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Abstract—In this paper, we present a methodology for auto- systems. Complicating the problem is that signals from which
matic diagnosis of systems characterized by continuous signals.the diagnosis is derived can be perturbed by noise, localized
For each condition considered, the methodology requires the de- baseline wander. and measurement nonlinearities.

velopment of an alphabet of signal primitives, and a set of hierar- . . . .
chical fuzzy automatons (HFAs). Each alphabet is adaptively ob- ~ 1WO different approaches to automatic diagnosis have

tained by training an adaptive resonance theory (ART2) architec- received attention. The first approach is that of the knowl-
ture with signal segments from a particular condition. Then, the edge-based diagnostic tools [1]-[3]. A diagnostic tool based
original signal is transformed into a string of vectors of primitives,  gn this approach has a knowledge base and a rule base. The
where each vector of primitives replaces a signal segment in the diagnostic tool is presented to the symptoms of the system

original signal. The string, in turn, is presented to the HFA char- .
acterizing that particular condition. Each set of HFA consists of a Under analysis. The tool checks the knowledge base to see what

main automaton identifying the entire signal, and several sub-au- Symptoms the presented input corresponds in the knowledge
tomata each identifying a particular significant structure in the  base. The tool then determines, using the rule base, which
signal. A transition in the main automaton occurs (i.e., the main fat, or faults, the given symptoms characterize. This approach

automaton moves from one state to another) if the corresponding needs a large knowledge and rule base to achieve automatic
subautomaton recognizes a token where a token is a portion of the

string of vectors of signal primitives with a significant structure,  diagnosis. o ' .
The fuzziness in automaton operation adds flexibility to the opera- ~ The other approach to automatic diagnosis consists of the

tion of the automaton, enabling the processing of imperfectinput, analysis of signals that the system under analysis generates.
allowing for toleratﬁon measurement noise and other ambiguities. This approach is based on pattern recognition [4]-[21]. The sig-
The .methodollogy is applied to the problem of automatic electro- nals used in the analvsis are usuallv in the time domain. Di-
cardiogram diagnosis. > Y _y . . ; :
) _ _ ) agnostic tools that attempt automatic diagnosis using the latter
_ Index Terms—Automatic ECG diagnosis, nonlinear system 555r05¢h can be classified in two groups: 1) tools that use the
identification, fuzzy syntactic analysis, fuzzy automata, neural decision-theoretic approach, and 2) those that employ syntactic
networks, pattern recognition. _pp_ . . . POy y.
methods. Automatic diagnosis using the decision-theoretic ap-
proach is based upon extracting features from signals that bear
. INTRODUCTION the characteristics of a fault. Diagnostic tools that follow the

UTOMATIC diagnosis of complex nonlinear systems igecision'—theoreti.c approach frequently employ adaptive signal
A a challenging research area in science and engineerf{§Cessing techniques, such as wavelets [22], or neural networks
and plays an important role in both medical and industrial aftl=[7], [9], [10], claiming that classical signal processing [23],

plications. The diagnostic accuracy provided by the diagnost#4] techniques are insufficient to deal with the imperfect and
system is among the most important criteria for measuring tHBPrecise information obtained from the signal. _
performance of the diagnostic system; yet a highly desirable feaThe decision-theoretic approach does not utilize syntactic

ture is the applicability of the diagnostic system to a variety ¢fformation extracted from the structure of signals which can
be essential for automatic diagnosis. Considerable research,

_ _ , ~making use of syntactic information important to automatic
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of primitives). The transformed signal is then syntactically an-
alyzed to determine if the transformed signal characterizes any
fault in the system under analysis.

Different syntactic methods have been proposed for auto-
matic diagnosis [11]-[21]. While some of the syntactic methods
use regular state machines to perform syntax analysis [11], [16],
[17], [19], [21], others involve more complex state machines,
such as attributed and fuzzy state machines designed to deal with
imperfect and imprecise information [8], [12]-[15], [18], [20].
References [8], [12]—-[15], [18] use attributed state machines to
make regular state machines more robust and reference employs
fuzzy state machines.

Attributed state machines, functioning by formal grammars
are more powerful than classical state machines, since clas-
sical state machines cannot handle the complexity of signals
generated by nonlinear systems [13]. However, attributed
methods require a great number of parameters to control the
parsing process of the signals [13]. Studies based on attributed
automata [16], [17], [19], [21] have shown that extensive
computation is necessary to handle these parameters, and
hence, attributed state machines have practical limitations [13].
Moreover, more robust systems are needed to deal with the
noisy, subject-varying, and time-varying signals [13].

In this paper, we present a diagnostic tool for systems
characterized by continuous signals. To handle various signal

disturbances mentioned in the above paragraph, we use hieFar-1.

chical fuzzy automatons (HFA) for the recognition of signals
to achieve automatic diagnosis. HFAs are fuzzy automatons
[25]-[28] that process a signal at several levels of detail.
Moving up each level in the hierarchy results in the identifi-
cation of more complex and global structures. At the apex of
the hierarchy, there is one fuzzy automaton that recognizes a
string representative of a condition. The input to the HFA is
the time sampled signal that has been tokenized into primitives
using an adaptive resonance theory 2 (ART2) artificial neural
network (ANN) [29] where fuzziness of primitives has been
extracted in an ad hoc fashion from the internal state of ART2.
Nondeterministic operation of individual HFAs is an essential
feature of its operation. The nondeterministic fuzzy automaton
supports simultaneous transitions from any starting state to aII2
potential next states. As the state machine operates, member-
ships within all states evolve until the state memberships along
the transition paths dominate. As these states are identified, the
HFA state memberships collapse into a small number of states
for any given transition. Once this synchronization is achieved,
the diagnosis is determined by examining the respective perfor-
mance of several HFAs. An HFA is associated either with each
different condition or with significant variations of the same
condition. Thus, several HFAs are operated simultaneously
on the same signal. The condition associated with the HFA
can be associated with the highest membership that indicates
the identified condition or by some other metric, such as the
number of transitions that were matched with signal segments.
The contributions of this work are three-fold.
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theoretic approach (i.e., we adaptively constructed the
primitive alphabet). Other syntactic methods use primi-
tives to transform signals regardless of what fault is con-
sidered. On the other hand, the adaptive construction of
the primitive alphabet in this study provides that each
fault has its own alphabet (the neural system is trained for
each fault by signals generated by a system that has this
fault and learns primitives from these signals). This way,
it is more likely that a signal that characterizes a specific
fault can be more effective (with a smaller error) trans-
formed by the primitive alphabet corresponding to that
fault than by those of other faults.

) The HFAs used in this study employ a two-folded fuzzi-

ness (the state fuzziness and the transition fuzziness), that
increases the robustness of the fuzzy state machines over
state machines used in existing methods. By transition
fuzziness, a state machine is given the flexibility to make
multiple transitions simultaneously. The state fuzziness
provides a state machine with the capability of being at
multiple states at the same time.

With the input synchronization capability of the presented
diagnostic system, we can analyze signals regardless of
the point at which the user of the diagnostic system starts
to present the input signal to the system. This saves the
user from having to make a priori modifications on the
original input signal to present the signal starting from a
predetermined point.

1) An artificial neural system was used to produce the s€his paper is organized into eight sections including an intro-
of primitives (i.e., primitive alphabet). By doing this, weduction, a diagnostic system overview and operation, a presenta-
complemented the syntactic approach with the decisiotien of the methodology for constructing the diagnostic system,
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Preprocessing
e Depending on how noisy the signal is, several filtering methods may be employed.

e As an example, for wandering baselines, a repeated moving average filter may be used or,

e a low-pass filter may be used for high frequency noise involved.

Windowing
e assume window size w = k time samples
e In training mode:
shift step s = | time samples wherel < k
do for each signal in the training set
take the next k samples to form segment
slide window I samples forward
until all samples are used.
e In operation mode
shift step s = k time samples (i.e.,w = 8)
do for the signal under analysis
take the next k samples to form segment i
slide window | = k samples forward
until all samples are used.

Fig. 2. Pseudocode for preprocessing and windowing.

ART Categorization ART architecture adaptively forms categories using the signal segments pre-
sented. Details of the ART architecture may be found in [29].
ART Postprocessing

e select the number (v = |V%|) of the categories (alphabet elements) representing each signal
segment.

e do for each signal segment
do for each category
if (weight of current category > weight of any category in the set)
then include the current category in the set
replace the current signal segment by the current set of v categories

Fig. 3. Pseudocode for ART postprocessing.

a discussion of HFAs, an application of automatic ECG diagheir insufficiency for automatic diagnosis by signals with com-
nosis, the results of the analysis on the example, a conclusiplex temporal structures. Automatic diagnosis based only on
and a summary. ANNSs either fails to utilize the temporal structures of the signal
under analysis, or attempts to express the structures as features
of the signal, which becomes highly inefficient. The benefit of
II. SYSTEM OVERVIEW AND OPERATION using the ART2 architecture is that learning is unsupervised,
and has the ability to identify shapes in segments of the input
In our approach, an HFA is constructed for performing awsignal. Furthermore, for each input segment, ART2 can also be
tomatic diagnosis. A block diagram of the system is shown modified to supply a measure which can be used as a fuzzi-
Fig. 1. Each box in Fig. 1 is illustrated with further details imess measure for membership to each ART2 class. The mea-
Figs. 2—4. The diagnostic system is composed of one such ssiires are passed, as a vector, to the sub-automata. Each subau-
system, as in Fig. 1, for each condition. An ART2 ANN is usetbmaton recognizes a syntactic structure (token) from the input
to tokenize the input signal for processing by the automatomseasurement. When a subautomaton reaches an accepting state,
that follow. The reason for using an ANN to tokenize the inpu transition results in the main automaton. In this work, the HFA
signal is the need to adaptively construct a set of signal pringiets as a nondeterministic finite automaton, with simultaneous
tives from a group of signals characterizing a specific conditianembership in several states and transitions along several paths
or fault. By this adaptive construction, the set of signal primpossible. Diagnosis for a particular condition (i.e., the system ei-
tives is generated in a system-independent fashion. We call thteer rejects the existence of that condition, or else indicates with
signal primitivegemplatesThe set of templates is called ah  a particular certainty, that the input signal characterizes that con-
phabet While ANNs prove necessary for the adaptive extractiadition) is achieved, either when all input segments are processed
of the templates, the decision-theoretic nature of ANNs implyy the corresponding HFA, or when the HFA fails to move at
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Syntactic Analysis

e do for each condition considered
initialize wg(main) and wp(main)
do for each sub-automaton

initialize ws(SA;) and wp (S A4;)
initialize all states

b, tart = 1.0
Hmiddie = 0
Kpend = 0.5

initialize all transitions
do for each set py,
do for each state ¢, in the main automaton
do for each sub-automaton S A,, that still can move to another state
do for each state ¢; in ws(SAy)
do for each alphabet element in py,
if the alphabet element initiates a transition 6;; from ¢;
update wp (S Ay,) by adding the destination state ¢;t0 wp(SAp).
update pg, .
if ¢; is an end state
add destination state of current transition in main automaton to wgs(main).
else if no other transitions from ¢;
drop ¢; fromws(SA,)
transfer all states inwp(SA,) tows(SAy) for the next input.
wp(SAn) + {}
ifws(SAy) is empty (i.e., no more transition capability)
drop ¢y, from wg(main)
update ws(main) by adding all states in wp(main)
find the minimum membership pg, min along the path of transitions
declare if the condition is present and the accuracy computed.

Fig. 4. Pseudocode for the syntactic recognition.

a certain input segment. Each condition for which diagnosisg®odness of classification, and several achieving good classifi-
desired requires the development of its own HFA system andtions are placed in the input template vector. For each input,
training of the ART2 ANN. The full details of the design anda measure of fuzziness can be determined for all templates.
operation of the system are presented in [30]. Sub-automata recognize tokens, sequences of templates, that
are representative structures within the signal being analyzed.
All transitions are initially assigned maximum fuzziness (i.e.,
A. Operation of the HFA 0.5), allowing any relevant template to produce a transition.
State membership fuzziness is the maximum of two quantities,
A key aspect of the diagnosis system is the operation of thif first being the fuzzy membership of the destination state.
HFA. Each HFA consists of a single main automaton with trarrhe second quantity is the minimum of the membership of the
sitions driven by a set of sub-automata, one for each token. Trafitial state, and the template membership. This relationship en-
sitions within the sub-automata, in turn, are driven by the outpsiires, within the current subautomaton, that certainty increases
of ART2 that determines the most likely set of templates for\gith unambiguous template memberships and that ambiguity is
given segment of the input. In operation, all fuzzy automatomgaintained with sustained ambiguity.
operate and process inputs simultaneously. The operation of theig. 5 is used to analyze the signal, and in Fig. 6, we illustrate
HFA is discussed in a bottom up fashion, where at the bottofimain automaton and three sub-automata. Using the figures, we
reside input templates, categorizations of the raw input, andg@écuss the operation of HFAs. The analysis starts at all states
the top is the main automaton. in the main automaton. From Fig. 5, the main automaton can
At the bottom of the hierarchy, the raw input is preprocessehove from states one and three by the tokerfrom two by
and then classified into the template classes. Template clasBesind from four byC'. For each token that can move the main
are assigned a membership based on parameters related t@athematon from one state to another at the current time instant
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includes the correct synchronization state from the onset of pro-
cessing, and does not require any predetermined point in the
signal to start the analysis. Initialization and synchronization are
discussed in more detail in Section IV.

Assume that input synchronization occurs at the seédnd
Fig. 5, and that the main automaton is in std{e Hence, sub-
automatorS 4, is the only active subautomaton. On the receipt
of the templateh, subautomators’ A, moves fromA; to As.
Hence, the subautomat®i, remains active for the next tem-
plate in the sequence. No changes occur in the main automaton
since the tokend, which is the input that initiates the transition
from T3 to T, in the main automaton, is not recognized yet. The
next template presentediisagain. The only active state in the
main automaton i€, and the only active subautomaton repre-
sentsA. The source state in the subautomator is The tem-
plateb can move the subautomatSm, from A, to Ag. Ag is
the end state of the subautomat®a,. That is, the tokent has
been recognized by the subautomasoh, . This, in turn, moves
the main automaton frof; to 7. The new template presented
is a. The only transition fromi; in the main automaton can
be initiated by the toked'. The subautomato§ A, becomes
active. The subautomatofid. can move from the start state,
C4, to stateCs via a. Cs is not an end state. Hence, the subau-
tomatonS A, remains active and no changes occur in the main
automaton. The next two templates ar@nd ¢, respectively,
which move the subautomatd® . C3 and toCg, respectively.
StateCr is the end state of the subautomattui,.. The moves
from T}, to T;. This process proceeds until either all templates
are presented to the system or a template in the sequence is re-
jected by the system.

I1l. M ETHODOLOGY FORCONSTRUCTINGDIAGNOSIS SYSTEM

The diagnosis system described in the last section is con-
structed using some basic assumptions about the types of pro-
cessing performed as well as, the characteristics of the signals
in the class of systems for which automated diagnosis is de-
sired. The diagnosis system is constructed in two stages, repre-
senting the system’s independent and dependent parts, respec-
tively. First, preprocessing and template identification are per-
formed. Next, HFAs are constructed for each condition which
is a largely manual process and is system dependent.

A. System Independent Methodologies

The systems under consideration are assumed to be measured
and monitored through one or more time sampled analog sig-
nals. The signals are also assumed to have some temporal struc-
ture.

Preprocessing is the first step of the methodology. In prepro-
cessing of the input signal, the following two tasks occur: the
decomposition of the original signal into windows of time sam-
ples, the input segments, and the filtering and other adjustments

(i.e., for all currently active transitions), we use their represeapplied to the input signal to improve the performance of the
tative sub-automata to determine whether the coming seque AT 2 network.

of alphabet templates characterizes any of the tokens. Initially,The decomposition of the time-sampled signal into segments
all states except the end state in sub-automata are initializedstmecessary since ART2 can only accept the original signal as
a membership of 0.5. Thus, with the token, transitions may besequence of input segments. A time-sampled signal is decom-
taken from any but the end state. As a result, the state machised into segments by a sliding window where the window size



956 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

determines the size of segments. The number of time samphgsut signal segmerti, whereVy, (T = { } and|Vy| = v, and
the window leaves behind to obtain the next segment is anoth®gf = p. The resulting string is
parameter of the signal segmentation process. Usually, different

_ - R s=281--- Sk (2)
values of this parameter are used for training and testing (i.e.,

operation mode) purposes of ART2. To retrieve maximum iaY_/here each vecto), replaces a segmett and is a set of two-

formation from the signal during the training period, a sm ples, such that

number of time points may be selected to allow for overlapping.
On the other hand, in operation mode, the sequence of segmergs = {(7j, )| ViViTi € Vi A1 € Tie A pigj > ki)

must be identical to the original signal. Hence, no overlapping, 3)
as well as, no omission of any time point in the original signal
is desirable during the operation of ART2. The strings is composed of vectors of templates, ang,; is

During training, ART2 identifies alphabet templates. Althe fuzzy membership assigned to the alphabet tempjate
phabet identification serves as the boundary between the systefiect the strength of the match with the signal segngiaind
independent and dependent methodologies. For different sigs-
tems, the structural components may also vary as a function of
the level of detail. At higher levels of signal detail, the compo- Ikj = Tkj (4)
nents are weakly system dependent and general, while at lower
levels of detail, the components are strongly system depend\é’
and specific. In addition, the true nature of signals observed EPh ‘ lticat N f i . h
higher levels of detail are more ambiguous, due to noise and T reasor;n ora mlu |c§1begory r?Or;s orfm? 'ﬁnb('ﬁ" eac
other variations in the signal. The mechanism adopted in trﬁ?”a segment,, 1S replaced by a vectos,, of alphabet tem-
work is to employ the ART2 ANN which can identify and ther? ates, and the_correspondlng top-ranking \_/ve|ghts .|nstead of
classify time sampled continuous measurements [29]. In tlﬂgl.y the one winning glphapet templatg with Fhe h|gh§st
work, the Stuttgart Neural Network Simulator (SNNS) [31 eight) of the original signal is to convey more information to

and the accompanying ART algorithms have been modif Iaesyntactic recognizer, regarding alternative matches achieved
to facilitate the creation of the fuzzy template vector used the_ope_ranon of ARTZ’ S0 tha_t a po§S|bIe miscategorization
subsequent processing. occurring in the decision-theoretic portion of the methodology

In operation mode, ART2 transforms the original time-sanf2" still be correcte(_j in the syntactic recognjzer. Creatio_n_ of
pled signal into a sequence of vectors of alphabet templat%e@pla.te alphabet_s S perfqrmed for each different condm.on
ART2 classifies each consecutive signal segment in the or I which _dlagn0_3|s IS de_swe_d, gnd the process of creating
inal signal with a vector of alphabet templates along with ¢ mplates is relatively application independent.
corresponding strength of match. Over a sequence of SegmeQFSSystem Dependent Methodologies
this new sequence is calledneulticategory string After clas- } } )
sification, the trained ART2 network classifies theh signal ~ System dependent processing takes information about the
segment,, in the original signal to each categarand assigns charqctgnsucs of the system for creating fuzzy automatons.
a weightwy,; reflecting the strength of the match between thiélentifying tokens from sequences of alphabet templates move
segmentt;, and the corresponding categaryrepresented by down the next level of detail and up on the level of system
the alphabet template. Thus, the ART2 network generates a§|_oecn‘|cs. _Fmally_, strings of tok_ens are use(_j to represent the
string s of templates out of an alphabet withelements where differentdiagnosis conditions. Given a collection of automatons
each alphabet templatehas an associated weight; for each for the different diagnosis conditions, defuzzification into a

rery; is the match ofth signal segment angth alphabet
plate derived from ART2.

signal segment;, as in the following crisp diagnosis is achieved.
HFAs perform a syntactic analysis on the string
s = H«Tl? wi1), -y (T, w1p)), -y (71, W), - - - s = S1---Sk, as in (2), and identify the condition of
the target system. Each HFA that characterizes a condition
(7> wip)), -+ (71, wica), - (7, wip)) (D) yger consideration (i.e., a condition which our methodology

gftempts to identify) is manually built. The manual construction

of HFAs is discussed in Section IV-C.

hi gn the next section, we discuss the two properties of the HFAS,

p[QF. hierarchy and the input synchronization capability. Then, the
struction of HFAs and the syntactic analysis are discussed.

wheres is the multicategory string representing an input sign
originally composed of{ segments.

Examining all alphabet templates to detect the best matc
time consuming, and degrades the system’s computational
formance. Furthermore, considering more than the few alphaﬁgp
templates with the highest ranking weights does not improve the
guality of the transformation. Hence, the multicategory string is IV. HFAS
optimized, such that a prespecified numbeof alphabet tem-  An HFA is a finite state machine where states, transitions,
plates, with the top-ranking weights is selected for each sigrald inputs are assigned fuzzy memberships. An input member-
segment, and the string is formed by alphabet template vectehip.,; reflects the strength of the match between the alphabet
instead of the entire set of categories. templater;, and the input segmetry. A transition membership

The multicategory string can be mathematically defined as,; describes the fuzziness, or the uncertainty of moving from
follows: form a partition> = V;, | T, corresponding to each state¢; to stateg,. At any given time, the state machine can
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have a membership in several states simultaneously. The seBofinput Synchronization
states from which an HFA can initiate transitions with the cur- |, the methodology, na priori assumptions are made about

rent input is the sebs of the current source states. The set ghe starting position of an input signal. That is, the time sample
states to which the HFA progresses is called the.geodf cur- 4t \which the recording process of the original signal began may
rent destination states. The HFA is at each of the statesin e ot any point in any subautomaton. The methodology does not
only with a specific degree of certainty or fuzziness. require that the first input be synchronized to any state machine
In the process of recognition, an HFA moves from the fuzzy any way. The syntactic recognizer locates the correct posi-
source states ims, to the fuzzy destination statesdnp, with  tion of the multicategory string during the analysis of the first
each inputS;, as in (3). At each transition, the membership ofew templates of the input string, and continues the analysis ac-
each destination state is updated based on the current megtdingly. The number of templates that the syntactic recognizer
bership of the source and destination state, the membershiggimines before the current position of the string is discovered
the current input, and the transition membership. The membgepends upon the starting position of the string, and the shapes
ships of the states, along the path from the start state to #feokens. If the string starts with a token that is composed of
end state, determine the strength of the recognition at the efighabet templates that are unique to this token, then the cur-
of the fuzzy syntactic analysis. The transition memberships, gght position of the string is located immediately. If not, then
the other hand, remain the same throughout the analysis.  the HFAs rule out the incorrect candidates for current positions
Each condition or fault for the system under analysis has @hen a token with a different shape is encountered. This capa-
HFA associated with it. The HFA performs a syntactic anahility of HFAs in the methodology is callethput synchroniza-
ysis and determines with a specific accuracy whether the systggm.
under analysis indicates the condition associated with the HFATg achieve input synchronization, the syntactic analysis starts
An HFA for each condition consists of a main automaton ang} having a nonzero membership in start and end states in all
several sub-automata. The number of sub-automata for a CpiFAs. Since all states are potential start states, all states form
dition is specified by the number of significant structures, thgg (main) of the main automaton in the beginning of the syn-
tokens, in the condition-specific signals which are used in thgctic analysis. By considering all states in the main automaton,
HFA construction and characterize the condition. all tokens that can initiate transitions from states)i{main)
of the main automaton are examined. The examination of to-
kens proceeds with the analysis in sub-automata. Sub-automata
A. Hierarchy in HFAs are invoked by the main automaton as discussed in the previous
section. The starting location of the string can be any point in
HFAs realize the syntactic analysis and recognition of a sigrthle token. Therefore, all states but the end states in each subau-
by a hierarchical mechanism. The main automaton recognizematon are put into the related initiak. All states inwg of
the entire signad, while each subautomaton achieves the recogach subautomaton are checked to see if the presented alphabet
nition of a specific token in the signal. The inputs that can intemplate vector is able to initiate a transition. The destination
tiate transitions in the main automaton are the tokens that atates of the initiated transitions are storedin of each sub-
recognized by sub-automata. Sub-automata, on the other handpmaton. States with no possible transitions are dropped from
can progress from one state to another by alphabet templates. If a subautomaton cannot move from any of the states in the
During the operation, the HFA receives the current vector of als, then the state in the main automaton is dropped tgnof
phabet templateS;. in the multicategory string, and starts exthe main automaton from which the main automaton can only
amining if any state in the current input storagg(main) of move by the token recognized by this specific subautomaton.
the main automaton can initiate a transition with any of the dkror the analysis of the next alphabet template vector, the desti-
phabet templates in the current vector. However, the only wayation states ip of each subautomaton are transferred to the
transition can be initiated in the main automaton is by the recagextws of the subautomaton and become the source state for
nition of a token in the string. Thus, the subautomaton corrthe next alphabet template vector. At some point in the analysis,
sponding to the token takes the syntactic analysis over to chetksub-automata but one fail to proceed since, with the current
whether the token that can make a transition from the curraphabet template, none of the sub-automata can initiate a tran-
main automaton state can be recognized by the subautomasition from any state. The remaining subautomaton reflects the
The subautomaton studies the source states ingitt deter- token in the input string that is currently presented to the syn-
mine if a transition can be initiated from any of them, with anyactic recognizer. If, before that point, all sub-automata termi-
members of the current alphabet template veStarThe des- nate, then the input string is not recognized, or rejected by the
tination states at the end of the current transitions femnof HFA before even the current position of the string is located.
the subautomaton. If any of the destination statesjrare end We give a simple example to show how input synchronization
states of the subautomaton, then the corresponding transitieorks. We use the signal and the HFAs in Figs. 5 and 6, respec-
in the main automaton occurs, and the destination state of thely. In Table I, we show howgs andwps of these HFAs
transition in the main automaton is placeduip of the main change with each alphabet template in the sequence. For sim-
automaton. The above discussion explains the hierarchical jhicity, we drop the fuzzy memberships of states, transitions,
teraction between the main automaton and the sub-automatadiod templates. The analysis starts at all states in the main au-
a specific condition. In the next section, we discuss the inpietmaton. Hence, the input storage of the main automaton ini-
synchronization property of HFAs. tially is wg(main) = {T1, ..., T4}. From Fig. 5, the first
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TABLE |
INPUT SYNCHRONIZATION EXAMPLE
Alphabet
Template Main SAA SA B SA C
ws Wp wg Wp ws Wp ws Wp
b T1,..., T4 [T2,T4 | A1,..., A3 | A2, A3 {3 {3 C1,...,C6 c4
a T1,...,T4 {} A2 P B1 B2,B3 C1,C4 Cc2,C
d T2,T4 T3 {} } B2,B3 B4 C2,C5 {}
b T3 Al {} {

alphabet template i6. The two sub-automatal and C' can lyze a system for a condition, an HFA must be constructed corre-
start withb. Initially, ws(A4) = {41, ..., A3} andws(C) = sponding to the condition. From the viewpoint of the automated
{C1, ..., C6}. After the transitions, the output storages of thelectrocardiogram (ECG) diagnosis, the condition is the healthy,
sub-automata, which are initially empty are updated as follows: pathologic status of the heart. To construct an HFA for a con-
wp(A) = {A2, A3}, andwp(C) = {C2, C3}. Thatis,A dition, asignal set characterizing the condition is transformed by
can make a transition from the first and second states(andthe ART2 ANN into a sequence of template vectors, one signal
only from the first state. The resulting statesdrare the second at a time. Next, the transformed signal set is used to build the
state (transition from the first state), and the third state (translFA. A set of signals, the structures of which clearly reflect
tion from the second state). (7, the resulting state i63. Since typical features of the condition, allows the construction of an
A reaches the end statd¥), wp of the main automaton is up- HFA that provides for robust recognition. To reach a reliable di-
dated:wp(main) = {T2, T4}. agnosis in multiple-condition situations, the individual accura-
For the next inputws(main) = {T1, ..., T4}. The first cies the methodology provides for each of these conditions may
and third state of the main automaton are still active, and the examined at the end of the analysis. Another way to handle
second and fourth states are copied frop(nain) of the last the complex problem of a multiple-condition situation may be
transition. Thusys(A) = {A2},andws(C) = {C3}. Thenew to check signals produced by other possible sources within the
added second state can initiate a transition viithus(B) = same system which may enhance the features of one condition
{B1}. The fourth state can initiate a transition with Thus, while suppressing those of the other conditions. Another pos-
ws(C) = {C1}. The secondinputisfrom Fig. 5. The template sible solution may be to use a more sophisticated defuzzifica-
a cannot initiate a transition id from any states in the currenttion technique that can relate different conditions to each other
ws(A). Hence,I'l andT'3 drop fromws(main). B caninitiate and extract a more accurate diagnosis. The last solution is be-
transitions toB2 and B3. Hencewp(B) = {B2, B3}. C can yond the scope of this study.
initiate transitions fron"'1 andC3 to C2 andC’5, respectively.  The HFA construction for a condition starts when a multicat-
Hence,wp(C) = {C3, C5}. Since no sub-automata reacheégory string of alphabet templates is obtained for each sample
their end states,p (main) = { }. signal in the set. First, the tokens representing significant struc-
For the next inputws(main) = {12, T4}. T2 and 74 tures in the sample string are identified. Next, a transition dia-
are still active in the main automaton. No state is copied frogtam of the main automaton is constructed where each transi-
wp(main) of the last transition. Henceys(B) = {B2, B3} tion of the main automaton is assigned the corresponding token.
andws(C) = {C3, C5}. The next input is/ from Fig. 5. The Each state in the main automaton is assigned a fuzzy member-
templated cannot initiate a transition i from C3 or C5inthe ship of 1 since all states in the main automaton are the start
currentws(C). HenceI'3 drops fromws (main). B caninitiate States enabling input synchronization. The fuzzy membership
one transition ta34 from B2. Hencewp(B) = {B4}. Since of a transition in the main automaton is the fuzzy membership
B reached its end state, the resulting stat@adh the main au- of the end state of the corresponding subautomaton that recog-
tomaton {'3) is put into the output storage. Thusp (main) = hizes the token initiating the transition. The initial values for
{T3}. the transitions in the main automaton are 1. As noted earlier, the
For the next inputws(main) = {T3}. The first state of main automaton is built cyclicly, thus capturing the periodicity
the main automaton is still active, and no state is copied fropfi the signals under analysis, and with no explicit end, states to
wp(main) of the last transition. Thusys(4) = {A1}. The accept signals of any length.
next input ish from the Fig. 5. On the receipt of the fourth input, To construct the subautomaton for a given token, all occur-
only one state remains ins (main), and the operation has syn-rences of the corresponding token are identified. Each occur-
chronized with the input string (i.e., the next token in Fig. 5 ig&nce is actually a sequence of alphabet templates. Next, a path

A, and it is the one beforée). of states is inserted to the subautomaton which is used to recog-
After this discussion of the properties of the HFAs, we presefize this specific sequence of alphabet templates. This insertion
a discussion regarding the construction of the HFAs. is performed so as to provide the minimum complexity and max-

imum flexibility of the state machine. The fuzzy memberships

of the transitions can either be obtained frapriori knowledge

of the transitions or initialized to the maximum uncertainty, 0.5,
In this section, we discuss how an HFA for a condition is deéa the case of no prior information.

veloped. A condition is the status of the system under analysis)n the case of no prior information, an initialization with

including fault free and faulty operation. Furthermore, to anaemberships reflecting the maximum ambiguity is used to

C. HFA Construction
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TABLE I we add this path to the subautomaton of B (the lower path in the
FIRST PORTION OF THETEMPLATE VECTORSTRING FOR THEINPUT SIGNAL subautomaton for token B) in Fig. 6. When all different versions
Window 1 2 3 4 5 6 7 8 9 of B in all sample signals are added to the transition diagram of
Winning Template |6 ¢ d b b a a c b the subautomaton, we combine the states which are equally far

from the start states, and to which the subautomaton arrives by

allow any possible transition that occurs in the subautomatdff"Stions initiated by the same tgmplates. In the case of B, we
Moreover, this initialization could be a good initial point tocan combine the states 2 and 3, since they are both one transition

adaptively determine the transition memberships. The st:g am the start state, and reached by transitions initiate ks

memberships change during the process of recognition. S own in Fig. 7. To cope with imperfect signals and to tolerate

chronization occurs when all but one of these states fails 18 possible incorrect classifications by the ART2 ANN, addi-

continue, after a few transitions, since these states are not t{ﬂgal transitions can be considered simultaneously between any

correct states at which the subautomaton starts with the gi\%‘f? sttateslwthlc_rllr?re pe_rlfor.;ned.?y t em.pl'.it\zeSsEsm;Ii?r to the ,[V\;'n'
input string. To make the input synchronization mechanis ng tempiate. The similarity criterion 1S with respect to

work, the start state of a subautomaton is assigned 1, the & winning template. The numk_)ergf additional transit.ions con-
states 0.5, and the other states (the pseudo-start states) 0. sidered depends upon the application and the MSE distance be-

We show the HFA construction process by means of a simﬂYéle:elr; th_e wThmng andd5|m|lar tzn;plaltges. ; h
example illustrated in Figs. 5 and 6. Fig. 6 is used in this ex- ollowing the procedure used for 5, we perform the same

ample. The construction of the HFA starts with the identificd’ 0¢€SS for alldqther tckJ)kens in all Simp:F signals a_md cr?n?truct
tion of tokens in the sample signal by a human expert. Supp&gs corresponding sub-automata. Finally, we assign the fuzzy

one period of our sample signal is illustrated in the input stri emberships to the states and the traqsitiong asdiscussed above.
in Fig. 5. We can observe from the figure that one period of th is completes the example and the discussion of the HFA con-

signal is composed of the tokens A (the horizontal neutral "nét’ructlon.

B (the small triangular wave), and C (the larger, irregular trb_ Diagnosis

angular wave). The sequence is A, B, A, C. Next, we draw the ] ) o
transition diagram for the main automaton using the sequence of "€ Syntactic recognizer, performs the recognition in the
tokens in one period. Then, the human expert identifies the §82gnosis phase. The syntactic recognizer consists of several
quence of winning alphabet templates (a winning alphabet teFAS: For each condition; in the sy}gtem, there exists one
plate is one that matches the corresponding window of sampléA that recognizes the strings= [[;_; Si. At the end of

with the highest weight) in the transformed signal. the training of ART2, each condition has an alphabép; ).

The postprocessor generates the string of template vectof$ €ach alphabet, there exists an HFA. The main automaton
and the categorization that the ART2 ANN performed for ead}erforms transitions upon receipt of a token. For the transition
segment window, and the winning alphabet template that tifebe performed in the main automaton by a token, a subau-
postprocessor finds by means of the mean square error (M&gaton for the corresponding token must recognize the token
criterion. The template alphabet in Fig. 6%s= {a, b, c, d}. from the coming temp!ates. Th|§ .emphaS|zes the hierarchical
Suppose our sample signal consists of 1000 time samples, #géure of the syntactic recognition process. To perform a
window size isw = 10, and the sliding step = 10. With this transition, HFAs receive the current set of alphabet templates,
configuration we have 100 windows. Suppose that the waveforth &S in (3), at each step of execution from the input signal
shown in Fig. 5 is the start of the sample signal. Then, the first= 51 --- Sk - HFAs consider all of these alphabet templates
part of the string appears, as in Table II. Note that categoris concurrently perform transitions. For each HFA, @p
that ART2 suggested are omitted in Table Il for convenienc@Nd anwp hold the source and resulting states for the current
Using the input string in Fig. 5 and Table II, we can determinféansitions, respectively. For a transition to occur from a source
which alphabet templates each token is composed of, and s&@e. the membership of the current input (a token in the main
to construct the sub-automata for tokens. automaton, and an alphabet template in subautomaton) must

As an example, we consider token B. In the input string i€ greater than, or equal to, the membership of the transition.
Fig. 5, B is contained in the second and third windows. Tablelfi this condition is fulfilled, the membership of the resulting
shows that the winning templates for windows 2 and 3gamed State assumes the minimum value of the membership of the
d, respectively. This means that a path should exist in the sub&@urce state of the transition, and the membership of the current
tomaton for B that transitions the subautomaton from the stfput. Otherwise, the membership of the resulting state stays
state to the end state by the consecutive transitions initiated b€ same. If there exists more than one possible transition from
andd. Then, we draw the upper path in the transition diagram 8fates inws to the resulting state with alphabet templates in
the subautomaton for B. We continue identifying other Bs in tH8€ same ses,, then the membership of the resulting state is
sample signal, and add other possible paths to the subautoma&gtgned the maximum among those. In other words, the state
for B in the same fashion. Suppose that we identify B in wir'embership update function is expressed as
dows 33 and 34, 46 and 47, and 69 and 70 in the sample signal, ) _ N _
and the string is as in Table Ill. Suppose that the only sequenge ; %E}f (lw,j, min <Ms;'1_j: M@.)) , if s, < Msgq_j
of winning templates that is different from the first sequence 6#; ° )
templates that identify the token B (see Table Ill) is that for win- MZZJ. ) otherwise
dows 46 and 47, where the second winning templatetience, (5)
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TABLE Il
COMPLETE TEMPLATE VECTOR STRING FOR THEINPUT SIGNAL
Window 1 2 3 45 6 7 89 --- 33 3¢ --- 46 47 --- 69 10
WinningTemplate [ a d b b a a ¢ b -+ a d -+ a e -+ a d
4 to the current destination stat@ax(0.6, 0.8) = 0.8. Hence,
¢ ﬁ'h|s example completes this section. We discuss the defuzzi-
SAy: SA for Token B (Simplificd) fication process in Section IV-E.
Fig. 7. Simplified diagram of the SA recognizing token B. E. Defuzzification: Determining the Likely Condition

In the last stage of processing, defuzzification is performed.

—06 While a fuzzy membership can be extracted from the HFA, it

/>\ T g, =05 was found that a better measure of overall HFA success was a

o w_gg tally of the number of consecutive transitions within the state
:U¢1 =07 “““\w\\ My, =" machine structure that are made over all input. This serves as a
\3{/\\ synchronization measure to measure of how much of the input

followed the HFA. Using this as a basis, if several machines

ﬂ" -0.8 T “"/’\\-« are able to synchronize on the input, more transitions indicate

92 e ,u¢ =06 a better match. In the event multiple HFAs give the same, or
f’m M,ﬂ,x«”"“’“ #523‘ 0.5 ? very closely the same number of transitions, then the machine
\E By = 09 fuzziness is used to break the tie. In a sense, the diagnosis is the

~ 523 condition associated with the HFA that best synchronizes with

i ) ) the input recording.
Fig. 8. Example showing the execution of the formula. € inp ecord 9

) ) ] ) V. EXaMPLE: ECG DAGNOSIS
where the superscript denotes discrete time steps; is

a source statep; is a destination statej;; is the template
that must be input to transition from stafg to ¢;, 56
template derived by ART2 classifications;, is the fuzzy State
membership in statg;, us,, is the fuzzy transition membership
from ¢; to ¢;, [isk is the membershlp of the template, and

In this example, a demonstration of automatic diagnosis of
the ECG is presented. Two HFAs are constructed to process,
respectively, the normal sinus rhythm, and the atrial fibrillation,
a type of arrhythmia originating from the atria. A normal sinus
rhythm is illustrated in Fig. 9. In the normal sinus rhythm,
the simplified cardiac cycle is composed of tRewave, QRS
complex, and thd" wave followed by the constant isoelectric

IF = {¢i|¢i eI; A Sk e Sk} (6) Iint_a sepa_ratirjg two cardiac cycles. Fig. 10 shows_ an_at_rial fibril—
& lation which is an abnormal heart rhythm. In atrial fibrillation,
the ECG exhibits an undulation of the baseline, called the fibril-
where/; is the set of states that can transition to stgte latory, or thef-waves, accompanied by an irregular ventricular

We give an example in Fig. 8 to clarify the function of the forrhythm. While the QRS complex and tli#& wave keep the
mula. There are two states 1 and 2 from which the automatasrmal configuration, an atrial fibrillation rhythm might look
can move to state 3. Both transition membershipsare = like ffQRSTfffffQRSTfQRSTfffQRSTfffffff.
s, , = 0.5. One instant (discrete timk) from the automaton The features of atrial fibrillation can be best detected in the
is illustrated in Fig. 8, at which the state memberships of stateadV;, or the standard lead Il [32].

1 and 2 areuy, = 0.7 andpg, = 0.8, in respective order,
and the corresponding input membershlps;‘a§e = 0.6 A. Template Alphabet Construction

andpugr = 0.9. We first check if the condition o the right-  In this example, two ART2 networks and template alphabets
hand 5|de of (5), which requires that input memberships muse created for the normal sinus rhythm and atrial fibrillation.
be greater than the transition memberships. For both transitiohbe task of the preprocessor is the decomposition of the input
the current input memberships are greater than 0.5, the trafsGG. The preprocessor accomplishes the decomposition with a
tion memberships. Hence, the condition on the righthand sigd@ving window.

is fulfilled. Next, we take the minimum of the initial state and The two parameters of the window, the window sizeand
input memberships. For transition2 3, min(0.6, 0.7) = 0.6, the slide step, directly affect the performance of the automatic
and for transition 2 3, min(0.9, 0.8) = 0.8. Then, for each diagnosis. Care should be exercised while selecting the two pa-
transition we compute the maximum among the current destikmeters so that as much information as possible is transferred
nation state membership, and the result ofiiki@ operation. tothe syntactic recognizer while avoiding a selection that would
For transition 1— 3, max(0.6, 0.6) = 0.6, and for transition slow the analysis. To transfer maximum possible information,
2 — 3, max(0.6, 0.8) = 0.8. Finally, we select the maximum overlapping of the consecutive input segments is allowed in the
among the results of the maximum operations for each transitidecomposition of the time-sampled signal. For an overlap to
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A Normal Sinus Rhythm ECG
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Fig. 9. ECG illustrating normal sinus rhythm.

An Atrial Fibrillation ECG
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occur, the window size must be strictly greater than the slideme more complicated, and the syntactic analysis of longer
step. A slide step of one time sample gives the largest overkignals by more complicated HFAs degrades the overall com-
and, hence, the transfer of maximum information. Furthermomaytational performance of the diagnostic system.
the slide step of one sample provides more gradual transitiong\fter a series of conducted experiments, the two parameters
between tokens. On the other hand, large overlaps slow the aadlthe window, the window sizev and the slide step, have
ysis. If the slide step and the window size are the same, the been selected to he = 10 ands = 2 during training. We have
quence of consecutive windows of time samples becomes wmseds = 2 since we have not observed any improvement in the
exact copy of the original signal, only decomposed into segystem performance with the case- 1 that provides the max-
ments. If the slide step is greater than the window size, a lassum information transfer to the syntactic recognizer. Further,
of information occurs since some time samples are omitted. the window sizew = 10 has provided less HFA complexity

The window size is another factor that affects the speed foir the same system performance as those obtained with larger
the analysis. Smaller window sizes result in smaller templaténdow sizes (i.e., more complex HFAS).
sizes, speeding up the tokenization process by the ART2 netfor the HFA from atrial fibrillation, an ART2 network is
work. Choosing a smaller window size with larger overlaps agrained with 600 templates, 200 of which originate from three
pears reasonable, since the small window size may have a cdifferent patients. For the HFA from normal sinus rhythm,
pensating effect on a large overlap by slowing the transforman ART2 network is trained with 200 templates originating
tion of the signal. However, small window sizes cause the trarfssm one patient. Each template consists of 10 consecutive
formed signals and the tokens to become longer. As a restilhe samples. For the normal sinus rhythm, an ART2 network
HFAs that recognize the tokens and the transformed signals dth 83 categories (alphabet templates) is trained. The ART2

-400

L
0 0.5

2
Time (sec)

Fig. 10. ECG illustrating atrial fibrillation.
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Neutral VIl. DI1SCUSSION ANDCONCLUSION

The automatic diagnosis methodology we have presented
N P /N PR /N QRS N ST N T here has been evaluated based upon the number of correct diag-
o N o o o noses among all ECG signals presented to the system. We have

used the standard medical diagnostic accuracy criteria defined
in Table V used by systems attempting medical diagnosis. Un-

. o _ . like our automatic diagnostic system, many signal processing
network trained for atrial fibrillation contains 87 categories,

! . ’ ggorithms attempting automatic detection, or recognition
[F;Ig]ts showing this template alphabet can be found in [27] a8’y gpecific heart condition assess the performance of their

methods by the number of the heart cycles recognized over
. the total number of cycles presented to the system. We chose
B. HFA Construction Phase to evaluate our system’s performance based on the standard
The first task is to determine the structure of the main awedical diagnostic accuracy criteria, since our system’s final
tomaton and each subautomaton to recognize an ECG sigadakision will be the identification of a specific heart problem
The main automaton is used to recognize a full cardiac cycle.uging an ECG, rather than only a cycle identification.
the ECG signal analysis, each token represents either a complegiven the fact that the test data used in the experiments con-
or a wave. Each subautomaton recognizes a part of the sigii@tted were totally unknown to the diagnostic system, the diag-
structure specific to that condition. For instance, in a normabstic system displayed a considerably high reliability on distin-
sinus rhythm, a subautomaton is designed to recognize eacly@khing atrial fibrillation from the normal sinus rhythm (Sen-
the tokens ” wave, the PR interval, the QRS complex, the Séitivity: 0.95). The specificity was not as high as the sensitivity.
segment, thd” wave, and the neutral line showing the quiesthe primary reason for this is the diverse structure of the QRS
cent period between two consecutive heart beats), while for ®mplex in various ECGs. Using real time ECG signals, we en-
atrial fibrillation, subautomaton are designed to recognize tgguntered QRS complexes with various shapes. This was due
tokens (the QRS complex, the ST segment kheave, and the to the fact that the corresponding lead was placed at a variety
TQ interval) since atrial fibrillation changes the normal sinusf places on the human chest and the direction of the electrical
rhythm, and generates complexes with characteristics of atfigice was recorded accordingly. In such a case, the neural net-
fibrillation. The transition diagram of the main automaton fofyork solution to the problem of obtaining the signal primitives
the normal sinus rhythm is illustrated in Fig. 11. The sub-ator a specific heart condition (i.e., the utilization of ART2 ar-
tomata for the QRS wave and the ST segment of the ECG &fitecture to transform the original input signal into a sequence

Fig. 11. Main automaton recognizing an ECG with normal sinus rhythm.

shown in Figs. 12 and 13. of vectors of primitive categories) requires that primitives com-
posing many variants to the same token (in our case, QRS com-
VI. RESULTS plex) in various signals of the heart condition be all included in

Forty ECGs indicating atrial fibrillation and 18 ECGs ingithe training set of tlhe neural network. Further, these primitives
cating normal sinus rhythm are used in the experiments. Thaheuld all be used in the manual (_:o_nstructlon of the related sub-
ECGs have been used to train the ART2 networks and build fRgtomaton. Due to the lack of sufficient data, we were able to es-
HFAs for the atrial fibrillation case. The remaining 37 are usd@?lish only an incomprehensive subautomaton to characterize
to test the diagnosis methodology. One out of 18 ECGs wdf QRS complex. _
used to train the ART2 networks and construct the HFAs for the T € time complexity of the algorithm depends on the fol-
normal sinus rhythm. The remaining 17 ECGs have been ud@ing five factors:
to test the method. Furthermore, ten atrial flutter cases have alsd.) the number of the heart conditions under analysis;
been presented to both HFAs. The standard medical diagnosti?) the numberr of signal segments in the original input
parameters are used to evaluate the results [7]. Definitions of signal;
these parameters and our results are summarized in Tables I\B) the numbev of alphabet elements that replace a segment

and V. in the original signal;
The pair of HFAs has been able to distinguish correctly 35 out 4) the numberS of states in the current input set of states
of 37 ECGs recorded from patients suffering from atrial fibril- (the worst condition: all states);

lation. Hence, the sensitivity of the HFA approach is 0.95. Fur- 5) the numbef’ of transitions initiated from the current state
thermore, nine out of seventeen normal sinus rhythms have been (the worst condition: all transitions).

correctly distinguished by the HFAs. Eight of the ECGs with The decision-theoretic component of the diagnostic system
normal sinus rhythm have been incorrectly diagnosed to hagdhe system-independent part and has two operating modes: 1)
atrial fibrillation. Both HFAs (of the normal sinus rhythm anahe training of the ART2 neural architecture [29], and forming
the atrial fibrillation) recognized five out of these eight ECGthe alphabet of signal primitives, and 2) the transformation of
with very close accuracies. For these five ECGs, the final mioriginal input signals into a multicategory sequence alphabet
imum membership value of the atrial fibrillation was slightlyprimitives, in which each signal segment in the original input
higher than that of the normal sinus rhythm. Finally, both HFAsignal segment is replaced by a vector of signal primitives in
built to recognize the atrial fibrillation and normal sinus rhythnthe alphabet. The second component is the HFAs that achieve
have recognized none of the atrial flutter cases. the syntactic recognition.
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Fig. 12. SArecognizing a QRS complex in the normal sinus rhythm.
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Fig. 13. SA recognizing the ST segment in the normal sinus rhythm.

TABLE IV TABLE V
TABULATIONS OF TEST RESULTS STANDARD ACCURACY CRITERIA AND RESULTS
Disease Disease Actual
Present Absent Total Measure Name Definition  Value
Test positive  a=35 b=8 a + b=43 Sensitivity agc 0.95
Test negative  ¢=2 d=9 c+d=11 Specificity 5d 0.53
Total a+c=37 b+d=17 a+b+c+d=54 False Negative Rate %_{c 0.05
False Positive Rate 4 0.47
. . . Predictive Val iti < .
The training of the ART?2 architecture takes considerably less recienive va e posive atb 081
. . . . Predictive Value negative P 0.90
time, compared with other classical neural network architec- False Alarm Rate s 0.19
: R . : 55 .
tures such as, backpropagation due to its bidirectional interac False Reassurance :id 0.18

tion between the input and output layers [31]. It took 683 s to
train an ART2 neural architecture with signal segments of 10
time points (i.e., the input layer has 10 elements) and 102 cateburing the syntactic recognition, HFAs perform a check for
gories. In another experiment, it took 1032 s to train an ART&ach signal segmentin each vector in the multicategory rep-
neural architecture with signal segments of 10 time points arekentation of the original signal. The number of checks, thus,
118 categories. We conducted both experiments on an Ultra&uals to the produet x v. Each check is composed of deter-
Sun Workstation running a Unix SunOS 5.7 operating systemnmining all transitionsI” in each currently active statg of the
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HFA. The worst case scenario is that the active set of states is glli] S.Barro, R. Ruiz, D. Cabello, and J. Mira, “Algorithmic sequential deci-

states in the HFA representing a token. The basic operation con- sion mgking in_thg frgquer!cy domai_n for Iife_ threatening ventricular ar-
. . . . rhythmias and imitative artifacts: A diagnostic systethBiomed. Eng.
sists of determining the active states of each HFA, and moving 11, pp. 320-328, 1989.

the HFA to these states (i.e., forming the new current input s€t2] M. Juhola and T. Gronfors, “A scheme of inference of regular grammars
of states of the HFA using these states). Finally, this process is  for the syntactic pattern recognition of saccadic eye movemeRts:

. . Intell. Med, vol. 3, pp. 87-93, 1991.
performed for each heart condition under analysis. Hence, tl"ﬁ3] A. Koski, M. Juhola, and M. Meriste, “Syntactic recognition of ECG

execution time of the syntactic analysis can be found as follows:  signals by attributed finite automataPattern Recognit.vol. 28, pp.
1927-1940, 1995.
. [14] P. Trahanias, E. Skordalakis, and G. Papakonstantinou, “A syntactic
t=ax7TXvXx8§xT. (7) method for the classification of the QRS patterrBattern Recognit.
Lett, vol. 9, pp. 13-18, 1989.
Using the same machine specified above, it took 4.375 s tHS] P. Trahanias and E. Skordalakis, “Syntactic pattern recognition of the

. . . . . . ECG,” |EEE Trans. Pattern Anal. Machine Intellzol. 12, pp. 648-657,
process an input file with 15 000 time points for two conditions. 34y 1990. PP

Another ECG signal of 12 000 time points was analyzed in 3.56916] G. Belforte, R. DeMori, and F. Ferraris, “A contribution to the automatic
i i ; i PV processing of electrocardiograms using syntactic methti§EE Trans.

S py the syntactlc recognizer. From the time cqmplexny view Biomed, Eng.vol, 26, pp. 125.136, 1979

point, th_ese figures show that this methOdOIOQY is even suitabl@7} s L. Horowitz, “A syntactic algorithm for peak detection in waveforms

for use in emergency cases once the system-independent com- with applications to cardiography,Commun. ACM vol. 18, pp.

; ; 281-285, 1975.
ponent (i.e., the ART2 neural net and the alphabet of the S|gn<’H8] E. Skordalakis, “Syntactic ECG processing: A revievPattern

primitives) is constructed for each desired heart condition. Recognit, vol. 19, pp. 305-313, 1986.
[19] J. K. Udupa and I. S. N. Murthy, “Syntactic approach to ECG rhythm
VIII. SUMMARY analysis,”"IEEE Trans. Biomed. Engvol. 27, pp. 370-375, 1980.

[20] F. Steimann and K. P. Adlassnig, “Clinical monitoring with fuzzy au-
This paper presents the use of HFAs as a diagnostic tool for  tomata,"Fuzzy Sets Sysuol. 61, pp. 37-42, 1994.

l t In thi HEA defined in t 21] A. Bugarin, S. Barro, R. Ruiz, J. Presedo, and R. Palacios, “Syntactic
nonlinear systems. In this paper, S were defined in term characterization of qrs morphology,” #nnual Intl. Conf. IEEE Eng.

of structure and function. HFAs use a fuzzy syntactic approach  Med. Biol. Soc.1991, pp. 588-589.
for diagnosis of time-sampled signals. In operation, the HEA?22] T. Kalayci and O. Ozdamar, “Wavelet preprocessing for automated

. . . neural network detection of eeg spikeffEE Eng. Med. Biol. Mag.
transforms the signal into a string of sets of elementary struc- ;" 160166, Mar/Apr. 1995.

tures, templates. Then, examining the consecutive templates, t{#8] A. V. Oppenheim, A. S. Willsky, and I. T. YoungSignals and Sys-
HFAs determine whether or not the string characterizes a par- . tems Englewood Cliffs, NJ: Prentice-Hall, 1996.

. . . . [24] A. V. Oppenheim and R. W. SchafeDiscrete-Time Signal Pro-
ticular condition. After the syntactic analysis is performed for™ ~ .oqqing ™ Englewood Cliffs, NJ: Prentice-Hall, 1989.

each desired condition, state synchronizing measures, and st@d§ M. M. Gupta, G. N. Saridis, and B. R. Gaindg,zzy Automata and
memberships from these HFAs are used to identify the condi- Decision Processes Amsterdam,The_ Netherlands: Elsevier, 1977.
ti The HEA lied to th bl fECG di .éZG] A. Kandel and S. C. Ledsuzzy Switching and AutomataAnn Arbor,
ion. The s were applied to the problem o iagnosi MI: Edwards, 1979.
with good results. [27] M. B. Tumer, L. A. Belfore, II, and K. M. Ropella, “Applying hierar-
chical fuzzy automatons to automatic diagnosis,Pioc. Mtg. North
R America Fuzzy Information Process. SyBensacola, FL, 1998.
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