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A Hybrid Neural Network Model for Noisy
Data Regression

Eric W. M. Lee, Chee Peng Lim, Richard K. K. Yuen, and S. M. Lo

Abstract—A hybrid neural network model, based on the fusion
of fuzzy adaptive resonance theory (FA ART) and the general
regression neural network (GRNN), is proposed in this paper.
Both FA and the GRNN are incremental learning systems and are
very fast in network training. The proposed hybrid model, denoted
as GRNNFA, is able to retain these advantages and, at the same
time, to reduce the computational requirements in calculating
and storing information of the kernels. A clustering version of
the GRNN is designed with data compression by FA for noise
removal. An adaptive gradient-based kernel width optimization
algorithm has also been devised. Convergence of the gradient
descent algorithm can be accelerated by the geometric incremental
growth of the updating factor. A series of experiments with four
benchmark datasets have been conducted to assess and compare
effectiveness of GRNNFA with other approaches. The GRNNFA
model is also employed in a novel application task for predicting
the evacuation time of patrons at typical karaoke centers in Hong
Kong in the event of fire. The results positively demonstrate the
applicability of GRNNFA in noisy data regression problems.

Index Terms—Fuzzy adaptive resonance theory (ART), general
regression neural network (GRNN), general regression neural net-
work with fuzzy ART clustering (GRNNFA), noisy data regression.

I. INTRODUCTION

ATA regression is a major research topic in the area of

function approximation. Different artificial neural net-
work (ANN) models for data regression including multilayer
perceptron (MLP) and radial basis function (RBF) have been
developed. In MLP, the regression surface is constructed by
nonlinear transformation of the combination of neurons outputs.
RBF approximates the underlying function by the combination
of nonlinear semi-parametric functions (i.e., kernel functions).
However, the number of hidden neurons or kernels of these ANN
models has to be pre-determined prior to network training. The
general regression neural network (GRNN) model developed
by Specht [1] is a powerful regression tool with a dynamic
network structure. The network training speed is extremely
fast. Due to the simplicity of the network structure and ease
of implementation, it has been widely applied to a variety of
fields including image processing [2], nonlinear adaptive control
[3], machinery fault diagnosis [4], and financial prediction [5].
During the training process, each training sample is recruited as
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a kernel. Then, a regression surface can be established by using
Parzen-window estimators [6] with all the kernel widths assumed
to be identical and spherical in shape. The major drawback of the
GRNN is the requirement of extensive computer resources for
storing and processing all the training samples. Specht [1] pro-
posed a clustering algorithm for the GRNN to reduce the number
of kernels and hence computational burden. Instead of recruiting
all the training samples as kernels, a clustering procedure is used
to compress all training samples into fewer kernels.

Fuzzy adaptive resonance theory (FA), on the other hand, is
a powerful unsupervised classifier. The architecture of FA was
developed based on adaptive resonance theory (ART) [7]. Fuzzy
subsethood [8] is utilized as a similarity measure between input
patterns and network prototypes. FA has been proven to be a
stable network that solves the stability-plasticity dilemma. It has
also been applied to different fields. Brezmes [9] et al. employed
FA as a classification tool in his electronic nose for determi-
nation of fruit quality. Araujo and Almeida [10], [11] used FA
for building maps by signals of sensors for navigation of a mo-
bile robot. Cinque et al. [12] applied FA with a modified choice
function to image segmentation. FA was also used for customer
grouping in e-commence by Park [13].

This paper presents a hybrid network, denoted as gen-
eral regression neural network with fuzzy ART clustering
(GRNNFA), that employs FA as a pre-processor for the GRNN
to compress training data samples into fewer kernels. Com-
paring with other popular clustering methods (e.g., the kohonen
self-organizing map [14] and fuzzy C-means clustering [15]),
FA has been proven to be stable [16], and is extremely fast
in learning. During the course of learning, the boundaries
(i.e., hyper-rectangles) of the prototypes will be increased
monotonically. In GRNNFA, the center and label of a kernel
are determined, respectively, by computing centroids of the
input and output of the data points being clustered to that kernel
upon completion of the clustering process. Noise embedded
in the data points inside each hyper-rectangle can possibly
cancel each other if they are distributed symmetrically around
the centroid of the data samples. For determining the kernel
width, an optimization algorithm has been developed. Prior to
the use of the algorithm, the kernel widths are initialized by the
K -nearest neighboring kernels [17].

The organization of this paper is as follows. Section II de-
scribes the basic architectures of the GRNN and FA. Section III
illustrates the fusion of the GRNN and FA into GRNNFA. A
series of experiments on four benchmark datasets and a novel
application of GRNNFA to predicting evacuation time during
fire disasters are presented in Section I'V. The results are com-
pared and discussed. Section V concludes the GRNNFA and its
possible enhancements.

1083-4419/04$20.00 © 2004 IEEE
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II. ARCHITECTURES OF THE GRNN AND FA
A. GRNN Architecture

Assuming that the underlying scalar function to be approxi-
mated is y = f(x) where x € R? is a multi-dimensional inde-
pendent variable and y € R is the dependent variable, regression
in the GRNN is carried out by the expected conditional mean of
y given x as shown in (1) where g(x, y) is the Parzen probability
density estimator [6] with Gaussian function as defined in (2)

T yg(x,y)dy

Elylx] =—F%—— (1)
J 9(x,y)dy
1
9(x,y) = e
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Equation (3) shows the predicted output of the GRNN model.
The kernels are assumed to be hyper-spherical in shape but with
different radii. The same was used in the modified GRNN model
in [18] where

Z; Jth component of the input vector;

Tik kth component of the ¢th kernel position vector;
o; width of the sth kernel;

Tiy width of the 7" kernel label.

§x) =5 - )
Z .

The main drawback of the GRNN is the requirement of ex-
tensive amount of computational resources for holding the infor-
mation of the kernels. It also requires substantial computational
time for kernel width optimization. Specht [19] addressed the
basic concept of inclusion of clustering techniques in the GRNN
model. Fig. 1 shows the architecture of the clustering version of
the GRNN model. According to [1], (4) and (5) are used where
A;(k) and B; (k) are incrementally updated each time when the
output of the training sample for cluster ¢ is encountered. This
clustering version of GRNN is employed in GRNNFA.

iy & exp |5k (x—x)T (x %)
S0y B exp [ = 5k (x - xi)T(x - %)
Ai(k) = Ai(k — 1) + Yj (5)

Bi(k) = Bi(k—=1) +1 °
Different clustering approaches for reducing the number of
kernels of the GRNN or probabilistic neural network (PNN)
model were proposed, e.g., Kohonen’s learning vector quantiza-
tion technique [20], the k-means algorithm [21], and a mixture

of Gaussian densities models [22]. These clustering schemes re-
quire determination of the number of kernels prior to the clus-

9(x) = “4)

Fig. 1. Architecture of the clustering version of the GRNN model.
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Fig. 2. Architecture of the fuzzy ART model.

tering process. In [16], the possible instability of the clustering
techniques by the measurements of Euclidean distances was dis-
cussed. On the other hand, FA [16] with guaranteed convergence
in network training has been proven to be stable. As a result,
FA is used for clustering the training samples incrementally and
stably into fewer numbers of kernels in the GRNNFA.

B. FA Architecture

Fig. 2 depicts the FA network architecture. The learning al-
gorithm of FA is as follows. An m-dimensional input pattern,
a={ay,as,...,a;,} where I, € [0,1] and k = 1,2,...,m,
is presented to the F} layer in a complement-coded format,
I = (a.a®) € R?™ where a° = {a$,as,...,al,} of which
aj =1 —apfork =1,2,...,m. The complement-coded input
pattern will be compared with the prototypes W; € R2™ in the

F5 layer by using a choice function as shown in (6). The proto-
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type that has the highest degree of fuzzy subsethood is selected
by (7). Note that |x| = ), z;, X Ay = min(z;,y;) and the
choice parameter, «, is a small positive number

IAW,|
T; = 6
T IW, +a ©
J =arg max{T}}. ™
J

Resonance is said to occur if the prototype chosen by the choice
function (i.e., 5 = J) also satisfies (8) where the vigilance pa-
rameter p is a threshold predetermined by users

|I/\W]| >
1|

A prototype fulfilling both (7) and (8) is selected as the win-
ning prototype. If a prototype satisfies (7) but fails (8), it will be
inhibited. Searching for the winning prototype will be repeated
until a prototype that satisfies both (7) and (8) is found. Other-
wise, a new prototype will be created to represent the current
input pattern. Once the winning prototype is identified, it will
be updated according to (9) where [ is the learning rate param-
eter.

®)

WF]Ilew) — ﬁ (I A WSOI(1)> + (1 . ﬂ) WSol(i)' (9)
It is called fast learning when 3 = 1. It has been shown in
[16] that the maximum size of prototype j is controlled by the
vigilance parameter, and |[W ;| is a monotonically increasing

quantity to guarantee convergence of the learning procedure.

III. FusioN oF GRNN AND FA

The GRNNFA architecture, as shown in Fig. 3, consists of
two modules i.e., FA is employed for training whereas the
GRNN is employed for prediction. The basic approach of
combining the GRNN and FA models is to first cluster all
training samples to fewer numbers of prototypes by FA. Then,
the FA prototypes are converted into the GRNN kernels. Since
each FA prototype is originally represented by two vertices of
the hyper-rectangle, a scheme to obtain the three parameters of
each Gaussian kernel (i.e., center, width, and label) from the
respective hyper-rectangle is proposed as follows.

1) Kernel Center Estimation: FA is applied to establish pro-
totypes in the input domain according to the distribution of input
samples. However, the prototypes created by FA cannot be used
directly as the GRNN kernels since these prototypes, in accor-
dance with the FA learning algorithm, only represent the ver-
tices of hyper-rectangles. As a result, the method proposed in
[17] for estimating kernel centers of the prototypes created by
Fuzzy ARTMAP (FAM) is adopted in GRNNFA. The kernel
center x; of cluster .J is determined by (10) where a; (i =
1,2,...,Ny) comprise all N; samples belonging to .J as fol-
lows:

Ny
> a
i—1

== 10
Xs =\ (10)
2) Kernel Label Estimation: A statistical regression model

can be developed by taking the expected value over N numbers
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Fig. 3. Architecture of the GRNNFA model.

of kernels shown as follows in (11) where 7, &;, and P(K;|x)
are, respectively, the predicted output, the label of the kernel K;
and the probability of kernel K; given the input vector x:

Zgz

By applying Bayesian theory to (11), the following regres-
sion model can be obtained where n; is the number of samples
belonging to kernel K;:

(K |x). (11)

c
2.

. =1

jx)=—F".
,.zzlnip(ﬂKi)

The format of (12) is similar to (4). It can be observed that n;
in denominator of (12) (i.e., total number of samples of kernel
K;) is exactly equal to the value of B; in (5). It is proposed to
equate n;&; in (12) and A; in (5), i.e.,

A;

n;

ni&ip (x| K;)
(12)

&= 13)

According to (13), the centroid of the outputs vectors of the
clustered input samples should be taken as the label of kernel
K;. The proposed compression scheme to obtain the kernel
center and label is depicted in Fig. 4.

3) Kernel Width Estimation: Before applying the kernel
width optimization scheme, each kernel width is initialized
according to (14) which is similar to the scheme proposed in
[17]

K
1
o= ﬁ; lIx; — x|

The width of kernel 7 is first set to half of the average distance
over K numbers of the nearest neighbors to kernel j. By using
appropriate K -nearest neighbors and the vigilance parameter, a
network structure with minimum validation error can be initial-
ized.

j#k 1<K<<N-1. (14
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Fig. 4. Data compression scheme for noise removal. Samples are clustered
by applying FA on the sample inputs. The centroids of the sample inputs and
outputs represent the kernel center and label respectively.

The prediction accuracy can further be improved by applying

a gradient-based kernel width optimization scheme. The error

of a particular training sample is defined as
1

en = 56,3 (15)

where 65, = 9(Xx) — Uk, J(Xx) is the GRNNFA prediction and
yr, 1S the target value of the corresponding input vector xj. The
error of all NV training samples is

N
FE = Zek.
k=1

The gradient of the error surface can be obtained by differen-
tiating (16) with respect to the kernel widths, i.e.,

(16)

dY(xy.)
. 17
80] ; k 0o 7
Equation (18) is obtained by substituting (4) into (17), i.e.,
N
oF 0
Z= §p ——
do Z kao]
=1
> exp( s (x—x)" (x — xL)>
=1 (18)
> % - exp (—% (x — xi)T (x — xi)>
i=1 ! ‘
By using D} ; = (x — xj)T (xx — x;), i.e., the squared Eu-

clidean distance between x;, and x;, (19) is obtained

Jdo;
J J

e | (5) | <[ -l o0

With the traditional gradient descent algorithm, the kernel
width, o; is updated according to (20) as follows:

(new) (old) 2 oF

J J do;
To avoid the problem of over-fitting, the training data samples
are divided into two i.e., the training and validation sets. The

training process is stopped when the validation error reaches

a pre-set threshold, i.e., the fast-stop validation training proce-
dure. One of the deficiencies of the traditional gradient descent
algorithm is the slow rate of convergence. As a result, the elastic
updating factor, as introduced in [23], is used, i.e.,
W2 {pa?ﬂd, if AE <0
new ) ga?yy, ifAE>0
where AFE is the change of training error from the last step.
The values of p and o are typically set to 1.1 and 0.5 [23]. If
the training error increases or decreases, the updating factor
will be decreased or increased correspondingly. This scheme
can help to determine an appropriate updating factor to force
the training error to reduce monotonically. The optimization
algorithm is terminated if the validation error has no further
improvement over several numbers of epochs. In this study,
2,000 epochs were used. The pseudo code of the GRNNFA
training procedure is shown in Appendix A. The executable
and instruction files of the GRNNFA model can be obtained at
http://home.i-cable.com/ericello/grnnfa/grnnfa.zip.

2y

IV. EXPERIMENTAL STUDIES

The performance of the GRNNFA model was evaluated
by using five datasets, with the first four being benchmark
problems. The noisy-two-intertwined-spirals problem is first
used to view and compare the results reconstructed by the
GRNNFA. It is a classification problem using synthetic data
with Gaussian noise introduced. The second and third prob-
lems, i.e., Ozone and Friedman#1, comprise real and synthetic
data (with Gaussian noise introduced), respectively. The fourth
problem is a real, astrophysical dataset, i.e., Santa Fe Series-E,
which is noisy, discontinuous and nonlinear in nature. The
fifth problem is the prediction of evacuation time of patrons
to karaoke centers. The data samples were generated by the
spatial grid evacuation model (SGEM) [24] with Gaussian
noise introduced.

It is expected that the randomization procedures used for gen-
eration of noise-corrupted data and selection of data for network
training and testing might affect the prediction errors. In order
to compare the results predicted by the GRNNFA model with
other published results by other models irrespective to the ef-
fect of randomization, bootstrapping [25], [26] was employed
to quantify the performance indicators statistically. Bootstrap-
ping is a method for estimating statistical variations of a param-
eter in situations where the underlying sampling distribution of
the parameter is unknown or difficult to estimate. It has been
proven useful to compute population parameters statistically in
problems with small data samples. Fig. 5 shows the procedure
used to mitigate the effect of randomization in the experiments.

Instead of a single run, several experiments were conducted
and bootstrapping was applied to obtain the prediction errors in
form of means and 95% confidence intervals. The principle of
bootstrapping for computing mean of a set of data samples is as
follows.

Step 1) A set of data X = z1,...,x, is collected. Suppose
that n is the size of the sample observed from a com-
pletely unspecified probability distribution F, [ is
the mean of all the values in X, and NV is the number
of repeated times of bootstrapping.
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Fig. 5. Bootstrap algorithm for evaluation of mean and 95% confidence
interval of the prediction errors.

Step 2) Draw a random sample of n data points indepen-
dently, with replacement, from X. The new set of
data X* is the bootstrap sample.

Step 3) The bootstrap sample mean of X*, i, is calculated.

Steps 2 and 3 are repeated N times to obtain bootstrap esti-

mates of i}, ..., .

A. Noisy Two-Intertwined Spirals

This synthetic benchmark problem was designed for noisy
data classification. The input domain is a two-dimensional unit
square (i.e., [0,1]?) which contains two intertwined spirals.
Each spiral consists of 97 isotropic Gaussian distributions
centered along the spiral. The standard deviation of each
Gaussian is 0.025. The training dataset was created according
to the procedure in [27]. Note that classification is a kind of
regression but with discrete outputs. The problem is selected
because the ability of GRNNFA in reconstructing the two
intertwined spirals based on noisy data can be viewed and
compared with that from Gaussian ARTMAP, i.e., a supervised
ART-based network for noisy classification tasks [27].

After several trials, the vigilance parameter and the K value
of the GRNNFA model were set to 0.95 and 2, respectively.
A total of twenty experiments were carried out with different
random data samples. Note that the output value of each image
pixel was obtained from bootstrapping with 2,000 numbers of
re-samplings. They were discretized, by setting demarcation at
the value of 0.5, to either O or 1. Fig. 6 shows the reconstructed
images of the two intertwined spirals. It can be clearly seen that
the reconstructed images from GRNNFA are more lucid than
those from Gaussian ARTMAP (adapted from [27]) with dif-
ferent numbers of training samples.

B. Ozone

This dataset was obtained from University of California at
Berkeley (ftp://ftp.stat.berkeley.edu/pub/users/breiman). It has
330 samples with eight inputs and one output. The input sam-
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Fig. 6. Reconstruction of noisy two intertwined spirals by GRNNFA and
Gaussian ARTMAP (adapted from [27]).

ples comprised meteorological information such as humidity
and temperature. The target output is the maximum daily ozone
at a location in the Los Angeles basin. In accordance with [28],
250 samples were randomly selected from the dataset for net-
work training of which 125 samples were used for validation.
The remaining 80 samples were used for network testing.

After several trials, the best values of the K-nearest neigh-
bors and vigilance parameters were set to 3 and 0.9, respectively.
A total of twenty experiments were performed. The average
mean-squared-error (MSE) and its standard deviation obtained
from the test set were calculated. The results of GRNNFA were
compared with those from the neural-BAG (NBAG), Bench, and
Simple models. Note that the Bench model [29] uses bagging
to produce an ensemble of neural networks sub-models trained
by different datasets resampled from the original dataset by the
bootstrap technique. It takes the average of the predicted out-
puts of the neural network sub-models as the final predicted
output. The Simple model is similar to Bench but equipped with
a fast-stop training algorithm [28]. The NBAG model is similar
to simple but with an algorithm to control the diversity among
the neural network sub-models to increase the generalization
performance of the overall model. These models were applied
to the Ozone benchmark problem and the results are shown in
Table I. The MSE of GRNNFA is 17.18 with a standard de-
viation of 2.57. These results are better than those from other
models as reported in [28].
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TABLE 1
MSE OF DIFFERENT MODELS ON THE OZONE PROBLEM. STANDARD
DEVIATIONS CALCULATED FROM 20 RUNS ARE BRACKETED (RESULTS
OF NBAG, BENCH, AND SIMPLE ARE ADAPTED FROM [28])

Model Ozone
NBAG 18.37(3.59)
Bench  18.58 (3.40)
Simple  19.14 (3.21)
GRNNFA 17.18 (2.57)
TABLE 1II

BOOTSTRAP MEANS AND CONFIDENCE LIMITS OF MSE
FOR THE OZONE PROBLEM

Lower Upper
I;I:[;lglfi;eg: Conf.“ldc.ence Conf.idc?nce Mean
Limit Limit
200 16.104 18.280 17.154
400 16.061 18.208 17.201
800 16.203 18.253 17.204
1600 16.058 18.317 17.165
3200 16.033 18.287 17.187
6400 16.074 18.294 17.178
TABLE III

MSE OF DIFFERENT MODELS ON THE FRIEDMAN#1 PROBLEM. STANDARD
DEVIATIONS CALCULATED FROM 20 RUNS ARE BRACKETED (RESULTS OF
NBAG, BENCH, AND SIMPLE ARE ADAPTED FROM [28])

Model Friedman#1
NBAG  4.502 (0.268)
Bench 5.372 (0.646)
Simple  4.948 (0.589)
GRNNFA 4.563 (0.195)

To further examine the GRNNFA performance statistically,
bootstrap means and 95% confidence limits of the MSE were
computed, as shown in Table II. Since variations of the means
and confidence limits of MSE for resamplings larger than 1600
is small (i.e., less than 0.2%), the results obtained from 1600
re-samplings were taken. These results justify that the perfor-
mance of GRNNFA is significantly better than other models
from the statistical point of view.

C. Friedmani#l

This is a synthetic benchmark dataset proposed in [30]. Each
sample consists of five inputs and one output. The formula
for data generation is t = 10sin(mz22) + 20(z3 — 0.5)% +
10z* + 52° + ¢ where ¢ is a Gaussian random noise N (0, 1),
and z1, ..., x5 are uniformly distributed over the domain [0, 1].
Similar to [28], 1,400 samples were created, of which 200
samples were randomly chosen for network training and 200
samples for validation. The remaining 1000 samples were used
for network testing. After several trials, the best values of the
K -nearest neighbors and vigilance parameter were 3 and 0.95,
respectively. Table III summarizes the results predicted by the
GRNNFA and the other models as listed in [28]. The MSE
obtained by averaging the results of 20 runs is 4.563 with a
standard deviation of 0.195. The MSE of GRNNFA is higher
than that of NBAG, but lower than the rest. Besides, GRNNFA
yielded the smallest standard deviation, indicating a stable
performance. Bootstrapping was again applied to quantify

TABLE IV
BOOTSTRAP MEANS AND CONFIDENCE LIMITS OF MSE FOR THE
FRIEDMAN#1 PROBLEM

Lower Upper
I;I;Iﬁofi;e_ Confidence Confidence  Mean
PINE Limit Limit
200 4.4843 4.6461 4.5631
400 4.4760 4.6494 4.5634
800 4.4743 4.6462 4.5613
1600 4.4773 4.6438 4.5627
3200 4.4761 4.6423 4.5619
6400 4.4780 4.6424 4.5635
0.2
i 0.1
&
Z 0
w
’—
Z

0.1

02 1850 1900 1950 2000
TIME (SEC)
Fig.7. Comparison of the actual time series of the Sante Fe Series-E and time

series predicted by the GRNNFA model.

the GRNNFA results statistically. Table IV summarizes the
bootstrap mean and 95% confidence limits of the MSE.

The mean MSE obtained from 1600 resamplings (with vari-
ation less than 0.04%) is 4.5627 with 95% confident limits be-
tween 4.4773 and 4.6438. It can be observed that the MSE from
NBAG (i.e., 4.502) is within the 95% confidence interval of the
MSE distribution of GRNNFA estimated by bootstrap. This im-
plies that the performance of the GRNNFA could be comparable
to that of NBAG in this benchmark test.

D. Sante Fe Series E

This is the Series-E problem of the Sante Fe Time Series
Competition [31]. The dataset can be downloaded from
http://www-psych.stanford.edu/~andreas/Time-Series/. It is
a univariate time series of astrophysical (variation in light
intensity of a star) data samples which are noisy, discontin-
uous, and nonlinear in nature. In accordance with [32], 2048
samples were used, each with five inputs and one output, i.e.,
x1 = f(T4-1,%¢—2, %43, T4, T 5) Where x4 is the intensity
of the star at time ¢. The data presentation order was exactly
the same as the original. The first 90% of the dataset were
extracted for network training and validation. The last 10%
were extracted for testing. After several trials, the best values of
the K -nearest neighbors and vigilance parameters were 2 and
0.8, respectively. Twenty experiments were carried out. Fig. 7
shows the comparison between the test data (thin line) and the
predicted outputs from GRNNFA (bolded line).

The average MSE is shown in Table V. The results reported
in [32], i.e., pattern modeling and recognition system (PMRS),
exponential smoothing (ES) and neural network (NN), are in-
cluded for comparison. Note that PRMS is designed for noisy
time series prediction by employing one-step forecasting, while
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TABLE V
MSE OF DIFFERENT MODELS ON THE SANTE FE SERIES-E PROBLEM (RESULTS
OF PMRS, ES AND NN ARE ADAPTED FROM [32])

Model MSE
PMRS 0.015
ES 0.033
NN 0.078
GRNNFA 0.00326
TABLE VI

BOOTSTRAP MEANS AND CONFIDENCE LIMITS OF MSE FOR THE
SANTE FE SERIES-E PROBLEM

Lower Upper
l:;;]gfi;: Confidence Confidence  Mean
Limit Limit
200 0.003349 0.003516 0.003429
400 0.003356 0.003514 0.003434
800 0.003353 0.003517 0.003433
1600 0.003357 0.003519 0.003432
3200 0.003351 0.003516 0.003431
6400 0.003352 0.003513 0.003431

ES is a regression method with an exponential smoothing pa-
rameter. The NN model is a feed-forward multilayer perceptron
with one hidden layer and the number of hidden nodes was de-
termined by using the procedure in [33] to achieve the minimum
generalization error or maximum generalization performance. It
can be seen that the MSE of the GRNNFA is much lower than
those from other models. The results of bootstrapping are shown
in Table VI.

Since variations of the means and the confidence limits of
MSE for resamplings larger than 200 is small (i.e., less than
0.2%), the results obtained from 200 re-samplings were taken.
It can be observed that the upper limit of the 95% confidence in-
terval (i.e., 0.003 516) is lower than those MSE of other models
as shown in Table V. Once again, the performance of GRNNFA
is significantly better than other models from the statistical point
of view.

E. Evacuation

The GRNNFA model was applied to a novel application in
fire safety research. An experimental study was conducted for
the prediction of evacuation time in the event of fire. Since evac-
uation is highly related to human behavior (e.g., choice of es-
cape route, response to alarm, etc.), such problems are suitable
to be handled by ANN models.

Karaoke centers are places of entertainment in which people
sing in association with music. Fig. 8 shows the architectural
layout of a typical karaoke center in Hong Kong.

Normally, a long corridor is designed to connect rooms to
the lobby area at which an exit is provided. It is an interesting
topic to investigate the relationship between the architectural
parameters and evacuation time, which is defined as the time
taken for the last evacuee coming out from the exit door. In this
experimental study, three different architectural parameters (i.e.,
number of rooms, corridor width and lobby area) were varied
to observe the effects on the evacuation time. Table VII shows
variations of parameters pertaining to the training data.
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Fig. 8. Typical architectural layout of Karaoke centre in Hong Kong.

TABLE VII
RANGES OF PARAMETERS OF THE EVACUATION DATASET

Parameter Minimum Maximum
No. of Rooms 4 22
Corridor Width (mm) 1050 1400
Lobby Area (m?) 15 35

The evacuation time was computed by the Spatial-Grid Evac-
uation Model (SGEM) [24]. In order to evaluate the robustness
of the GRNNFA against noise, Gaussian noise with zero mean
and standard deviation taken at 20% of the output range were
introduced into the output data samples in the network training
and validation sets.

A total number of 750 samples were created. The training
and validation sets, respectively, contained 350 and 200 sam-
ples. The remaining 200 samples were used for testing the
predictive power of GRNNFA. After several trials, the best
vigilance parameter and K -nearest-neighbor value were set to
0.94 and 19, respectively. A GRNN model was created with
global hyper-ellipsoidal kernel [34] and evaluated using the
same training and test data. The adaptive network based fuzzy
inference system (ANFIS) [35] model was also employed to
benchmark this problem. It is a fuzzy inference system of
which the membership functions are adaptively adjusted in the
training process. After several trials, the best number of mem-
bership functions of each input component was determined to
be three. The fast-stop training procedure with 10000 epochs
was used to construct the network structure.

A total of ten runs were carried out with different random
initialization for extraction of the training, validation and test
datasets. Bootstrap was applied to quantify the results statisti-
cally. The predictions from the three models (i.e., GRNNFA,
GRNN and ANFIS) are summarized in Table VIIIL.

Owing to the small variations (i.e., less than 0.5%) of the
means and confidence limits of Root Mean Squared Error
(RMSE) for re-samplings larger than 3200 samples, the results
obtained from 3200 re-samplings were taken. It can be seen that
there is no overlapping among the 95% confidence intervals of
the three models. The confidence intervals of ANFIS (21.8205
and 23.2144) are higher than others. The lower 95% confidence
limit of GRNN (i.e., 16.3028) is also higher than the upper
95% confidence limit of GRNNFA (i.e., 16.2157). The results
justify, statistically, the superior performance of GRNNFA in
comparison with the other two models in noisy data regression.
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TABLE VIII

BOOTSTRAP MEANS AND CONFIDENCE LIMITS OF ROOT MEAN SQUARED
ERROR FOR THE EVACUATION PROBLEM (“LOWER” AND “UPPER” ARE
LIMITS OF THE 95% CONFIDENCE INTERVALS)

No. of re- GRNNFA GRNN ANFIS
sampling Mean Mean Mean
(Lower, Upper) (Lower, Upper) (Lower, Upper)

200 159164 16.5935 21.7161
(155818, 16.1985) (16.2391, 16.9031) (20.3690, 22.9388)

400 15.9342 16.5937 21.8427
(15.6078, 16.2258) (16.2932, 16.8852) (20.4143, 23.2183)

800 15.9359 16.6090 21.8279
(15.5834, 16.2386) (16.2835, 16.9061) (20.4546, 23.1756)

1600 15.9295 16.6047 21.7986
(15.5865, 16.2263) (16.3056, 16.8963) (20.4450, 23.1947)

3200 15.9348 16.6057 20.4901
(15.5936, 16.2157) (16.3028, 16.9120) (21.8205, 23.2144)

6400 15.9360 16.6040 21.8262
(15.6025, 16.2243) (16.3035, 16.8996) (20.4839, 23.2199)

12800 15.9361 16.3017 20.4808

(15.5996, 16.2238)

(16.6030, 16.8556)

(21.8197, 23.2067)

can be adapted for online learning by using an online kernel
width tuning algorithm. These potential improvements of the
GRNNFA model will be considered in further work.

APPENDIX
PSEUDO CODE FOR THE TRAINING PROCEDURE
OF THE GRNNFA MODEL

V. CONCLUSIONS

The GRNNFA model, based on the fusion of the GRNN and
FA, has been introduced. It is a novel hybrid neural network
with the properties of fast and stable learning. The FA model is
used in network training to determine the number of prototypes,
which can be interpreted as resolution of the prediction by the
GRNN. The data compression scheme regulates the locations
and labels of the kernels for prediction by the GRNN model. In
this way, symmetrically distributed noise can possibly be elim-
inated. The K -nearest neighbors scheme was proposed to ini-
tialize the kernel widths prior to a gradient-based kernel width
optimization algorithm.

The effectiveness of GRNNFA in noisy data regression prob-
lems has been demonstrated by using the Noisy Two-Intertwined
Spirals, Ozone, Friedman#1, Sante Fe Series-E benchmark
problems. In addition, GRNNFA has been applied to the predic-
tion of evacuation time in the event of fire using noise-corrupted
data samples. All the experimental results have been quantified
using bootstrapping. The results positively demonstrate that the
GRNNFA model is statistically comparable, if not superior, to
the other neural network and regression models in the noisy
data regression problems.

In terms of computational requirements, GRNNFA includes
FA as a pre processor for data compression and a kernel op-
timization procedure for fine-tuning the smoothing parameter.
However, since FA is an extremely fast clustering approach and
the number of kernels in GRNNFA is fewer than that in the
GRNN, the extra computational burden in GRNNFA can be
minimized.

The next stage of development will focus on several potential
modifications for the GRNNFA model. At present, GRNNFA
employs FA, an unsupervised clustering method, as the pre-pro-
cessor of the GRNN. A supervised clustering approach may be
employed instead. Fuzzy ARTMAP (FAM) [36] could be a vi-
able option. Since the GRNNFA model is developed for noisy
data regression problems, solely relying on a deterministic pre-
diction error feedback mechanism, as in FAM, to determine the
optimum number of clusters may lead to the prototype prolif-
eration problem [16], [36]. A suitable similarity measurement
for error feedback is therefore necessary. A pruning procedure
can be used to eliminate spurious nodes. In addition, GRNNFA

Set vigilance parameter

Set K value of the K nearest neighbor
Ns = no. of training samples
N = no. of prototypes

// FA to determine kernel centers and outputs
for (i =0,i < Ns,i++)

{

read sample from dataset

normalize the input of the sample to range
[0,1]

complement coded the sample

for (j=0,j < N,j++)

(
1

apply choice function to prototype j to get
Tj
}
J=-1
exit = false
k=0
do
{
k++;
apply vigilance test on prototype .J
// where J = arg(j,maxTj)
if (vigilance test = pass)
{
update the prototype .J
update kernel_center (J)
update kernel_output (J)
exit = true
}
else set Ty =-1
if (k= N) exit = true
} while (!exit)
if (J = -1)
{
create new node to code the input sample
N+ +
1
}

// kernel width initialization and optimiza-
tion

for (i =0,i < N,i++)

{

kernel_width (i) = average distance over

K nos. of nearest neighbors

}

apply the gradient descent algorithm to opti-
mize kernel widths

End of training
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