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Multiclass Cancer Classification Using
Semisupervised Ellipsoid ARTMAP and
Particle Swarm Optimization with
Gene Expression Data

Rui Xu, Georgios C. Anagnostopoulos, and Donald C. Wunsch Il

Abstract—It is crucial for cancer diagnosis and treatment to accurately identify the site of origin of a tumor. With the emergence and
rapid advancement of DNA microarray technologies, constructing gene expression profiles for different cancer types has already
become a promising means for cancer classification. In addition to research on binary classification such as normal versus tumor
samples, which attracts numerous efforts from a variety of disciplines, the discrimination of multiple tumor types is also important.
Meanwhile, the selection of genes which are relevant to a certain cancer type not only improves the performance of the classifiers, but
also provides molecular insights for treatment and drug development. Here, we use Semisupervised Ellipsoid ARTMAP (ssEAM) for
multiclass cancer discrimination and particle swarm optimization for informative gene selection. ssEAM is a neural network architecture
rooted in Adaptive Resonance Theory and suitable for classification tasks. ssEAM features fast, stable, and finite learning and creates
hyperellipsoidal clusters, inducing complex nonlinear decision boundaries. PSO is an evolutionary algorithm-based technique for
global optimization. A discrete binary version of PSO is employed to indicate whether genes are chosen or not. The effectiveness of
ssEAM/PSO for multiclass cancer diagnosis is demonstrated by testing it on three publicly available multiple-class cancer data sets.
ssEAM/PSO achieves competitive performance on all these data sets, with results comparable to or better than those obtained by

other classifiers.

Index Terms—Cancer classification, gene expression profile, semisupervised ellipsoid ARTMAP, particle swarm optimization.

1 INTRODUCTION

ITH the emergence and rapid advancement of DNA

microarray technologies, including cDNA and high-
density oligonucleotide microarray [23], [37], cancer classi-
fication through identification of the corresponding gene
expression profiles has already attracted numerous efforts
from a wide variety of research communities. Cancer
classification is important for subsequent diagnosis and
treatment. Without the correct identification of cancer types,
it is rarely possible to provide useful therapies and achieve
expected treatment effects. Traditional classification meth-
ods are largely dependent on the morphological appearance
of tumors, parameters derived from clinical observations,
and other biochemical techniques. Their applications are
limited by the existing uncertainties and their prediction
accuracy is very low [1], [25]. Tumors with a similar
appearance may have quite different origins and, therefore,
respond differently to the same treatment therapy. For
example, for diffuse large B-cell lymphoma (DLBCL),
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almost half of the clinical cases fail the pharmaceutical
treatment due to the existence of unknown subtypes that
cannot be discriminated by their morphologic parameters
[1]. DNA microarray technologies offer cancer researchers a
new method to investigate the pathologies of cancer, from a
molecular angle, under a systematic framework, and
further, to make more accurate predictions in prognosis
and treatment.

Along with the opportunity brought by the microarray
technologies, new challenges have also appeared, such as
high dimensionality, small samples, and inherent noise.
These factors require the proposed computational analysis
methods to have corresponding solving mechanisms.
Research on binary cancer classification through gene
expression profiles has already been reported, with promis-
ing results. Golub et al. described cancer classification as
two challenges, class discovery and class prediction, and
used several strategies, including weighted voting, neigh-
borhood analysis, and self-organizing feature maps
(SOFMs), to discriminate two types of human acute
leukemias (ALL versus AML) [25]. Alizadeh et al. distin-
guished two molecularly distinct subtypes of diffuse large
B-cell lymphoma with centroid average hierarchical cluster-
ing [1]. Other explorations include colon cancer [2],
cutaneous melanoma [11], ovarian cancer [47], breast cancer
[43], [54], and lung cancer [53], to name a few.

In practice, it is common to discriminate more than two
types of cancers [20], [32], [35], [40], [41], [44], [45], [51].
Ramaswamy et al. divided the multiclass problem into a
series of binary classification subproblems through the
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one-versus-all or all-pairs approach and employed support
vector machines, weighted voting, and k-nearest-neighbors
methods to distinguish 14 different tumor types [44]. Khan
et al. trained multilayer perceptrons to categorize small
round blue-cell tumors (SRBCTs) with four subclasses [32].
A nearest shrunken centroid method was proposed by
Tibshirani et al. and was tested on the SRBCT data set with
100 percent accuracy [51]. Furthermore, Scherf et al.
constructed a gene expression database to study the
relationship between genes and drugs for 60 human cancer
cell lines originating from 10 different tumors, which
provides an important criterion for therapy selection and
drug discovery [45]. Although these methods manifest
interesting performance for some cancer data sets, their
classification accuracy deteriorates dramatically with the
increasing number of classes in the data sets. For example,
in a comparative study by Li et al., who investigated the
performance of decision trees, naive Bayes, support vector
machines, and k-nearest-neighbor, together with six differ-
ent feature selection methods, the classification accuracy
for the NCI60 data set is only below 70 percent [36].

One of the major challenges of microarray data analysis
is the overwhelming number of measures of gene expres-
sion levels compared with the small number of samples.
This is known as the curse of dimensionality in machine
learning, which is introduced to indicate the exponential
growth in computational complexity and the demand for
more samples as a result of high dimensionality in the
feature space [22]. Not all of these genes (features) are
relevant to the discrimination of tumors and, often, only a
small part of them is enough for effective classification [19],
[25], [41], [50]. The existence of numerous genes that do not
contribute to the distinction in data sets not only increases
the computational complexity, but impairs the analysis of
the relevant ones. Furthermore, cancer research requires
identifying the relation of tumors and their causes at the
molecular level, which is imperative in determining the
appropriate therapy. Therefore, feature selection or extrac-
tion, also known as informative gene selection, is critically
important. Principal component analysis (PCA) is a widely
used tool for dimensionality reduction, which attempts to
seek the projection that best interprets the variation of the
data [22]. PCA has already been used in some applications
on gene expression data [24]. However, according to the
empirical results by Yeung and Ruzzo, PCA cannot always
find the correct structure with just the first few principal
components [60]. Other methods are generally based on
ranking genes according to their expression differentiation
under two different classes, examples including signal-to-
noise ratio [25], Fisher discriminant score [29], t-statistics
score [40], and nonparametric test statistics like the TNoM
score [9] and Park score [42]. Considering the possibility
that the feature-rank-based methods may pick out many
highly correlated genes that will affect the classification
accuracy, clustering techniques are utilized to group genes
with similar profiles in order to decrease redundancy [29],
[38]. These criteria can usually achieve some meaningful
insights for binary classification; however, they do not work
well for the multiclass discrimination problem due to the
increasing complexity.

In order to address the insufficiency of the existing
methods and provide a more effective method to analyze
complex data sets, like the NCI60 data set, here, we use a
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combination of semisupervised Ellipsoid ARTMAP
(ssEAM), formerly known as Boosted Ellipsoid ARTMAP
[6], with particle swarm optimization (PSO) for multiclass
cancer discrimination and gene selection. ssEAM is based
on Adaptive Resonance Theory (ART) [26], which was
inspired by neural modeling research and was developed as
a solution to the plasticity-stability dilemma: How adaptable
(plastic) should a learning system be so that it does not
suffer from catastrophic forgetting of previously learned
rules (stability). Coming as an enhancement and general-
ization of Ellipsoid ART (EA) and Ellipsoid ARTMAP
(EAM) [4], [5], which, in turn, follow the same learning and
functional principles of Fuzzy ART (FA) [15] and Fuzzy
ARTMAP (FAM) [14], ssEAM is capable of learning
associative maps between clusters of an input and an
output space. As a special case, when the output space is a
set of class labels, ssEAM can be used as a classifier. ssEAM
features fast, stable, and finite learning and creates
hyperellipsoidal clusters that induce complex nonlinear
decision boundaries. On the other hand, PSO is an
evolutionary computation technique for global optimization
which is based on the simulation of complex social behavior
[31]. A random velocity is associated with each potential
solution, which is considered to “be flown through the
problem space” [30]. Also, PSO is implemented with a
memory mechanism, which can retain the information of
previous best solutions that may be lost with the population
evolution in other evolutionary techniques. Herein, we
demonstrate the potential of ssEAM/PSO in addressing
massive, multidimensional gene expression data through
analyzing three publicly available cancer data sets: the
NCI60 data set [45], the acute leukemia data set [25], and the
acute lymphoblastic leukemia (ALL) data set [59]. ssEAM/
PSO achieves competitive performance on all three data sets
and the results are comparable to or better than those
obtained by other classifiers.

The paper is organized as follows: Section 2 describes the
ssEAM/PSO system for multiclass cancer discrimination.
The results of experiments are presented and discussed in
Section 3 and Section 4 concludes the paper.

2 METHODS AND SYSTEMS

2.1 EAM and Semisupervised EAM

The Ellipsoid ARTMAP classifier (EAM), a member of the
ART family of neural architectures, accomplishes classifica-
tion tasks by clustering data that are attributed with the same
class label. The geometric representations of these clusters,
which are called categories, are hyperellipsoids embedded in
the feature space. A typical example of such a category
representation, when the input space is two-dimensional, is
provided in Fig. 1, where it is shown that each category j is
described by its center location my;, its orientation d;, and a
Mahalanobis radius M;. The collection of the three afore-
mentioned quantities is typically represented as the template
vector w; = [mj,d;, M;] of category j. If we define the
distance between an input pattern x and a category j as

dis(x, w;) = max{|| X —m; ||C/,Mj} — M;,

I x = m; [le, = /(x — m))" C;(x — my),

(1)
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Fig. 1. Example of the geometric representation of an EAM category j
when the feature space is two-dimensional. m; is the center of the
ellipsoid, d; is the orientation vector, coinciding with the direction of the
major axis of the ellipsoid, and MA; is the Mahalanobis radius of the
category.

where C; is the category’s shape matrix, defined as
C;=1/p*(I— (1 —p*)d;d]), and p is the ratio between
the length of the hyperellipsoid’s minor axes (with equal
length) and major axis, the representation region of category j,
which is the shaded area in the figure, can be defined as a
set of points in the input space satisfying the condition

dis(x,w;j) = 0 =| x —m; [[c,;< M;. (2)

A category encodes whatever information the EAM classifier
has learned about the presence of data and their associated
class labels in the locality of its geometric representation. This
information is encoded into the location and size of the
hyperellipsoid. The latter feature is primarily controlled via
the baseline vigilance 7 € [0,1] and indirectly via two
additional network parameters, namely, the choice para-
meter a > 0 and a parameter w > 0.5 [5]. Typically, small
values of p produce categories of larger size, while values
close to 1 produce the opposite effect. As a special case,
when p = 1, EAM will create solely point categories (one for
each training pattern) after completion of training and it
implements the ordinary, Euclidian 1-Nearest Neighbor
classification rule. A category’s particular shape (eccentri-
city of its hyperellipsoid) is controlled via the network
parameter 4 € (0,1]; for p =1, the geometric representa-
tions become hyperspheres, in which case the network is
called Hypersphere ARTMAP [3].

Learning in EAM occurs by creating new categories or
updating already existing ones. If a training pattern x
initiates the creation of a new category J, then J receives the
class label L(x) of x by setting the class label of J to
I(J) = L(x). The recently created category J is initially a
point category, meaning that m; =x and M; = 0. While
training progresses, point categories are being updated due
to the presentation of other training patterns and their
representation regions may grow. Specifically, when it has
been decided that a category j must be updated by a
training pattern x, its representation region expands so that
it becomes the minimum-volume hyperellipsoid that con-
tains the entire, original representation region and the new
pattern. An example of this process for a two-dimensional
feature space is depicted in Fig. 2, where the original
representation region £; expands to become E!. Learning
eventually ceases in EAM when no additional categories are
being created and the existing categories have expanded
enough to capture all training data. Notice that, if x falls
inside the representation region of j, no update occurs since
Jj has already taken into account the presence of x.

3

ﬁ'

Fig. 2. Update of an EAM category j due to a training pattern x when the
feature space is two-dimensional. The representation region expands to
contain the original region and the new pattern.

The procedure of deciding which category, j, is going to be
updated, with a training pattern, x, involves competition
among preexisting categories. Let us define this set of
categories as NV as well as the set S C N of all categories that
are candidates in the competition; initially, S = N. Before the
competition commences, for each category j, two quantities
are calculated: the category match function (CMF) value

D —2M; — dis(x, w;)
3
D , 0

where D is a parameter greater than 0, and the category
choice function (CCF) value

plwilx) =

D —2M; — dis(x, w;)

Wik =—p o+ a
J

(4)

Next, EAM employs two category-filtering mechanisms: the
vigilance test (VT) and the commitment test (CT). Both tests
decide if the match between the pattern and the category’s
representation region is sufficient to assign that pattern to
the cluster represented by the category in question. These
tests can function as a novelty detection mechanism as well:
If no category in S passes both tests, then x is not a typical
pattern in comparison to the data experienced by the
classifier in the past. Categories that do not pass these tests
can subsequently be removed from the candidate set S.
Next, the competition for x is won by the category J that
features the maximum CCF value with respect to the
pattern; in case of a tie, the category with the minimum
index is chosen. The final verdict on whether to allow J to
be updated with x or not is delivered by the prediction test
(PT): J is allowed to be updated with x only if both J and x
feature the same class label, that is, if I(.J) = L(x). If J fails
the PT, a match tracking process is invoked by utilizing a
stricter VT in the hope that another suitable EAM category
will be found that passes all three tests. If the search
eventually fails, a new point category will be created as
described before. The reader is referred to [4] and [5] for a
more detailed description of EAM’s operation.

EAM does not allow categories to learn training patterns
of dissimilar class labels. This property is ideal when the
individual class distributions of the problem are relatively
well separated. However, in the case of high class overlap,
or when dealing with increased amount of noise in the
feature domain, EAM will be forced to create many small-
sized categories, a phenomenon called the category prolifera-
tion problem. Moreover, when EAM is trained in offline
mode to perfection, its posttraining error will be zero, which
can be viewed as a form of data overfitting.
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The Semisupervised EAM classifier (ssEAM) extends the
generalization capabilities of EAM by allowing the cluster-
ing into a single category of training patterns not necessarily
belonging to the same class [6]. This is accomplished by
augmenting EAM’s PT in the following manner: A winning
category J may be updated by a training pattern x, even if
I(J) # L(x), as long as the following inequality holds:

c
wrn/1+ Y wye>1—¢ (5)

c=1

In (5), C denotes the number of distinct classes related to the
classification problem at hand and the quantities wj,
contain the count of how many times category j was
updated by a training pattern belonging to the cth class. In
other words, (5) ensures that the percentage of training
patterns that are allowed to update category J and carry a
class label different from the class label I(.J) (the label that
was initially assigned to J, when it was created) cannot
exceed 100£%, where ¢ € [0,1] is a new network parameter,
the category prediction error tolerance, which is specific only to
ssEAM. For € = 1, the modified PT will allow categories to be
formed by clustering training patterns, regardless of their
class labels, in an unsupervised manner. In contrast, with
e = 0, the modified PT will allow clustering (into a single
category) only of training patterns belonging to the same
class, which makes the category formation process fully
supervised. Under these circumstances, ssEAM becomes
equivalent to EAM. For intermediate values of ¢, the category
formation process is performed in a semisupervised fashion.

EAM and ssEAM feature a common performance phase,
which is almost identical to their training phases. However,
during the presentation of test patterns, no categories are
created or updated. The predicted label for a test pattern x
is determined by the dominant class label D(J) of the
winning category J, defined as:

L(x) = D(J) = arg Max Wy = 1. (6)

When ¢ < 0.5, ssEAM’s PT guarantees that, throughout
the training phase, D(j) = I(j) for any category j. Fig. 3
provides pseudocode describing a single iteration of
ssEAM’s training and performance phase.

For € >0, ssEAM will, in general, display a nonzero
posttraining error, which implies a departure from EAM’s
overfitting and category proliferation issues. For classifica-
tion problems with noticeable class distribution overlap or
noisy features, ssEAM with € > 0 will control the generation
of categories representing localized data distribution excep-
tions, thus improving the generalization capabilities of the
resulting classifier. Most importantly, the latter quality is
achieved by ssEAM without sacrificing any of the other
valuable properties of EAM, that s, stable and finite learning,
model transparency, and detection of atypical patterns.

ssEAM has many attractive properties for classification
or clustering. First, ssEAM is capable of both online
(incremental) and offline (batch) learning. Using fast
learning [6] in offline mode, the network’s training phase
completes in a small number of epochs. The computational
cost is relatively low and it can cope with large amounts of
multidimensional data, maintaining efficiency. Moreover,
ssEAM is an exemplar-based model, that is, during its training,
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the architecture summarizes data via the use of exemplars
in order to accomplish its learning objective. Due to its
exemplar-based nature, responses of an ssEAM architecture
to specific test data are easily explainable, which makes
ssEAM a transparent learning model. This fact contrasts with
other, opaque neural network architectures for which it is
difficult, in general, to explain why an input x produced a
particular output y. Another important feature of ssEAM is
the capability of detecting atypical patters during either its
training or performance phase. The detection of such
patterns is accomplished via the employment of a match-
based criterion that decides to which degree a particular
pattern matches the characteristics of an already formed
category in ssEAM. Additionally, via the utilization of
hyperellipsoidal categories, ssEAM can learn complex
decision boundaries that frequently arise in gene expression
classification problems. Finally, ssEAM is far simpler to
implement, for example, than Backpropagation for feed-
forward neural networks and the training algorithm of
Support Vector Machines. Many of these advantages are
inherited, general properties of the ART family of neural
networks: fast, exemplar-based, match-based, learning [13],
transparent learning [27], capability of handling massive
data sets [16], [28], and implementability in software and
hardware [48], [55], [56]. Also, ART neural networks
dynamically generate clusters without specifying the
number of clusters in advance as the classical k-means
algorithm asks for [58].

2.2 Particle Swarm Optimization

PSO is motivated by the behavior of bird flocking or fish
schooling and originally intended to explore optimal or near-
optimal solutions in sophisticated continuous spaces [31]. A
random velocity is associated with each potential solution,
called a particle in the swarm. These particles change their
positions in the search space until a stop condition is satisfied.
The basic idea of PSO is to accelerate each particle toward its
corresponding pbest and gbest locations at each time step,
where pbest is the previous best solution for the particle,
based on the calculated fitness value, and gbest is the best
overall value in the whole swarm. This concept is depicted in
Fig. 4, in which L(t) and L(t + 1) represent the locations at
current and next time point, V' (¢) and V(¢ + 1) represent the
velocities at current and next time point, WiV (¢) is the
momentum part, Vs (t) is the velocity according to pbest,
and Ve (t) is the velocity according to gbest. Compared to
other evolutionary computational algorithms, PSO has many
desirable characteristics. PSO is easy to implement, fast to
achieve high-quality solutions, and has the flexibility in
balancing global and local exploration. More important, the
memory mechanism of PSO can keep track of previous best
solutions and, therefore, avoid the possible loss of previously
learned knowledge.

Since our goal is to choose important genes (features) from
alarge gene pool, we employ a discrete binary version of PSO
[30]. The major change of the binary PSO comes from the
reexplanation of the meaning of the particle velocity. Given a
setof particles X = (x1,Xa,...,Xy), where N is the number of
particles in the swarm, the velocity for the ith particle
x; = (x4, %2, - - ., 2;p), where D is the number of dimensions
in a particle, is represented as v; = (v;1, vj2,...,vip). The
possible values for eachbitz;;(1 < i < N,1 < d < D)iseither
1 or 0, which indicates whether the corresponding genes are
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Set S:=N andp:=p
If 5=, set J:=none; otherwise

Compute CMF values p(j|x) VjeS

If 5=, set J:=none; otherwise
Compute CCF values T(j|x) Vjes

JE

If x is a test pattern

Set I:(x) =D(J)=arg max wy, .
c=1.C 7’

If x is a training pattern
While J?none do

Perform Prediction Test:

Wy 1(J)
C

1+ ZWJ’C
c=1

1f I(J)=L(x) or

Otherwise,

If S=J, set J:=none;
otherwise

Perform Commitment Test:
1f T(J|x)<T,, set J:=none
If J =none
Create a new point category K

Proceed with next training pattern.

Perform Vigilance Test: S:=S-{jeS| p(j|x)<p}

Select winning category J :=minarg max 7(j|x)
jeS

Perform Commitment Test: If T(J|x)<T,, set J:=none
(ssEAM is in its testing phase)

and proceed with the next test pattern.

(ssEAM is in its training phase)

>1-¢€,update category J with pattern x,

setWyr(x) =Wsr(x)+1 and exit the while-loop.

Perform Match Tracking: Set p:=p(J |X)
Perform Vigilance Test: S:=S5-{jeS| p(j|x)<p}

Select winning categoryJ = minargmax 7(j|x)
jes

Set I(K):=L(x), Wx () =land N:=N U{K}

Fig. 3. Pseudocode describing a single iteration of the training and performance phase for the Semisupervised Ellipsoid ARTMAP classifier. When

e = 0, the pseudocode describes the operation of the Ellipsoid ARTMAP classifier.

selected or not for cancer discrimination (1 for selected and 0 1.
for not selected). Its corresponding velocity vy is explained as
the probability that z;, takes the value of 1 and is squashed
into the interval [0, 1] through a logistic function 2.
S(vig) = 1/(1 + exp(—v;q)). The basic procedure of binary

PSO for gene selection is as follows:

L(#+1)
V(1) Vebesd)
. Vpbesd?)
L@ /740

Fig. 4. Basic concept of the position change of a particle in PSO.

Initialize a population of N particles with random
positions and velocities. The dimensionality D of the
problem space is dependent on the number of genes
in the microarray data.

Evaluate the classification performance of ssEAM and
calculate the optimization fitness function for each
particle. Here, the design of the fitness function aims
to minimize the classification error and also favor the
subset with fewer genes, which is defined as

f(xi) = Accroocy + 1/n, (7)

where Accroocy = % x 100% is the leave one out cross
validation (LOOCYV), also known as the jackknife
approach, classification accuracy [22], where M is
the total number of samples, C is the number of
samples that are correctly classified, and n is the
number of informative genes selected. More discus-
sion on experiment design and performance evalua-
tion of classifiers is provided in the following
section.
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3. Compare the fitness value of each particle with its
pbest. If the current value is better than pbest, reset
both the pbest value and location to the current value
and location.

4. Compare the fitness value of each particle with gbest.
If the current value is better than gbest, reset gbest to
the current particle’s array index and value.

5. Update the velocity and position of the particle with
the following equations:

vig = Wi X vjq + ¢ X rand; x (pbestiq — xiq)

8

+ ¢ X randy X (gbestiy — xiq), )
1, ifrands +6 < S(vig)

id = {O, otherwise, ©)

where z;; and v;4 are the position and velocity of the
dth dimensionality of the ith particle, respectively,
Wy is the inertia weight, ¢; and ¢, are the acceleration
constants, rand;, rands, and rands are uniform
random functions in the range of [0, 1], ¢ is a
parameter that limits the total number of genes
selected to some certain range, and S() is the
sigmoid function. Compared with the original
binary PSO in [30], we add the parameter 6 in order
to control the number of informative genes more
flexibly.

6. Return to Step 2 until the stop condition is satisfied,
usually a maximum number of iterations or high-
quality solutions.

PSO has only four major parameters that need to be
determined in advance. The inertial weight W specifies the
trade-off between the global and local search. Larger values
of W; facilitate the global exploration, while lower values
encourage local search. ¢; and ¢; are known as the cognition
and social components, respectively, and are used to control
the effects of a particle and its surrounding environment,
which is achieved through adjusting the velocity toward
pbest and gbest. The velocity for each particle is restricted to
a limit V.. During the evolutionary procedure, the
velocity is reassigned to V.« if it exceedsVj,ax. For binary
PSO, this limits the probability that a bit in a particle takes
on the value of one. Usually, the smaller V/,, is, the higher
the mutation rate [30]. Discussion on the parameter
selection for PSO can be found in [21], [31], and [46].

2.3 Experiment Design

Since the data sets consist of only a small number of
samples for each cancer type, it is important to choose an
appropriate method to estimate the classification error of
the classifier. In the experiment, we perform a double cross
validation (10-fold cross wvalidation (CV10) with LOOCYV)
instead of just the commonly used LOOCV to examine the
performance of ssSEAM/PSO. The reason lies in the fact that,
although LOOCYV error is unbiased, it has high variance,
which is not preferred in cancer classification. A resampling
strategy like bootstrap has lower variance. However, it may
become largely biased for some data sets. Another
consideration is the increasing computational cost [7], [33].
During the double cross validation procedure, the data set
with N samples is divided into 10 mutually exclusive sets of
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approximately equal size, with each subset consisting of
approximately the same proportions of labels as the original
data set, known as stratified cross validation [33]. The
classifier is trained 10 times, with a different subset left out
as the test set and the other samples used to train the
classifier at each time. During the training phase, gene
selection is performed on 9 out 10 of the data (without
considering the test data) in which LOOCV classification
accuracy is used as the fitness function, as defined in (7).
The prediction performance of the classifier is estimated by
considering the average classification accuracy of the
10 cross-validation experiments, described as

1 10
ACCCVlO = <NZCL> X 100%,
i=1

where C; is the number of correctly classified samples.
Previous study has shown the CV10 is more appropriate
when considering the compromise between bias and
variance [7], [33].

We also compare our approach with four other classi-
fiers, i.e., multilayer perceptrons (MLPs), probabilistic
neural networks (PNNs), learning vector quantization
(LVQ), and k-nearest-neighbor (kNN). MLPs are being
used as a processing system with their powerful capability
in pattern recognition and nonlinear function approxima-
tion [22]. MLPs learn through the back-propagation algo-
rithm, based on gradient descent. Here, we use a numerical
optimization techniques-based variation, known as the one
step secant algorithm, in order to achieve faster training.
PNNs were introduced as an implementation of nonpara-
metric Parzen window estimation with feed-forward neural
network architecture and have the ability to approximate
Bayesian optimal decision surfaces that can be arbitrarily
complex [49]. LVQ is based on the concept of competitive
neural networks and describes the potential data structure
using the prototype vectors in the competitive layer [34].
We use the basic LVQ1 algorithm in our study. kNN is a
nonparametic technique and assigns the label to a test
sample based on the labels of the k nearest training samples
[22]. We use Euclidean distance to determine the similarity
between these samples. In the experiment, the value of k
varies from 1 to 10 and we evaluate the average classifica-
tion accuracy. All these methods have been reported in the
literature for cancer classification with gene expression
profiles [9], [10], [17], [18], [32].

For the above four methods, we use the Fisher
discriminant criterion for informative genes selection,
which is described as

(10)

D(’L) _ |N+(Z) - tu’*(i)‘Q’

o (i) + o2 (i) (11)

where 1, (i) and p_ (i) are the mean values of gene i for the
samples in class +1 and class —1, and o7 (i) and ¢ () are the
variances of gene i for the samples in class +1 and —1. The
score aims to maximize the between-class difference and
minimize the within-class spread. Other currently proposed
rank-based criteria generally come from similar considera-
tions and show similar performance [29]. Since our ultimate
goal is to classify multiple types of cancer, we utilize a one-
versus-all strategy to seek gene predictors. In other words, for
a C-class prediction problem, we compare a particular class
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with the other C' — 1 classes that are considered as a whole.
We pick out genes according to the total score summed over
all C' comparisons, i.e., chzl D;(i), where D;(i) denotes the
Fisher discriminant score for the ith gene at the
jth comparison. Since microarray data generally are easily
overfitted [7], [40], [54], we utilize the strategy that
separates gene selection from cross validation operation
and, therefore, overcomes the selection bias, which is caused
by including the test samples in the process of feature
selection and leads to an overoptimistic estimation of the
performance for the classifier [7], [40]. Note that, in this
case, the subsets of genes selected at each stage tend to be
different.

3 EXPERIMENTAL RESULTS

We test and analyze ssEAM/PSO performance in multiple
cancer classification on the following three data sets:

3.1 NCI60 Data

The data set includes 1,416 gene expression profiles for
60 cell lines in a drug discovery screen by the National
Cancer Institute [45]. These cell lines belong to nine
different classes: eight breast (BR), six central nervous
system (CNS), seven colorectal (CO), six leukemia (LE),
nine lung (LC), eight melanoma (ME), six ovarian (OV), two
prostate (PR), and eight renal (RE). Since the PR class only
has two samples, they are excluded from further analysis.
The gene expression levels are expressed as —log (red
fluorescence/green fluorescence). There are 2,033 missing
gene expression values in the data set, which are imputed
by the method described by Berrar et al. [10], i.e., a missing
value is estimated by the mean of all other existing values
from the same class. This process leaves the final matrix in
the form of E = {e;;}ss.1400, Where e;; represents the
expression level of gene j in tissue sample i. The original
work by Scherf et al. with the average-linkage hierarchical
clustering cannot effectively identify both BR and LC cancer
cell lines [45]. Nguyen and Rocke employed the multi-
variate partial least squares, combined with polychotomous
discrimination and quadratic discriminant analysis classifi-
cation methods, to a subset of this data set and achieve the
LOOCV error rate ranging from 5.7-42.9 percent when
selection bias is considered [40]. Berrar et al. used
probabilistic neural networks and achieved peak classifi-
cation accuracy around 79 percent [10]. Li et al. compared
the performance of decision tree, naive Bayes, support
vector machines, and k-nearest-neighbor. Their hold-out
classification accuracy for the NCI60 data set is less than
70 percent [36].

We set the parameters for ssEAM as follows: p = 0.3,
p =04, o = 2.5, learning rate equal to 0.8, and adjust the
value of e, which controls the amount of misclassification
allowed in the training phase. The parameters of ssEAM are
set based on a simple selection procedure in which the data
set is randomly divided into training and validation sets.
We compare the different parameter combination and
choose the ones that lead to relatively better performance.
The parameters Wy, ¢;, and ¢y of PSO are set as 0.8, 2, and 2,
respectively, which are the typical values recommended in
the literature [21], [46]. The parameter ¢ controls the total

number of genes selected in the subsets, and we run the
program with 6 at 0.5, 0.45, 0.4, 0.3, 0.2, 0.1, and 0.0. Each
time, the evolution is processed for 300 generations with
50 particles included in the swarm. We ran the algorithm
20 times with different divisions of the data set and the
performance is discussed based on the averages. The mean
and standard deviation of the classification accuracies from
the 20 runs are summarized in Table 1 and the best results
are depicted in Fig. 5a. For the purpose of comparison, we
also show the results of PNN, MLP, kNN, and LVQI1 in
which the Fisher criterion is used for gene selection. For
PNN, the smoothing parameter of the Gaussian kernel is set
to 1. The MLP includes 20 nodes in the hidden layer with
the sigmoid function as the transfer function. The number
of prototypes in LVQ1 varies from 8 to 17 and we evaluate
the average performance. From the table, we can see that
ssEAM/PSO is superior to other methods used in our
experiments or found in the literature. Specifically, the best
result we obtain with ssEAM/PSO is 87.9 percent (79 genes
are selected by PSO), which is better than other results
reported in the literature. The confusion matrix is shown in
Table 2, in which the numbers along the diagonal indicate
the correct assignment of cancer samples by ssEAM. We see
that ssEAM can achieve high classification accuracy for
most of cancer types, particularly, 100 percent classification
rates for central nervous system, colorectal, and leukemia.
The worst performance is for ovarian cancer, namely, two
out of six samples are misclassified. The best classification
accuracy for PNN, kNN, and LVQ1 is 79.3 percent,
75.9 percent, and 75.9 percent, respectively. On the other
hand, the best trained MLP architecture can only achieve
60 percent classification accuracy on this data set and the
mean performance is less than 50 percent. We performed
the t-test to compare the difference between the best overall
results of ssEAM and other methods. All p-values are less
than 107'°, which indicates the classification accuracy for
ssEAM is statistically better than those of other methods, at
a 5 percent significance level. The same conclusion can also
be obtained from nonparametric Wilcoxon rank test and
Kruskal-Wallis test.

We compare the top 100 genes selected by the Fisher
criterion with those selected by PSO. We find that there is
only a small fraction of overlap between the genes chosen
by these two methods. For example, for the 79 genes that
lead to the best classification result, only seven are also
selected by the Fisher criterion. Although the Fisher
criterion can work well in binary classification [57], it does
not achieve effective performance in the multiclass dis-
crimination case. The reason may lie in the fact that the
criterion tends to choose many highly correlated genes,
ignoring genes that are really important in classification.
Also, the use of the Fisher discriminant criterion is justified
when the data follow an approximately Gaussian distribu-
tion. This may not be true for this data set. To examine the
consistency of the feature selection method, we run the
program 10 times with 6 set to 0.45 (usually, 60-120 genes
are selected). Still, each swarm includes 50 particles and
evolves for 300 generations. We calculate the frequency of
each gene appearing in the subset chosen in each particle
(500 subsets in total). We find that selection frequencies of
14 genes are more than 20 percent and 32 genes are more
than 15 percent. In particular, the highest frequency is
50.8 percent. This shows that PSO tends to choose important
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TABLE 1
Classification Accuracy for the NCI60 Data Set
Features (Genes)
NCI60
10 79 135 252 385 555 695
EAM PSO 65.52(1.86)  83.02(1.51)  79.40(1.42)  76.64(2.47)  71.21(1.59)  68.10(1.90)  67.76(1.49)
(e=0)
ssEAM PSO 65.78(2.19)  84.66(1.36)  81.12(1.98)  78.62(1.89)  75.26(1.79)  73.10(2.27)  72.50(2.34)
(e=0.1)
PNN Fisher 24.05(2.27)  71.12(2.23)  72.24(2.09) 74.65(2.02)  76.81(2.27)  76.03(1.24)  76.12(1.40)
Criterion
MLP Fisher 16.81(3.21)  39.14(5.82)  39.40(4.38)  44.91(5.08) 45.43(5.46)  45.17(4.25)  47.59(7.51)
Criterion
kNN Fisher 41.90(2.86)  69.22(2.64)  69.74(1.63)  72.59(1.57)  73.71(1.28)  72.59(1.10)  71.81(1.28)
Criterion
LVQ1 Fisher 42.67(2.73)  71.81(2.87)  72.76(2.48)  73.10(1.80)  73.88(1.28)  72.33(1.98)  72.24(1.47)
Criterion

Given are the mean and standard deviation (in parentheses) of percent of correct classification of 58 tumor samples with CV10 (p = 0.4, = 0.3,

learning rate = 0.8, a = 2.5).

genes that contribute to the discrimination of different
cancer types in spite of different initial conditions.

Another observation from Table 1 is that, for ssEAM, the
classification rate usually decreases when more genes are
chosen. Likewise, the performance is also deteriorating
when too few genes (less than 20) are used in the subset. For
PNN, kNN, and LVQ], their best performance is achieved
when more genes (385) are selected compared to ssEAM
(79) and classification accuracy decreases as either fewer or
more genes are used. These results reflect the importance of
gene selection in the context of tumor classification, to some
extent. Many genes are not related to the discrimination of
certain cancer type of interest and including them in the
data set only introduces additional noise into the classifica-
tion system. On the other hand, important information will
be wrongly discarded if inadequate genes are selected.

Fig. 6 shows the effect of the error tolerance parameter ¢
with respect to the classification accuracy. The value of
changes from 0.0 (corresponding to EAM) to 0.12, with a
step 0.02, and then from 0.15 to 0.5, with a step 0.05, other
parameters were set as before. We plot the changes for three
different situations, with 79, 135, and 695 genes selected by
PSO, respectively. This strategy provides an effective method
to increase generalization and decrease overfitting, which is
frequently encountered in cancer classification. Together
with the results summarized in Table 1, we see that the
performance of the classifier can usually be improved with
the selection of an appropriate value of € (0.1 for this data set).
The performance drops sharply when ¢ is larger than 0.15,
which s caused by overrelaxing (more than necessary for this
problem) the misclassification tolerance criterion during the
category formation process in ssEAM training. If the data set
had higher overlap, most likely a larger value of ¢ would
achieve better generalization.

3.2 Acute Leukemia Data

This data set is a benchmark data set for cancer classifica-
tion with gene expression profiles. It is comprised of
72 samples (including bone marrow samples, peripheral
blood samples, and childhood AML cases) that belongs to
three different leukemia types, i.e., 25 acute myeloid
leukemia (AML), 38 B-cell acute lymphoblastic leukemia
(ALL), and nine T-cell ALL [25]. These samples are divided
into two groups in the original research, 38 for training and
34 for testing. In our experiments, we combine the original
training and test sets and perform double cross validation
as before. Gene expressions for 7,129 genes (including
312 control genes) were measured using oligonucleotide
microarrays. We ranked genes based on their variance
across all the samples and chose the top 1,000 for further
analysis. The final matrix is in the form of E = {¢; j}75,1 g00-
Nguyen and Rocke used the multivariate partial least
squares to address this data set and achieved prediction
accuracy higher than 95 percent [40]. Similar results were
reported in [35], [36], where several machine learning
techniques were used.

As before, we compare the performance of our method
with PNN, MLP, and kNN, based on the average results for
20 runs with different splitting. The parameters W7, ¢;, and
¢; for PSO are still set as 0.8, 2, and 2, respectively, and the
parameters for ssEAM are ;1 =0.9, p=0.45 a=4, and
learning rate equal to 0.8. 6 is set as 0.5, 0.45,0.4, 0.3, 0.2, 0.1,
and 0.0. The smoothing parameter of the Gaussian kernel is
set to 1, as before. The MLP includes 15 nodes in the hidden
layer with the sigmoid function as the transfer function. The
number of prototypes in LVQ1 varies from 3 to 12. For this
data set, we can usually achieve good results when the
evolution goes for only 100 generations. Each swarm still
consists of 50 particles. The results are given in Table 3 and
Fig. 5b. The best classification performance is achieved by
ssEAM when 63 or 97 genes are selected with PSO, only one
sample is misclassified (T-cell ALL67 is misclassified as
B-cell ALL). Still, classification performance deteriorates as
too many or too few genes are chosen, particularly for
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Fig. 5. The best classification accuracy of the 20 runs for the (a) NCI60, (b) leukemia, and (c) ALL data sets. The order for the bars is EAM, ssEAM,
PNN, ANN, LVQT1, kNN, from left to right.

TABLE 2
Confusion Matrix of ssEAM for Eight Tumor Types in the NCI60 Data Set
Actual Class

BR CNS Cco LC LE ME oV RE S

BR 7 - - 1 - - - - 8
CNS - 6 - - - - - - 6
co - - 7 - - - - - 7
LC - - - 7 - 1 2 1 11
LE - - - - 6 - - . 6
ME - - - - - 7 - - 7
ov 1 - - 1 - - 4 - 6
S 8 6 7 9 6 8 6 8 58

Accuracy 87.5% 100% 100% 77.8% 100% 87.5% 66.7% 87.5% |_

Overall accuracy with LOOCV is 87.9 percent (79 genes, p = 0.4, u = 0.3, learning rate = 0.8, o = 2.5, ¢ = 0.1).

ssEAM. The number of genes in the data does not much data set, KNN and LVQ1 work well for this data set. The

affect PNN, LVQ1, and kNN, although there is some slight
decrease. In contrast with the performance of the NCI60

p-values for between ssEAM and PNN, ANN, LVQ1, kNN
are 0.0015, 9.9 x 107, 1.6 x 107%, and 3.1 x 1077, which
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Fig. 6. The effect of the category prediction error tolerance parameter on
CV10 classification rate (percent correct classification). The general-
ization of the classifier is increased with the selection of an appropriate
e. Here, the best classification rate is achieved at £ =0.1. The
performance drops for larger ¢ as a result of overrelaxing the
misclassification tolerance criterion during the category formation
process in ssEAM ftraining.

again shows significantly better performance for ssEAM (at
a 5 percent significance level).

Among all examples, sample AML66 and T-cell ALL67
were easily misclassified (for example, when ¢ = 0.45, 23
out of 50 particles misclassified AML66 as ALL and 32 out
of 50 particles misclassified T-cell ALL67 either as B-cell
ALL or AML). This is similar to the results from other
analyses [25], [40]. For the acute leukemia data set, the effect
of the introduction of the category prediction error
tolerance parameter e (e > 0) is not as pronounced as in
the NCI60 data set. The reason may lie in the fact that the
amount of overlap among the data is not as high as with the
NCI60 data set. The improvement of performance is more

JANUARY-MARCH 2007

effective for semisupervised training when applied to a
higher overlap data set.

It is interesting to check whether the genes selected by
PSO are really meaningful in biological sense. Among the
top 50 genes selected, many of them have already been
identified as the important markers for the differentiation of
AML and ALL. Specifically, genes like NME4, MPO, CD19,
CTSD, LTC4S, zyxin, and PRG1 are known to be useful in
AML/ALL diagnosis [25]. Also, some new genes are
selected that previously were not reported to be relevant
to the classification and more investigation is required.
Moreover, we find that the Fisher discriminant criterion can
also pick up genes that contribute to the identification of
these three leukemia types, like gene zyxin, HoxA9, and
MB-1. The reason may lie in the fact that the data set is
much better separated than NCI60 and genes express
themselves quite differently under different tumor types.
Furthermore, we observe that different feature selection
methods usually lead to different subsets of selected
informative genes with only very small overlap, although
the classification accuracy does not change much. Genes
that have no biological relevance can still be selected as an
artifact of the feature selection algorithms. This suggests
that feature selection may provide effective insight in cancer
identification; however, careful evaluation is critically
necessary due to the problems caused by insufficient data.

3.3 All Data

The ALL data set consists of six different acute lympho-
blastic leukemia subtypes, specifically, 15 BCR-ABL,
27 E2A-PBX1, 64 Hyperdiploid > 50, 20 MLL, 43 T-ALL,
and 79 TEL-AML1 (248 samples in total) [59]. These
samples are divided into training (163 cases) and test
(85 cases) groups in the original research. Expression levels
for 12,588 genes were measured using oligonucleotide
microarrays. We followed the same way as for the acute
leukemia data set and selected the 1,000 for further analysis.
The data matrix is represented as E = {e;}o45.1 000 1he
overall classification accuracy for the test group with

TABLE 3
Classification Accuracy for the Acute Leukemia Data Set
Features (Genes)
Acute Leukemia Data
16 63 97 195 287 375 502
EAM PSO 89.72(2.08) 94.44(2.67) 95.07(1.65) 94.31(1.68) 93.26(1.58) 93.13(1.23) 92.36(1.39)
(e=0)
ssEAM PSO 91.60(1.23) 97.15(0.95) 97.50(0.73) 95.83(0.90) 94.65(0.82) 93.68(0.71) 92.64(1.43)
(e=0.1)
PNN Fisher 90.00.(2.61) 96.32(0.68) 96.74(0.68) 96.46(0.71) 96.39(0.70) 96.25(0.91) 96.18(0.99)
Criterion
MLP Fisher 93.61(2.27) 92.50(1.23) 93.47(2.07) 91.60(4.19) 91.74(3.94) 91.60(2.90) 91.67(3.60)
Criterion
LVQ1 Fisher 94.86.(0.65) 95.83(0.45) 96.45(0.84) 95.97(0.77) 96.04(0.93) 96.10(0.86) 95.90(0.71)
Criterion
kNN Fisher 95.07(0.71) 95.83(0.45) 96.18(0.62) 96.11(0.73) 95.90(0.84) 95.69(1.00) 95.69(0.77)
Criterion

Given are the mean and standard deviation (in parentheses) of percent of correct classification for 72 tumor samples with CV10 (p = 0.454, u = 0.9,

learning rate = 0.8, a = 4).
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TABLE 4
Classification Accuracy for the ALL Data Set
Features (Genes)
ALL Data
25 62 95 163 256 356 508
EAM PSO 96.65(0.57) 97.72(0.42) 97.94(0.45) 97.70(0.39) 97.88(0.43) 97.80(0.36) 97.48(0.54)
(e=0)
ssEAM PSO 96.35(0.63) 97.94(0.49) 98.29(0.45) 98.04(0.40) 98.23(0.46) 98.21(0.42) 97.68(0.50)
(e=0.1)
PNN Fisher 86.05.(0.38) 94.31(0.34) 95.50(0.48) 97.04(0.40) 97.44(0.42) 97.76(0.33) 97.32(0.38)
Criterion
MLP Fisher 87.52(1.25) 90.12(1.64) 89.94(1.35) 89.68(1.62) 89.70(1.67) 88.97(1.66) 86.79(2.66)
Criterion
LVQl1 Fisher 96.17.(0.40) 96.39(0.31) 96.65(0.35) 97.22(0.34) 97.22(0.34) 97.42(0.48) 97.52(0.38)
Criterion
kNN Fisher 96.39(0.36) 96.77(0.32) 96.83(0.35) 96.73(0.26) 96.69(0.31) 97.28(0.29) 97.44(0.30)
Criterion

Given are the mean and standard deviation (in parentheses) of percent of correct classification for 248 tumor samples with CV10 (p = 0.45, = 0.9,

learning rate = 0.8, a = 4).

support vector machines is about 96 percent, as reported by
Yeoh et al. [59]. Li et al. performed a comparative analysis
with four machine learning algorithms and eight different
feature selection strategies based on the original division
[36]. The best performance results for all these methods are
all higher than 90 percent. In our experiments, we still
performed the double cross validation as described before
with 20 different runs.

We set the parameters of the PSO/ssEAM system at
exactly the same values as those used for the leukemia data
set analysis, i.e, W; =08, ¢ =co =2, pn=0.9, p=045,
a = 4, and learning rate equal to 0.8. ¢ varies from 0.5 to 0.0,
generating different gene subsets. The parameters for PNN,
MLP, LVQI1, and kNN are all set as before. The mean and
best performance of the 20 runs is shown in Table 4 and
Fig. 5c, respectively. Again, the best overall classification
performance is achieved by ssEAM when 95 genes are
selected with PSO. Particularly, the best classification
achieved is 99.6 percent, indicating only one misclassifica-
tion, where the #8 BCR-ABL sample is misclassified into the
Hyperdiploid > 50 category. PNN, LVQ1, and kNN also
achieve good performance for the data set, while the
classification accuracy for ANN is lower than all other
methods. Comparison of ssEAM with PNN, ANN, LVQ]1,
and kNN stills shows the statistically better performance for
ssEAM at a significance level of 0.05 (the corresponding
p-values are 1.6 x 1074, 0, 9.6 x 1077, 2.5 x 10~%, respec-
tively). Also, the number of genes in the data still has effects
on the classification results, but only causes some slight
changes, which are not as that important as in the case of
the NCI60 data set. For example, the average accuracy for
ssEAM with 508 genes used is 97.68 percent, which is only
0.61 percent lower than the best performance.

4 CONCLUSIONS

Classification is critically important for cancer diagnosis
and treatment. Microarray technologies provide a new and

effective avenue for discriminating different kinds of cancer
types, while simultaneously bringing many new challenges.
Here, we utilized Semisupervised Ellipsoid ARTMAP
combined with particle swarm optimization to distinguish
tumor tissues with more than two categories through
analyzing gene expression profiling. The proposed combi-
nation of methods achieves qualitatively good results on
three publicly accessible benchmark data sets, particularly
with the NCI60 data set, which is not effectively dealt with
by previous methods. The comparison with four other
important machine learning techniques shows that ssEAM/
PSO can outperform them on all three data sets and the
difference in classification accuracy is found to be statisti-
cally significant.

With all the improvement we obtain, we also note that
there are still many problems that remain to be solved in
cancer identification with gene expression profiles, espe-
cially how to effectively cope with the noise introduced in
the different stages of the microarray experiment and the
problem of the curse of dimensionality. The latter problem
is particularly serious due to the rapidly and persistently
increasing capability of gene chip technologies that also
follow Moore’s law [39], in contrast to the existing
limitations in conditions like sample collections. This makes
the published data sets consist of only a small set of samples
for each tumor type (typically, less than 30), however, along
with tens of thousands of gene expression measurements.
Efforts have been made in order to identify the potential
genes relevant to the cancer discrimination, but questions,
such as how many genes are really needed and are these
feature (gene) subsets selected really meaningful in the
biological sense, are not answered satisfactorily. From the
results observed in our experiments, we can see the
important effects of feature (gene) selection, based on the
final classification rates. Nevertheless, it is very difficult to
propose some useful rules or criteria to determine the
optimal number of genes for disease diagnosis, especially
when the data sets studied consist of a wide range of cancer
categories, such as in the case of NCI60. Without doubt,
more samples would be greatly helpful in effectively
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evaluating different kinds of classifiers and constructing a
cancer discrimination system. In the meantime, more
advanced feature selection approaches are required in
order to find informative genes that are more efficient in
prediction and prognosis.
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