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Gaussian ARTMAP (GAM) is a supervised-learning adaptive resonance
theory (ART) network that uses gaussian-defined receptive fields. Like
other ART networks, GAM incrementally learns and constructs a rep-
resentation of sufficient complexity to solve a problem it is trained on.
GAM’s representation is a gaussian mixture model of the input space,
with learned mappings from the mixture components to output classes.
We show a close relationship between GAM and the well-known expecta-
tion-maximization (EM) approach to mixture modeling. GAM outper-
forms an EM classification algorithm on three classification benchmarks,
thereby demonstrating the advantage of the ART match criterion for reg-
ulating learning and the ARTMAP match tracking operation for incorpo-
rating environmental feedback in supervised learning situations.

1 Introduction

Adaptive resonance theory (ART) networks construct stable recognition cat-
egories for unsupervised clustering using fast, incremental learning (Car-
penter & Grossberg, 1987). The size of clusters coded by ART categories
is determined by a global match criterion. ART networks have been ex-
tended into supervised-learning ARTMAP networks, which use predictive
feedback to regulate the ART clustering mechanism in order to learn mul-
tidimensional input-output mappings (Carpenter, Grossberg, & Reynolds,
1991). If an ARTMAP network’s prediction is incorrect, then a match track-
ing signal from the network’s output layer raises the match criterion and
thus alters clustering in the ART module. In this way, ARTMAP networks
realize perhaps the minimal possible extension to ART networks to enable
supervised learning while preserving the ART design constraint of fast, in-
cremental learning using only local update rules. In contrast, many online
supervised-learning networks, such as multilayer perceptrons and adap-
tive radial basis function networks, are less local in nature because their
gradient-descent learning algorithms require that error signals computed
at each of the parameters in the output layer be fed back to each of the pa-
rameters in the hidden layer (Rumelhart, Hinton, & Williams, 1986; Poggio
& Girosi, 1989).
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A new ARTMAP network called gaussian ARTMAP (GAM), which uses
internal recognition categories that have gaussian-defined receptive fields,
has recently been introduced and applied to several classification problems
(Williamson, 1996a, 1996b; Grossberg & Williamson, 1997). GAM's recogni-
tion categories learn a gaussian mixture model of the input space as well as
mappings to the output classes. When GAM makes an incorrect prediction,
its match tracking operation is triggered. The network’s vigilance level is
raised by adjusting the match criterion, which restricts activation to only
those categories that have a sufficiently good match to the input. Match
tracking continues until a correct prediction is made, after which the net-
work learns. Thus, match tracking dynamically regulates learning based
on predictive feedback. In addition, if no committed categories satisfy the
match criterion, a new, uncommitted category is chosen. By this process
GAM incrementally constructs a representation of sufficient complexity to
solve a classification problem.

GAM is closely related to the expectation-maximization (EM) approach
to mixture modeling (Dempster, Laird, & Rubin, 1977). We show that the EM
algorithm for unsupervised density estimation using (separable) gaussian
mixtures is essentially the same as the GAM equations for modeling the
density of its input space, except that GAM is set apart by three features
that are standard for ART networks:

1. GAM uses incremental learning, in which the parameters are updated
after each input sample, whereas EM uses batch learning, which re-
quires the entire data set. Incremental variants of the EM algorithm
will also be discussed.

2. GAM restricts learning of the current data sample to the subset of cat-
egories that satisfy its match criterion, whereas EM allows all mixture
components to be affected by all data samples.

3. GAM is a constructive network that chooses new, uncommitted cate-
gories during training when no committed categories satisfy its match
criterion, whereas EM uses a constant, preset number of components.

A straightforward extension of the unsupervised EM mixture model-
ing algorithm to supervised classification problems involves modeling the
class label as a multinomial variable. In this way, the mixture components
represent the I - O mapping from a real-valued input space to a discrete-
valued output space by modeling joint gaussian and multinomial densities
in the I/O space (Ghahramani & Jordan, 1994). We show a close relation-
ship between this EM classification algorithm and GAM. However, GAM
is set apart by match tracking, which causes GAM to “pay attention” to
its training errors and devote more resources to troublesome regions of its
1/O space. GAM thereby learns a more effective representation of thel - O
mapping than EM, as demonstrated by GAM’s superior performance to EM
on three classification benchmarks.
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2 Gaussian ARTMAP

2.1 Category Match and Activation. GAM consists of an input layer,
Fy, and an internal category layer, F5, which receives input from F; via
adaptive weights. Activations at F; and F; are denoted, respectively, by
X=(x,...,xm) and § = (41, ..., yn) where M is the dimensionality of the
input space and N is the current number of committed F; category nodes.
Each F; category, j, models a local density of the input space with a sepa-
rable gaussian receptive field and maps to an output class prediction. The
category’s receptive field is defined with a separable gaussian distribution
parameterized by two M-dimensional vectors: its mean, ji;, and standard
deviation, 3,’. A scalar, nj, also represents the amount of training data for
which the node has received credit. Category j is activated only if its match,
G,, satisfies the match criterion, which is determined by a vigilance parame-
ter, p. Match is a measure, obtained from the category’s unit-height gaussian
distribution, of how close an input is to the category’s mean, relative to its
standard deviation:

M s s\ 2
Gj=exp (—% 2 (—x’ a,,””) ) : 1)

=1

The match criterion is a threshold: the category is activated only if G; >
p; otherwise, the category is reset. If the match criterion is satisfied, the
category’s net input signal, g;, is determined by modulating its match value
by n;, which is proportional to the category’s a priori probability, and by
(nﬁl a,,)‘l, which normalizes its gaussian distribution:

g = _Mr_l]__ G] if GI > p; 8= 0 otherwise. 22)
=107

The category’s activation, y;, represents its conditional probability for being
the “source” of the input vector: P(j | X). This is obtained by normalizing
the category’s input strength,

8
! ZIN=1 81

As originally proposed, GAM used a choice activation rule at Fy: y, =
lif g > &1 V1 # j; y, = 0 otherwise (Williamson, 1996a). In this version,
only a single, chosen category learned on each trial. Here, we describe a
distributed-learning version of GAM, which uses the distributed F; activa-
tion equation (2.3). Distributed GAM was introduced in Williamson (1996b),
where it was shown to obtain a more efficient representation than GAM
with choice learning. Distributed GAM has also been applied as part of an
image classification system, where it outperformed existing state-of-the-art
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image classification system that use rule-based, multilayer perceptron, and
k-nearest neighbor classifiers (Grossberg & Williamson, 1997).

2.2 Prediction and Match Tracking. Equations 2.1 through 2.3 de-
scribe activation of category nodes in an unsupervised-learning gaussian
ART module. The following equations describe GAM’s supervised-learning
mechanism, which incorporates feedback from class predictions made by
the F; category nodes and thus turns gaussian ART into gaussian ARTMAP.
When a category, j, is first chosen, it learns a permanent mapping to the out-
put class, k, associated with the current training sample. All categories that
map to the same class prediction belong to the same ensemble: j € E(k).
Each time an input is presented, the categories in each ensemble sum their
activations to generate a net probability estimate, z, of the class prediction
k that they share:

Zr = Z Y- (2.4)

JeE(k)

The system prediction, K, is obtained from the maximum probability esti-
mate,

K=arg m’?x(zk), (2.5)

which also determines the chosen ensemble. On real-world problems, the
probability estimate zx has been found to predict accurately the probability
that prediction K is correct (Grossberg & Williamson, 1997). Note that cate-
gory j’s initial activation, y;, represents P(j | ¥). Once the class prediction K
is chosen, we obtain the category’s “chosen-ensemble” activation, y]*, which

represents P(j | %, K):

* Y

= —=—"— if je E(K); * =0 otherwise. (2.6)
Y 2ieE Y ! Y

If K is the correct prediction, then the network resonates and learns the
current input. If K is incorrect, then match tracking is invoked. As origi-
nally conceived, match tracking involves raising p continuously, causing
categories j, such that G, < p, to be reset until the correct prediction is fi-
nally selected (Carpenter, Grossberg, & Rosen, 1991). Because GAM uses
a distributed representation at F5, each z; may be determined by multiple
categories, according to equation 2.6. Therefore, it is difficult to determine
numerically how much p needs to be raised in order to select a different
prediction. It is inefficient (on a conventional computer) to determine the
exact amount to raise p by repeatedly resetting the active category with the
lowest match value G, each time reevaluating equations 2.3, 2.4, and 2.5,
until a new prediction is finally selected.
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Instead, a one-shot match tracking algorithm has been developed for
GAM and used successfully on several classification problems (Williamson,
1996b; Grossberg & Williamson, 1997). This algorithm involves raising p to
the average match value of the chosen ensemble:

p=exp (—- >y Z( a,,“") ) @7)

JEE(K) 1=1

In addition, all categories in the chosen ensemble are reset: g, = 0 V j € E(K).
Equations 2.2 through 2.5 are then reevaluated. Based on the remaining non-
reset categories, a new prediction K in equation 2.5, and its corresponding
ensemble, is chosen. This automatic search cycle continues until the correct
prediction is made or until all committed categories are reset, G, < p V j €
{1,..., N}, and an uncommitted category is chosen. Match tracking ensures
that the correct prediction comes from an ensemble with a better match to
the training sample than all reset ensembles. Upon presentation of the next
training sample, p is reassigned its baseline value: p = 5.

2.3 Learning. The F; parameters fi; and g, are updated to represent the
sample statistics of the input using local learning rules that are related to
the instar, or gated steepest descent, learning rule (Grossberg, 1976). Instar
learning is an associative rule in which the postsynaptic activity y; modu-

lates the rate at which the weight wy; tracks the presynaptic signal _f (x.),

w]l Yy [f(xl) - wp] (2.8
The discrete-time version of equation 2.8 is
wii i= (1 — e yHwy + €7y f(x). 2.9)
GAM'’s learning equations are obtained by modifying equation 2.9. The
rate constant € is replaced by n;, which is incremented to represent the
cumulative chosen-ensemble activation of node j and thus the amount of
training data the node has been assigned credit for:
ni=n+y. (2.10)
Modulation of learning by n; causes the inputs to be weighted equally over
time, so that thelr sample statistics are learned. The presynaptic term f(x;)

is set to x, and x?, respectively, for learning the first and second moments of
the input. The standard deviation is then derived from these statistics:

i = L=y D+ ynlx, 1)
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vi = (L =y i + e, (212)

o = v — 15 (2.13)

In Williamson (1996a, 1996b) and Grossberg and Williamson (1997), o,
rather than v, is incrementally updated via:

op 1= /(L =y o2 +yym (o — )2 2.14)

Unlike equations 2.12 and 2.13, equation 2.14 biases the estimate of g, be-
cause the incremental updates are based on current estimates of py, which
vary over time. This bias appears to be insignificant, however, as our simula-
tions have not revealed a significant advantage for either method. Equations
2.12 and 2.13 are used here solely because they describe a simpler learning
rule.

GAM isinitialized with N = 0. When an uncommitted category is chosen,
N is incremented, and the new category, indexed by N, is initialized with
y}; = 1 and ny = 0, and with a permanent mapping to the correct output
class. Learning then proceeds via equations 2.10 through 2.13, with one
modification: a constant, 2, is added to vy; in equation 2.12, which yields
oni = y in equation 2.13. Initializing categories with this nonzero standard
deviation is necessary to make equation 2.1 and equation 2.2 well defined.
Varying y has a marked effect on learning: as y is raised, learning becomes
slower, but fewer categories are created. Generally, y is much larger than
the final standard deviation that a category converges to. Intuitively, a large
y represents a low level of certainty for, and commitment to, the location in
the input space coded by a new category. As y is raised, the network settles
into its input space representation in a slower and more graceful way. Note
that best results have generally been obtained by preprocessing the set of
input vectors to have the same standard deviation in each dimension, so
that y has the same meaning in all the dimensions.

3 Expectation-Maximization

Now we show the relationship between GAM and the EM approach to
mixture modeling, EM is a general iterative optimization technique for ob-
taining maximum likelihood estimates of observed data that are in some
way incomplete (Dempster et al., 1977). Each iteration of EM consists of
an expectation step (E-step) followed by a maximization step (M-step). We
start with an “incomplete-data” likelihood function of the model given the
data and then posit a “complete-data” likelihood function, which is much
easier to maximize but depends on unknown, missing data. The E-step
finds the expectation of the complete-data likelihood function, yielding a
deterministic function. The M-step then updates the system parameters to
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maximize this function. Dempster et al. (1977) proved that each iteration of
EM yields an increase in the incomplete-data likelihood until a local maxi-
mum is reached.

3.1 Gaussian Mixture Modeling. First, let us consider density estima-
tion of the input space using (separable) gaussian mixtures. We model
the training set, X = {J?t}tT=1, as comprising independent, identically dis-
tributed samples generated from a mixture density, which is parameterized
by © = {a, 5,}}‘; 1- The incomplete-data density of X given @ is

T N

T
P(X|18) = [ PGE1©) =[] D_ P Gilf). 3.1)

t=1 t=1 j=1

where 5} parameterizes the distribution of the jth component, and o, repre-
sents its a priori probability, or mixture proportion: ¢ > 0 and Z}il o =1
The incomplete-data log likelihood of © given X is

T N
(O1X) =) log > P(#16), (3.2)

t=1 =1

which is difficult to maximize because it includes the log of a sum. Intu-
itively, equation 3.2 contains a credit assignment problem, because it is not
clear which component generated each data sample. To get around this
problem, we introduce “missing data” in the form of a set of indicator vari-
ables, Z = {2}},21, such that z;; = 1 if component j generated sample ¢t and
zy = 0 otherwise. Now, using the complete data, {X, Z}, we can explicitly
assign credit and thus decouple the overall maximization problem into a
set of simple maximizations by defining a complete-data density function,

T N
P(X,Z|®) = [ [ JlPGri)T, 33)
t=1j=1
from which we obtain a complete-data log likelihood,
T N -
L®IX,2) =) " zylogla, PG I6)], 34)

t=1 j=1

which does not include a log of a sum. However, note that I.(®|X, Z) is a
random variable because the missing variables Z are unknown. Therefore,
the EM algorithm finds the expected value of I.(8|X, Z) in the E-step:

Q(e|eP) = E[I(8|X, Z)|X, ©P], (3.5)
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where ®® is the set of parameters at the pth iteration. The E-step yields
a deterministic function Q(®|0%P), and the M-step then maximizes this
function with respect to ® to obtain new parameters, @7+

OF*D = arg max QO|eM). (3.6)

Dempster et al. (1977) proved that each iteration of EM yields an increase
in the incomplete-data likelihood until a local maximum is reached:

1(©FX) > 1(0P|X). (3.7)

The E-step in equation 3.7 simplifies to computing (for all £, j) yg’) =
E[zy|%:;, ©], the probability that component j generated sample ¢. For com-

parison with GAM, we define the density P(?ctlé}) as a separable gaussian
distribution, yielding

-1 o\ 2
) M ) M [ XuHy,
a](P (Hz:l 0]?, ) exp (_% 1=1 ( ) ) )

7
N | @M o\ e (moe? N ]
=19 (l_L=1 % ) exp |~z = | 0w~

For distributions in the exponential family, the M-step simply updates the
model parameters based on their reestimated sufficient statistics, which are
computed in a batch procedure that weights each sample by its probability,

)
vy,

N (3.8)

T
evy _ 15, @
" =T LYy (39)
T )
@+ 21 yg]p Xt
7 T @ ° (3.10)
Zt:l yt]
T P2
@+ 21 Yy *n P+ 2
6]1 = __T—_(-Pﬁ— - (M]i ) . (3.11)
t=1 yt]

Note that yg’) in equation 3.8 is equivalent to GAM'’s category activation
term v, in equation 2.3 provided that vigilance is zero (p = 0). Also, the
EM parameter reestimation equations (3.9 through 3.11) are essentially the
same as GAM’s learning equations (2.10 through 2.13), except that EM uses
batch learning with a constant number of components, while GAM uses
incremental learning, updating the parameters after each input sample, and
recruiting new categories as needed.
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3.2 Extension to Classification. The EM mixture modeling algorithm is
extended to classification problems by modeling the class label as a multino-
mial variable (Ghahramani & Jordan, 1994). Therefore, each mixture com-
ponent consists of a gaussian distribution for the “input” features and a
multinomial distribution for the “output” class labels. Thus, the classifi-
cation problem is cast as a density estimation problem, in which the mix-
ture components represent the joint density of the input-output mapping.
Specifically, the joint probability that the tth sample has input features ¥
and output class k(t) is denoted by

N
PG, K =k(®)|®) = Y oPGE, K =k(t)|6, X))

=1

N
=Y Aoy PGEI), (3.12)
=1

where the multinomial distribution is parameterized by Ay = P(K = kij; 6-?;)

and ), Ay = 1. This classification algorithm is trained the same way as the
gaussian mixture algorithm, except that equation 3.8 becomes:

@\ 2
) M ) =i,
)‘](l’:(t) ] (H;—l ]fp ) exp ( 2 Zz:l ( ) )

v = . (G193
N M ® M Xy —
21 )‘lk(t)al ( i=19g ) exp (—% i=1 (“‘—“‘to;) ) )]
and the multinomial parameters are updated via
(£
Y1y otk —k(®)]
MY = =2 , (3.14)

Zt:l yt](p)

where §[w] = 1if w = 0 and é[w] = 0 if w # 0. During testing, the class
label is missing and its expected value is “filled in” to determine the system
prediction:

= arg max (Z ytjkjk) (3.15)
’_

where y;; is computed via equation 3.8. The parameter A plays an analo-

gous role to GAM'’s membership function, j € E(k). GAM'’s equation (2.5)

performs the same computation as equation 3.15, provided that Ax = 1 if

j € E(k) and Ay = 0 otherwise. Note that if each EM component is initialized
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so that A = 1 for some k, then A will never change according to update
equation 3.14. Therefore, with this restriction, along with the restriction that
vigilance is always zero (p = 0), EM becomes a batch-learning version of
GAM.

Thus, GAM and EM use similar learning equations and obtain a similar
final representation: a gaussian mixture model, with mappings from the
mixture components to class labels. However, the learning dynamics of the
two algorithms are quite different due to GAM’s match tracking operation.
The EM algorithm is a variable metric gradient ascent algorithm, in which
each step in parameter space is related to the gradient of the log likelihood
of the mixture model (Xu & Jordan, 1996). With each step, the likelihood
of the I/O density estimate increases until a local maximum is reached. In
other words, the parameterization at each step is represented by a point in
the parameter space, which has a constant dimensionality. The system is
initialized at some point in this parameter space, and the point moves with
each training epoch, based on the gradient of the log likelihood, until a local
maximum of the likelihood is reached.

GAM'’s parameters are updated using an incremental approximation to
the batch-learning EM algorithm. However, the most important respect in
which GAM's learning procedure differs from that of EM is that the former
uses predictive feedback via the match tracking process. When errors occur
in the I - O mapping, match tracking reduces, by varying amounts, the
number of categories that learn and thus restricts the movement of GAM’s
parameterization to a parameter subspace. Match tracking also causes un-
committed categories to be chosen, which expands the dimensionality of
the parameter space. Newly committed categories have small a priori prob-
abilities and large standard deviations, and thus a weak but ubiquitous
influence on the gradient.

3.3 Incremental Variants of EM. One of the practical advantages of
GAM over the standard EM algorithm described in sections 3.1 and 3.2 is
that the former learns incrementally whereas the latter learns using a batch
method. However, incremental variants of EM have also been developed.
Most notably, Neal and Hinton (1993) showed that EM can incrementally
update the model parameters if a separate set of sufficient statistics is stored
for each input sample. That is, a separate set of the statistics computed in
equations 3.9 through 3.11 and 3.14, corresponding to each input sample,
can be saved. In this way, the E-step and M-step can be computed following
the presentation of each sample, with the maximization affecting only the
statistics associated with the current sample. Because this incremental EM
recomputes expectations and maximizations following each input sample, it
incorporates new information immediately into its parameter updates and
thereby converges more quickly than the standard EM batch algorithm.

Incremental EM illustrates the statistics that need to be maintained in or-
der to ensure monotonic convergence of the model likelihood in an online
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setting. However, the need to store separate statistics for each input sample
makes incremental EM extremely nonlocal and, moreover, quite impractical
for use on large data sets. On the other hand, there also exist incremental ap-
proximations of EM that use local learning but do not guarantee monotonic
convergence of the model likelihood. For example, Hinton and Nowlan
(1990) used an incremental equation for updating variance estimates that
is identical to equation 2.14, except that a constant learning rate coefficient
was used rather than the decaying term, nj'l.

GAM differs from standard EM due to both GAM’s match tracking pro-
cedure and its incremental approximation to EM’s learning equations. To
make comparisons of GAM and EM on real-world classification problems
more informative, the effects of each of these differences should be isolated.
Therefore, in the following section GAM is compared to an incremental EM
approximation as well as to the standard EM algorithm. Furthermore, in
order to isolate the role played by match tracking, we use GAM’s learning
equations as the incremental EM approximation.

4 Simulations: Comparisons of GAM and EM

4.1 Methodology. All three classification tasks are evaluated using the
same procedure. The data sets are normalized to have unit variance in each
dimension. EM is tested with several different N. For each setting of N, EM
is trained five times with different initializations, and the five test results
are averaged. EM’s performance often peaks quickly and then declines due
to overfitting, particularly when N is large. Therefore, EM’s performance is
plotted following two training epochs, when its best performance is gen-
erally obtained (for large N), and also following equilibration. GAM uses
P ~ 0 (precisely, 5 = 10~7M) for all simulations, and y is varied. For each
setting of y, GAM is trained five times with different random orderings of
the data, and the data order is also scrambled between each training epoch.
GAM is trained for 100 epochs, and the test results are plotted after each
epoch. As the results below illustrate, GAM often begins with relatively
poor performance for the first few training epochs (particularly when y is
large because it biases the initial category standard deviations), after which
performance improves. Performance sometimes peaks and then declines
due to overfitting. To convey a full picture of GAM’s behavior, GAM’s av-
erage performance is plotted for each of its 100 training epochs and for each
setting of y.

Several initialization procedures for EM were evaluated and found to
produce widely different results. The most successful of these is reported
here. As it happens, this procedure initializes EM components in essentially
the same way that GAM categories are initialized, except that the former
are all initialized prior to training. Specifically, each mixture component is
assigned to one of N randomly selected samples, denoted by {Z, k(t)}Y,,
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and initialized as follows: ¢y = 1/N, uy = x4, 0ji = ¥, and Ay = 8[k - k].
In addition, it is guaranteed that at least one component maps to each of the
output classes. Because each EM component maps only to a single output
class, EM and GAM use the same representation and thus have the same
storage requirement for a given N.

It is fortuitous that EM’s best initialization procedure corresponds so
closely to that of GAM. This makes the comparison between the two algo-
rithms more revealing because it isolates the role played by match tracking.
Apart from their batch-incremental-learning distinction, this EM algorithm
operates identically to a GAM network that has a constant p = 0. This is
because EM equation 3.13, in which “feedback” from the class label directly
“activates” the mixture components, is functionally equivalent to the GAM
process of resetting all ensemble categories that make a wrong prediction,
and finally basing learning on the chosen-ensemble activations in equation
2.6 that correspond to the correct prediction. Thus, GAM is set apart only by
match tracking, which raises p according to equation 2.7 when an incorrect
prediction is made.

The contribution of match tracking can be further isolated by removing
the batch—incremental-learning distinction. This is done by using a static-
GAM (S-GAM) network, which is identical to GAM except that it has a
fixed vigilance (o = 7), which prevents S-GAM from committing new cat-
egories during training because the baseline vigilance, 5 = 107", is too
small to reset any of the committed categories. Therefore, S-GAM needs to
be initialized with a set of N categories prior to training. S-GAM is initial-
ized the same way as EM (described above), with each of the N categories
assigned to one of N randomly selected training samples and with an en-
semble that maps to each of the output classes. If SSGAM makes an incorrect
prediction during training, then the chosen ensemble is reset, but vigilance
is not raised. Because vigilance is never raised, match tracking has no effect
on learning other than to ensure that the correct prediction is made before
learning occurs. Therefore, S-~GAM’s procedure is functionally identical to
the EM procedure of directly activating categories based on both the input
and the supervised class label. By including comparisons to S-GAM, there-
fore, the effects of match tracking alone (GAM versus S-GAM), the effects
of incremental learning alone (S-GAM versus EM), and the effects of match
tracking and incremental learning together (GAM versus EM) are revealed.

4.2 Letter Image Recognition. EM, GAM, and S-GAM are first evalu-
ated on a letter image recognition task developed in Frey and Slate (1991).
The data set, which is archived in the UCI machine learning repository
(King, 1992), consists of 16-dimensional vectors derived from machine-
generated images of alphabetical characters (A to Z). The classification
problem is to predict the correct letter from the 16 features. Classification
difficulty stems from the fact that the characters are generated from 20 dif-
ferent fonts, are randomly warped, and only simple features such as the
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Table 1: Letter Image Classification.

Algorithm Error Rate
(%)
k-NN 44
HAC (a) 19.2
HAC (b) 184
HAC (0) 17.3
GAM-CL (y =2) 6.0
GAM-CL (y =4) 63
FAM (o = 1.0) 81
FAM (@ = 0.1) 135

Source: Results are adapted from
Frey and Slate (1991) and Williamson
(1996a).

Notes: k-NN = nearest-neighbor clas-
sifier (k = 1). HAC = Holland-style
adaptive classifier. Results of three
HAC variations are shown here (see
Frey & Slate, 1991). GAM-CL = Gaus-
sian ARTMAP with choice learning.
FAM = Fuzzy ARTMAP.

total number of “on” pixels and the size and position of a box around the
“on” pixels are used. The data set consists of 20,000 samples, the first 16,000

of which are used for training and the last 4000 for testing. For comparison,
the results of several other classifiers are shown in Table 1 (see Frey & Slate,
1991; Williamson, 1996a).

Figure 1 shows the classification results of EM and GAM on the letter
image recognition problem. EM’s average error rate is plotted as a function
of N (N =100, 200, .. ., 1000). For each N, the error rate is shown after two
training epochs (solid line) and after EM has equilibrated (dashed line).
Note that with N < 600, EM performs better following equilibration, but
with N > 600, EM performs better following two epochs, and then per-
formance declines, presumably due to overfitting. EM’s best performance
(7.4 £ 0.2 percent error) is obtained with N = 1000 following two training
epochs.

GAM's average error rate is plotted for y =1, 2, 4. Each point along one
of GAM’s error curves corresponds to a different training epoch, with the
first epoch plotted at the left-most point of a curve. As training proceeds,
the number of categories increases, and the error rate decreases. After a
certain point, the error rate may increase again due to overfitting. As y is
raised, the error curves shift to the left. The initial performance becomes
progressively worse, and it takes longer for GAM’s performance to peak.
However, fewer categories are created, and there is less degradation due to
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Figure 1: The average error rates of EM and GAM on the letter image classifi-
cation problem plotted as a function of the number of categories, N. EM’s error
rates are shown after two training epochs and after equilibration. EM is trained
with N = 100, 200, ..., 1000. GAM is trained with y =1, 2, 4. GAM’s error rates
are plotted after each training epoch. Each of GAM’s error curves corresponds
to a different value of y, with the left-most point on a curve corresponding to the
first epoch. From left to right along a curve, each successive point corresponds
to a successive training epoch.

overfitting. GAM's best performance (5.4 & 0.3 percent error) is obtained
with y = 1 following six training epochs.

For all settings of y, GAM achieves lower error rates than EM forall N. As
y is raised, GAM requires more training epochs to surpass EM. However,
EM does achieve reasonably low error rates with N much smaller than that
created by GAM for any value of y. Figure 1 also suggests a general pattern

Copyright © 2001 All Rights Reserved



A Constructive, Incremental-Learning Network 1531

Table 2: The Trade-Offs Entailed by the Choice of y for GAM for Three Classi-
fication Problems.

Number of Error Rate Number of Storage Rate?

y Epochs (%) Categories (%)
a. Letter image classification
1 1 77 . 8128 . 105
1 6 54 9412 12.1
2 38 6.0 807.2 10.4
4 100 6.6 7124 92
8 100 838 593.8 77
b. Satellite image classification
1 1 124 125.0 57
1 100 10.0 255.2 1.7
2 100 11.2 212.0 9.7
4 100 122 149.2 6.8
8 100 139 93.4 43
c.  Spoken vowel classification
1 1 497 724 28.8
2 5 487 62.2 24.7
4 6 44.0 53.8 214
8 19 439 46.6 185

Notes: The lowest error rates (averaged over five runs) obtained for each of
four settings of y (y = 1,2, 4, 8) are shown. The error rate obtained with y = 1
after only one training epoch is also shown to illustrate GAM’s fast-learning
capability.

#The amount of storage used by GAM divided by the amount used by the
training set.

in GAM'’s performance: in a plot of error rate as a function of number of
categories, there exists (roughly) a U-shaped envelope. For different values
of y, GAM approaches and then follows a different portion of that envelope.
As the remaining simulations illustrate, however, the relationship between
y and the placement of this envelope varies between different tasks. To
illustrate further the trade-offs entailed by the choice of y, Table 2a lists
the lowest error rate obtained on this problem for different values of y,
along with the number of training epochs used to reach that point and the
number of categories created. Finally, the storage rate, which is the amount
of storage used by GAM relative to that used by the training set (and hence,
by a nearest-neighbor classifier), is listed. For an M-dimensional input, each
GAM category stores 2M + 1 values, so the storage rate is calculated as:

NCM+1)
™

In Figure 2, the error rates are plotted as a function of the number of
training epochs. GAM’s results are shown given its best parameter setting
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Figure 2: Average error rates of EM, GAM, and S-GAM plotted as a function of
the number of training epochs.

(y = 1), and the results of EM and S-GAM are shown given similar pa-
rameters (y = 1, N = 1000). GAM quickly achieves its best performance
at six epochs, after which performance slowly degrades due to overfitting.
EM quickly achieves its best performance at two epochs, after which per-
formance quickly degrades and then stabilizes. S-~GAM'’s performance im-
proves more slowly than EM, but S-GAM eventually obtains lower error
rates than EM. For other values of N, the relative performance of EM and
S-GAM is similar to that shown in Figure 2. Therefore, on this problem 5-

GAM’s incremental approximation to EM’s batch learning seems to confer

a small advantage. Much of this advantage is probably due to the fact that
S-GAM'’s standard deviations decrease less than EM’s due to the lingering
effect of y. Additional simulations have shown that EM suffers less from

Copyright © 2001 All Rights Reserved



A Constructive, Incremental-Learning Network 1533

overfitting if the shrinkage of its standard deviations is attenuated during
learning, although this variation does not appear to improve its best results.

Figures 1 and 2 show that match tracking causes GAM to construct an
appropriate number of categories to support the I - O mapping and to
learn the mapping more accurately than EM or S-GAM. However, these
results do not indicate why this is the case. There are two possible explana-
tions for why match tracking gives GAM an advantage: (1) match tracking
causes GAM to obtain a better estimate of the I/O density (i.e., to obtain a
mixture model with a higher likelihood) (2) match tracking biases GAM's
density estimate so as to reduce its predictive error in the I - O mapping.
The results shown in Figures 3 and 4 indicate that the latter explanation is
correct.

Figure 3 shows the error rate over 25 training epochs for a single run of
GAM, on which GAM created 985 categories: the error rate on the training
set (top) and the test set (bottom). Figure 3 also shows the corresponding
error rates for EM and S-GAM initialized with the same number (N = 985)
of categories as were created by GAM. On both the training set and the
test set, GAM obtains much lower error rates than EM and S-GAM. Next,
Figure 4 shows the log likelihoods of the mixture models formed by EM,
GAM, and S-GAM. EM obtains a much higher log likelihood than GAM and
S-GAM on both the training set and the test set, whereas the log likelihoods
obtained by GAM and S-GAM are similar. Therefore, GAM outperforms
EM and S-GAM because match tracking biases its density estimate such
that the predictive error in its I - O mapping is reduced, despite the fact
that GAM obtains an estimate of the I/O density with a lower likelihood
than that of EM.

4.3 Landsat Satellite Image Segmentation. EM, GAM, and S-GAM are
evaluated on a real-world task: segmentation of a Landsat satellite image
(Feng, Sutherland, King, Muggleton, & Henery, 1993). The data set, which
is archived in the UCI machine learning repository (King, 1992), consists of
multispectral values within nonoverlapping 3 x 3 pixel neighborhoods in
an image obtained from a Landsat satellite multispectral scanner. At each
pixel are four values, corresponding to four spectral bands. Two of these are
in the visible region (corresponding approximately to green and red regions
of the visible spectrum) and two are in the (near) infrared. The input space is
thus 36-dimensional (9 pixels and 4 values per pixel). The spatial resolution
of a pixel is about 80m x 80m. The center pixel of each neighborhood is
associated with one of six vegetation classes: red soil, cotton crop, gray soil,
damp gray soil, soil with vegetation stubble, and very damp gray soil. The
data set is partitioned into 4435 samples for training, and 2000 samples for
testing. For comparison, the results of several other classifiers are shown in
Table 3 (see Feng et al., 1993; Asfour, Carpenter, & Grossberg, 1995).

Figure 5 shows the classification results of EM and GAM on the satellite
image segmentation problem. EM's error rate is plotted for N = 25, 50, ... .,
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Figure 3: Error rates of EM, GAM, and S-GAM on the training set (top) and the
test set (bottom) plotted as a function of the number of training epochs.
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Figure 4: Log likelihoods of EM, GAM, and S-GAM on the training set (top)
and test set (bottom) plotted as a function of the number of training epochs.
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Table 3: Satellite Image Classification.

Algorithm Error Rate
(%)
kNN 10.6
FAM 11.0
RBF 12.1
Alloc80 13.2
INDCART 137
CART 13.8
MLP 13.9
NewlID 15.0
C4.5 15.1
CN2 15.2
Quadra 15.3
SMART 15.9
LogReg 16.9
Discrim 17.1
CASTLE 194

Source: Results adapted from Feng
et al. (1993) and Asfour et al
(1995).

Note: The k-NN result reported
here, which we obtained, is differ-
ent from the k-NN result reported
in Feng et al. (1993).

275, following two epochs and following equilibration. For N < 100 EM
performs better after equilibration, whereas for N > 100 EM performs bet-
ter after two epochs. EM’s best results (10.6 = 0.4 percent error) are ob-
tained with N = 275. GAM’s error rate is plotted for y = 1,2,4. Once
again, GAM achieves the lowest overall error rate (10.0 & 0.4 percent er-
ror), although on this problem GAM outperforms EM only with y = 1. It
is difficult to distinguish GAM’s error curves because they overlap each
other so much. Unlike the letter image recognition results, none of GAM’s
error curves tails up due to overtraining. Therefore, all the curves appear
to be on the left side of our hypothetical U-shaped envelope. Table 2b re-
ports the lowest error rate for different values of y, along with the relevant
statistics: number of training epochs, number of categories, and storage
rate.

Figure 6 plots the error rates as a function of the number of training
epochs for GAM (y = 1), EM(y =1,N = 250), and SSGAM (y = 1,N =
250). GAM's performance generally increases throughout, whereas EM's
performance again peaks at two epochs and then quickly degrades and
stabilizes. On this problem EM outperforms S-GAM.
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Figure 5: Average error rates of EM and GAM plotted as a function of the
number of categories.

4.4 Speaker-Independent Vowel Recognition. Finally, EM, GAM, and
S-GAM are evaluated on another real-world task: speaker-independent
vowel recognition (Deterding, 1989). The data set is archived in the CMU
connectionist benchmark collection (Fahlman, 1993). The data were col-
lected by Deterding (1989), who recorded examples of the 11 steady-state
vowels of English spoken by 15 speakers. A word containing each vowel
was spoken once by each of the 15 speakers (7 females and 8 males). The
speech signals were low pass filtered at 4.7 kHz and then digitized to 12
bits with a 10-kHz sampling rate. Twelfth-order linear predictive analysis
was carried out on six 512-sample Hamming windowed segments from the
steady part of the vowel. The reflection coefficients were used to calculate 10
log area parameters, giving a 10-dimensional input space. Each speaker thus
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Figure 6: Average error rates of EM, GAM, and S-GAM plotted as a function of
the number of training epochs.

yielded six samples of speech from the 11 vowels, resulting in 990 samples
from the 15 speakers. The data are partitioned into 528 samples for training,
from four male and four female speakers, and 462 samples for testing, from
the remaining four male and three female speakers. For comparison, the
results of several other classifiers are shown in Table 4 (see Robinson, 1989;
Fritzke, 1994; Williamson, 1996a).

Figure 7 shows the classification results of EM and GAM on the vowel
recognition problem. EM’s error rate is plotted for N = 15,20,...,70,
following two epochs and following equilibration. For all N, EM obtains
better results after two epochs than after equilibration. EM’s best results
(45.4 + 1.1 percent error) are obtained with N = 40. GAM’s error rate is
plotted for y = 2, 4, 8. By a small margin, GAM achieves the lowest overall
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Table 4: Spoken Vowel Classification.

Algorithm Error Rate
(%)
kNN 437
MLP 494
MKM 574
RBF 524
GNN 46.5
SNN 45.2
3-D GCS 36.8
5-DGCS 335
GAM-CL (y = 2) 43.3
GAM-CL(y =4) 4138
FAM (o = 1.0) 48.9
FAM (@ = 0.1) 50.4

Source: Results adapted from Robinson
(1989), Fritzke (1994), and Williamson
(1996a).

Notes: Gradient descent networks (us-
ing 88 internal nodes) are: MLP (multi-
layer perceptron), MKM (modified Kan-
erva model), RBF (radial basis function),
GNN (gaussian node network), and SNN
(square node network). Constructive net-
works are: GCS (growing cell structures),
GAM-CL, and FAM.

error rate (43.9 + 1.4 percent error), but outperforms EM only with y = 4
and y = 8. The data set is quite small, and hence both algorithms have a
strong tendency to overfit the data. Table 2c reports the lowest error rate
for different values of y, along with the relevant statistics: the number of
training epochs, number of categories, and storage rate.

Figure 8 plots the error rates as a function of the number of training
epochs for GAM (y = 3), EM (y = 3, N = 40), and S-GAM (y =3,N =40).
GAM’s performance peaks at 19 epochs and then slowly degrades. EM’s
performance peaks at 2 epochs and then degrades quickly and severely
before stabilizing. S-GAM’s error rate, which stabilizes near 50 percent,
never reaches EM’s best performance.

5 Conclusions

GAM learns mappings from a real-valued space of input features to a
discrete-valued space of output classes by learning a gaussian mixture
model of the input space as well as connections from the mixture compo-
nents to the output classes. The mixture components correspond to nodes in
GAM’sinternal category layer. GAM is a simple neural architecture that em-
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Figure 7: Average error rates of EM and GAM plotted as a function of the
number of categories.

ploys constructive, incremental, local learning rules. These learning rules
allow GAM to create a representation of appropriate size as it is trained
online.

We have shown a close relationship between GAM and an EM algorithm
that estimates the joint I/O density by optimizing a gaussian-multinomial
mixture model. The major difference between GAM and EM is GAM’s match
tracking procedure, which raises a match criterion following incorrect pre-
dictions and prevents nodes from learning if they do not satisfy the raised
match criterion. Match tracking biases GAM’s estimate of the joint I/O den-
sity such that GAM's predictive error in the I - O map is reduced. With
this biased density estimate, GAM outperforms EM on classification bench-
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Figure 8: Average error rates of EM, GAM, and S-GAM plotted as a function of
the number of training epochs.

marks despite the fact that GAM uses a suboptimal incremental approxi-
mation to EM’s batch learning rules and learns mixture models that have

lower likelihoods than those optimized by EM.
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