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Abstract. The fuzzy ARTMAP has been applied to the supervised classi® cation
of multi-spectral remotely-sensed images. This method is found to be more
e� cient, in terms of classi® cation accuracy, compared to the conventional maxi-
mum likelihood classi® er and also multi-layer perceptron with back propagation
learning. The results have been discussed.

1. Introduction

During the past three decades, probabilistic, evidential and syntactic methods
have been successfully applied to remotely-sensed data analysis. The major problem
encountered in these statistical approaches is that it is sometimes di� cult accurately
to model the underlying probability density function of each class of remotely-sensed
object using the available training set. Recently, arti® cial neural networks have been
used extensively in multi-spectral image classi® cation. Notable amongst these are
multi-layer perceptron (MLP) with error back propagation and Kohonen’s Self
Organizing Maps. The back propagation approach is by far the most popular
strategy employed for object classi® cation in the remotely-sensed images.
(Benediktsson et al. 1990, Bischof et al. 1992, Hermann and Khazenie 1992).

2. Fuzzy methods in remote sensing

The demarcation between two object classes in a remotely-sensed image is usually
not crisp but imprecise. Therefore, an alternate strategy of pattern classi® cation
based on fuzzy logic has been applied for classi® cation (Palubinskas 1995, Foody
1996). In the classi® cation of remotely-sensed images, it is di� cult to distinguish
precisely between some pairs of landcover types, such as sparse grassland and soil,
shallow and deep water bodies. To deal with the classi® cation more accurately, an
alternate philosophy of assigning fuzzy membership function to each class has been
proposed (Wang 1990, Foody 1994). Neural networks incorporating fuzzy learning
have been used for pattern classi® cation in the recent past (Kosko 1992 ). Buckley
and Hayashi (1994) have presented an excellent survey of various fuzzy neural
networks and their applications.

3. Fuzzy ARTMAP

Adaptive Resonance Theory (ART) based neural networks have evolved from
the biological theory of cognitive information processing and have been proposed
for pattern classi® cation (Grossberg 1976). An ART map using two ART modules
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to perform the mapping of input-output relations has been used for supervised
classi® cation of binary input patterns (Carpenter et al. 1991 ). A generalized version
of ARTMAP has been proposed by Carpenter et al. (1992) for classi® cation of
analogue patterns. This architecture, called fuzzy ARTMAP, achieves a synthesis of
fuzzy logic and ART networks. In this Letter, we apply fuzzy ARTMAP to the
classi® cation of multi-spectral images obtained from the LISS-II sensor of IRS-1B
satellite. The results have been compared with conventional maximum likelihood
classi® er (MLC) and MLP with back propagation learning. The observed advantages
are faster learning and better classi® cation accuracy.

3.1. Architecture
Fuzzy ARTMAP architecture, modi® ed to suit the classi® cation of multi-spectral

remotely-sensed data is depicted in ® gure 1. There are four layers of neurons in this
ARTMAP, viz., input layer, category layer, map® eld layer and output layer. The
input layer consists of 2n neurons to take care of the complement coded input feature
vector of dimension n. The category layer starts with a single neuron and dynamically
grows in number as the learning proceeds. The output and map® eld layers consist
of m neurons each, where m is the output class dimension. There exists a one-to-one

Figure 1. Fuzzy ARTMAP architecture.
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connection between these two layers. Two vigilance parameters r1 and r2 control
the operation during learning and operational phases of the network. The map® eld
weights and category layer weights are learnt adaptively during the process known
as r̀esonance’ .

3.2. Variables and parameters
The following parameters have been chosen for the training of fuzzy ARTMAP:

(i ) Choice parameter a : A small positive constant, a $0.
(ii ) Weight learning constants b1 and b2 : For fast learning, b=1 0́.

For slow learning, 0 < b < 1 0́.
(iii ) Vigilance parameters r1 and r2 : Normally set very close to 1 0́.

The other variables which have been used are,

(i ) Input feature vector : A

(ii ) Output class vector : B

(iii ) Weight vector between input layer to a node in category layer : W1

(iv) Weight vector between a chosen node of category layer to
map® eld layer : W *

2

3.3. Equations employed in fuzzy ART MAP
(i ) Norm of vector P, |P |=S p i where p i are the components.

(ii ) Fuzzy AND Operation between two vectors of the same dimension
P L Q =min( p i , q i) for all components

(iii ) Category choice S = -----------
|A L W 1 |

a +|W1 |

(iv) Match ratio at map® eld Rm= -----------
|B L W*2 |

|B |

(v) Match ratio at category layer Rc= -----------
|A L W1 |

|A |

(vi ) Weight learning (also known as resonance)
(a) W

(new)
1 =b1 ( A L W

(old)
1 ) + ( 1 Õ b1 ) W

(old)
1

( b) W
(new)
2 =b2 ( B L W

(old)
2 ) + (1 Õ b2 ) W

(old)
2

4. Proposed algorithm

The fuzzy ARTMAP based algorithm from classi® cation of remotely-sensed data
is presented below:

4.1. L earning phase
(i ) Present the complement coded input and desired output. The ® rst input

sample will commit the ® rst node of the category layer. Go for resonance.
(ii ) Present next input-output pair. Set r1=0.

(iii ) Calculate category choice score (S ) for each committed node of category
layer.

(iv) Choose the node with maximum S .
(v) Calculate the match ratio at map ® eld (Rm ) for the corresponding node.
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(vi ) If Rm > r2 (Vigilance Test), then go for resonance and go to (ii ) Else do the
following:

(a) Set r1=Rc of current input.
(b) Choose all nodes in category layer such that Rc > r1 .
(c) Check selected node for Rm > r2 .
(d ) If a node is found, then go for resonance and go to (ii ).
(e) If all the selected nodes are exhausted, commit a new node and go

for resonance.
(vii ) Go to step (ii ) . Repeat until all the training samples are exhausted.

(viii ) Go to step (ii ) and iterate with the same samples until either the category
layer nodes stop growing, or number of iterations exceeds T , an
appropriately chosen positive constant.

4.2. Operational phase
(i ) Present the input.

(ii ) Calculate score S for each of the committed node.
(iii ) Choose the node with maximum score.
(iv) Get the output vector corresponding to the chosen node, which will indicate

the category of the input pixel.

4.3. Discussion on the selection of parameters
The parameter a is a tie-breaking constant and it can be chosen around 0 0́1.

Weight learning constants b1 and b2 can be set to 1 0́ in the beginning of learning
phase and set to a smaller value in the subsequent trials. Both parameters a and b

have a direct bearing on the proliferation of hidden layer nodes. Vigilance parameters
r1 and r2 are set to 1 0́ for getting the most accurate results.

5. Application in remotely-sensed image classi ® cation

We present a new approach to multi-spectral remote sensing data classi® cation
using fuzzy ARTMAP. Six multi-spectral images of four bands and of 512 by 512
size, acquired by Linear Imaging Self-scanning Sensor (LISS-II) camera of Indian
Remote Sensing Satellite (IRS-1B) have been selected for our experiment. The
resolution of the images is 36 5́ m. The number of classes vary from 6 to 13 in each
scene of di� erent regions.

The training samples were selected by visual interpretation of the scenes by
domain experts. In the training phase, 40 per cent of the samples were used and the
remaining 60 per cent were applied in the operational phase to assess the accuracy.
The training samples were neither subjected to any statistical analysis nor pruned
on some intuitive basis keeping the realities of imprecision and overlapping classes
in the data intact. In order to preserve their relative values, the grey levels have been
normalized between 0 and 1.

The four band pixel grey values and their complements i.e., 8-dimensional input
vectors were presented to the network. In the output binary vector, the bit of that
particular class to which the input belongs was set to 1 and the remaining bits were
set to 0. All weights were initially set to 1, and they monotonically decrease as the
learning progresses. The classes were presented in an absolutely random sequence.
The category layer nodes were allowed to grow freely in a ® xed number of iterations.
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6. Results

The classi® ed image data have been obtained using three methods viz., fuzzy
ARTMAP, MLC and MLP. The original image and the corresponding classi® ed
output image using fuzzy ARTMAP are shown in ® gures 2 and 3. The errors of
omission and commission in the form of error matrix are shown in table 1. The

Figure 2. FCC of the original image.

Figure 3. Classi® ed output using fuzzy ARTMAP.
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Table 1. Error of omission and commission.

1 2 3 4 5 6 7 8 9 10 11 12 13 Total

1 1569 1569
2 584 584
3 391 1 1 52 445
4 457 457
5 2 174 24 10 210
6 3 15 2012 3 3 2036
7 4 471 1 17 493
8 1 292 1 12 1 2 309
9 1 2 49 1 53

10 1 17 11 205 26 260
11 9 9 1 1 221 7 248
12 5 3 6 23 506 543
13 99 11 5 6 552 673

Total 1569 584 508 457 201 2047 485 319 61 241 246 512 650 7880

Total no of correctly classi® ed pixels=7483
Total no of misclassi® ed pixels =397

name of the classes against their numbers as appear in table 1 are shown in table 2.
The accuracy of classi® cation in each method is shown in table 3.

It is observed that there is an advantage (about 5 per cent in the overall classi-

Table 2. Types of classes arranged as per
their sequence on table 1.

Class No Name of the class

1 Deep water I
2 Deep water
3 Sand
4 Shore water
5 Sparse vegetation
6 Inland vegetation
7 River water I
8 River water II
9 Tanks

10 Oxbow ( Vegetation)
11 Shore-clear water
12 Wet agricultural land
13 Dry agricultural land

Table 3. Comparison of accuracy of classi® cation.

Data set No. Fuzzy ARTMAP MLP MLC

1 94 9́6 88 1́8 89 6́9
2 77 0́5 71 6́5 72 2́2
3 88 6́6 83 8́0 84 3́1
4 81 9́3 77 8́6 77 4́3
5 74 5́5 70 3́9 71 9́4
6 91 1́2 87 5́8 86 2́7
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® cation accuracy) of using fuzzy ARTMAP compared to the other two methods.
The results of MLC and MLP are comparable. The training time of fuzzy ARTMAP
is substantially less (about 1 per cent in each case) compared to MLP and found to
be slightly less compared to MLC.

7. Conclusion

An application of fuzzy ARTMAP to the classi® cation of multi-spectral remotely-
sensed images have been demonstrated here. The results have been compared with
MLP and MLC. With the VLSI implementation of fuzzy ARTMAP, it will be
possible to get near real-time classi® cation of images. Fuzzy ARTMAP is stable,
easy to use and it is many times faster than MLP. Above all, fuzzy ARTMAP has
a smaller number of parameters to manage. Problem speci® c choice of initial weights
are not required to be selected. The learning as well as operational phases of fuzzy
ARTMAP are also very stable.
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