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Abstract: Research on semantic webs has become increasingly widespread in the computer science commu-

nity. The core technology of a semantic web is an artefact called an ontology. The major problem in

constructing an ontology is the long period of time required. Another problem is the large number of possible

meanings for the knowledge in the ontology. In this paper, we present a novel ontology construction based on

artificial neural networks and a Bayesian network. First, we collected web pages related to the problem domain

using search engines. The system then used the labels of the HTML tags to select keywords, and used WordNet

to determine the meaningful keywords, called terms. Next, it calculated the entropy value to determine

the weight of the terms. After the above steps, the projective adaptive resonance theory neural network clustered

the collected web pages and found the representative term of each cluster of web pages using the entropy value.

The system then used a Bayesian network to insert the terms and complete the hierarchy of the ontology.

Finally, the system used a resource description framework to store and express the ontology results.
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1. Introduction

To retrieve useful and meaningful information

from websites has become a very important task

(Risvik & Michelsen, 2002). In order to increase

the accuracy of information retrieval, the notion

of the semantic web has been developed. A

semantic web consists of machine-understand-

able documents and data. The core technology

of a semantic web is an artefact called an

ontology (W3C1). The development of the

semantic web depends on the rapid and efficient

construction of the ontology.

Ontologies play an important role in biomed-

ical informatics and knowledge management,

e.g. in the construction of gene ontologies (Blas-

chke & Valencia, 2002), whose purpose is to

handle complex information in medicine and to

bridge the gap that exists between medical

application and basic biological research (Yu,

2006). In knowledge management, ontologies

can supply and store information (Li & Zhong,

2006). Combined with web mining, an ontology

can supply information that users want.

Unfortunately, the task of constructing and

maintaining an ontology has turned out to be

difficult. Traditional ontology construction

relies on human domain experts, but it is costly,

lengthy and arguable (Navigli et al., 2003).

Traditional methods can be divided into

four categories: dictionary-based construction,

text clustering construction, association rule
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construction and knowledge base construction.

The dictionary-based construction mode (Alani

et al., 2003) is the basis of the other three

construction modes. It uses a traditional dic-

tionary to define the hierarchy of the concepts in

the domain. However, the dictionary-based con-

struction mode has certain limitations. It cannot

provide a more significant ontological frame-

work without being combined with another

mode. Further, its size is restricted to the

amount of vocabulary contained in the diction-

ary. The text clustering construction mode

(Hotho et al., 2001) is based on related terms

clustered together according to their synonyms.

The most frequently used term will be selected to

represent the cluster. However, different users

have discrepant viewpoints on the same word,

and it is sometimes difficult to find a suitable

term to represent the cluster. The association

rule construction mode uses an association rule

to construct the hierarchical concepts. The

knowledge base construction mode (Alani

et al., 2003) uses a knowledge base to build the

ontology, but requires the prior construction of

knowledge bases in the specific domain that

include basic rules and simple examples. Conse-

quently, it usually produces ontologies whose

size is restricted by the scope of their knowledge

bases.

The above modes are useful in building the

ontology, but their usefulness diminishes as the

information contained in the web pages

expands. Human effort is thus still required.

Nowadays, researchers are increasingly explor-

ing this field and many ontology construction

tools are available, including OntoTrack (Liebig

& Noppens, 2005), OntoSeek (Guarino et al.,

1999) and OntoEdit (Sure et al., 2002). How-

ever, we have found at least three major defi-

ciencies (Shamsfard & Barforoush, 2004; Weng

et al., 2006) in the field of ontology construction.

(1) Lack of standards for reuse or integration of

existing ontologies. Ontology construction

is a new and developing technology. Some

organizations, such as the IEEE working

group and Stanford University, have cre-

ated standards for ontologies. Standardi-

zation can be divided into three layers: the

methodology layer, the language layer and

the content layer. Ontology languages in-

clude HTML, XML, XHT, RDF, RDF

Schema (RDFS), DAMLþOIL and OWL

(W3C) (Figure 1). Owing to the variety of

ontology languages, the integration of

existing ontologies is difficult, making re-

use of an ontology difficult as well.

(2) Lack of fully automated knowledge acquisi-

tion. Ontology construction is a time-con-

suming and costly procedure. In a system

such as OntoTrack (Liebig & Noppens,

2005), a large amount of knowledge must

first be defined into the ontology manually.

The system then uses the knowledge to

create the full ontology. Using automated

knowledge retrieval methods and tools

reduces the time and cost of ontology

construction.

(3) Lack of flexibility in clustering. Using a

manual classification framework is the best

way to understand what the web pages

really mean. However, manual classifica-

tion frameworks cannot keep pace with the

dynamic changes in the web, where web

pages both increase rapidly in number and

quickly become obsolete. Although current

ontology construction methods can

achieve a partially automated classification

framework, limitations such as needed

manpower and domain restrictions remain

challenges for researchers. At present, the

task of achieving a fully automated classi-

fication framework is under investigation.

Figure 1: Ontology language (W3C).
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To address the above issues, we propose a

novel method consisting of a projective adaptive

resonance theory (PART) neural network and a

Bayesian network probability theorem for auto-

mated ontology construction. The PART neural

network is an improved adaptive resonance

theory (ART) neural network that not only

considers the data points but also the dimen-

sions, and can deal with the lack of flexibility in

the cluster. The system uses WordNet and the

entropy theorem to acquire knowledge automa-

tically. The system workflow first picks web

documents from a specific domain, and then

analyses the web pages to choose relevant key-

words using WordNet. The candidate keywords

are extracted by calculating an entropy value

named term (concept). Next, based on the fre-

quency of the term, a matrix with documents

and terms for the PART neural network is

constructed to cluster the web pages. Each

cluster is represented by the term that had the

highest weight in that particular cluster. Finally,

a Bayesian network is used to analyse the

complete hierarchy of terms and construct the

final domain ontology. The system then stores

the ontology results using a resource description

framework (RDF). The RDF, recommended

by the World Wide Web Consortium (W3C),

addresses the problem of the lack of standards

for reusing or integrating existing ontologies.

Moreover, we evaluate how the number of

web pages affects the precision of the resultant

ontology. We also compare an ART neural

network with the PART network.

The remainder of the paper is organized as

follows. Section 2 describes the system architec-

ture briefly. In Section 3, we specify the kernel of

the domain ontology construction in the system.

Section 4 illustrates the experimental results.

Finally, we conclude the paper and discuss

future work in Section 5.

2. The system architecture

The PART neural network and Bayesian net-

work probability theorem are used to construct

an ontology in the system. The details of the

domain ontology construction will be described

in the next section. The architecture of the

system is displayed in Figure 2. It consists of

the five processes described below.

Figure 2: The system architecture.
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(1) Collect web pages: The system uses the

Universal Resource Locator (URL) to col-

lect web pages from the Google2 and

ESPN3 search engines. It filters the col-

lected web pages and returns the filtered

web pages for web page analysis.

(2) Analyse web pages: The system uses the

web pages obtained in the previous step,

and analyses the concepts (terms) in the

domain. It considers the problems of word

stem and stop words within the web pages.

The system then adopts WordNet to ascer-

tain the existence of keywords. Finally, it

uses the entropy value to define the weight

of terms.

(3) Cluster semantic web pages: We use the

term frequency to represent each web page.

A PART neural network is then used to

cluster the web pages. We add the notion of

recursion to the PART neural network to

obtain a PART tree. The PART tree is the

initial structure of the ontology. Each node

contains a set of web pages and finds a term

to represent that set.

(4) Establish hierarchical relation: After ob-

taining the PART tree, some terms have

still not been inserted into the domain

ontology. Based on inference, we use a

Bayesian network probability theorem to

insert the remaining terms into the PART

tree. If term A in the PART tree has the

highest inference probability with term B,

term B must be the child of term A.

(5) Express ontology: The large number of

ontology languages makes integration of

existing ontologies difficult. To address

this issue, the final output of this system is

an ontology in RDF format using a Jena

package. RDF is a general-purpose lan-

guage for representing information on the

web. RDF can help integration and reuse

of an existing ontology (Klyne & Carroll,

2004).

3. Domain ontology construction

Domain ontology construction in this system

consists of five steps, described below.

3.1. Web page analysis

The system uses the URL to collect web pages

and analyse the keywords in the domain. We use

WordNet 2.1,4 developed by Princeton Univer-

sity, to ascertain the existence of keywords.

WordNet is an online lexical reference system.

English nouns, verbs, adjectives and adverbs are

organized into synonym sets. Different relations

link the synonym sets.

We also consider the problem of stop words

within the web pages. More than 80% of the

words in a given web page (Singhal & Salton,

1995) are useless from the categorization stand-

point. Useless words such as a, as or the, known

as stop words, are filtered out during the analy-

sis. Deleting the stop words not only speeds up

the work but also decreases the complexity of

calculations. After obtaining the keywords from

the specific domain, we employ entropy (Kao &

Lin, 2004) to compute the weight of the key-

words. Entropy can be applied to analyse the

page content blocks and discover the informa-

tive content. The system uses Shannon’s infor-

mation entropy to calculate each keyword’s

entropy based on a keyword–web page matrix

called the term–frequency matrix (TF matrix),

shown in Table 1. The entropy formula is

EðTiÞ¼ �
Xm
j¼ 1

pij logm pij ð1Þ

The keywords in the domain are represented by

Ti, where i is an index of keywords. Collected

web pages are represented by Dj, and j is an

index of web pages. E(Ti) means the entropy

value (weight) of the keyword. Pij stands for the

probability of the keywords Ti appearing in Dj

for all documents. We let m be the base of the

log operation to normalize the entropy value in

[0, 1], where m is the amount of the collected

web pages. Table 1 shows a simple example.
2Google, http://www.google.com.
3ESPN, http://espn.go.com. 4WordNet, http://wordnet.princeton.edu/.
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Assume that we want to calculate E(T1). First,

we need to calculate P11¼ 2=6, P12¼ 0, P13¼ 0,

P14¼ 1=6, P15¼ 3=6 and m¼ 5. We then can

obtain E(T1)¼ –[(2=6 � log52=6)þ (0 � log50)

þ (0�log50)þ (1=6� log51=6)þ (3=6� log53=6)]
¼ 0.62842. Following the same steps, we can

obtain E(T2)¼ 0.64601, E(T3)¼ 0.79522, E(T4)

¼ 0.3494, E(T5)¼ 0.43068, E(T6)¼ 0.86135. Ac-

cording to the entropy theorem, if the term is well

distributed in the web pages, its entropy value is

higher. The keyword with the highest entropy

value is the most important keyword. As the above

example shows, keywords T3 and T6 have the

highest entropy values. This means that T3 and T6

are the most important keywords in these web

pages, and they can be employed to represent this

group of web pages. Finally, we output formula (2)

to representDj as follows:

Dj ¼ T1;F1j;EðT1Þ
� �

; � � � ; Ti;Fij; ðEðTiÞ
� �

; � � � ;
�

Tn;Fnj;EðTnÞ
� �

g ð2Þ

where Ti is a term that is filtered by the system, i is

an index of terms i¼ 1, . . ., n, j is an index of web

page j¼ 1, . . .,m, and Fijmeans the frequency that

Ti appears inDj.

3.2. PART network

An ART network (Carpenter & Grossberg,

1987, 1988; Grossberg, 1987) is an unsupervised

learning network first proposed by Grossberg in

1976. It can be divided into two types: ART1,

which takes only binary input; and ART2,

which takes continuous or binary input. The

basic ART network includes both bottom-up

competitive learning and the top-down cluster

pattern learning modes. Its operations generate

a new output node dynamically when an unfa-

miliar input pattern is fed into the system.

Forward and backward processes operate until

the message resonates. The operation of the

ART network is similar to that of the neural

system of the human brain. Not only does it

learn from new examples, but it also preserves

memories. The architecture of the ART network

is explained below.

(1) Input layer The input data Xi are training

examples. The number of input vectors

depends on the question domain. Xi2
{0, 1}.

(2) Output layer (a cluster layer) This layer

presents the results of the trained network.

The network starts from only one node and

the number of nodes grows until all input

patterns are learned.

(3) Weight connections Every input node has

one bottom-up link to an output node and

every output node has one top-down link

to an input node. The two link directions

have different meanings. The link of input-

to-output is Wb. The values of Wb can be

used to calculate the value from the input

vector to one unit of the output layer. The

link of output-to-input isWt. The values of

Wt are used to calculate the similar values

of the input vector of trained examples

connected to one unit of the output layer.

The framework of the ART network is

shown in Figure 3.

However, the above method creates problems of

feasibility and reliability. In an ART neural

network, input vectors are constituted by

{0, 1}, but not all of the data sets in our study

fell into that range. Presenting multi-value data

sets using two values is thus not reliable.

Further, it is not feasible to cluster such data

sets. For example, four keywords appear on

four documents as shown in Table 2. Clustering

the four documents by ART,D1 andD2 will be a

cluster. Table 3 shows the frequency of key-

words in the documents. D1 emphasizes T3 and

T2, as does D4. Obviously, D1 and D4 will be

clustered into the same cluster because they

emphasize the same terms.

Table 1: An example of entropy

T1 T2 T3 T4 T5 T6

D1 2 1 1 0 0 0
D2 0 0 2 0 0 1
D3 0 0 0 1 2 1
D4 1 2 3 0 2 1
D5 3 1 4 3 0 1
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In order to deal with the feasibility–reliability

dilemma in clustering data sets of high dimen-

sion, Cao and Wu (2002, 2004) presented an

approach based on a new neural network archi-

tecture – PART (projective adaptive resonance

theory) – in 2002. The basic architecture of

PART is similar to the ART neural networks.

The primary difference between PART and

ART lies in the input layer. In PART, the input

layer selectively sends signals to nodes in

the output layer (cluster layer). The signals are

determined by a similarity check between the

corresponding top-down weight and the signal

generated in the input layer. Hence, the similar-

ity check plays a crucial role in the projected

clustering of PART. Further, PART adds a

distance test acting as a vigilance test to increase

the accuracy of clustering. Figure 4 illustrates

the basic PART architecture, while the PART

algorithm is presented below. Table 4 shows the

definition of the parameters appearing in the

PART algorithm.

PART algorithm

0. Initialization:

Initialize parameters L, r, s, a, yw, yc.
Input vectors: Dj¼ (F1j, F2j, . . ., Fij, . . .,

Fnj), j¼ 1, 2, . . ., m.

Output nodes: Yk, k¼ 1, 2, . . ., m.

Set Yk does not learn any input pattern.

1. Input the pattern D1, D2, . . ., Dj, . . ., Dm.

2. Similarity check:

hjk¼ hðDj;Wjk;WkjÞ¼ hsðDj;WkjÞlðWjkÞ

where

hsða; bÞ¼
1 if dða; bÞrs
0 if dða; bÞ > s

�

Figure 3: The framework of ART.

Table 2: The occurrence of terms

T1 T2 T3 T4

D1 1 1 1 0
D2 1 1 1 0
D3 0 1 1 0
D4 0 1 1 1

Table 3: The frequency of terms

T1 T2 T3 T4

D1 2 3 7 0
D2 8 1 2 0
D3 0 4 1 0
D4 0 4 8 1

Figure 4: The framework of PART.

Table 4: The list of PART parameters

Param-
eter

Meaning Permissible
range

Fij Term frequency NA
m Pattern amount NA
n Term amount NA
Wjk Bottom-up weight NA
Wkj Top-down weight NA
s Distance parameter NA
yw Threshold of weight 0< ywpL=(L�1þ n)
yc Threshold of cluster 0< ycpm
r Vigilance parameter 1prpn
L Constant parameter LX1
a Learning rate 0pap1
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lðWjkÞ¼
1 if Wjk > yw
0 if Wjkryw

�

If hjk¼ 1, Dj is similar to Yk.

Else hjk¼ 0, Dj is not similar to Yk.

3. Selection of winner node:

Tk¼SWjkhjk¼SWjkhðDj;Wjk;WkjÞ

Max{Tk} is the winner node.

4. Vigilance and reset:

Rk¼Shjk < r

If the winner node passes the vigilance test,

the input pattern will be clustered into the

winner node. Otherwise, the input pattern

will be clustered into a new node.

5. Learning: Update the bottom-up and top-

down weights for winner node Yk. If Yk has

not learned a pattern before

Wjk
new¼L=ðL� 1þ nÞ

Wkj
new¼Dj

If Yk has learned some patterns before

Wnew
jk ¼

L=ðL� 1þ nÞ if hjk¼ 1

0 if hjk¼ 0

(

Wnew
kj ¼ð1� aÞWold

kj þ aDj

6. Repeat step 1 to step 5 until the number of

data points in each cluster falls below the

threshold yc.
7. Return the clusters.

We now provide an example to illustrate the

PART algorithm. The PART algorithm has

r¼ 1, s¼ 1, L¼ 2, a¼ 0.1, yw¼ 0, yc¼ 5 to

cluster the data set Dj¼ {D1¼ (2, 3, 4, 0),

D2¼ (2, 3, 4, 7), D3¼ (2, 3, 2, 8), D4¼ (2, 3, 2,

2),D5¼ (5, 4, 3, 3),D6¼ (5, 4, 3, 7),D7¼ (3, 4, 3,

4) and D8¼ (3, 4, 3, 7)}, as shown in Table 5.

Step 1. D1¼ (2, 3, 4, 0)

Since no Yk node has learned a pattern before, it

is natural to select Y1 to learn the input pattern.

Bottom-up weights are obtained from the

PART algorithm, step 5,

Wjk¼W11¼ 2=ð2� 1þ 4Þ¼ 2=5

!W11¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj ¼W11¼ð2; 3; 4; 0Þ

Step 2. D2¼ (2, 3, 4, 7)

h21¼ hðD2;W11;W11Þ¼ hsðD2;W11ÞlðW11Þ¼ 1

D2 is similar to Y1 and R1 ¼ 3, r¼ 1. Therefore

Y1 is the winner node to learn the input pattern.

The network has bottom-up weights from the

PART algorithm, step 5,

Wjk
new¼W21

new¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj
new¼W12

new

¼ð1� 0:1Þð2; 3; 4; 0Þ þ 0:1ð2; 3; 4; 7Þ
¼ ð2; 3; 4; 0:7Þ

Step 3. D3¼ (2, 3, 2, 8)

h31¼ hðD3;W21;W12Þ¼ hsðD3;W12ÞlðW21Þ¼ 1

D3 is similar to Y1 and R1¼ 3, r¼ 1. Therefore

Y1 is the winner node. The network takes the

bottom-up weights from the PART algorithm,

step 5,

Wjk
new¼W32

new¼ð2=5; 2=5; 2=5; 2=5Þ

Table 5: A sample of the TF matrix

T1 T2 T3 T4

D1 2 3 4 0
D2 2 3 4 7
D3 2 3 2 8
D4 2 3 2 2
D5 5 4 3 3
D6 5 4 3 7
D7 3 4 3 4
D8 3 4 3 7
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and the top-down weights are

Wkj
new¼W13

new

¼ð1� 0:1Þð2; 3; 4; 0:7Þ þ 0:1ð2; 3; 2; 8Þ

¼ ð2; 3; 3:8; 1:43Þ

Step 4. D4¼ (2, 3, 2, 2)

h41¼ hðD4;W31;W13Þ¼ hsðD4;W13ÞlðW31Þ¼ 1

D4 is similar to Y1 and R1¼ 4, r¼ 1. Therefore

Y1 is the winner node. The network has bottom-

up weights from the PART algorithm, step 5,

Wjk
new¼W42

new¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj
new¼W24

new

¼ð1� 0:1Þð2; 3; 3:8; 1:43Þ þ 0:1ð2; 3; 2; 2Þ

¼ ð2; 3; 3:62; 1:487Þ

Step 5. D5¼ (5, 4, 3, 3)

h51¼ hðD5;W41;W14Þ¼ hsðD5;W14ÞlðW41Þ¼ 0

D5 is not similar to Y1. Hence the network

selected a node to learn the input pattern. The

network takes bottom-up weights from the

PART algorithm, step 5,

Wjk
new¼W52

new¼ 2=ð2� 1þ 4Þ¼ 2=5

!W52¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj
new¼W25

new¼ð5; 4; 3; 3Þ

Step 6. D6¼ (5, 4, 3, 7)

h61¼ hðD6;W41;W14Þ¼ hsðD6;W14ÞlðW41Þ¼ 0

h62¼ hðD6;W52;W25Þ¼ hsðD6;W25ÞlðW52Þ¼ 1

D6 is similar to Y2 and R2¼ 3, r¼ 1. Therefore

Y2 is the winner node. The network takes

bottom-up weights from the PART algorithm,

step 5,

Wjk
new¼W62

new¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj
new¼W26

new

¼ð1� 0:1Þð5; 4; 3; 3Þ þ 0:1ð5; 4; 3; 7Þ

¼ ð5; 4; 3; 3:4Þ

Step 7. D7¼ (3, 4, 3, 4)

h71¼ hðD7;W41;W14Þ¼ hsðD7;W14ÞlðW41Þ¼ 0

h72¼ hðD7;W62;W26Þ¼ hsðD7;W26ÞlðW62Þ¼ 1

D7 is similar to Y2 and R2¼ 3, r¼ 1. Therefore

Y2 is the winner node. The network takes the

bottom-up weights from the PART algorithm,

step 5,

Wjk
new¼W72

new¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj
new¼W24

new

¼ð1� 0:1Þð5; 4; 3; 3:4Þ þ 0:1ð3; 4; 3; 4Þ

¼ ð4:8; 4; 3; 3:46Þ

Step 8. D8¼ (3, 4, 3, 7)

h81¼ hðD8;W41;W14Þ¼ hsðD8;W14ÞlðW41Þ¼ 0

h82¼ hðD8;W72;W27Þ¼ hsðD8;W27ÞlðW32Þ¼ 1

D8 is similar to Y2 and R2¼ 3, r¼ 1. Therefore

Y2 is the winner node. The network takes the

bottom-up weights from the PART algorithm,

step 5,

Wjk
new¼W82

new¼ð2=5; 2=5; 2=5; 2=5Þ

and the top-down weights are

Wkj
new¼W28

new

¼ð1� 0:1Þð4:8; 4; 3; 3:46Þ þ 0:1ð3; 4; 3; 7Þ

¼ ð4:62; 4; 3; 3:814Þ

Comparing with yc¼ 5, every cluster is less

than 5. After clustering, we obtain two
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projective clusters:

Y1¼fD1;D2;D3;D4g

Y2¼fD5;D6;D7;D8g

In order to obtain the detailed information

from PART clustering, we add the notion of

recursion to the PART architecture. Each clus-

ter result will call PART again if the number of

elements in the cluster is greater than the thresh-

old (yc). The PART tree will provide the infor-

mation about the hierarchical relation of the

projective clusters. For example, in Table 5 the

original PART only obtains the information of

the four clusters after clustering according to the

above calculation. If we use recursive PART to

cluster the data set, where r¼ 1, s¼ 1, L¼ 2,

a¼ 0.1, yw¼ 0, yc¼ 3, the system obtains the

recursive tree of Table 5 shown in Figure 5. The

system then chooses the term that has the high-

est entropy value in each cluster to represent

that cluster. If the term has represented the

upper cluster, the system will choose the second

highest entropy value to represent the cluster.

The system recursively calls the PART tree. It

possesses the basic hierarchical relationships of

the ontology.

3.3. Bayesian network

ABayesian network (Park& Choi, 1996; Denoyer

& Gallinari, 2004) reasons under uncertainty.

Once the Bayesian network is constructed from

data, it is imperative to determine the various

probabilities of interest from the model. Such

probabilities are not directly stored in the net-

work; hence, it is necessary to calculate them. In

general, given a network, the calculation of a

probability of interest is known as probabilistic

inference, and is usually based on Bayes’s theorem

(Pearl, 1988). In the case of problems with many

variables, the direct approach is often not practi-

cal. Nevertheless, at least when all the variables

are discrete, we can expand the conditional inde-

pendences encoded in the Bayesian network so as

to make the calculation more efficient. A Bayesian

network can be divided into two main parts,

B¼ (G, Y). The first part G is a directed acyclic

graph (DAG) consisting of nodes and arcs. The

nodes are the variables T¼ {T1, T2, . . ., Tn} in the

data set whereas the arcs indicate direct depen-

dences between the variables. The second part of

the Bayesian networkY represents the conditional

probability distributions, and is stored in a condi-

tional probability table (CPT). Then, Bayesian

networks can be represented as the following joint

probability distribution:

PðTijT1;T2; � � � ;TnÞ¼
PðTijT1;T2; � � � ;TnÞ
PðT1;T2; � � � ;TnÞ

ð3Þ

Every variable in the DAG is independent of

its non-descendants given its parents in the

graph. For example, in Figure 6, we want to

calculate the conditional probability of P(T6).

According to formula (3), the conditional prob-

Figure 6: A simple Bayesian network.Figure 5: The recursive tree of Table 5.
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ability will be P(T6|T1, T2, T3, T4, T5). In Figure

6, the paternal nodes of T6 are T3 and T5 and we

obtain P(T6|T1, T2, T3, T4, T5)¼P(T6|T3, T5).

Based on the characteristics of the Bayesian

network, P(T6|T3, T5) is equal to P((T6 \ T3)

P(T6 \ T5))=P(T3, T5).

In this paper, we use a Bayesian network to

construct the ontology because Bayesian net-

works offer several advantages for data analysis

(Langseth & Portinale, 2007). First, Bayesian

networks encode dependences within all vari-

ables, and thus can easily deal with missing data

entries. Second, the network can be used to

handle causal relationships and hence it can be

used to gain an understanding about a problem

domain and to predict results. Third, Bayesian

networks are a technology based on statistics

which offers a valid and widely recognized ap-

proach for avoiding over-fitting of data. Finally,

the diagnostic performance of a Bayesian net-

work is often surprisingly insensitive to impreci-

sion in the numerical probabilities. Based on the

above advantages, we use a Bayesian network to

complete the hierarchy of the domain ontology.

After the clustering process, we obtained a

basic tree structure of the ontology, but the

remainder terms can still be used to represent

whole web pages. We used an inverted Bayesian

network to reason the complete hierarchy of the

domain ontology. A traditional Bayesian net-

work requests a DAG and then obtains the

CPT, but in our study we calculated the condi-

tional probability of all terms and stored the

probability in the CPT. We then inserted the

terms one by one by comparing the conditional

probability with the term weight (entropy value)

of the terms. Through repetition of the compar-

ison, we built a DAG to represent the domain

ontology.

For example, assume that the system ob-

tained 10 terms T1, T2, . . ., T10 after web page

analysis to represent the collected web pages.

After clustering by PART, the system obtained

a basic tree of six terms (T1, T2, . . ., T6), leaving

a remainder of four terms (T7, T8, T9, T10). The

system then calculated the conditional probabil-

ity based on the prior probability of the basic

tree and stored the values in the CPT (Table 6).

In Table 6, the columns represent prior prob-

ability and the rows represent the inference condi-

tional probability. The system determines the

order of inference based on entropy value.

Furthermore, we set an inserted threshold (yBN)
to avoid the error of insertion. Assume that T9 has

the highest entropy value in the remainder terms.

We then checked Table 6 based on the prior

probability of T1, T2, T3, T4, T5 and T6. If the

node T1 has the highest conditional probability

and is greater than the threshold (yBN), the system
will insert T9 below T1. The system next calculates

the conditional probability of T9 against the re-

mainder terms and proceeds to insert. Further,

when the highest conditional probability is less

than the threshold (yBN), the system will prioritize

the next remainder term. Following the above

steps, the system will finish the complete hierarch-

ical relationship of the domain ontology.

3.4. RDF

An RDF is an architecture developed by W3C

and Metadata groups. It is able to carry several

sets of metadata while roaming on the Internet.

Metadata are specific data describing web

resources in the context of the RDF. In other

words, an RDF can be used to describe the

resources of a given web page. A problem can

be represented by a meaning graph of the RDF.

Furthermore, the RDF accentuates the

exchange and automation processing of web

resources. A resource is the Unified Resource

Identifier (URI), a string of web resources, or an

element of XML, while the description describes

the resource attributes and the framework de-

scribes the irrelevant common model of the

resources. For example, the sentence ‘Arhan

Table 6: The conditional probability table

T7 T8 T9 T10

T1 P(T7|T1) P(T8|T1) P(T9|T1) P(T10|T1)
T2 P(T7|T2) P(T8|T2) P(T9|T2) P(T10|T2)
T3 P(T7|T3) P(T8|T3) P(T9|T3) P(T10|T3)
T4 P(T7|T4) P(T8|T4) P(T9|T4) P(T10|T4)
T5 P(T7|T5) P(T8|T5) P(T9|T5) P(T10|T5)
T6 P(T7|T6) P(T8|T6) P(T9|T6) P(T10|T6)
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is the author of the web pages at http://

www.cyut.edu.tw/ � s941462 9’ is expressed by

the RDF as a direction graph where the URL is

a web resource and author is a property with

value ‘Arhan’ (Figure 7).

In this study, an RDF structure is used to

describe and store the relationship between

terms and clusters. The RDF can improve the

effectiveness of queries and aid the integration

of existing ontologies (Hjelm, 2001). The system

uses the Java language to program the RDF file

and stores it in the computer for reuse.

3.5. System evaluation

We used the concepts of the ontology that the

expert has defined to search web pages on the

Internet. We next produced the ontology from

those web pages using our method. After produ-

cing the ontology, we then invited 30 domain

users to evaluate our ontology results. The users

must possess experience relevant to the domain.

We have not found a standard method to

evaluate the effect of a domain ontology but we

have proposed a method to evaluate ontologies

previously using concept precision (C_P) and

concept location precision (C_L_P) (Chen et al.,

2008). In this paper, we use concept precision

(C_P) and concept location precision (C_L_P)

to evaluate our ontology effect. We defined the

two kinds of precision evaluation methods as

follows (Table 7).

A is terms (concepts) that the system gener-

ates and the expert has accepted, B is terms

(concepts) that the system generates but the

expert has not accepted, C is terms (concepts)

that the system generates and the expert defines

whose locations are right and D is terms (con-

cepts) that the system generates and the expert

defines whose location is in error. Then

precisionðC PÞ¼ A

Aþ B
ð4Þ

precisionðC L PÞ¼ C

C þD
ð5Þ

Formula (4) is the concept precision, which

demonstrates the precision of the concepts the

system generates. Formula (5) is the concept

location precision, which not only demonstrates

the precision of the generated concepts but also

shows the precision of the location in the hier-

archy relations.

4. Experiments and discussion

In this section, we present the results of the

system. We collected web pages from the base-

ball domain to construct the ontology. There

are two types of experiments. One experiment

examines how the number of collected web

pages affects the precision of the constructed

ontology; the other experiment compares

PART and ART in constructing the domain

ontology.

4.1. Quantity of web pages for constructing the

domain ontology

In the first experiment, the data sources were

collected from the search engines Google and

ESPN. We selected the domain of baseball as

our problem domain for the experiments. We

entered the keyword baseball into the two

search engines. The system then obtained 1523

Table 7: The relationships between expert concepts and system keywords

Concepts accepted
by the expert

Concepts not
accepted by the
expert

Expert-defined
correct location

Expert-defined
error location

Terms generated
by the system

A B C D

Figure 7: An example of an RDF structure.

424 Expert Systems, September 2008, Vol. 25, No. 4 c� 2008 The Authors. Journal Compilation c� 2008 Blackwell Publishing Ltd



web pages (900 web pages from Google and 623

web pages from ESPN) as our domain data.

Next, we discuss whether the quantity of data

affects the results. The Bayesian reasoning was

usually affected by the quantity of data. We

divided the experiment into six stages and used

concept precision (C_P) and concept location

precision (C_L_P) to evaluate the six ontology

results. In the first stage, we extracted 500 web

pages randomly. In the second stage, we ran-

domly extracted 200 web pages from the remain-

ing web pages to add to the testing web pages. In

the final stages, we extracted all the web pages to

construct the domain ontology. Each experi-

ment is clustered by PART, where L¼ 2, r¼ 3,

s¼ 0.4, a¼ 0.1, yw¼ 1, yc¼ 4. After clustering,

the system will select the highest term weight

(entropy value) of every cluster to represent the

cluster, and we can then obtain the basic hier-

archical concept (PART tree). The Bayesian

network is used to infer the relationships among

the levels of the remainder terms. The system

calculates the CPT and sets the threshold

yBN¼ 0.35 in order to insert the remainder terms

into the PART tree. Following the steps, the

system will construct the complete concept

stratum.

The six data sets are inputted into the system.

The detailed results of the ontology are shown in

Table 8. We found that the results are unaccep-

tably poor when the quantity of data is small.

The system is based on the inference of prob-

ability. It is possible that the result will be

influenced by partial data, especially when the

sample is small. For example, we discovered

that a node Drugs in the ontology of the first

stage has a descendant node X (a player). In

fact, the node X should be a descendant of the

node Player. Because many recent web pages

referred to drugs and X at the same time, X

became a node of Drugs, an example of the

influence of partial data in a small sample.

Further, there are a few terms in the domain

that the system cannot discover. According to

the above evaluation, the greater the number of

web pages, the higher the precision is. As Figure

8 shows, when the quantity of data exceeds 1100

web pages, concept precision (C_P) exceeds

80%.

In Figure 9, the best concept location preci-

sion (C_L_P) is 75.4%. Although not a high

value, it is still acceptable (Weng et al., 2006).

4.2. The comparison of PART and ART

Based on the experiment above, PART shows

better results when the quantity of data is large.

In this experiment, we attempt to demonstrate

that PART is better than ART in web page

clustering. We used the ART neural network to

cluster all the web pages (1523 web pages) and

compared the result with the results of clustering

by PART. In order to emphasize the equity of

comparison, the parameter settings of ART

were identical to those of PART (r¼ 3, a¼ 0.1,

y¼ 4). Afterward, we used the method described

in Chen et al. (2008) to generate the pattern for

ART. In this experiment, we used keywords and

Table 8: Ontology results for different quantities of web pages

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

No. of web pages 500 700 900 1100 1300 1523
No. of terms 27 32 40 49 53 53
Depth of ontology 3 3 4 5 5 5
Breadth of ontology 14 14 10 9 8 8
A 17 21 30 40 44 45
B 10 11 10 9 9 8
C 16 19 27 36 40 40
D 11 13 13 13 13 13
Precision (C_P) 62.9% 67.6% 75% 81.6% 83% 84.5%
Precision (C_L_P) 59.2% 63.4% 67.5% 73.4% 75.4% 75.4%
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web pages to make a binary matrix. If the key-

word appears in the web pages, the keyword is

set to 1. Otherwise, it is set to 0. It is then sent to

the ART network for clustering. After cluster-

ing, we obtained a basic ART tree and employed

the Bayesian network to complete the hierarch-

ical relationship. Table 9 gives the detailed

ontology results for ART and PART.

It is clear that the concept precision (C_P) and

concept location precision (C_L_P) of PART

are both better than those of ART in Table 9.

Further, the breadth of the ontology in ART is

10, showing that more nodes appear in the

wrong location. For example, some proper

nouns in the baseball domain cannot be clus-

tered very well because of the (0, 1) character-

istic of ART. Proper nouns cannot be clustered

correctly, resulting in increasing numbers of

clusters. After processing by the Bayesian net-

work, we discovered that these proper nouns

usually have the highest inferred probability

from the node Baseball (the root of the ontol-

ogy). This increases the breadth of the ontology.

For instance, the node Cleanup must be a kind

of hitter, but ART was unable to determine the

relationship between cleanup and hitter. Final-

ly, the node Cleanup was clustered in a single

cluster and became a descendant of the node

Baseball. Based on the judgment of the domain

experts, the node is in the wrong location. This

error shows that PART is superior to ART in

clustering. Figures 10 and 11 show the baseball

ontology of PART and ART respectively.

Finally, we use RDF, a standard ontology

web language that W3C recommended, to mark

down and represent the domain ontology re-

sults. The system uses the Jena package to out-

put the results in RDF format. The RDF is able

to describe the resources of the World Wide

Web. Moreover, the RDF can help to achieve

the integration and reuse of the ontology. Figure

12 shows part of the RDF format of the baseball

ontology.

5. Conclusions and future work

The most important tool in searching and re-

trieving information and related resources from
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Figure 9: The concept location precision

(C_L_P) of the quantity experiments.

Table 9: Comparison of the PART and ART

results

Construction
with PART

Construction
with ART

No. of documents 1523 1523
No. of terms 53 53
Depth of ontology 5 4
Breadth of ontology 8 10
A 45 43
B 8 10
C 40 37
D 13 16
Precision (C_P) 84.5% 81.1%
Precision (C_L_P) 75.4% 69.8%
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Figure 10: The baseball ontology of PART.
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Figure 11: The baseball ontology of ART.
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a semantic web is a domain ontology. A domain

ontology can help users learn and search rele-

vant information more effectively. Building the

ontology rapidly and correctly has become an

essential task for content based searching on the

Internet. In the field, ontology construction is

usually done by using manual or semi-auto-

mated methods. These methods require input

from human domain experts, but may also

incorporate their biases. In this study, we pre-

sented an automatic ontology construction

based on a PART and Bayesian network. The

PART architecture overcomes the lack of flex-

ibility in clustering. Web page analysis, Word-

Net and entropy deal with the lack of knowledge

acquisition. The RDF format of the domain

ontology facilitates the integration and reuse of

the existing ontology. In this paper, we demon-

strate that PART is superior to ART in cluster-

ing. Further, the highest concept precision

(C_P) is 84.5% and concept location precision

(C_L_P) is 75.4%. The experimental results

support the validity of the proposed method.

In future work, we will attempt to improve

the precision of term location. Permitting the

system to filter accurate terms from the web

pages while enjoying high accuracy is our goal.

Finally, the system proposed here is only con-

structed in one particular knowledge domain.

We intend to construct a system with a multi-

field ontology to address this limitation.
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