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A neural network-based cell formation algorithm in cellular
manufacturing
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S.-J. CHENY and C.-S. CHENG*?

The Adaptive Resonance Theory (ART) neural network is a novel method for
the cell formation problem in group technology (GT). The advantages of using
an ART network over other conventional methods are its fast computation and
the outstanding ability to handle large scale industrial problems. One weakness of
this approach is that the quality of a grouping solution is highly dependent on the
initial disposition of the machine-part incidence matrix especially in the presence
of bottleneck machines and/or bottleneck parts. The effort of this paper has been
aimed at alleviating the above mentioned problem by the introduction of a set of
supplementary procedures. The advantages of the supplementary procedures are
demonstrated by 40 examples from the literature. The results clearly demonstrate
that our algorithm is more reliable and cfficient in cases of ill-structured data.

1. Introduction

Group Technology (GT) is an important management philosophy for improving
the productivity of manufacturing systems. The application of GT promises reduc-
tion in material handling cost, set-up time, work-in-process, and many others.
Cellular manufacturing is a successful application of GT concepts. One of the first
problems encountered in the development and implementation of a cellular manu-
facturing system is that of cell formation. Cell formation involves identifying
families of similar parts and forming the associated machine cells such that one or
more part families can be processed within a single cell. A part family consists of
those parts requiring similar machine operations. Those machines used for manufac-
turing a particular part family form a machine cell. In the past several years,
numerous methods have been developed to identify part families and their asso-
ciated machine cells. Generally, these methods can be classified as classification and
coding procedures or direct analysis of process information. In this paper, we are
concerned with the latter approach. The machine cells formation problem based on
process information is often modelled by a binary machine-part incidence matrix
wa;;} derived from route card data. This approach is referred to as the matrix
formulation of the GT problem. Columns and rows of an incidence matrix represent
parts and machines, respectively. A matrix element a;; is “1” if machine J is used to
process part j, and ‘0’ if otherwise.

Once the machine and part incidence matrix is constructed from route card data,
a clustering algorithm is often required to transform the initial matrix into a solution
matrix to help identify clusters. Numerous algorithms for the construction of
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machine cells and part families have been developed using a machine-part incidence
matrix. The grouping of parts and machines can be done sequentially or simulta-
neously. In the sequential approach (also known as indirect approach), the machines
(or parts) are grouped first, and then parts (or machines) are assigned to their
appropriate machine cells (or part families). Examples are the methods of McAuley
(1972), Seifoddini and Wolfe (1986). The simultaneous approach (also called the
direct approach or machine-component group analysis) tries to achieve the grouping
in one step. Some typical examples are the direct clustering algorithm (DCA) due to
Chan and Milner (1982), rank order clustering (ROC) of King (1980) and the cluster
identification algorithm (CIA) of Kusiak and Chow (1987). A comparison of these
two approaches to cell formation problem was given by Seifoddini (1990).

Recently, the use of artificial neural networks in cell formation has been
examined by numerous researchers with verying degrees of success. The following
neural network models have been used to solve the machine and/or part grouping
problems: backpropagation network (Kao and Moon 1991, Kaparthi and Suresh
1991), self-organizing network (Lee e7 al. 1992), simulated annealing (Lee and Wang
1992, Venugopal and Narendran 1992), Adaptive Resonance Theory (ART) (Dagli
and Huggahalli 1991, Kusiak and Chung 1991, Burke and Kamal 1992, Dagli and
Sen 1992, Kaparthi and Suresh 1992, Liao and Chen 1993), the Hebbian network
(Malave and Ramachandran 1991), Grossberg’s interactive activation and competi-
tive network (Moon 1990), constraint satisfaction model (Moon and Chi 1992).

Among the approaches listed above, the ART network is found to be best suited
for the cell formation problem. There are several variations of ART network,
namely, ART1 (Carpenter and Grossberg 1986, 1988), ART2 (Carpenter and
Grossberg 1987), and fuzzy ART (Carpenter e al. 1991). The ARTI can handle
binary input patterns, while others can process both binary and analog.

The performance of the ARTI network has been investigated by several
researchers (Dagli and Huggahalli 1991, Kusiak and Chung 1991, Dagli and Sen
1992, Kaparthi and Suresh 1992, Liao and Chen 1993). The most important
advantage of the ARTI algorithm in cell formation is its extremely efficient
computational performance. The approach was found to be appropriate for solving
large-scale GT problems. The major disadvantage of using the ARTI algorithm in
GT cell formation is that the order of presentation affects the performance to a large
degree. Dagli and Huggahalli (1992) suggested several heuristic methods to over-
come the limitations of ARTI. The first method modified the weight update of
ARTIL. Second, they presented inputs in decreasing order of the number of Is.
Kaparthi and Suresh (1992) provided several important comments about implement-
ing the ARTI algorithm in cell formation. First, the matrix density (proportion of
‘I’ elements) tends to be rather low. It is advantageous to reverse the ones and zeros
in the incidence matrix for clustering purposes, and to restore the original values
after clustering. Second, in cases of ill-structured data, different order of presen-
tations might lead to different results. The authors suggested that imperfect data
may require several presentations in the form of unsupervised-supervised learning.
Burke and Kamal (1992) investigated the application of the fuzzy ART to GT
problems. The performance of the fuzzy ART is dependent on the choice of network
parameters.

The purpose of this paper is to develop a set of supplementary procedures used
to overcome the above mentioned problems associated with the ART1 algorithm,
The specific aim of this study is to improve the performance of ART1 in the presence
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of ill-structured data. In this context, an ill-structured data set refers to an incidence
matrix that contains exceptional elements (EE) (i.e.. elements not in the machine/
part groups). Exceptional elements are attributed to bottleneck machines and/or
bottleneck parts (Shafer et al. 1992). In the cell formation literature, a bottleneck
machine is defined as a machine that processes parts belonging to more than one
family (Chu and Tsai 1990, Cheng 1992, Kusiak and Cho 1992). A bottleneck part is
one that is processed on machines belonging to two or more machine cells (Frazier
and Gaither 1991, Cheng 1992, Kusiak and Cho 1992). The organization of this
paper is as follows. Section 2 presents a detailed procedure of the ARTI neural
network. Section 3 describes the supplementary procedures used to enhance the
ARTI. Section 4 describes the performance measures used to evaluate the cell
formation algorithm. Section 5 presents the results of applying the extended ARTI
on test problems from the literature. This is followed by the conclusions in §6.

2. Adaptive resonance theory

An artificial neural network is built on a number of simple processing elements
called neurons. These neurons are often organized into a sequence of layers. All
layers of the network are linked by weights, which are adapted using a learning
algorithm. The structure of a neural network could be characterized by the
interconnection architecture among neurons, the activation function for conversion
of inputs into outputs, and the learning algorithm. There are a variety of different
structures and learning algorithms useful for neural network application. For a
discussion of the basic principles of neural networks. the reader is referred to
Lippmann (1987), Hush and Horne (1993).

A number of neural network paradigms can be used as classifiers for the cell
formation problem. In this study we are concerned with ART1, which is found to be
well suited for the cell formation problem based cn binary machine-part incidence
matrix. The ARTI neural network is based on unsupervised learning. Learning in
neural networks can be supervised, unsupervised or based on a combined
unsupervised-supervised learning. In supervised learning, the correct output for an
input pattern has to be specified when the input pattern is presented. In an
unsupervised learning, the network has no knowledge about what the correct or
desired outputs should be. The system learns on its own without external guidance.
In the cell formation problem, unsupervised learning is more appropriate, because in
practice, no information about correct group formation is known a priori.

The network includes two layers of neurons: the input (comparison) layer and
the output (recognition) layer. The comparison layer elements accept inputs from the
environment and the recognition layer elements each represents a pattern class.
Every node in the input layer is totally connected to every node in the output layer
with top-down and bottom-up connections. The ARTI algorithm employs a
competitive learning approach in the sense that ARTI learns to cluster the input
patterns by making the output neurons compete with each other for the right to
react to a particular input pattern. The output neuron which has the weight vector
that is most similar to the input vector claims this input pattern by producing an
output of *I" and at the same time inhibits other output neurons by forcing them to
produce 0’s. In ARTI, only the winning node is permitted to alter its weight vector,
which is modified in such a way that it is brought even near to the representative
input pattern in the cluster concerned. ART1 attempts to associate an input pattern
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to a cluster of patterns. The output of ART]I is an indication of membership of the
input pattern in a group with similar characteristics.

The ART algorithm could be applied in two different ways in GT cell formation.
In the first approach, ART is applied to machine vectors as well as part vectors to
form machine cells and part families (Dagli and Huggahalli 1991, Liao and Chen
1993). With this approach an appropriate parameter must be selected such that the
number of cells equals the number of part families. In the second approach
(Kaparthi and Suresh 1992), machine vectors (part vectors) are presented to ART to
form machine cells (part families). Next, parts (machines) are assigned to their
appropriate machine cells (part families) based on some heuristic methods. In this
paper, ARTI network is applied in the manner of the second approach.

To begin with, we must determine the size of the input and output layers. For the
cell formation problem, either the part or machine characteristic vectors could be the
set of input patterns presented to the input layer. The output nodes are modelled as
machine cells or part families, each output unit representing a machine cell or a part
family. In practice, the number of part types is generally much greater than the
number of machine types. Using part characteristic vectors as inputs has an
advantage that it involves fewer memory requirements. However, the neural network
has to perform cluster analysis based on a smaller number of features. Throughout
this paper, the analysis is for the set of machine characteristic vectors as input to the
network unless otherwise specified. The input neurons are modelled as the character-
istic of the machines, the number of neurons required in the input layer is set equal
to the total number of parts. Output of neurons in the output layer represents the
class of the input vector. Hence the number of neurons required in the output layer
corresponds to the maximum expected number of machine cells.

The steps to implement ARTI algorithm for cell formation problem are as
follows.

Step0  Define the number of neurons in the input layer N;, and the number of
neurons in the output layer N, and select a value (between 0 and 1) for
the vigilance parameter, p.
N,, =the number of columns (parts) of machine-part incidence matrix.
N,,, = the maximum expected number of machine cells.

Step1  Enable all the output units and initialize top-down weights W' and
bottom-up weights W

wi=1

w'?:ﬁl,f
YO+ N,

W{;=top-down weight from neuron j in the output layer to neuron i in the
input layer.
W% =bottom-up weight from neuron / in the input layer to neuron j in the
output layer.

Step?  Present a machine vector X to the input layer, X consists of zero/one
element x;.

Step3  Compute matching scores for all the enabled output nodes.

op b, ..
mtj—z WX
1
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where net; is the output of neuron j in the output layer.

Step4  Select a node with the largest value of matching score as best matching
exemplar, let this node be j*. In the event of a tie, the unit on the left is
selected.

nelj,=max {net;}
i

Step5  Perform vigilance test to verify that input pattern X belongs to cluster (cell)
J*.
IX]]=3 x;(norm of vector X)

j"xi

WX || =5 W!
_lIw5e Xl
=i

if Vj«>p, there is resonance, go to step 7. Otherwise, the cluster exemplar is
rejected, go to step 6.

Step6  Disable best matching exemplar
Since the vector X does not belong to cluster * the output of node j*
selected in step 4 is temporarily disabled and removed from future
competitions; go to step 3.

Step7  Adapt best matching exemplar

Wiw=Wiux, (logical AND operation)

Wb _ W;j*'xi
TT05+Y Wi

Step8  Enable any nodes disabled in step 6 and go 10 step 2.

Some important features of the ARTI algorithm are discussed below. The
weights updating procedures constitute the learning process in ARTI algorithm. The
algorithm described here implements a fast-learning rule for the weights in the sense
that any I's that are not in the input pattern are removed from the exemplar
template. It should be noted that the noisy patterns will degrade the exemplar
template due to the logical AND operation performed during updating. The
learning process of ARTI is very efficient when compared to other algorithms. In
most algorithms, the input patterns have to be presented repeatedly until the weights
stabilize to fixed values or a certain number of training iterations has been reached.

The operations involved in step 5 can be thought of as a template matching
procedure. The similarity measure quantifies the degree of match between the input
pattern and the exemplar template. The amount of mismatch tolerated between
input pattern and exemplar is determined by the vigilance parameter p. The vigilance
parameter functions as a similarity threshold. An ARTI with large vigilance will
permit a small amount of mismatch and will result in a large number of separate
clusters. On the other hand, if the value of p 1s sct low, the patterns might be
organized into a small number of clusters. In the similarity coeflicient-based
algorithms, a similarity threshold of zero implies a solution of one cluster. This
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might not be true for the ARTI algorithm. Unless the number of output node is set
to one, the ARTI might not yield a solution of one cluster even with a p value of
zero. This is due to the fact that an uncommitted node may win over an existing
cluster during the search of the largest matching score.

As with the similarity coefficient method, ARTI could create a number of
alternative solutions by simply adjusting the vigilance parameter. This feature
increases the flexibility of designing manufacturing cells. However, the vigilance
parameter is utilized during the learning procedure. A change of vigilance value
implies that the ART1 algorithm has to be reiterated.

The ARTI algorithm described above is used as a clustering method to group
machines into machine cells based on their manufacturing similarity. An ancillary
part-assignment algorithm is needed to assign parts to their appropriate machine
cells. In this research, the part-assignment algorithm proceeds as follows. For each
part, find a machine cell which processes the part for a larger number of operations
than any other machine cell. Ties are broken by choosing the machine cell which has
the largest percentage of machines visited by that part. In the case of a tie again, the
machine cell with the smallest identification number is selected. As will be shown
later, reversing zeros and ones of the initial machine-part matrix often leads to a
better solution. It is noted that before applying the part-assignment algorithm, zeros
and ones should be restored if they were reversed previously.

3. Supplementary procedures

It was observed that ART] algorithm performs well when the original matrix is
well-structured. However, ART! has limitations which become apparent when the
method is applied to a grouping problem with an ill-structured incidence matrix.
Before presenting the supplementary procedures, the potential problems with the
ART! are discussed below.

The limitations of the ART1 algorithm are illustrated with the example matrix
presented in Fig. 1 (a). Figure 1 (h) shows the solution matrix after rearranging rows
and columns. Three machine cells (clusters) MC-1={1,2,3,9,10}, MC-2=1{4,5}
and MC-3=1{6,7.8}, and three corresponding part families PF-1={1,2,6},
PF-2=13,7,8) and PF-3=1{4,5,9,10} are visible in the clustered matrix shown in
Fig. 1(b). The solution matrix shows bottleneck machines 9 and 10 with six
exceptional elements.

Figure 1(c) is the solution matrix when the ART1 algorithm (p =0-25) is applied
to the example matrix in Fig. 1(a). The algorithm gives three clusters and eight
exceptional elements. Three machine cells, MC-1={1.2,3}, MC-2={4,5,10}, and
MC-3={6,789) and three corresponding part families PF-1 ={1,2,6},
PF-2=1{3,7.8} and PF-3={4,5,9,10} are shown in Fig. 1(c). The difference between
solutions in Fig. 1(p) and Fig. 1(c) is the assignment of bottleneck machines 9 and
10. For the same number of clusters, the result of Fig. [ (¢) has more exceptional
elements than that in Fig. 1 (b). The clustering result of Fig. 1(c) is a typical example
of the improper machine assignment problem identified by Seifoddini (1986, 1989 a).
One can see that machines 9 and 10 have more common operations with machines in
the first cell than with machines in other cells. They should be assigned to the first
cell in order to reduce the number of exceptional elements.

In the ART]1 algorithm, the improper assignment of bottleneck machines may be
partially attributed to the decayed template. The matrix shown in Fig. 1 (a) can be
used to illustrate this point. For ease of illustration, the number of clusters has been
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set at three. The first eight machines are classified into three machine cells. The
connection weights after applying the first eight machine vectors are as follows,

w!
i
i 1 2 3 4 5 6 7 8 9 10
! 1 0 0 0 0 0 0 0 0
j 2 0 0 1 0 0 0 0 1 0 0
3 0 0 0 1 0 0 0 0 ] 0
w?.
4
i 1 2 3 4 7 8 9 10
1 067 0 0 0 0 0 0 0 0 0
j 2 0 0 0-4 0 0 0 0 0-4 0 0
3 0 0 0 0-4 0 0 0 0 0-4 0

Applying machine 9, the matching scores are

net; =0-67(1)+0(1) +0(1)+0(1) +0(0) + 0(1) + 0(1) + 0(0) + 0(1) + 0(0) = 0-67
nety=0(1)+0(1) +0-4(1)+0(1) +0(0) + 0(1) +0(1) + 0-4(0) + 0(1) + 0(0) = 0-4
nety =0(1)+0(1)+0(1)+0-4(1) +0(0) + 0( 1)+ 0( 1) + 0(0) + 0-4(1) + 0(0) = 08

In step 4 of the ARTI algorithm, cluster 3 gets selected due to its highest
matching score. Because V;=2/7>0-25, machine 9 is considered as belonging to the
third cluster. Note that the connection weights are not changed after presenting
machine 9. The matching scores for machine 10 can be computed as

net; =0-67(1)+0(1) +0(1) +0(0) +0(0) + 0(1) + 0{0) + 0(1) + 0(0) + 0(0) = 0-67
net, =0(1)+0(1) +0-4(1) +0(0) + 0(0) + 0(1) + 0(0) + 0-4(1) + 0(0) + 0(0) = 0-8
nety=0(1)+0(1) +0(1) 4 0-4(0) + 0(0) + O(1) + 0(0) - O( 1) + 0-4(0) + 0(0) = 0-0

The results indicate that the second cluster is the winner. Since V,=2/5>0-25,
the ARTI algorithm assigns machine 10 to cluster 2. Further reduction of the
vigilance parameter does not change the results of clustering. Although machines 9
and 10 have more common operations with machine 1 in the first cell than with
machines in other cells, they will not be categorized under the first cell. This is due to
the fact that there is only one bit left in the termplate of the first cluster after
introducing machine 2. If machines 9 and 10 were presented before machine 2, the
ARTI algorithm gives the clustering result as shown in Fig. 1(b).

The above example shows that the order of presentation has great influence on
how the exemplar template is created and modified. This implies that the sequence of
presentation affects the final solution to some extent. The problem bcomes more
severe when many input vectors containing few 1's. This comes essentially from the
fact that the learning rule can remove bits from the exemplar without adding any.
Thus the exemplar can never cycle back to a previous value.

In some cases, the limitations of the ARTI algorithm can be overcome by
reversing the zeros and ones of the machine-part incidence matrix, as suggested by
Kaparthi and Suresh (1992). As an example, consider the machine-part incidence
matrix in Fig. 2(a). Three machine cells are identified by ARTI, MC-1 ={1,2,3},
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MC-2={4,5}, and MC-3={6}. It is clear that machine 6 should be assigned to the
first cell in order to reduce the number of exceptional elements. However, due to the
decay of the template, machine 6 could not be assigned to the second cell (Fig. 2 (b)).
The above problem can be resolved by reversing the zeros and ones (Fig. 2(c)). It
should be noted that reversing the zeros and ones does not always lead to a
reasonable solution. This can be shown by example in Fig. 3 (a). After reversing the
zeros and ones, ARTI produces two machine cells, namely MC-1={1,2,3,4}, and
M(C-2=1{5,6,7.8} (Fig. 3(b)). The resulting matrix s not acceptable because machine
| does not process any parts in the first machine <ell. This example illustrates that
merely reversing the zeros and ones may cause two machines to join together (based
on the reversed 1’s) even though they have no elements in common. This problem
arises when input vectors containing few 1's (before reversing) are presented first.

In acknowledging the limitations of the ART! algorithm in cases of ill-structured
data, we propose a set of supplementary procedures to enhance the original
algorithm, specifically for cell formation problems.

The first supplementary procedure is referred to here as rearrangement.
Rearrangement is a procedure used to guide the presentation of input vectors. As
was noted earlier, the top-down template is updated by removing 1's from it without
adding any. The decay of the template becomes crucial when input patterns are
noisy. The rearrangement process is used to provide a smooth weights change. The
procedure for rearranging the machine-part incidence matrix is outlined in the
following algorithm.

3.1. Rearrangement algorithm

Step0  Apply the basic ARTI] algorithm and the part-assignment method
described above to identify machine/part groups.

Step1  Identify those machine vectors with the number of ‘1’ entries within the
machine/part group smaller than the number of *1” entries remain outside
the machine/part group and set them aside.

Step2  For each cell, rearrange the machine vectors with less I's outside in
descending order of the number of 1's in the machine/part group. In the

Parts Parts
00000O0O0O0OO0T1 0000O0O0CO0OGO 1
1234567890 1349256780

M 1 0000010000 M 1 1

a 2 1000000000 a 2 1

c¢c 3 1010000010 c 3 11 1

h 4 10110000110 h 4 1111

i 5 01001001001 i 5 11 11

n 6 0000111001 n 6 111 1

e 7 0100110100 e 7 111 1

s 8 0100110101 s & 111 11
(@) (b)

Figure 3. Example C, () the initial matrix and (b) solution matrix obtained by ART! with
reversing the zeros and ones.
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Figure 4. Example D, (@) the initial matrix, (b) solution matrix obtained by ART1 without
rearrangement and (c) solution matrix obtained by ART1 with rearrangement.

case of a tie, the machine with smaller number of I’s outside is presented
first. In the case of a tie again, the machine with the smallest identification
number is presented first.

Step3  Present the machine vectors that were set aside in step | in descending
order of the number of ‘1’ entries. In the case of a tie, the machine with the
smallest identification number will be presented first.

With above procedure similar machines are brought together and then presented
to the ART1 network. The final order of presentation is machine vectors with fewer
I’s outside, in descending order of the number of 1’s in the machine group, then
vectors with more I’s outside, in descending order of the number of 1’s. The
advantage of rearrangement procedure can be illustrated with machine-part inci-
dence matrix shown in Fig. 4 (a). If reversing zeros and ones is carried out, ARTI
gives two machine cells, MC-1=1{1,234}, and MC-2={5,6,7,8} with EE=2
(Fig. 4(b)). Applying rearrangement procedure results in two machine cells,
MC-1={23,4}, and MC-2={1,5,6,7,8} with EE=0 (Fig. 4(c)). The improvement
in solution is due to the sequence of presenting machine vectors as indicated in Fig.
4(c).

An efficient alternative to the rearrangement procedure is presenting input
vectors in descending order of the number of I’s as suggested by Dagli and
Huggahalli (1991). The idea behind this approach is to prevent the exemplar from
growing sparser as more inputs are applied. However, this approach does not




A neural network-based cell formation algorithm 303

guarantee a satisfactory result. The problem consisting of 15 machines and 15 parts,
as shown in Fig. 5(a), is employed here to demonstrate that rearrangement works
beter than simply presenting input vectors in descending order of the number of 1’s.
As can be seen from Fig. 5(b), the solution obtained by presenting machines in
descending order of the number of 1's is not acceeptable. The smallest number of
machine  cells  identified is  five, MC-1={124}, MC-2={56,7],
MC-3=1{8,9.10,11}, MC-4={3.12,13,15}, MC-5=={14} with EE=11. Applying the
rearrangement procedure results in four machine cells, MC-1=15,6,7},
MC-2={2,4, 14}, MC-3={3,11,12,13} and MC-4={18,9,10,15} with EE=7 (Fig.
5(c)). The results suggested that the solution derived using the proposed method
dominates the solution obtained by presenting inputs in descending order of the
number of 17s.

Instead of merely counting the number of 1’s, the rearrangement procedure
considers the relative positioning of the 1’s (based on initial grouping results). This
explains why the rearrangement works better than presenting input vectors in
descending order of the number of 1’s,

The second supplementary procedure is called reassignment. Due to the decay of
the exemplar template, the ARTI algorithm might not be able to bring the most
similar machines together. This situation generally occurs in the presence of
bottleneck machines. The reassignment procedure is used to refine the clustering
result. The idea behind the procedure is that bottleneck machines should be
reexamined and be reassigned to proper cells in order to reduce the number of
exceptional elements. The algorithm includes the following steps.

3.2. Reassignment algorithm

StepO  Apply the basic ART1 algorithm (and the rearrangement procedure if
needed) together with the part-assignment algorithm to identify machine/
part groups.

Step1  Identify those machine vectors with the number of ‘1’ entries within the
machine/part group smaller than or equal to the number of ‘1’ entries
outside the machine/part group.

Step2  Assign those machines identified in step 1 to their appropriate machine
cells such that the number of exceptional elements is minimized. To do so,
the number of parts in each group processed by each machine is deter-
miried (i.e., counting the number of 1's within machine/part groups) and
the machine is assigned to the cell which has the largest number of parts
processed by that machine. In the case of a tie, select the machine cell
which processes the smallest number of parts. In the case of a tie again, the
machine cell with the smallest identification number is selected.

Step3  Delete those machine/part groups, which are empty.

Step4  Assign each part to the appropriate machine cell using the part-assignment
algorithm described in § 2.

Note that the composition of the clusters might be changed after applying the
reassignment procedure, therefore the procedure can iterate several times in order to
yield a satisfactory result. Based on the experience of randomly generated problems
of various sizes we found that the best solutions are usually obtained after two
iterations of reassignment procedure.
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4. Measures of performance

There are two measures frequently used in the literature to evaluate the quality of
solutions given by a cell formation algorithm. The first one is the measure of
effectiveness (ME) introduced by McCormick ef al. (1972). The measure is defined as
follows:

l .

m n
3 YN ay(a ot e Ay )

i=1j=1

ME=

where g;; is the element of a clustered matrix. Generally speaking, a better clustering
algorithm results in a higher ME. One major problem with the ME is that the
relative positioning of rows and columns within a machine/part group has a great
impact on the final result. The same grouping solutions (in terms of the cell
composition) with different arrangements of rows and columns may give different
values of the measure.

A better measure is the grouping efficiency (GE) proposed by Chandrasekharan
and Rajagopalan (1986). This measure has been widely used in the literature (e.g.,
Askin er al. 1991, Boe and Cheng 1991, Kusiak and Cho 1992). GE is an aggregate
measure which takes both the number of exceptional elements and machine
utilization into consideration. The ‘1’ elements remain outside the machine/part
groups are often referred to as exceptional elements. Exceptional elements are the
sources of intercellular moves and should be reduced to the minimum. Machine
utilization indicates the percentage of times the machines within the cell are used in
production. As a general rule, the higher the machine utilization, the better the
clustering results. GE is the weighted average of these two components, it can be
computed as:

n=qn, +({—qn,
where
€4
;11 =_}?w DA
Y M,N,

r=1

e
ot [
mn— Y M,N,

r=1

m number of machines (rows)

n number of parts (columns)

number of machines in the rth cell

number of parts in the rth family

, number of 1’s within the machine/part groups
e, number of 1's outside the machine/part groups
k number of clusters

n grouping efficiency

g weighting factor (0<¢g<1)

GE ranges from 0 to 1. A GE with a value close to 1-0 means that the solution
matrix has a perfect structure. Since most results reported in the literature were
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based on g=05 as recommended by Chandrasekharan and Rajagopalan (1986), we
will follow this convention to have a fair comparison with the existing algorithms. In
this paper, the quality of solutions was evaluated in terms of GE and EE. When the
GE measure is the same for two different solutions to a problem, the solution with
lower exceptional elements is regarded as the better solution. This comparison
approach has been accepted by most researchers (Chu and Tsai 1990, Boe and
Cheng 1991, Kusiak and Cho 1992).

5. Computational results

In order to demonstrate that the ARTI with supplementary procedures is
capable of yielding good solutions of cell formation problems, 40 data sets from the
literature have been collected for the evaluation. The problems differ in size and
density of machine-part incidence matrix. For ease of discussion, we divide the test
data into three different groups: (1) problems that can be solved by the basic ARTI
as well as the modified ART1 procedure; (2) problems that can be solved by the
modified ART1 only; (3) problems for which the modified ARTI gives better results
than reference algorithms. Details for each set are presented in Table 1.

Hereafter, we will refer to the ARTI with supplementary procedures as the
extended ARTI. For ease of reference, the extended ARTI will be denoted as
ARTI(a, b, ¢). For example, ARTI(1,1,2) corresponds to reversing the zeros and
ones followed by rearrangement and two iterations of reassignment. ARTI(1,0, 0)is
equivalent to the algorithm proposed by Kaparthi and Suresh (1992). The ARTI
algorithm applied in its basic form is denoted as ART1(0,0,0). It must be noted that
the maximum number of iterations for each supplementary procedure is restricted to
two. This comes from the fact that further iterations will not change the results for
the 40 problems studied here. The results of applying the extended ART] to the test
problems are presented in Table 2. Data were input to the network in the same order
as appeared in the literature. The best clustering results in terms of GE and EE from
other studies are also included for comparison purposes. Each entry in Table 2 is the
largest vigilance parameter at which ART1 can find a solution identical to the one
shown on the left. Note that the vigilance parameter decreases from 0-99 to 0-0, with
a decrement of 0-01. If ARTI cannot produce the solutions reported in the
literature, it will be marked with *-". Since the clustering results are dependent on the
order of presentation, a ‘> mark only indicates that ARTI] cannot duplicate the
reference solutions for that particular order of presentation. One should be aware
that the grouping efficiency is highly dependent on the number of clusters produced
by a cell formation algorithm. In order to have a fair comparison, we only consider
the cases for which the ART1 produces the same number of clusters to that reported
in the literature. In the following paragraphs, we review the solutions produced by
the basic ARTI and the extended ART! algorithms.

Table 2 (a) provides the grouping results for daia sets in group I. The analysis of
our computational results indicates that ART1(0,0,0) was able to duplicate the
reference solutions without any difficulties. Comparing the results of ARTI algor-
ithm with that of the extended ART1 shows that the extended ARTI algorithm
could generally produce the best results at higher values of p.

Table 2(b) summarizes the computational results for data sets in group II.
Problems 25 and 28 are examples in the literature used to illustrate the improper
assignment of bottleneck machines. In these problems, the basic ART! could not
exactly duplicate the best results reported in the literature. From Table 2(b) one can
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see that the limitation of the basic ART1 can be overcome by applying reassignment
algorithm.

Problem 32 was solved by Kumar and Vannelli (1987) with the constraints
pertaining to the number of cells and cell size. ART1 cannot create the same number
of cells as those of Kumar and Vannelli. This is because the ART1 does not set out
to accommodate any constraints on the characteristics of the resultant cells. If the
number of output nodes was initially set to 3, the solution of the extended ARTI
compares exactly with the result obtained from Kumar and Vannelli (1987). The
result from ARTI1(1,1,2) produces a higher value of GE than that reported in
Kaparthi and Suresh (1992). Table 3 compares the alternative solutions obtained by
ARTI1(1,0,0) and ARTI(1,1,2).

Parts
0000O0O0O00O0CO111111
123456789012345°5

1 111 1 111111
2 11 1
3 1 1
4 1 1 11
M 5 11 1
a 6 1 1 1
c 7 1 1 1
h 8 1 1 1
i 9 1 1 1
n 10 1 1 1
e 11 1 1 1
s 12 1 1
13 11 1
14 1 1
15 11 1

(@)

Parts
011000100110010
202346457158931

1 1111 11111 1
4 111 1
2 1 1 1
5 11 1

M 6 111

a 17 1 11

c 8 i11

h 9 111

i 10 111

n 11 111

e 13 111

s 15 111
3 11
12 1 1
14 1 1

(&)
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Parts
00010011001 0011
34641202893571°5

5 11 1
6 111
7 1 11
2 11 1
M 4 111 1
a 14 11
c 11 111
h 13 111
i 3 11
n 12 1 1
e 8 111
s 9 111
10 111
15 111
1 11 1 11 11111
(0)

Figure 5. Example D, (a) the initial matrix, (4) solution matrix obtained by ART1 in
descending order of the number of 1’s and (¢) solution matrix obtained by ARTI with
rearrangement.

The advantage of reversing the zeros and ones can be illustrated through the
computational results of problem 33. It can be seen that ART1 without reversing the
zeros and ones cannot produce an acceptable structure. The major reason is due to
the extremely low density of the original incidence matrix. The number of clusters
identified was too numerous to form machine cells. The usefulness of reversing zeros
and ones depends on the characteristic of the machine-part matrix. For instance,
ARTI(1,0,0) performs well in problems 23 and 24, however, it encountered
difficulties in problems 5, 8, 17 and 21.

It is worthy to point out that some of the solutions generated by the extended
ARTTI algorithm are of better quality than those provided by other algorithms.
Table 2 (c) summarizes the computational results for test problems in group I11. For
problem 34 the solution by the extended ARTI resulted in the same number of
machine cells and exceptional elements but higher GE than the solution in the
literature. For problem 35, the solution of the extended ART! is identical to the
solution (with machine group size set equal to 4) given by Askin er al. (1991).
Additionally, three alternative solutions by the extended ART] resulted in the same
number of machine cells but have lower exceptional elements and higher GE than
the reference solution.

Harhalakis er al. (1990) gave two possible solutions for problem 36. In the case
of 4 machine cells, Harhalakis er al. reported Il exceptional elements with
GE=79-62. The extended ART1 yields the same number of exceptional elements but
the GE is higher than that of Harhalakis e a/. When the number of cells equals S,
Harhalakis er al. provided a solution with 15 exceptional elements and GE =85-72.
For the same number of cells, the extended ART1 produced 14 exceptional elements
and GE=88-96. The solutions to this problem are summarized in Table 5.

For problem 37, the extended ARTI gives four clusters, as in the solution
provided by Srinivasan et al. (1990). However, the extended ART]I provided a better
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grouping efficiency and smaller number of exceptional elements than the solution
given by Srinivasan et al. The extended ARTI identified four machine cells,
MC—l={l,4,7,8,11,12},MC72={2,13},MCA3={5.10,I4,16} and MC-4={3,6,9,15}
and the corresponding part families PF-1={2,4,7,9,12,18,22,30},

PF-2=1{1,3,10,13,16,20}, PF~3={6,8,11,14,15,17,21,24,26} and
Problem Number Number
number Source of machines of parts Density
Group 1
1 King and Nakornchai (1982) S 7 0-4
2 Waghodekar and Sahu (1984, Fig. 2(a)) 5 7 0-457
3 Waghodekar and Sahu (1984, Fig. 3(a)) 5 7 0-457
4  Kusiak and Cho (1992) 6 8 0-458
5  Kusiak and Chung (1991) 7 8 0-268
6 Kusiak (1992) 8 7 0-268
7  Seifoddini (1986) S 12 05
8  Seifoddini and Wolfe (1986) 8 12 0-365
9  Seifoddini (1989b, Fig. 1) 9 12 0-343
10 Seifoddini (1989 b, Fig. 2) 9 12 0-333
11 Seifoddini (1989 b, Fig. 3) 9 12 0-333
12 Askin et al. (1991) 10 15 0-327
13 Chan and Milner (1982, Fig. 2(a)) 15 10 0-307
14  Chandrasekharan and Rajagopalan (1986) 8 20 0-381
15  Seifoddini (1989 c) 11 22 0322
16  Stanfel (1985) 14 24 0-182
17  Burbidge (1975) excluding machines 6 and 18 14 43 0-145
18  Carrie (1973) 20 35 0193
19  Burbidge (1975) 22 43 0-133
20 Chandrasekharan and Rajagopalan (1989) 24 40 0136
21  Chandrasekharan and Rajagopalan (1989) 24 40 0135
22  Chandrasekharan and Rajagopalan (1987) 40 100 0-105

7 0-571
7 0-571

23 Waghodekar and Sahu (1984, Fig. 4(a))
24  Waghodekar and Sahu (1984, Fig. 5(a))

5
5
25 Chow and Hawaleshka (1992) 5 11 0-455
26  Kusiak and Chow (1987) 7 8 0-232
27  Gongaware and Ham (1981) 9 9 0-395
28  Seifoddini (1989 a, Table 1) 5 18 0-511
29  McAuley (1972) 12 10 0317
30 Chan and Milner (1982, Fig. 3(a)) 15 10 0-327
31 Chandrasekharan and Rajagopalan (1989) 24 40 0-136
32  Kumar and Vannelli (1987) 30 41 0-104
33 Stanfel (1985) 30 S0 0-103
Group III

34  Kusiak and Chow (1987) 7 11 0-3

35  de Witte (1980) 12 19 0-329
36  Harhalakis er al. (1990) 20 20 0-198
37  Srinivasan et al. (1990) 16 30 0-242
38  Burbidge (1975) 16 43 0-183
39  Burbidge (1975) 16 43 0-183

(using part vectors as inputs)
40  Boe and Cheng (1991) 20 35 0-219

Table 1. Basic information of test problems.
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Cluster Machines

ARTI(1,0,0) Kaparthi and Suresh (1992)
EE=10, GE=71-01

1 1,2, 3,10, 11, 12, 21, 22, 23
2 4,13, 16, 24

3 5, 6,7, 14, 15, 17, 18, 25, 26
4 8, 27, 28

5 9,19, 20, 29, 30
ARTI(1,1,2)

EE=10, GE=72-18 :
1,2, 3,10, 11, 12, 21, 22, 23

1
2 6, 14, 15, 16, 25
3 4,13, 24, 27, 28
4 5,7, 17, 18, 26
5 8,9, 19, 20, 29, 30
Table 3. Solution to Kumar and Vannelli (1987) problem.
Cluster Machines Parts Cluster Machines Parts
1 3,5 6,8 11, 12, 18, 19 1 1,2,9 5,6,8,9
1,2,4,9 9, 10, 14, 16, 17 2 3,4,5,6,8 1,2,3,4,7
3 7,10, 11,12 1,2,3,4,5,6, 3 7,10, 11,12 10, 11, 12, 13,
7,8, 13, 15 14, 15, 16, 17,
18, 19
(a) Askin et al. (1991), GE=76-74%, (b) ARTI1(0,0,1), GE=77-13%, EE=22.
EE=23.
Cluster Machines Parts Cluster Machines Parts
1 1,2,4,8,9 1,4,5,6,7,8 1 1,9 5 8,9
2 7,10, 11,12 9,10, 11, 12, 2 2,3,4,5,6,81,2,3,4,6,7
13, 14, 15, 16, 3 7,10, 11,12 10, 11, 12, 13,
17, 18 14, 15, 16, 17,
3 3,56 2,3, 19 18, 19
(¢) ARTI1(1,0,2), GE=T77-13%, EE=21. (d) ART1(1,0.2), GE=76:69%, EE=20.

Table 4. Part families and machine cells for problem 35.

PF-4=1{5,19,23,25,27,28,29}. The only difference between the extended ART1 and
the reference solution is the assignment of parts 13 and 17. In the reference solution,
part 13 was assigned to PF-4 and part 17 was assigned to PF-2.

In the case of problem 38, machines selected for each of the five cells are identical
to those in Seifoddini’s solution (1990). The extended ARTI algorithm yields a
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higher value of GE than that of Seifoddini’s solution. This is mainly due to the
difference in part-assignment procedure.

Problem 39 is the same as problem 38, except that part vectors were the inputs to
the network. The basic ART! cannot duplicate the best results reported using
conventional methods. As already mentioned, either machine vectors or part vectors
could be the inputs to the ARTI algorithm. For this particular problem, there are
many parts being processed on one machine only. In other words, there is only one
‘1" entry in the part characteristic vector. It is very difficult to cluster parts into
families based on a small number of features. For this problem, ARTI(1,2,2)
produced results slightly better than the result given by Seifoddini (1990).

For problem 40, four clusters have been identified, the solutions obtained by the
extended ARTI are strikingly different from the solution provided by Boe and
Cheng (1991). The extended ART1 algorithm surpasses Boe and Cheng’s solution,
not only in terms of GE measure but for the number of exceptional elements. Table
6 gives the final machine cells and part families for problem 40.

The common feature (with the exception of problem 34) of the test problems in
group III is that a large number of exceptional elements exist in the machine-part
matrix. For all these problems, the extended ARTI outperforms other reference
algorithms in terms of GE as well as EE. The results indicate that the proposed
approach could lead to improved solutions. The average grouping efficiency of the
extended ARTI is 2:02% higher than the best results produced by various
algorithms.

The quality of solution of the extended ART! has been demonstrated through
the computational results presented above. Our studies showed a definite improve-
ment in grouping results with the supplementary procedures. Next, we would like to

Harhalakis et al. (1990) solution

Cluster 1: machines 1, 9, 10, 12, 18 Cluster | machines 1, 9, 10, 12, 18
parts 1, 9, 12, 14, 17, 20 parts 1,9, 12, 14, 17, 20
Cluster 2: machines 2, 3, 5, 11, 14, 16, 17 Cluster 2. machines 2, 3, 11, 14
parts 2, 4, 6,7, 11, 15, 19 parts 2, 4, 11, 19
Cluster 3:  machines 4, 6, 7, 13, 15 Cluster 3:  machines 4, 6, 7, 13, 15
parts 5, 8, 13, 16 parts 5, 8, 13, 16
Cluster 4:  machines 8, 19, 20 Cluster 4:  machines 5, 16, 17
parts 3, 10, 18 parts 6, 7, 15
Cluster 5:  machines 8, 19, 20
parts 3, 10, 18
ARTI(1,1,1)
Cluster 1:  machines 1, 9, 12, 18 Cluster 1:  machines 1, 9, 12, 18
parts 1,9, 12, 17, 20 parts 1, 9, 12, 17, 20
Cluster 2:  machines 2, 3, 5, 11, 14, 16, 17 Cluster 2:  machines 2, 3, 11
parts 2, 4,6, 7,11, 15, 19 parts 2, 4, 11, 19
Cluster 3: machines 4, 6, 7, 13, 15 Cluster 3: machines 4, 6, 7. 15
parts 5, 8, 13, 16 parts S, 8, 13, 16
Cluster 4:  machines 8, 10, 19, 20 Cluster 41 machines 5, 13, 14, 16, 17
parts 3, 10, 14, 18 parts 6, 7. 15

Cluster 5:  machines 8, 10, 19, 20
parts 3, 10, 14, 18

Table 5. Solution to problem 36.
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know if the extended ART1 could produce a consistent solution regardless of the
order of presentation. Problems 15, 31, 38, 39 and 40 were employed here to verify if
the deficiencies with the ART1 algorithm regarding the order of presentation could
be alleviated by the proposed procedures. These matrices are good testing problems
because they contain exceptional parts and bottleneck machines. In this study, 1000
different order of presentations are randomly generated for each matrix. The p value
will be decreased from 0-99 to 0-1 in steps of 0-01 until the solution produced by the
ART] is identical (in terms of the contents of each cluster) to the solution obtained
from the reference algorithm. The results are summarized in Table 7. The entries in
Table 7 represent the percentage of times that an ARTI procedure will give the
identical solution to that of the reference algorithm. Examining Table 7 reveals that
the problem associated with the order of presentation is well addressed by
the rearrangement and reassignment procedures. For the five problems tested,
ARTI(1, 1, 2) and ARTI(1, 2, 2) produce consistent results irrespective of the
sequence of machines or parts in the initial incidence matrix.

From the above discussions, it has been demonstrated that the extended ARTI
could perform as well or better than other existing algorithms. The supplementary
procedures eliminate the sensitivity of the basic ART1 to the configuration of the
initial matrix. The computational requirements for the extended ART1 are higher

Cluster Machines Parts Cluster Machines Parts
1 1,7, 11,12, 15, 4,6,9, 11, 21, 1 3,7 8,17 1, 3,5, 15,17,
16, 19 28, 30, 32, 33, 20, 25, 29

34, 35 2 2.4,13, 14,18 2,7, 10, 12, 13,

2 3,8, 17 1, 3,5, 15 17 18, 24, 27, 31
20, 25, 29 3 1, 11, 12, 15, 4,6,9, 11, 21,

3 2,4,13, 14,18 2,7, 10, 12, 13, 16, 19 28,30, 32, 33,
18, 24, 27, 31 34, 35

4 5,6,9,10,20 8, 14,16, 19, 4 5,6,9,10,20 8, 14,16, 19,
22,23, 26 22,23, 26

(a) Boe and Cheng’s results, GE=77-36%, (b)) ART1(1,2,2), GE=79-79%, EE=35.

EE =40.

Cluster Machines Parts Cluster Machines Parts

1 2,4,13, 14,18 2,7, 10, 12, 13, 1 2,4,13, 14,18 2,7,10,12, 13
18, 23, 27, 31 18, 24, 27, 31

2 1,3.5,7,8,17 1,3,5, 15 17, 2 1,3,7.8, 17 1, 3,5 15,17
20, 23, 25, 29, 20, 23, 25, 29,
34, 35 34, 35

3 6,9, 10, 20 8, 14, 16, 19, 3 5,6,9,10,20 8,14, 16, 19,
22, 26 22,26

4 11, 12, 15,16, 4,6,9, 11, 21, 4 11, 12, 15,16, 4,6,9, 11, 21,

19 28, 30, 32, 33 19 28, 30, 32, 33

(¢) ARTI(1,2.2), GE=79-79%, EE=34.

(d) ART1(1,2,2), GE=80-38%, EE=35.

Table 6. Part families and machine cells for problem 40.
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than those of the basic ART! algorithm. For ARTI(1,2,2), the computational
requirement is approximately 2-5 times as large as that of the basic ART] algorithm.
As was mentioned previously, the ARTI-based cell formation algorithm must work
iteratively (by varying the value of vigilance) until an acceptable solution is achieved.
With the extended procedures, the best solutions are generally found at higher values
of p. This is an indication that the extended procedure requires less time to obtain an
acceptable solution. This argument can be verified by inspecting the results shown in
Table 2. The overall computational effort of the extended procedure might be less
than the basic ARTI algorithm.

6. Conclusions

ART]I is a novel approach to machine cells’ formation problems. One weakness
of this algorithm is that the quality of grouping solution is influenced by the
sequence of machines or parts in the initial machine-part incidence matrix. In this
paper, we have discussed the potential sources of such a problem and proposed a set
of supplementary procedures as the solution. The effectiveness of the supplementary
procedures is demonstrated through its application to 40 problems from the
literature. We have shown that the problem regarding the order of presentation
could be alleviated by utilizing the described supplementary procedures. The results
suggest that the extended ART1 could consistently produce a quality result to a cell
formation problem.

For the described ART1 algorithm, the number of cells is an outcome of the
solution procedure instead of an input data. The algorithm can be modified to
accommodate any possible constraints on the characteristics of the resultant cells
(e.g., the total number of cells, the number of machines in each cell, etc.).

Problem

15 31 38 39 40
Procedure (NG=3, EE=10) (NG=7, EE=20) (NG=5 EE=27) (NG=S5, EE=27) (NG=4, EE =34)
0,0, 0) 0:52 0-0 00 0-0 0-39
0, 1,0) 0-55 0:0 0-0 0-0 0-85
0, 2,0) 0-55 0-0 00 0-05 0-99
0,0, 1 0-98 0-88 05 0-02 0-77
0,0,2) 0-97 0-94 0-78 0-26 0-94
0,1, 1 1-0 1-0 01 0-17 0-86
0,2, 1 1-0 1-0 0-0 0-0 0.89
0, 1.2 1-0 1-0 0-47 0-30 1-0
0,2.2) 1-0 1-0 033 0-28 1-0
(1,0, 0) 0-36 011 00 0-0 0-19
(1,1, 0) 0-32 0-62 0-0 0-0 0-55
(1, 2, 0) 0-42 0-83 00 0-0 0-72
(1,0. 1) 0-96 0-92 027 0-57 0-78
(1,0.2) 0-97 097 0-70 0-93 0-94
(I, 1. 1) 1-0 1-0 0-87 0-95 10
(L2 1-0 1-0 0-87 1-0 1-0
(1, 1,2) I-0 1-0 1-0 1-0 1-0
(1,2, 2) 1-0 1-0 1-0 1-0 10

Table 7. Experimental results.
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Finally, it should be mentioned that this paper only deals with the machine cell
formation based on the machine-part matrix without considering other manufactur-
ing data such as sequences of operations, production volume and so on. To take
these additional factors into account, other neural network models should be
investigated.
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