Feature_No Feature_Name Adjacent Overlap Covers Inside
05 01 01 Boss

05 02 01 Boss

05 03 05 Step

05 04 05 Step
05 05 07 Bore

06 01 05 Step

06 02 05 Step

06 03 05 Step

06 04 07 Bore

06 05 08 Conic

07 01 01 Boss

07 02 01 Boss @

07 03 05 Step

07 04 08 Conic

07 05 10 Round

08 01 01 Boss
08 02 01 Boss
08 03 08 Conic
08 04 10 Round

08 05 10 Round )4

09 01 01 Boss

09 02 01 Boss )

09 03 05 Step

09 04 05 Step

09 05 08 Conic

10 01 01 Boss

10 02 01 Boss

10 03 03 Hole

10 04 03 Hole 05
10 05 05 Step

Query 01 01 Boss

Query 02 01 Boss @
Query 03 03 Hole

Query 04 05 Step

Query 05 09 Flat

Table 4. Numbers of different feature relationships.

Case_No Meet_Num Adjacent_Num Overlap_Num Covers_Num Inside_Num
05 2 0 1 0 0
06 0 1 0 2 1
07 0 1 0 0 1
08 0 1 0 1 3
09 1 0 1 0 0
10 0 2 0 1 1
Query 0 1 0 1 2

Table 5. Fitness value for each chromosome.

Chromosome Case05 Case06 Case07 Case08 Case09 Casel10 Query Fitness
R 0 1 0 0 1 0 0 0.6447
. 1 0 0 0 0 0 1 1.4462
Rs 1 0 1 1 0 0 0 0.5648
Ra 0 D 0 0 1 1 0 0.6447
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Table 6. Result after crossover phase.

Y.-J. CHEN ET AL.

Chromosome Case05 Case06 Case07 Case08 Case09 Casel0 Query
R, 0 1 D D 0 D 1
R 1 0 0 0 1 0 0
Rs 1 0 0 0 1 1 0
R4 0 0 0 0 0 0 1

1 T

g Cesmmsssssmsssssssssssssssssss=en "= =7
Table 7. Fitness value for each chromosome.
Chromosome Case05 Case06 Case07 Case08 Case09 Casel10 Query Fitness
R, 0 1 0 0 0 0 1 —-1.5067
R 1 0 0 0 1 0 0 —1.4028
Ha 1 0 0 0 1 1 0 0.0089
R4 0 0 0 0 0 0 1 0.0000
Table 8. Result after crossover phase.
Chromosome Case05 Case06 Case07 Case08 Case09 Case10 Query
Ry 1 0 0 0 1 0 0
R 1 0 0 0 1 1 0
Rj 1 0 0 0 0 0 1
Ra 0 0 0 0 1 1 D

t T

g CsssssmssmssssssssssnmssaEsammnanannnnan > f
Table 9. Result after mutation phase.
Chromosome Case05 Case06 Case07 Case08 Case09 Case10 Query
R; 1 0 0 0 1 0 0
Rz 1 0 0 0 1 1 0
Rs 1 0 1 0 0 0 1
Ra 0 0 0 0 1 1 0

Repeating the phases of reproduction, crossover, and
mutation in order until a satisfactory solution is
reached, or a specified number of generations 1s
considered. Here, the chromosome R4 of the maximum
fitness value is assumed to be {1,0,0,0,0,0,1} in the
final of several generations. It represents that the best
clustering number is two (i.e., C; and C;), and the
centers of C, and C, are located at the first bit
(i.e., Case05) and the seventh bit (Query) of the
chromosome R, with the maximum fitness, respectively.
The other bits of chromosome R4 with the maximum
fitness (including the second bit (Case06), third bit
(Case07), fourth bit (Case08), fifth bit (Case09), and
sixth bit (Casel0)) are individually examined to
determine which cluster they belong to. From the

clustering samples shown in Table 4, the calculation
process is detailed as follows.

Case(6:
D s = |[Case06 — Case03||

= 0 =27 +(1 =07 +(0— 1 +(2—0)* +(1 —0)?
=11
Ds 4= ][Cas&ﬂﬁ—QuEr}’H

= =02 +(1 =12+ (0= 0P+ 2= 1) +(1 -2
=2

"' Dgs > Dg, ..Case06 is classified into clustering 2(C3).
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Case(07:
D7 5 = ||Case(7 — Case03||

= J(0—=27+(1 =07 +(0—1)>+(0—0)*+(1—0)?
=7
D, = | Case07 — Query|

=»/m-0}1+(1 — 1> 4+(0—=0°+(0—1)*+(1-2)
=2

""Dq5>D;, ..Case(7 is classified into clustering 2(C3).

Case08 :
Dg‘j = ||CHSE{]E o CﬂSEﬂS”

= JO—22+(1 =0 +(0— 1 +(1—0) +(3—0)
=16
Ds, , = || Case08 — Queryl|

= JO =02 +(1 =1’ +(©0— 07 +(1—1)*+(3—2)
=1

" Dg s> Dg, .".Case08 is classified into clustering 2(C5).

Case(9:
Dy 5 = ||Case09 — Case05]|

= /(1 =22+ (0 =07 +(1 = 17 +(0—0)+(0—0)?
=1
D , = || Case09 — Query||

= /(1 =02 + O 1) +(1 = 0F +©0—1Y +(0—2)
— V&

"' Do s < Dy, .".Case09 is classified into clustering 1(C).

Casel0:
Dlﬂ,ﬁ = ||CHSEID—CHEE{]5"

= 0= 2 +Q2— 01 +(0— 1)*+(1—-0)* +(1 -0

=V11
D14 = ||Case10—Query]|

= 0= 0P+~ 17 +©0—07+(1 — 1 +(1 -2y
=2

"."Dyg,5s> Dyg,, .".Casel0 is classified into clustering 2(C>).

Conducting the above clustering simulation of the GA
identifies two categories: one containing the samples
Case05 and Case09, and the other containing the
samples Query, Case06, Case07, Case08, and Casel0.
As mentioned in the above clustering result, Case06,
Case07, Case08, and Casel0 have a similar feature
relationship to the Query Case.

3.3.3 FUZZY ART FOR ENGINEERING
SPECIFICATION-BASED CLUSTERING OF
SIMILAR DESIGN CASES

Unsupervised fuzzy ART [9,13] synthesizes fuzzy set
theory and ART network, which can self-organize stable
recognition categories in response to arbitrary sequences
of analog input patterns. This study adopts the fuzzy

ART algorithm for clustering engineering specification-

based similar design cases. The following steps

implement the algorithm:

Step 1. Initialize the parameters: weight vector wy,
choice parameter o, fast learning B, and vigilance
parameter p such that

a=10.5, p=08,

w=1, p.=1.3 (11)

Step 2. Feed a new input pattern S to the input nodes.

Step 3. For each input I and F, node j, calculating the
choice function T; defined as:

4 + [ wil
where the fuzzy intersection A is
(P A q); = min(p;, q;) (13)

Step 4. Make a category choice when at most one F;
node can become active at a given time. The index
J denotes the chosen category where

Tr=max{Tyrj=1, soas ¥} (14)

Step 5. Occur resonance and proceed to Step 7 if the
subset-hood match function |7 A w;|/|I| of the chosen
category meets the vigilance criterion:

1A wjll
-
=7

(15)

Otherwise, go to Step 6.

Step 6. Test whether other categories of the output layer
exist, to provide similarity testing. If there are other
categories for similarity testing, then go back to Step 4;
otherwise yield a new category and set its weights.
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The search process continues until the chosen J satisfies
the matching criterion (Equation 15).

Step 7. Modify the weights as follows:

"E“—"ﬁ(fﬂ ld}+(]_ﬁ) old (lﬁ:,'l

which updates the weights of the Jth category.

To further clucidate how the fuzzy ART applies to
the engineering specification-based similar design case
clustering, an illustrative example is given as follows.

AN ILLUSTRATIVE EXAMPLE

According to the cases (Query Case, Case06, Case07,
Case08, and Casel0) obtained by using the GA
technique to feature relationship-based similar design
case clustering, these cases can be further refined in
this phase, which is the engineering specification-based
similar design case clustering. Table 10 shows the
engineering specifications of five design cases. Due to
the four functional features involved in the Query Case,
the engineering specifications of these functional
features ‘Boss,” ‘Hole,” ‘Step.” and ‘Flat’ are consid-
ered only in this example during the engineering
specification-based similar design case clustering.

Table 11 lists the engineering specifications of func-
tional features — ‘Boss,’ its engineering specifications-
based similar design case clustering with fuzzy

Table 10. Engineering specifications of design cases.

ART clustering algorithm is performed, as follows.

Case07_01: when the first pattern is fed, its own
engineering specifications are directly taken as weights:
Wi = 345, 51’12=6+25, W13=2.65.

Case07_02: when the second pattern is fed, the following
output values are calculated based on Equations (12),
(15), and (16):

T = |7 wi
o+ |wj
_ 1(5.25,2.75,3.25) A (3.45,6.25,2.65)
= 0.6342
0.5+ (3.45,6.25,2.65)| 0.65
Since

[7Awi] _ (5:25,2.75,3.25) A (3.45,6.25, 2. 65)|
1] 1(5.25,2.75,3.25)|

=0.7614 > p = 0.5,

therefore, the weights must be modified as:

wyp = 0.8 % (5.25 A 3.45) + 0.2 x 3.45 = 3.45
wiz = 0.8 % (2.75 A 6.25) + 0.2 % 6.25 = 3.45

wi3 = 0.8 % (3.25 A 2.65) + 0.2 % 2.65 = 2.65

Case_No Serial_No Feature_No Feature_Name Length Width Depth Radius Angle
06 o1 05 Step 15.25 7.45 5.30

06 02 05 Step 5.15 3.25 11.50

06 03 05 Step 4.45 2.00 8.75

06 04 07 Bore 3.50 3.50 3.50

06 05 08 Conic 2.50 3.45 30
07 01 01 Boss 3.45 6.25 2.65

07 02 01 Boss 5.25 2.75 3.25

07 03 05 Step 9.25 14.25 1.85

07 04 08 Conic 3.00 2.55 45
07 05 10 Round 7.50 2.50

08 01 01 Boss 12.25 6.85 3.65

08 02 01 Boss 5.55 4.65 3.25

08 03 08 Conic 4,15 2.35

08 04 10 Round 4.25 2.55

08 05 10 Round 13.15 3.00

10 01 01 Boss 24.35 12.55 9.45

10 02 01 Boss 7.55 4.95 3.55

10 03 03 Hole 8.45 2.55

10 04 03 Hole 15.55 9.25

10 05 05 Step 4.65 3.15 3.45

Query 01 01 Boss 2.55 5.55 5.75

Query 02 03 Hole 5.50 2.50

Query 03 05 Step 4.50 13.25 2.85

Query 04 09 Flat 4.55 6.50
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Table 11. Engineering specifications of functional feature — boss.

Case_No Serial_No Feature_No Feature_Name Length Width Depth Radius Angle
07 01 01 Boss 3.45 6.25 2.65
07 02 01 Boss 5.25 2.75 3.25
08 01 01 Boss 12.25 6.85 3.65
D8 D2 01 Boss 2.55 4.65 3.25
10 01 01 Boss 24.35 12.55 9.45
10 02 01 Boss 7.55 4.95 3.55
Query 01 01 Boss 2.55 5.55 5.75

Table 12. Clustering results of five engineering specification-based design cases.

Case _No Serial _No Feature No Feature _Name Length Width Depth Radius Angle Cluster
Query 01 01 Boss 2.55 5.55 5.75 1
07 01 01 Boss 3.45 6.25 2.65 1
07 02 01 Boss 5.25 2.75 3.25 1
08 02 01 Boss 5.55 4.65 3.25 1
10 02 01 Boss 7.55 4.95 3.55 1
Query 02 03 Hole 5.50 2.50 1
10 03 03 Hole 8.45 2595 1
Query 03 05 Step 450 13.25 2.85 2
07 03 05 Step 9.25 14.25 1.85 2
Query 04 09 Flat 4.55 6.50 Null

Case08_01: when the third pattern is fed, the following

output values are computed based on Equations (12),
(15), and (16):

r_ Liaw]
o+ |w]
 [(12.25,6.85,3.65) A (3.45,3.45,2.65)| 0.9174
B 0.5+ [|(3.45,3.45,2.65)| o
Since

|[7Aw;|  [(12.25,6.85,3.65) A (3.45,3.45,2.65)|
- 1(12.25, 6.85,3.25)|

= 0.3829 < p = 0.5,

therefore, the second neuron is generated and its weights
are set to:
W = 1225, War = 6.83, Wag = 3.65

After feeding all patterns for functional features —
‘Boss.” ‘Hole,” ‘Step,” and ‘Flat,’ their clustering results
are shown in the extreme right column of the Table 12,
as follows.

Since the results in Table 12, Case07, Case08, and
Casel0 are similar to the Query Case in terms of the
engineering specification of functional feature — “Boss,’

while Casel0 is similar to the Query Case in terms of the
engineering specification of functional feature — “Hole.’
Morecover, Case07 and Query Case have similar
engineering specifications for the functional feature —
“‘Step.’

Subsequently, the intersection operator (M) is used to
identify the most similar design cases, namely Case(7
and Casel0.

3.4 Similar Design Cases Ranking

The vector space model [14] defines the similarity
between two terms by the cosine of the angle between
their two vectors. Therefore, this vector model 1s
employed to calculate the degree of similarity between
similar design cases acquired through functional feature
and engineering specification-based similar design case
clustering based on the query of functional features
(including feature relationships) and engineering speci-
fications. Meanwhile, the query vector Q and the
similar case vector C for engineering specification of
the functional features — ‘Boss’ and ‘Step’ can be
defined as QI(ILQ, X2.0s Ij‘g} and (;:,':{I[.f, X2 js Iglf),
while the query vector @ and the similar case
vector C for engineering specification of functional
feature — ‘Hole™ is represented by Q= (x, g, X20) and
Ci=(x1 4 x2))-

Using the result discussed at the end of the
Section 3.2.3 as an example, the correlation coefficient
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between Case07 and Query Case, as well as between
Casel0 and Query Case is calculated as:

Co7- 0
|Co7l x | Q|
_ (3.45,6.25,2.65)+(2.55,5.55,5.75)
~ |(3.45.6.25,2.65)| x [(2.55,5.55,5.75)|

=0.9193

Co7° 0
1Co7] x | Q|
(5.25,2.75,3.25)+(2.55,5.55, 5.75)

Simpesso1 (Co7. Q) =

Simpess02(Cor, Q) =

|(5.25,2.75,3.25)| x [|(2.55,5.55,5.75)
= 0.8349

Since Simposso1(Co7, @) > Simposso2(Co7, @), the Simpossol
(Co7, Q) is picked out to calculate the total similarity

of Case07.

Cy- 0
|Co7l x| Q|
(9.25,14.25,1.85)+(4.50,13.25,2.85)

Simgiepo3(Co7, Q)=

~[(925.14.25,1.85)] x [|(4.50,13.25,2.85)]
=0.9658

Therefore, the total similarity between Case07 and
Query Case, T7Sim(Cy7, Q) is 0.9193 +0.9658 = 1.88351.

Ci-Q
|Ciol X lQl
_ (7.55,4.95,3.55)+(2.55,5.55,5.75)
 |(7.55,4.95,3.55)|| x [|(2.55,5.55,5.75)]

= (.8250

Cy 0
1Crol % |Q]
_ (8.45,2.55)+(5.55,2.50)
~ |(8-45,2.55)| x ||(5.55,2.50)|

Simpess02(Cio. Q) =

Simpoie03(Cro. Q) =

= (0.9911

Consequently, the total similarity between Casel0
and Query Case, 7Sim(Cjp, Q) is 0.82504+0.9911=
1.8161.

According to the above calculation results, Case07
resembles Query Case more than does Casel0.
Consequently, the degree of similarity to Query Case
follows the order Case07 and Casel0.

3.5 A Case-based Representation
for Designed Entities

To effectively record and organize related product
and information and engineering knowledge of a

designed entity, and facilitate the engineering designers
in accessing them easily and quickly, a object-oriented
case representation for a designed entity is proposed.
From Figure 9, a “Case’ is viewed as a box that contains
related tags and links the product information and
engineering knowledge of a design entity (i.e., an
engineering model). The scheme of a case consists of
three features: case feature, model feature, and semantic
feature. Case feature defines the contents of case data,
such as case name, ID, tag ID, name, model creator,
contributor, date, language, version, and location.
Meanwhile, model feature indicates the tag for product
information that records the detailed information
of a design entity, including customer requirements,
functional requirements, and functional features.
Finally, semantic feature represents the tags for
enginecering knowledge that also record the design
knowledge and experience of engineering designers.
These tags for engineering knowledge are classified
into three categories, namely the tag for feature-based
design, the tag for engineering change, and the tag
for design by modification/reference. Each of these
tags points to relevant production information or
engineering knowledge.

4. Implementation and Experimental Example

Based on the integrated clustering approach for
functional feature and engineering specification-based
reference design retrieval, a prototype functional feature
and engineering specification-based reference design
retrieval mechanism was implemented at the
Enterprise System Engineering Research Lab (ESERL)
of National Cheng Kung University, Taiwan, ROC.
The computer hardware used in the experiment com-
prised an Acer Veriton 7100 PC, while the software used
to implement this mechanisms were (i) Microsoft
Windows XP Professional as the development platform,
(ii) Java Server Page (JSP) as the programming language,
(iii) Dreamweaver MX 2004 as the programming
development platform, (iv) Apache Tomcat 5.0 as
the web server, and (v) Microsoft SQL Server 2000
for databases. Meanwhile, a SQL database served as
the engineering design case base for storing related
product information and engineering knowledge of
a design case.

Figures 10, 11, and 12 present parts of the user
interfaces of a functional feature and engineering
specification-based reference design retrieval mechan-
ism. Figure 10 shows the screen of functional feature
and engineering specification description for the users.
Figure 11 displays the screen of similarity ranking
for retrieved cases; while Figure 12 illustrates the
knowledge content of the most similar design case,
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l
Figure 9. Object-oriented case model.
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| . 5. Concluding Remarks

Swp 7 40 1228 1
— This study first presents an engineering knowledge
Conte [ management framework, and then focuses on develop-
I = s ing technology for functional feature and engineering
o specification-based reference design retrieval.
Funcrionsl Fearure Relationshy The tasks involved in the development include:
DS FRUOUEN FUSUSH P P (i) designing a functional feature and engineering
design-based reference design retrieval  process,
(i) developing a functional feature and engineering
specification representation, (iii) investigating and
integrating ART1 (adaptive resonance theory 1) neural
network, GA (genetic algorithm), and fuzzy ART (fuzzy
adaptive resonance theory) clustering techniques, and
(iv) implementing a functional feature and engineering
specification-based reference design retrieval mechanism
and experimenting with an example.

The results in the study facilitate the sharing of
engineering knowledge for engineering knowledge man-
agement purposes in engineering design environments.
They can thus increase product development capability;
reduce development cycle time and cost, and ultimately
increase the product marketability.

= W

Figure 10. Functional feature and engineering specification
description.
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The List of The Similar Historical Cases

Rank Case_ID Total Sioadlaxity
l Case7  1.8851277750658244

2 Case 10 1.8161211516960982

Please Clwose A Similw Desien Case You Want For Refereice

7
Acknowledgment

| Reweve Cise | The financial support through National Science
Council of Taiwan (Grant No. 93-2212-E-006-021) 1s

Figure 11. Similarity ranking for retrieved design cases. gratefully acknowledged.

F
al Whow mmarmis il Doty mamestn et iy prows T iowed 1 01 Wvmgn Exprrwrsey amld W vowf Debronet Ewglovr

SXP WD SAT ADARY IAD NOD '

[

' 4 ] Wb i i mied T m vl bl 5 b rip il 0 Fes tees] Koy worrm el oml Wi T Tl
F Hided SRD WEED wWAY ANARY IAD MWD
me - RrAR aap L
1. e e ety el B P ol el w i g b gy Pl se g | VW e Bewdi aml] MWae

ST GND WAT NOARL TRAD NRD

N ah = X
2 = ¥, .

) A @20 e franee $m @ (-,

1= _'F'C'ﬁuu-ﬂ-l':-mlmflﬂl,ﬂ“:“ml—hn' - n‘i‘ i =

sitomes Paedy Cuttomes s s Denls Chen' verts "Tiguire’ Froouct tuers="Cor >
Prooat LI
cPepdac ¥ ATT Pegdatt lln:_ﬂ_i..._"“‘l?' u

cPegdact AV Profiat _Arteleted = "Ciminrable” />
i Peida" LYY P & a T *-i,;‘_*'ilrw. .
PRt AT
=g L *_l""a
cComporwet Al Comporaat Noame s "Windew' J"-;.,'-:-w >
At C omporant Name s Doer Attrduters ki’ />
LY et 'I.-l-"-‘i"lﬂ.‘ LT d"‘"w‘ P
o et A gt i %z YWieeed® it -__._lw n
A Cpmparant Ypee s "Wheel™ Atrbute s "Durable”
- B s TLamp® ATt Pavesrtul”

L g rap?

w g

il .---‘I'.-'.'rl

i, G FE -

Figure 12. Related engineering knowi-
edge of the most similar design case
o o i MrA (Case07).
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